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Abstract

The precision of physical parameters is fundamentally limited by irreducible levels

of noise set by quantum mechanics. Quantum metrology is the study of reaching these

limits of noise by employing optimal schemes for parameter estimation. Techniques

in quantum metrology can assist in developing devices to measure the fundamental

interplay between quantum mechanics and general relativity at state-of-the-art

precision. An example of this is the recent detection of gravitational waves by

the LIGO interferometer. In this thesis, we focus on using quantum metrology

for estimating space-time parameters. We show the optimal quantum resources

that are needed for estimating the gravitational redshift of light propagating in the

Schwarzschild space-time of Earth including the inevitable losses due to atmospheric

distortion. We also propose a quantum interferometer using higher order Kerr

non-linearities to improve the sensitivity of estimating gravitational time dilation.

In principle, we would be able to downsize interferometers and probe gravity over a

small scale potentially making it practical for measuring gravitational gradients. We

then study the interesting features of the metric around a rotating massive body

known as the Kerr metric and propose implementing a stationary interferometer to

measure the effect of frame dragging. Finally, we consider loss in the visibility of

quantum interference of single photons in rotating reference frames, and analogously

in the Kerr metric. In essence, the quantum interference of photons will be affected

by the relativistic effect of rotation. We find experimentally feasible parameters

requiring long optical fibre for long coherence lengths of photons. Our results will

hopefully contribute to the efforts of building future quantum technologies that will

enter a new regime where general relativistic effects can be measured.
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Chapter 1

Introduction

The aim of this thesis is to provide the building blocks of unprecedented high

precision measurements in the overlap of quantum physics and general relativity.

Quantum technologies are becoming increasingly significant and relevant in the

everyday world. The impact of these new technologies has already been realized by

both public and private institutions. A new quantum revolution has begun to take

place. In particular, quantum computers are on their way to outperform classical

computers [1], quantum cryptography will ensure secure communication channels [2],

quantum sensors will bring a new quantum age of sensitive devices that can measure

minuscule forces [3] and quantum enhanced interferometers that measure extremely

tiny changes in distances [4]. Furthermore, quantum clocks will provide highly

sensitive tests of general relativity [5] as well as practical corrections to the global

positioning system [6]. However, we have yet to fully unlock the advantages of

using quantum mechanics to make precise measurements of relativistic phenomenon.

The recent astonishing detection of gravitational waves by the LIGO detector is

a significant step towards this direction [7]. Future enhancement of LIGO will be

able to “hear” chirps of distant sources of gravitational waves with much better

precision using quantum resources [8]. The advent of the new quantum technologies

behind this improvement will lead the way to the emerging field of gravitational

wave observational astronomy. This is paramount and comparable to the first time

Galileo used optical telescopes for astronomical observations.

In this thesis, we will apply quantum metrology to the measurement of general

relativistic effects. Quantum metrology is the study of measuring physical parameters

near noise limits set by quantum mechanics. In particular, it entails enhancing the

sensitivity of a measurement by exploiting quantum resources such as entanglement
1



and squeezing. We will focus on developing tools for quantum enhanced metrology of

the gravitational redshift, the Schwarzschild radius rs, and the rotating Kerr rotating

parameter a.

The thesis is organized as follows. In Chapter 2, we introduce quantum metrol-

ogy in the non-relativistic setting. We show the concepts of quantum parameter

estimation, and the merits of using Gaussian states for quantum metrology. Finally,

we review the quantum limits of the phase noise in interferometry. Next, in Chapter

3 we review the foundations of general relativity and investigate solutions to the

Einstein equation. We focus on tests of general relativity and estimating relativistic

parameters in curved space-time.

In Chapter 4, we apply quantum metrology techniques to the estimation of the

Schwarzschild radius rs. We show the optimal energy resources and squeezing that

are needed for light propagating in the Schwarzschild space-time of Earth including

the inevitable losses due to atmospheric distortion. This would provide useful tools

for Earth-to-satellite based quantum experiments. In Chapter 5, we propose a

new quantum interferometer using higher order Kerr nonlinearities to improve the

sensitivity of estimating rs. In principle, we would be able to downsize interferometers

by adding nonlinearities and probe gravity over a small scale potentially making it

practical for measuring gravitational gradients. In Chapter 6, we then study the

interesting features of the metric around a rotating massive body known as the

Kerr metric. We make use of the anisotropy of light to measure the Kerr rotation

parameter a. We determine the quantum limits of estimating this parameter. As

a possible implementation, we consider a stationary Mach-Zehnder interferometer

set at a dark port that measures a phase due to the anisotropy of light. In Chapter

7, we study the quantum effects of single photon systems in the Kerr metric and

rotating reference frames. We considered the superposition of a co- and counter-

propagating photon around the Kerr space-time of a rotating planet. We have proven

that we can simulate this space-time using a rotating reference frame i.e. a rotating

turntable. We proposed to use the Hong-Ou-Mandel (HOM) effect to measure the

visibility loss of quantum interference due to the time difference between co- and

counter- propagating photons on a rotating turntable. The importance of this is that

a relativistic effect due to rotation has not yet been observed in a purely quantum

mechanical setting. Finally, in Chapter 8, we conclude with a discussion of the

impact of our work thus far, and consider unanswered questions for future research.
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Chapter 2

Quantum Metrology

Metrology is the study of the measurement of physical parameters with a particular

focus on the ultimate precision of the measurement process. In the past, metrology

focused on measuring physical parameters using the classical wave nature of light

or systems of a mechanical nature [1, 2]. Classical noise sources place the limits on

the precision of metrology for these types of systems. For actual physical systems,

even after eliminating classical noise, intrinsic quantum mechanical noise becomes

important. For example, in optics the vacuum fluctuations can limit precision of all

parameter estimations. More recently, it has been shown that non-linear interactions

of the vacuum state with a parametric down-converter generate non-classical quantum

states of light called squeezed states, with quantum noise less than the vacuum for

particular measurements [3]. If such states are used for metrology, exploiting the

properties of quantum states will be essential for maximizing the advantages in

measurement schemes of physical parameters.

2.1 Introduction

A typical metrological scheme for estimating a physical parameter is divided into

three parts: the probe state preparation, the physical interaction which directly or

indirectly depends on the physical parameter and finally, the measurement. This

scheme is limited by sources of noise. The noise can be systematic due to lack of

control of the probe or measurement device. Inevitably, there are also fundamental

sources of noise set by Heisenberg uncertainty relations. In quantum optics, the

semi-classical coherent probe state has quantum noise equivalent to the vacuum
5
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shot noise leading to the standard quantum limit (SQL). Going beyond this limit

for phase estimation requires the use of non-classical states such as squeezing and

entanglement which attain the Heisenberg limit. In quantum metrology, these limits

have been studied extensively for the estimation of phases and other parameters.

In this chapter, we will review the quantum information techniques for obtaining

the quantum error bound of a physical parameter. We present the quantum Fisher

Information (QFI) as a way to characterize the maximum amount of information

obtained by the optimal measurement, without necessarily knowing the measurement

explicitly. We express the QFI in a useful way for the purpose of using continuous

variable Gaussian states as the initial probe states. We review the properties

of Gaussian states and the basic tools of quantum optics from a simple phase

interaction to non-linear quadratic unitary evolutions. Next, we will review the

standard quantum limit (SQL) which scales as 1√
N

where N are the total resources

(i.e. the total photon number). Furthermore, we can go beyond this scaling using

non-classical squeezed states, and attain the so-called Heisenberg limit. We also

mention that encoding physical parameters in non-linear Hamiltonians, in principle,

could scale beyond this limit.

2.2 Quantum limits in interferometry

Interference of light is the pillar of the field of optics. Fundamentally, light

interference is the observation of changes of intensity between two overlapping light

waves with different phases. Numerous applications of interferometry range from

measuring medium distortions, accelerations, and rotations to length changes due to

passing gravitational waves [4–6]. In metrology, we are concerned with the sensitivity

of the interference fringes to very small phase changes. Estimation of the phase

difference using interferometry will give information about how a physical parameter

x affected the path of the probe. In classical theory, there are no fundamental

restrictions on the noise of a measurement device and thus the precision of the

physical parameter x, in theory, can converge rapidly without restriction to an

arbitrary small value for increasing number of measurements. Precision here is

defined as the standard deviation of the mean. However, quantum mechanics places

fundamental restrictions on the noise of a measurement device. This limits the rate

at which the precision increases with the number of measurements.

In semi-classical theory, detectors are quantized and the measurement process

is a statistical average of the photon number. A ubiquitous semi-classical state
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used in optics is the coherent state which exhibits Poissonian statistics with photon

number variance ∆N2 = 〈N〉. Thus the relative uncertainty of the phase is ∆φ ∝
∆N/ 〈N〉 = 1/

√
〈N〉 known as the shot noise or standard quantum limit (SQL). In

the simplest case, this is the limitation of the sensitivity of optical interferometers.

For example, LIGO is currently limited by shot noise in the relevant frequency

band for gravitational wave detection [5]. The shot noise limit is not regarded as a

fundamental limit when non-classical quantum states of light are considered.

In quantum metrology, the non-classicality of quantum states is exploited to

enhance parameter estimation beyond scaling achievable by the standard quantum

limit. The use of squeezed states of light enhances phase estimation by reducing

photon number fluctuations to sub-Poissonian statistics. A squeezed vacuum in one

of the input ports of a Mach-Zehnder interferometer along with a coherent state beats

the classical limit with ∝ 1/N2/3 [7]. Two-mode squeezed coherent states were first

shown to have the phase sensitivity scale as 1/N [7–9]. This latter scaling is known

as Heisenberg scaling. The NOON state was also claimed to saturate this limit which

was formally proven by Bollinger et al. in 1996 [10]. More generally, for estimation

of phase parameters i.e. φ encoded in the unitaries of N single particle Hamiltonians

UN
φ = exp (−iĤφ)

⊗
N , were shown to have similar bounds in both atomic and optical

interferometry [11]. Heisenberg scaling is the maximally achievable precision of the

phase in quantum interferometery [12–15].

It is not always clear what the optimal measurement scheme is that achieves the

best possible precision. The estimation theory underpinning quantum parameter

estimation is aimed to answer this question. Given a quantum state, the ultimate

quantum limits of the phase precision can be quantified using the quantum Fisher

Information (QFI) which already includes an optimization over all the possible

measurements. This approach avoids the need for introducing the quantum phase

operator representing the phase observable (in analogy to the momentum or position

operator), which introduces mathematical difficulties [16, 17]. The popularity of

using the QFI was exemplified by a seminal paper by Braunstein and Caves [18] that

establishes the relation between statistical distances of quantum states and the QFI

of the estimated parameter. More recently, this has become a very common approach

in Gaussian quantum metrology [19,20]. When considering the effects of decoherence

or loss, the fundamental bounds change and the optimal estimation strategies remain

an open question. In lossy optical interferometry, in the limit of large photon number,

the standard deviation of the phase approaches ∆φ ≥
√

(1− η)(ηN) where η is the

transmission probability for photons through the interferometer [21]. The use of
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non-classical states such as a squeezed state vacuum input interfering with a coherent

state was shown to operate near this lossy limit in the interferometric gravitational

wave detector GEO600 [22].

The Heisenberg limit applies when the phase parameter φ is encoded in the

unitary Û = eiφĤ where Ĥ = â†â is a “linear Hamiltonian”, defined as a quadratic

dependence on the creation and annihilation operators. However, parameters encoded

in non-linear Hamiltonians Ĥq = χ(q)(â†â)q were shown to exhibit scaling beyond the

conventional Heisenberg limit [23]. These claims have generated some controversy

[24–26]. Nonetheless, atomic spin-based experiments have demonstrated that the

conventional Heisenberg scaling can be beaten [27].

2.3 Quantum Parameter Estimation

We now consider the estimation theory of parameters in quantum systems. Of

particular importance is the estimation of a continuous parameter θ, (e.g. a phase

shift) that governs the evolution of states ρθ of a quantum system S. The density

operator ρθ describes the full quantum state that can be either pure or mixed.

We initially make a measurement on S to gain information about θ. These

measurement operators form a general Positive Operator Valued Measure (POVM)

[28]. A POVM is characterized by a set of positive operators {Em ≥ 0}km=1 such

that
∑

mEM = I (the identity). We make θ̂(x) the estimator which is a function of

x, the possible outcomes of the measurement. Thus, we have the expectation value

Eθ[θ̂] =
∑
x

p(x|θ)θ̂(x), (2.1)

where p(x|θ) is the conditional probability distribution for a given set Ex of POVMs

conditioned on the parameter being θ. The estimator θ̂ is unbiased if this expectation

value is Eθ[θ̂] = θ. The variance is

Varθ[θ̂] = ∆2θ[θ̂] =
∑
x

p(x|θ)(θ̂(x)− Eθ[θ̂])2. (2.2)

For the quantum case, the conditional probability is given by p(x|θ) = tr[ρ(θ)Ex].

For the case of the unbiased estimator, the variance simplifies to

∆2θ[θ̂] = E[(θ̂ − θ)2] = Var[θ̂], (2.3)

which is equivalent to the mean squared error MSE[θ̂] [29]. The Cramér-Rao bound

places a lower bound on the variance of unbiased estimators [30]. This is given by

∆2θ[θ̂] ≥ 1

MF (θ)
, (2.4)
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where F (θ) is known as the classical Fisher information and M is the number

of independent measurements. The classical Fisher information is defined as the

variance of the natural logarithm of the probability function i.e. the score

F (θ) = E[(
∂ log p(x|θ)

∂θ
)2|θ] =

∑
xεX+

p(x|θ)[∂ log p(x|θ)
∂θ

]2, (2.5)

where the sum is over the set of possible outcomes X+ with non-zero probability

p(x|θ) 6= 0. The classical Cramér-Rao bound in Eq. (2.4) is further bounded by the

Quantum Cramér-Rao bound [18,31,32]

∆2θ[θ̂] ≥ 1

MF (θ)
≥ 1

MH(θ)
, (2.6)

where H(θ) is the quantum Fisher Information. Note that this inequality is

obtained by repeated independent measurements M in the asymptotic limit of a

large number of measurements. One makes use of the central limit theorem to include

M assuming the samples of the random variable are independent and identically

distributed. The quantum Cramér-Rao bound is only meaningful when one can

identify the variance from the measured data with that of the expected value of

the variance. This requires that sufficiently many measurements are made such

that the difference between the two quantities is suppressed and in the limit of

infinitely many measurements this difference vanishes. In practice, the maximum

likelihood estimator (MLE) will approach the quantum Cramér-Rao bound for many

independent measurements. As in Ref. [29], the measurement process begins with

an educated guess of the unbiased estimator of θ. We make initial measurements

near this chosen value and update this knowledge by shifting the estimator. This

requires some a priori information by knowledge of the prior probability distribution

P(θ) to determine the local precision [25]. The local precision is the quantity that is

minimized [18,25]

Pθ(θ̂) :=

〈
(
θ̂

|d〈θ̂〉
dθ
|
− θ)

〉1/2

θ

, (2.7)

where the average is with respect to the conditional probability p(θ̂|θ). In this

thesis, we will also consider minimizing the local precision, and in particular propose

non-linear schemes which exceed the Heisenberg scaling. In quantum interferometry,

a controlled experiment would be designed to be in the local precision regime, for

example, in an interferometer, by calibration to a dark port of zero intensity.
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2.4 Quantum Fisher Information

The classical Fisher Information is defined for any given probability distribution.

However, as a result of the Braunstein-Caves inequality there is an upper bound to

the Fisher information which doesn’t depend on the specific POVM performed on

the system but on the properties of the evolved density operator [18]. This is known

as the quantum Fisher Information H(θ). Formally, it is defined as

H(θ) = tr[ρ(θ)λ(θ)2], (2.8)

where the symmetric logarithmic derivative (SLD) λ is Hermitian and satisfies

the equation

∂ρ(θ)

∂θ
= −i[G, ρ(θ)] =

1

2
[λ(θ)ρ(θ) + ρ(θ)λ(θ)], (2.9)

where G is the generator of the initial set of states ρ(0). For example, we are

usually interested in estimating a linear phase, in which case the generator is the

number operator G = a†a and the evolved pure state encodes the parameter θ in the

following way

ρ(θ) = e−iθGρ(0)eiθG. (2.10)

The SLD turns out to be λ(θ) = −2i[G, ρ(θ)] for pure states. The quantum

Cramér-Rao bound in Eq. (2.6) generalizes to include optimality over all possible

quantum measurements. Unlike previous approaches, there is also no need to calculate

eigenstates for the phase operator in estimating a phase, and only knowledge of the

generator G is needed to calculate the QFI [29].

However, the quantum Fisher Information in Eq. (2.8) can be re-expressed in

terms of the Uhlmann fidelity of the density operators ρ(θ + dθ) and ρ(θ). The

equivalence between the quantum Fisher Information matrix and the Bures distance

between two density matrices has been extensively studied [18]. In this definition, the

Bures distance represents the minimal distance between purifications of the density

operators ρ(θ + dθ) and ρ(θ)

dB(ρ(θ + dθ), ρ(θ)) = [2(1−
√
F(ρ(θ + dθ), ρ(θ)) )]

1
2 , (2.11)

where F is the Uhlmann’s fidelity defined as

F(ρ, σ) = (Tr(
√√

ρ σ
√
ρ ))2. (2.12)
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The QFI is related to the Bures distance via [18]

H(θ) = lim
dθ→0

8(1−
√
F(ρ(θ + dθ), ρ(θ)) )

dθ2
. (2.13)

The advantage of using this definition is that the fidelities of Gaussian states

have a closed form [20,33].

2.5 Basic Operations in Quantum Optics

Quantum states of the electromagnetic field can be described by orthogonal modes

distinguished by their properties in space, time and polarization. Since photons are

bosons, these modes can be occupied by any number of photons. A general quantum

state of light with M modes can be described with the density operator [16]

ρ̂ =
∑

n1,n2,n3,...,nM ,n
′
1,n
′
2,n
′
3,...,n

′
M

ρn1,n2,n3,...,nM ;n′1,n
′
2,n
′
3,...,n

′
M
|n1, n2, n3, ..., nM〉 〈n′1, n′2, n′3, ..., n′M |,

T r(ρ̂) = 1, ρn1,n2,n3,...,nM=n′1,n
′
2,n
′
3,...,n

′
M
≥ 0,

(2.14)

where we have used the Fock basis |n1〉 × . . . × |nM〉 representing ni photons

occupying the i − th mode. This is a mixed state with probability given by the

diagonal matrix elements ρn1,n2,n3,...,nM=n′1,n
′
2,n
′
3,...,n

′
M

of being in the pure state |ni〉.
In terms of the annihilation and creation operators âi,â

†
i , with commutation relation

[âi, â
†
j] = δij

|ni〉 =
(â†i )

n

√
n!
|0〉 , âi |ni〉 =

√
ni |ni − 1〉 , â†i |ni〉 =

√
ni + 1 |ni + 1〉 , (2.15)

where |0〉 describes the vacuum state. If we consider an interferometer, the photons

propagate in two separate arms corresponding to two orthogonal modes. In addition,

we can modify the state in one of the arms by adding beam-splitters, linear phase-

delays or non-linear optical elements. Finally, we detect photons at the output of

the interferometer to determine the phase difference θ of the two modes. The output

states of the modes are sensitive to this phase difference of the interferometer and

one may hence able to make an estimate of the phase θ from the detection events.

In this section, we review how the beamsplitter evolution transforms the quantum

optical field modes. The beamsplitter is an essential element that works as an

interferometric device, a quantum entangler and also for Bell measurements [15].
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Additionally, we consider a basic Mach-Zehnder interferometer where the unitary

operator,

Ûθ = e−iθâ
†â, (2.16)

acts on one of the arms to add a phase and interferes on a beamsplitter.

2.5.1 Beamsplitter

A quantum beamsplitter transforms the input modes of the annihilation operators

a1 and b1
1 in the following way

â1 = tb̂2 +
√

1− t2 â2, (2.17)

b̂1 = tb̂2 −
√

1− t2 â2. (2.18)

Where t is the transmission coefficient of the beamsplitter. Also, a2 and b2 are the

annihilation operators of the output modes of the beamsplitter. Let’s consider the

following input state

|ψ〉in = |n〉 |m〉 =
(a†1)n√
n!

(b†1)m√
m!
|0〉 |0〉 . (2.19)

Then, we rewrite the output state using the transformation of the adjoint operators

|ψ〉out =
(tb̂†2 +

√
1− t2 â†2)n√
n!

(tb̂†2 −
√

1− t2 â†2)m√
m!

|0〉 |0〉 . (2.20)

Example. If one photon is in the input of mode b, |ψ〉in = |0〉1 |1〉1 then the

output state after passing through a 50/50 beamsplitter is

|ψ〉out =
|1〉 |0〉 − |0〉 |1〉√

2
, (2.21)

representing a superposition of a photon being detected in the output mode a2 or

mode b2. These two modes are entangled. In comparison to having a classical source

of light as the input such as one coherent state and a vacuum state |α〉 |0〉 with

amplitudes α, the amplitudes change and half the intensity is detected simultaneously

in both modes but the output state is unentangled. A beamsplitter can also represent

channel loss in the amplitude of a quantum state.

2.5.2 Mach-Zehnder interferometer

An important element in quantum interferometry is the phase-shifter unitary

Ûθ = eiN̂Φ where N̂ = a†a is the number operator. A Mach-Zender interferometer

1We note that we drop the operator hat â from this point forward.
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aout

bout

a1 a2

b1

b2

Φ

Figure 2.1: A Mach-Zehnder interferometer with input modes a1, b1 and output
modes aout, bout. Φ is a phase shifter in the bottom arm.

has a beamsplitter and then two arm modes with one of the arms having a phase

shifter Φ as seen in Fig. 2.1. The two modes interfere on a second beamsplitter and

the output port photon intensity is measured. The output modes are given by the

following

aout =
1

2
((1 + eiΦ)a1 + (1− eiΦ)b1),

bout =
1

2
((1 + eiΦ)a1 − (1− eiΦ)b1).

(2.22)

These relations are important for calculating the evolution for all kinds of input

probe states of the Mach-Zehnder interferometer, and in particular for determining

precision bounds on the phase Φ in quantum metrology. For example, for a single

coherent state input the probability of detection of the output modes is therefore

PA =
〈N̂A〉
N

= (1− cos Φ), (2.23)

where 〈N̂A〉 = 〈a†AaA〉 is the number expectation value of output A and N =

NA +NB. Similarly,

PB =
〈N̂B〉
N

= (1 + cos Φ), (2.24)

where 〈N̂B〉 = 〈a†BaB〉 is the number expectation value of output B.
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2.6 Gaussian states

Gaussian states are defined as continuous variable (CV) states that are completely

characterized by their first and second order quadrature moments in phase space. For

a single mode Gaussian state, these moments are the expectation value of the position

〈x〉, momentum 〈p〉 and their variances 〈∆x2〉, 〈∆p2〉 where the position quadrature

is x̂i = 1√
2

(â†i + âi) and momentum quadrature is p̂i = i√
2

(â†i − âi). Additionally,

there could be covariances of x̂ and p̂, but this can always be diagonalized with

a suitable choice of quadratures. We note Gaussian states are quantum states

that can be used for many applications in experimental quantum physics. In

quantum optics, non-classical Gaussian states can be prepared using a classical

pump field input to a non-linear optical medium which could potentially entangle

the output. This output state can be used in quantum information protocols [34]

and quantum cryptography. Squeezed states exhibit noise below shot noise that can

be used for enhancing parameter estimation in quantum metrology. Additionally,

the mathematical description of Gaussian states can be represented in phase space

diagrams from the first moments and the symplectic eigenvalues of the covariance

matrix that fully determine the state.

Gaussian states are characterized by the covariance matrix and the vector of first

moments. The covariance matrix σ (of dimension 2M) has components given by

σi,j =
1

2
〈ẑiẑj + ẑj ẑi〉 − 〈ẑi〉 〈ẑj〉 , (2.25)

where z is a vector of the phase space variables {x1, p1, . . . , xM , pM} and 〈ẑ〉 is also a

vector of the mean quadrature values with components 〈ẑi〉 = Tr(ẑiρ). For example,

a two-mode Gaussian state M = 2 is characterized by the 4 × 4 real symmetric

covariance matrix

σ =

(
[σ11] [σ12]

[σ21] [σ22]

)
(2.26)

where σij are 2× 2 matrices representing the correlations by the off-diagonal terms

and variances by the diagonal terms between the i-th and the j-th modes. The

first moments are the components of the vector 〈ẑ〉 = {〈x1〉 , 〈p1〉 , 〈x2〉 , 〈p2〉}. An

important property of Gaussian states is that under a unitary evolution with Hamil-

tonians that are at most quadratic in annihilation and creation operators, they

remain Gaussian [20]. Beam-splitters, phase-shifters and squeezing operations are

examples of such operations. We now consider Gaussian states that are common in

quantum interferometry.



2.6. GAUSSIAN STATES 15

2.6.1 Coherent states

A coherent state |α〉 is defined as the eigenstate of the annihilation operator.

That is,

â |α〉 = α |α〉 . (2.27)

Equivalently, we can write this state in the Fock basis by applying the displacement

operator D(α) = eαa
†−α∗a on the vacuum state. This operator can be re-written

using the Baker-Campbell-Hausdorff formula as D(α) = e−
1
2
|α|2e+αa†e−α

∗a.

|α〉 = D(α) |0〉 = e−|α|
2/2eαa

† |0〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 , (2.28)

where we have used the Taylor expansion eαa
†

=
∑∞

n=0
(αa†)n

n!
to write the coherent

state in the Fock basis. If we measure the photon count n, the probability follows

Poissonian statistics P (n) = | 〈n|α〉 |2 = e−|α|
2 |α|2n

n!
with average 〈n〉 = |α|2 and

number variance 〈∆n2〉 = |α|2. Thus the number uncertainty is ∆n
n

= 1√
n

implying

that the larger the intensity, the better the precision with which the beam power

can be measured [16]. Coherent states are classified as minimum uncertainty states

and it can be shown the momentum and position variance satisfy the uncertainty

relation

〈∆2x̂〉 〈∆2p̂〉 ≥ 1, (2.29)

where x = 1√
2

(a + a†) is the position operator and p = − i√
2

(a − a†) is the

momentum operator which obey the commutation relation [x̂, p̂] = i. For a coherent

state 〈∆2x̂〉 = 〈∆2p̂〉 = 1 implying vacuum noise. Thus coherent states can therefore

be represented in a phase space diagram as unit error circles (representing the

quadrature variances) displaced from the origin (the vacuum state) by the real and

imaginary parts of the complex amplitude α.

2.6.2 Single-mode squeezed state

In this section, we review a subset of Gaussian states with uncertainty in one

quadrature less than that of a coherent state [3]. A single-mode squeezed state

is generated by applying the squeezing operator on the vacuum followed by the

displacement operator

|α, ξ〉 = D(α)S(ξ) |0〉 , (2.30)

where S(ξ) = exp(1
2
ξ∗a2 − 1

2
ξ(a†)2) is the squeezing operator, ξ = reiθ is the

complex squeezing parameter and D(α) = eαa
†−α∗a. Compared to generating coherent
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states, squeezed states require quadratic terms in annihilation and creation operators.

The variances of the quadratures for the state |α, ξ〉 turn out to be

〈∆X2
θ 〉 = e−2r, (2.31)

Implying a reduction in noise below vacuum noise. And

〈∆P 2
θ 〉 = e2r (2.32)

Accompanying noise is added in the other quadrature. Note that the variances

don’t depend on the amplitude of the coherent state. The noise of one quadrature

can be below the shot noise even for fields with high intensities [3]. The average

number of photons for the squeezed coherent state is

〈n〉 = |α|2 + sinh2 r. (2.33)

When α = 0 then we have a squeezed vacuum with an average number of

〈n〉 = sinh2 r photons. In the Fock basis, we can write the squeezed vacuum state as

|SMSV 〉 =
1√

cosh r

∞∑
n=0

(− tanh r)n
√

(2n)!

2nn!
|2n〉 . (2.34)

Therefore, the squeezed vacuum state is a superposition of only even photon

numbers.

2.6.3 Two-mode squeezed state

It is possible to generate a two-mode Gaussian state that exhibits quantum

entanglement. This can be done by applying a two-mode squeezing operation on the

vacuum

|TMSV 〉 = Ŝ2(ξ) |0, 0〉 , (2.35)

where Ŝ2(ξ) = exp(ξ∗âb̂− ξâ†b̂†) where ξ = |ξ|eiθ. In the Fock basis

|TMSV 〉 =
1

cosh ξ

∞∑
n=0

(−1)neiθ tanhn ξ |n, n〉 (2.36)

Note that this is not a product of two single mode squeezed states. The photons

in both modes are correlated. If we trace out one of the modes

ρ1 = Tr2[|TMSV 〉 〈TMSV |] =
1

cosh2(r)

∞∑
n=0

tanh2n(r) |n〉 〈n| , (2.37)



2.7. BALANCED HOMODYNE DETECTION 17

which is a thermal state with average number of photons 〈n〉 = sinh2(r). The

thermal state is a mixed state defined as ρ2 6= ρ and Tr(ρ2) < 1. Since this traced

out state is mixed and formed from a global pure state, then the state |TMSV 〉
cannot be written as a product state, implying that it is entangled [35].

2.6.4 Non-linear unitary

Squeezed states offer non-classical advantages to parameter estimation. The

so-called Heisenberg limit can be attained with squeezed photons as the resource.

However, it has been recently observed that strong non-linear interactions can

enhance parameter estimation beyond the conventional Heisenberg limit [26, 36, 37].

These claims have generated some controversy [25, 38]. Nonetheless, a spin-based

experimental system has demonstrated beyond Heisenberg scaling [27]. In the optical

domain an example is that of probe transmission through a Kerr medium where it

has been shown that estimation of the non-linear parameter, χ, can be achieved with

a 〈∆χ〉 ∝ 1/N3/2 scaling [23].

For χ(3) Kerr media 2, the unitary evolution is Û = eiχτ(a†)2a2+ia†akφ(τ) with n̂

the number operator, and k the wave number of the optical mode, φ is the linear

phase and τ is the interaction time with the Kerr medium. Hence we find that the

evolution of a coherent probe state is

|αNL(τ)〉 = e−|α|
2/2

∞∑
n=0

(αeiχτ(n+1)+ikφ(τ))n√
n!

|n〉 . (2.38)

For large enough χτ , this state is non-Gaussian, and higher order statistical

moments must be taken into account. However, as in Chapter 5, we will show that

an interferometer with a non-linear element can remain Gaussian for small enough

χτ , and exhibit beyond conventional Heisenberg scaling.

2.7 Balanced homodyne detection

A quantum metrology scheme also entails a final measurement that contains

information about the estimated parameter. To detect squeezing of a Gaussian

state, we require multiple measurements of the quadrature X̂θ = X̂ cos θ + P̂ sin θ =

e−iθâ+ eiθâ†. We note that this may not be the optimal measurement to saturate

the quantum Cramér-Rao bound. A typical scheme for detecting the quadrature

2Note that the classical Kerr effect is named after John Kerr (1875) [41] and is by no means
related to the Kerr metric which was discovered by Roy Kerr (1963) [42].
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is by homodyne detection initially proposed by Yuen and Chan [39]. Homodyne

detection involves interference of the signal mode âs with a local oscillator mode âLO.

The quadrature of the signal mode is X̂(t) ∝ â(t)e−iΩt + â†(t)eiΩt where Ω is the

frequency. The local oscillator is a strong coherent laser with matching frequency

Ω and quadrature X̂LO(t) ∝ âLO(t)e−iΩt+iθ + â†(t)eiΩt−iθ where θ is a controlled

phase [40]. This signal mode is interfered with the local oscillator on a symmetric

50/50 (balanced) beamsplitter. From the beamsplitter transformations in Eq. (2.18),

the output modes of the beamsplitter are given by

a1,2(t) =
1√
2

(aLOe
iθ ± a(t)). (2.39)

The output fields are detected by two photodiodes which subtract the photocur-

rents. The intensity difference is given by

∆I(t) ∝ a†1(t)a1(t)− a†2(t)a2(t)

= a(t)a†LO(t)e−iθ + a†(t)aLO(t)eiθ

≈ |α|(a(t)e−iθ + a†(t)eiθ) = αXθ,

(2.40)

where we have assumed that the local oscillator is classical aLO ≈ |α| for high

amplitude. Therefore, we need only control the phase θ to obtain a full description

of the quadratures. Additionally, we can obtain the second statistical moments ∆X2

and ∆P 2 from the statistics of the multiple homodyne detections.



Bibliography

[1] Experiments to Determine the Density of the Earth, H. Cavendish (1798).
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Chapter 3

General relativity and Quantum

Field Theory

General relativity describes the curvature of space-time around mass and energy.

It provides a description of physics that has been observed on large scales, from

lengths of cosmic scales to lengths as small as 10 m and below [1–6]. Conversely,

quantum theory very adequately describes physics on small scales. Independent

experimental confirmation of either theory has been repeatedly successful, but

fundamentally, both theories are not compatible with each other. A consistent fully

quantized theory of gravity is famously elusive and even more so, relevant parameter

regimes are far out of reach in today’s experiments [7].

There are two important physical regimes where effects of curvature appear in

quantum phenomena. One could conceive quantum experiments in highly curved

space-time such as near black hole horizons. Although quantum field theory in curved

space-time can adequately describe the physics in this regime, experiments would be

useful to determine bounds on models of space-time micro-structures in attempts

to quantize gravity. Additionally, observers with finite size detectors near a black

hole could detect relativistic quantum effects of the Hawking radiation explaining

the information flow of black holes, with quantum correlations playing an important

role [1]. In contrast, we can consider fundamental tests of general relativity over

larger scales where effects of curvature are large enough that precise quantum devices

can detect them. This regime is a test bed for the overlap of quantum physics and

general relativity. In the near future, quantum communication technologies such

as quantum key distribution between Earth and satellites will need to consider the
25
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effects of space-time curvature as additional noise to the communication channel [8].

In the previous chapter, we focused on quantum metrology in a non-relativistic

setting. The acquired phase difference in an interferometer is caused by interaction

with optical elements, from dielectric material to non-linear interactions. We have

assumed that these interactions occur with reference to a global clock ticking with

time t. However, in special relativity and general relativity, the idea of absolute time

is abandoned for (3+1) dimensional space-time. Thus, for a given quantum state

of a particle we have to consider the particle’s world-line in the curved space-time

to compute its state evolution. In the context of metrology, this is necessary for

obtaining the fundamental precision of a space-time parameter given a quantum

probe.

The theoretical framework for evolving quantum states on a flat space-time

background begins with Quantum Field Theory (QFT). Fundamentally, QFT treats

particles as excited states of their quantized fields. It is expected that any potential

effects of quantum gravity are negligible when the curvature is sufficiently small.

Therefore, the classical description of curved space-time is sufficient. We are thus

working in a semi-classical approximation. In particular, we can treat quantum

states of light as propagating in a classical curved space-time background. Frame-

works for estimating parameters of bosonic quantum fields that undergo a generic

transformation were done by M. Ahmadi et al. [9], and T. G. Downes et al. [10].

Also, a more general approach to this probem where the transformations considered

are also Gaussian unitaries but the probe states are not restricted to Gaussian states

was done by N. Friis et al. [11].

In this chapter, we review special relativity and the constancy of the speed of light

in a local reference frame. Next, we derive the fundamentals of general relativity from

first principles, and introduce the essentials of general relativity in the mathematical

language of metrics and tensors. We give examples of the static and rotating massive

body solutions of the Einstein equations in the vacuum. Finally, we review the

gravitational redshift and the propagation of wavepackets in curved space-time. The

evolution of quantum states in curved space-time is vital for obtaining quantum

limits on the precision of estimating space-time parameters.

3.1 Special Relativity

An inertial reference frame is a reference frame where a particle upon which no

force acts is at rest or moves with a constant velocity. The laws of physics are the



3.1. SPECIAL RELATIVITY 27

same in every inertial reference frame. This is the fundamental principle of relativity.

Special relativity assumes the constancy of the speed of light in all inertial frames.

The space-time interval in the Minkowksi spacetime is given by:

ds2 = −c2dt2 + dx2 + dy2 + dz2, (3.1)

where we have used the metric signature (−,+,+,+). The space-time of special

relativity is non-Euclidean [2, 3]. Inertial observers can transform between reference

frames of different inertial observers via the Lorentz transformations. Boosts in the

x-direction are an example of a Lorentz transformation:

ct′ = γ(ct− βx),

x′ = γ(x− βct),

y′ = y,

z′ = z.

(3.2)

where β = v/c, v is the relative velocity of the boost and γ = (1 − β2)−1/2 is

the Lorentz factor. An event A in the inertial reference frame S is defined by the

coordinates (t, x, y, z). The effect of this transformation is that observers can disagree

on the time order of events. For example, if two events occur simultaneously with

respect to the inertial reference frame S, then they will not occur simultaneously in

the initial reference frame S. With respect to the frame S, A occurs before B or B

occurs before A. We note that the Minkowski metric in Eq. (3.1) is invariant under

the linear transformations in Eq. (3.2). An observer is described by their world line

defined by a trajectory in space and time. In flat Minkowski space-time, the distance

between two points in the space-time is given by the space-time interval:

∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆z2. (3.3)

When ∆s2 = 0, the distance between two events is referred to as null or light-like.

All massless particles, including photons travel along null geodesics. A geodesic

describes the shortest distance between two points on a surface. In flat space-time,

null geodesics have the trivial solution of straight lines ∆x = ±∆t. When ∆s2 > 0

this implies that there is more spatial distance than time between events. Two

events lie for which ∆s2 > 0 lie outside of each others light-cones and are called

space-like separated. Conversely, when ∆s2 < 0 then events happen within the light

cone and are time-like separated. Similarly, we can also define geodesics in a curved

space-time for null geodesics ds2 = 0, spacelike geodesics ds2 = dρ2 where dρ is the

proper distance and timelike geodesics ds2 = −dτ 2 where dτ is the proper time.
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3.2 General Relativity

3.2.1 Equivalence principle

A particle’s resistance to a force is quantified by the amount of inertial mass. It

is a remarkable coincidence that the inertial mass is equivalent to the gravitational

mass [2–6]. This is illustrated in Einstein’s classic ‘elevator’ gedanken experiment.

A ball thrown across an elevator that is free falling in a gravitational field is seen

by an observer in the elevator to move at a constant velocity. The elevator and the

ball have the same acceleration because of this equivalence between inertial and

gravitational mass. In fact, for a sufficiently small enough region of space and time

that we can neglect tidal forces, the reference frame resembles an inertial frame of

reference, and therefore follows special relativity. We can clearly state the equivalence

principle as:

The equivalence principle: An observer occupying a small region of space-

time that is free-falling obeys the laws of physics of an inertial reference

frame.

The most important consequence of this is that a relativistic description of gravity

must incorporate this principle. Subsequently, the main idea of general relativity is

that massive objects cause the space-time to curve. In the local neighbourhood of

an event P , the line element must have the geometry of Minkowski space-time. The

space-time is then constructed on a pseudo-Riemannian 1 manifold for which the

line element has the general form

ds2 = gµνdx
µdxν , (3.4)

where gµν is a metric tensor with Einstein sum indices µ, ν = 0, 1, 2, 3. The

Einstein notation is a convention used to imply summation over all the values of

the index where the index variable appears twice and is not defined. The inherent

problem with considering the space-time element to determine curvature of space-time

is that a coordinate transformation is needed to reduce Eq. (3.4) to the Minkowski

space-time. Therefore, we need to define the curvature of a manifold independent

of the coordinate system used 2. The curvature tensor is derived from the second

covariant differentiation of the arbitrary vector field va defined on a manifold which

1Manifolds are objects which resemble the flat space for sufficiently small regions. A Riemannian
manifold is locally Euclidean.

2More detailed definitions and mathematical background can be found in Taylor and Wheeler [2]
and Hobson, Efstathiou & Lasenby [3].
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is coordinate-independent. The Riemann rank-4 curvature tensor Rρ
σµν is coordinate

independent and has components

Rρ
σµν ≡ ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ, (3.5)

where

Γαβµ =
1

2
gαν(∂βgνµ + ∂µgβν − ∂νgβµ), (3.6)

are the Christoffel symbols which are not coordinate independent.

3.2.2 Einstein Equation

Einstein was motivated to define a coordinate independent equation which

connects mass and energy as the source of space-time curvature. The gravitational

field equations can be derived from the following results:

1. The field equation of Newtonian gravity is

∇2Φ = 4πGρ, (3.7)

where Φ is the gravitational potential, G is the gravitational constant and ρ is

the matter density.

2. In the weak gravitational field limit, the 00- component of the metric must be

g00 = (1 + 2Φ
c2

) (to recover Newtonian gravity).

3. A result from special relativity is that the energy-momentum tensor component

is T00 = ρc2 in an inertial reference frame [3].

One can deduce that since

∇2g00 =
8πG

c4
T00, (3.8)

it suggests that the gravitational field equations must be of the form

Kµν = κTµν , (3.9)

where Kµν is a rank-2 tensor describing the curvature of space-time, κ = 8πG
c4

and

Tµν is the energy-momentum tensor. Due to the Newtonian limit, Kµν must have

the properties that it should at most contain linear terms in the second derivatives

of the metric tensor (see Eq. (3.8)). Secondly, since the energy-momentum tensor is

symmetric, then Kµν must also be symmetric. The curvature tensor Rµνσρ is already
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linear in the second order derivatives of the metric [3]. Thus Kµν must be of the

form

Kµν = aRµν + bRgµν + λgµν , (3.10)

where a, b, λ are constants. And Rµν is the Ricci tensor and R is the scalar curvature.

The Ricci tensor is obtained by contracting the Riemann rank-4 curvature tensor

Rµν = Rρ
µρν , (3.11)

and the scalar curvature for a given metric tensor is

R = gabRab. (3.12)

We note that λ = 0 because Kµν is linear in the second order derivatives of gµν .

However, we will see that relaxing this condition leads to including a cosmological

constant for the expansion of the universe.

It follows from ∇µT
µν = 0, and from the results ∇µ(Rµν− 1

2
gµνR) and ∇µg

µν = 0

that

∇µK
µν = (

1

2
a+ b)gµν∇µR = 0. (3.13)

Thus b = −a
2

. It follows from careful considerations of the weak-field limit of

Newtonian gravity that a = −1 [3], and thus Einstein’s gravitational field equations

are

Rµν −
1

2
gµνR = −κTµν , (3.14)

or in terms of the contracted energy-momentum tensor

Rµν = −κ(Tµν −
1

2
Tgµν). (3.15)

Unlike Newtonian gravity, Einstein’s field equations have the same number of

equations as there are components in the metric tensor gµν of four-dimensional

space-time. Therefore, general relativity is a complicated theory of gravity and

generally difficult to solve.

3.3 Schwarzschild metric

An illustrative case is when the energy-momentum tensor Tµν = 0 which yields

the vacuum Einstein solutions. In empty space, the Einstein equations have solutions
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that are non-trivial due to the non-linearity in gµν . In Eq. (3.15), we have the

gravitational field equation

Rµν −
1

2
Rgµν = 0, (3.16)

which can have non-zero components and implies that non-vanishing curvature is

due to the presence of a gravitational field. The first exact solution of Einstein’s

equations was found by Karl Schwarzschild [12]. The Schwarzschild metric represents

the metric outside of a static spherically symmetric massive object of mass M . It is

given by [3]

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2dθ2 + r2 sin2 θdφ2, (3.17)

where θ and φ are the azimuth and polar angles, respectively. From this point

forward in this thesis, we will be using the natural units G = 1 and c = 1. We

define the Schwarzschild radius rs = 2M which also represents the radius of the

event horizon of a black hole of mass M . Eq. (3.17) describes the metric of a

black hole with a coordinate singularity at r = rs, and a physical singularity at

r = 0 which characterizes the black hole. The coordinate singularity is removed

by adopting Eddington-Finkelstein coordinates [3, 6]. However, for a spherically

symmetric, massive object whose mass is distributed uniformly, the Schwarzschild

metric is valid for its exterior where r > rs.

3.3.1 Eddington-Finkelstein coordinates

For radially ingoing and outgoing light, it is convenient to use a set of coordinates

that extend the region of Schwarzschild space-time beyond the event horizon. We

obtain these coordinates by considering the solution for the null geodesic in the

Schwarzschild metric

0 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2. (3.18)

Thus we have two solutions for ingoing and outgoing null geodesics

t = ±
∫
dr(1− 2M

r
)−1 = ±(r + 2M log | r

rs
− 1|) + constant. (3.19)

The quantities v = t + (r + 2M log | r
rs
− 1|) and u = t − (r + 2M log | r

rs
− 1|) are

constant and null coordinates representing ingoing and outgoing photons, respectively.

These coordinates are known as tortoise coordinates. It is common practice to define

a timelike coordinate t′ [3]. For the ingoing photons, this is the advanced Eddington-

Finkelstein coordinate

t′a = v − r, (3.20)
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and for the outgoing photons, this is the retarded Eddington-Finkelstein coordinate

t′r = u+ r. (3.21)

Correspondingly, the Schwarzschild metric in these coordinates is obtained by replac-

ing dt with dv = dt + r
r−2M

dr and du = dt − r
r−2M

dr. Thus the metric in ingoing

Eddington-Finkelstein coordinates is

ds2 = −(1− rs
r

)dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2), (3.22)

and the outgoing

ds2 = −(1− rs
r

)du2 + 2dudr − r2(dθ2 + sin2 θdφ2). (3.23)

In both of these metrics, we can see that at the event horizon r = rs = 2M the

metrics are non-singular. Unlike in the Schwarzschild metric, there are no diverging

terms and the determinant of the metric is non-vanishing.

3.3.2 Local and far-away observers

As in special relativity, a time-like geodesic is measured by the local clock of an

observer. In the Schwarzschild metric, for a local stationary observer (dθ, dφ = 0,

dr = 0) we set ds2 = −dτ 2 and thus the proper time denoted by τ is

dτ =

√
(1− 2M

r
) dt. (3.24)

On the other hand, we define a far-away observer as an infinitely distant observer

r →∞ who measures the coordinate time dt. By definition, this observer resides in

a flat metric.

3.3.3 Gravitational redshift

An important consequence of the space-time curvature is that observers have

clocks that tick at different rates. This is famously demonstrated by the gravitational

redshift [3]. Let’s consider an emitter at fixed position (rE, θE, φE) sending a beam

of light to a receiver at spatial position (rR, θR, φR) (see Figure. 3.1). At time tE as

measured by a distant observer in coordinate time, the beam of light is emitted and

at time tR it is received. At time tE + ∆tE, another beam of light is emitted and

received at time tR + ∆tR. Let’s consider the null geodesic between tR and tE by

setting ds2 = 0 in Eq. (3.17)
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(rR, θR, φR)(rE , θE , φE)

x

t
∆tE

∆tR

Figure 3.1: A space-time diagram of the gravitational redshift. An emitter located
at (rR, θR, φR) sends light (dashed line) to the receiver at (rE, θE, φE). The emitter
at time tE + ∆tE sends light again which is received at tR + ∆tR.

dt

dσ
= (1− rs

r
)−1/2[−gij

dxi

dσ

dxj

dσ
]1/2, (3.25)

where σ is an affine parameter for the null geodesic, and i, j are indices for spatial

dimensions. For the Schwarzschild metric, the time difference between events tR− tE
along the null geodesic is the integral of Eq. (3.25). This only depends on the path

through the space coordinates and thus the far-away observer would conclude that

∆tE = ∆tR [3].

For the emitter, the local time on his clock between events tE and tE + ∆tE is

given by the proper time for this stationary observer which will be denoted τ . For

a time-like event, ds2 = −c2dτ 2 and thus since the spatial position is fixed dr = 0,

dφ = 0 and dθ = 0 then the proper time is

dτ 2 = (1− rs
r

)dt2. (3.26)

The coordinate r is constant along the worldline, we integrate w.r.t. t

∆τE = (1− rs
rE

)1/2∆tE. (3.27)
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Similarly, the receiver measures the proper time

∆τR = (1− rs
rR

)1/2∆tR. (3.28)

Since ∆tR = ∆tE, the ratio between proper times is

∆τR
∆τE

=
(1− rs

rR
)1/2

(1− rs
rE

)1/2
. (3.29)

This is known as the Schwarzschild time dilation. Furthermore, if we consider

the frequency of the light ν, then their ratio is

νR
νE

=
(1− rs

rE
)1/2

(1− rs
rR

)1/2
. (3.30)

If the receiver is positioned above the emitter rR = rE + h and h << rE then

νR
νE
≈ 1− rs

2rE
+

rs
2(rE + h)

= 1− rsh

2rE(rE + h)
, (3.31)

implying that the frequency of the receiver is redshifted by the gravitational field.

Therefore, the phenomenon called gravitational redshift is directly related to time

dilation.

3.4 Far-away velocity light

Alternatively, we can observe the effect of the Schwarzschild time dilation by

considering tangential null geodesics of light for observers in the gravitational

potential. For example, at radial position r = rA, light propagating horizontally has

the null geodesic (ds = dφ = dr = 0)

ds2 = 0 = −(1− 2M

r
)dt2 + r2dθ2 (3.32)

If the distance travelled dx is much smaller than r then we can make the arclength

dx ≈ rdθ. Thus the velocity of light as seen by a far-away observer is

cA =
dx

dt
=

√
1− 2M

rA
. (3.33)

We can assume that the distance the light travels as observed locally is L. Thus

the time for light to travel as seen by a far-away observer is

tA =
L

cA
=

L√
1− 2M

rA

≈ L(1 +
M

rA
), (3.34)
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and similarly, for the same distance at radial position r = rB = rA + h where h

is the height, the time is

tB =
L

cB
=

L√
1− 2M

rB

≈ L(1 +
M

rB
). (3.35)

Thus the time difference is

∆t = tB − tA =
M

rB
− M

rA
≈ − rsh

2rArB
. (3.36)

That is, the clock of the observer deeper in the gravitational well is slower than

the one higher in the gravitational well as inferred by the far-away observer. We can

set up a Mach-Zehnder interferometer to indirectly measure this time difference by

measurement of the phase difference.

3.5 Kerr metric

It took almost 48 years after the formulation of the Einstein field equations to

determine the metric around a rotating massive body [15]. Although the principles

are similar, the lack of spherical symmetry due to the angular momentum made

algebraic calculations difficult.

In general, the exterior metric that describes an axisymmetric rotating mas-

sive star or planet is given by the Hartle-Thorne metric, which includes the mass

quadrupole moment q that depends on the structure of the massive body [16–19]. A

massive planet or neutron star has the mass quadrupole moment q = kj2 where k is

a constant. The metric that describes the space-time around a rotating black hole

is the Kerr metric [15]. The Kerr metric can be obtained from the Hartle-Thorne

metric provided that one sets q = −j2 where j is the mass normalized angular

momentum of the massive object.

Compared to the original form of the Kerr metric as derived by Roy Kerr [15],

the Kerr metric in the Boyer-Lindquist coordinates minimizes the number of off-

diagonal components [20]. The Kerr metric in these coordinates describes the

space-time around a rotating black hole. To first order in the mass normalized

angular momentum a = J
M

(note that we will use a to denote the Kerr angular

momentum in the rest of the thesis instead of j), the Hartle-Thorne metric and Kerr



36 CHAPTER 3. GENERAL RELATIVITY AND QUANTUM FIELD THEORY

metric are equivalent. The Kerr line-element is

ds2 = −(1− 2Mr

r2 + a2 cos2 θ
)dt2 − 4Mra sin2 θ

r2 + a2 cos2 θ
dtdφ

+ (
r2 + a2 cos2 θ

r2 − 2Mr + a2
)dr2 + (r2 + a2 cos2 θ)dθ2

+ (r2 + a2 +
2Mra2 sin2 θ

r2 + a2 cos2 θ
) sin2 θdφ2,

(3.37)

where a = J
M

is the Kerr parameter where J is the angular momentum of

the massive black hole of mass M . For M → 0, the line element reduces to the

flat metric in oblate spheroidal coordinates [20]. These coordinates are given by

x =
√
r2 + a2 sin θ cosφ, y =

√
r2 + a2 sin θ sinφ and z = r cos θ.

We can similarly consider the null geodesic solution as we had done for the

Schwarzschild metric in Section 3.4. The presence of the cross term dtdφ will lead to

an anisotropy of the null geodesic. We will more closely consider the effect of this

anisotropy in Chapter 6. Furthermore, an observer in the Kerr metric that is moving

at zero angular momentum will see an isotropic speed of light c = 1 and in their

coordinates, their metric will eliminate the cross term dtdφ. In the next section, we

will review the conserved quantities that will assist in determining the coordinates

of these observers.

3.6 Killing vector

A conserved quantity implies that there is a symmetry along the geodesic [6].

Similarly, if the Lagrangian is not dependent on a coordinate xi then the Lagrange

equation implies a conserved quantity along a geodesic

ξ · ~u = gµνξ
µuν = const, (3.38)

where ξ is the Killing vector associated with the symmetry. u is the 4-velocity defined

by

~u = (
dx0

dτ
,
dx1

dτ
,
dx2

dτ
,
dx3

dτ
). (3.39)

A Killing vector implies that the metric is unchanged under a coordinate transfor-

mation. For example, the Killing vector components for the time translation t+ dt

of the Schwarzschild metric are ξt = 1, ξr = 0, ξφ = 0. Implying that there is a

conserved quantity given by Eq. (3.38). The conserved quantity is the energy E

(1− 2GM

r
)
dt

dτ
= E. (3.40)
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Knowledge of the conserved quantity is essential for solving the orbital dynamics of a

photon or a massive object. It is also useful for obtaining coordinate transformations

into the frame of an inertial observer.

3.7 Quantum Field Theory (QFT) in curved space-

time

The tremendous success of quantum theory prompts the question on whether

it can be merged with special and general relativity. Klein and Gordon [21] had

the initial idea of quantizing the classical field by replacing the classical quantitites

of energy and momenta with their respective quantum operators in the energy-

momentum relation. This led to the Klein-Gordon equation which describes the

scalar field of spinless particles [22]. In quantum field theory, particles are interpreted

as quanta of the quantum field. Thus far, quantum field theory had only been

applied to quantum fields in flat space-time. An extension of QFT was further

generalized to curved space-time [23]. In this case, QFT in curved space-time

attempts to include the effect of strong gravity and large accelerations. In contrast

to QFT in flat space-time, this theory predicted the non-uniqueness of the vacuum

state [23]. In the Schwarzschild metric, this leads to particle creation by black

holes known as Hawking radiation [24]. Similarly, the Unruh effect describes the

observation of thermal particles by an accelerating observer [25]. The dynamical

Casimir effect illustrates that particles are produced by a single moving mirror [26].

Besides the latter, these predictions of QFT in curved space-time have yet to be

confirmed. However, Hawking radiation was recently observed in an optical analogue

system [27]. The main limitation of QFT in curved space-time is that it does not

quantize the gravitational field. Instead, quantum fields propagate on the classical

curved space-time background and in this sense it is classified as a semi-classical

theory of gravity. Nonetheless, there are ongoing efforts to fully quantize gravity

ranging from string theory [28], loop quantum gravity [29], stochastic gravity [30] to

spectral geometry [31]. Observational effects predicted by these theories would occur

in the limit of highly curved space-time, or at extremely small scales (i.e. Planck

scales).

With concern to the measurement of classical space-time parameters, QFT in

curved space-time is expected to accurately describe the evolution of quantum states.

In the rest of the thesis, we will be using this semi-classical framework. In the
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following section, we will consider the radial propagation of a photon wavepacket

in the Schwarzcshild metric. This is essential for the evolution of quantum states

in curved space-time and for obtaining quantum limits on the precision of rs in

gravitational red-shift measurements.

3.7.1 Wavepacket propagation in curved space-time

For realistic devices operating on optical inputs, we cannot treat light as a

single mode in frequency. In quantum optics, we treat light as pulses modelled by

wavepackets of multiple modes. In quantum field theory, we quantize the scalar field

such that it obeys the Klein-Gordon equation

�φ+m2φ = 0, (3.41)

where � is the d’Alambertian defined in curved space-time as � = 1√
−g ∂µ

√
−g ∂µ

and where g = det(gµν). m is the mass of the scalar field. The full quantization

procedure can be found in N. D. Birrell and P. C . W. Davies [14]. Light in (1+1)

space-time can be treated as a scalar massless (m = 0) scalar field Φ(x, t), the field

obeys the massless Klein-Gordon equation

�Φ = 0. (3.42)

We consider the Schwarzschild metric in Eq. (3.17) and use the tortoise co-

ordinates to make the Klein-Gordon equation look locally flat everywhere. Since

we are concerned only with radial light propagation, we can assume a 1 + 1 di-

mensional space-time that is flat and the quantum field satisfies the Klein-Gordon

equation [13,14]. Thus Eq. (3.42) takes the form

∂µ∂νΦ(u, v) = 0, (3.43)

where u = t − (r + rs log | rs
r
− 1|) and v = t + (r + rs log | rs

r
− 1|) are the

Eddington-Finkelstein advanced and retarded coordinates. Thus, we respectively

have the solutions for the outgoing and ingoing waves

φuω(u) =
eiωu

2
√
πω

,

φvω(v) =
eiωv

2
√
πω

.

(3.44)
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The solutions for the plane waves φuω and φvω are constant along null geodesics. We

note that ω is the frequency as observed by an observer at infinity. The mode

solutions are normalized to the inner product over the entire frequency space

(φuω(u), φuω′(u)) = (φvω(v), φvω′(v)) = δ(ω − ω′). (3.45)

If the space-time admits asymptotically a time-like Killing vector field then the

field can be quantized. Thus the solution of the Klein-Gordon equation (Eq. (3.42))

is a set of linearly independent modes. The full solution of the quantum field is

expanded in the two modes (and their negative frequency Hermitian conjugate)

Φ =

∫ +∞

0

dω[φuωaω + φvωbω + h.c.], (3.46)

where aω and bω are the annihilation operators of the outgoing/ ingoing modes

respectively which satisfy the usual commutation relation

[aω, a
†
ω′ ] = [bω, b

†
ω′ ] = δ(ω − ω′). (3.47)

A pulse around the central frequency ΩK,0 is described by a wavepacket with

distribution F (ΩK). The localized annihilation operator is therefore given by

aΩ0(τK) =

∫ +∞

0

dΩKe
−iΩKuKFΩK,0(ΩK)aΩK , (3.48)

where uK is the locally measured outgoing tortoise coordinate uK = τK − (rK +

rs log | rs
rK
− 1|) for the radial positions K = A,B. Thus we can transform ΩA to ΩB

using the gravitational red-shift relation and measure how the frequency distribution

FΩA,0(ΩA) is distorted at radial position B. Optimal measurement of this distortion

using continuous variable Gaussian states will be discussed in Chapter 4.
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Chapter 4

Estimating space-time parameters

with a quantum probe in a lossy

environment

The aim in this thesis is to provide fundamental limits of unprecedented high

precision measurements in the overlap of quantum physics and general relativity. In

the following chapter, we consider wavepackets propagating through the space-time

of Earth, and answer questions regarding the practicality of such an experiment.

We provide practical tools for Earth to satellite based quantum experiments using

Gaussian states.

We study the problem of estimating the Schwarzschild radius of a massive body

using Gaussian quantum probe states. Previous calculations assumed that the probe

state remained pure after propagating a large distance. In a realistic scenario, there

would be inevitable losses. Here we introduce a practical approach to calculate the

quantum Fisher Informations (QFIs) for a quantum probe that has passed through

a lossy channel. Whilst for many situations loss means coherent states are optimal,

we identify certain situations for which squeezed states have an advantage. We also

study the effect of the frequency profile of the wavepacket propagating from Alice to

Bob. There exists an optimal operating point for a chosen mode profile. In particular,

employing a smooth rectangular frequency profile significantly improves the error

bound on the Schwarzschild radius compared to a Gaussian frequency profile.
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CHAPTER 4. ESTIMATING SPACE-TIME PARAMETERS WITH A QUANTUM

PROBE IN A LOSSY ENVIRONMENT

4.1 Introduction

The precision with which physical parameters can be estimated is limited by the

level of fluctuations or noise in the measurement device. Irreducible levels of noise

are fundamentally set by quantum mechanics onto measurement results, and hence

quantum mechanics places limits on the ultimate precision of parameter estimation.

The study of these limits and the development of protocols for reaching them is

called quantum metrology [2]. In optics, the use of semi-classical probe states such

as coherent states, where the quantum noise can be interpreted as photon shot-noise,

leads to the standard quantum limit (SQL). Surpassing this limit can be done by

using non-classical states displaying squeezing or entanglement [3].

Most work in quantum metrology assumes non-relativistic quantum mechanics.

However, many applications of quantum metrology relate to relativistic phenom-

ena such as gravitational waves [4] and the estimation of gravitational fields and

accelerations [5]. More rigorous approaches to such problems, that will become

important as precision grows, use relativistic quantum field theory to describe the

quantum interactions in spacetime [6]. A number of authors have begun exploring

such approaches [7–9].

Recently Bruschi et al. [10] showed that techniques for optimally estimating the

transmission parameter of a quantum channel [11] can be adapted to the relativistic

problem of estimating the Schwarzschild radius of a massive body. Their protocol

involves coherently comparing a quantum optical probe state prepared at one height

in the metric with a second, locally identical probe state, prepared at a different

height. They investigated the use of optical probes prepared in coherent states and

squeezed states and found that using squeezed vacuum states was optimal. However,

the calculations of Ref. [10] assumed that losses could be neglected, even though the

probe states potentially needed to be propagated over large distances in the protocol.

In addition, only Gaussian temporal wave-packets were considered and a limited

region of the parameter space was explored.

In this chapter we analyse a more realistic version of the Bruschi et al. protocol

that includes the inevitable losses that would occur in such a scheme in practice

and optimises the parameters with respect to height, bandwidth, mode-shape and

operating point. We find that squeezing is not always optimal but can enhance

precision under certain conditions. In our analysis we introduce a different approach

to obtaining the Fisher information for this protocol which turns out to be much

easier to generalize to more realistic scenarios.
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Pure probe state Lossy probe state Parameter Unitarily evolved state

ÛBSt

Xc = c+ c†

ÛBSΘ

Xd = d+ d†

Xin = a+ a† Xb = tXin −
√

1− t2 Xc Xout = ΘXb −
√

1−Θ2 Xd

Figure 4.1: Representation of a quantum channel. A pure Gaussian probe state
passes through a lossy channel of transmission t. It is equivalent to the probe state
evolving under the unitary beamsplitter operator UBSt . The subsequent ‘lossy probe
state’ will be used to measure the beamsplitter parameter Θ of the unitary operator
UBSΘ

.

The chapter is structured in the following way. In the next section we review the

basic principles of estimating the transmission parameters of a quantum channel using

a quantum probe, describing our approach to obtaining the relevant quantum Fisher

informations and calculating results for mixed probe states. We use the framework of

quantum metrology from Chapter 2. In Sec. 4.2 we review how this approach can be

adapted to estimating parameters associated with space-time curvature, in particular

the Schwarzschild radius, rs, of a massive body. In Sec. 4.3 we apply our formalism

to this problem and derive expressions for the relative errors in estimating rs in a

number of idealised scenarios. We make more realistic assumptions in Sec. 4.6, for

example incorporating loss as a function of transmission distance and considering

bright coherent beams with added squeezing. We conclude and discuss in Sec. 4.7.

4.2 Transmission of a quantum channel

The goal of any quantum estimation is to determine a probe state and probability

operator-value measure (POVM) containing information about the estimator Θ̂ and

to determine the value of Θ from the set of N measured outcomes [11]. We consider

an unbiased estimator such that for N →∞, the expectation value E[Θ̂] returns Θ

and all errors disappear. The bound for the variance of an unbiased estimator is set

by the Cramér-Rao inequality [16].

〈∆Θ̂2〉 ≥ 1

F (Θ)
(4.1)

Where F (Θ) is the Fisher information of a measurement. The Fisher information

coincides with the second moment of the classical logarithmic derivative of the

likelihood function. For N measurements of identically prepared quantum states,

the total Fisher information is the sum of all individual Fisher informations. This is
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a result of the central limit theorem, which applies to the variance of the mean value

of N independent and identically distributed samples. Therefore, this implies that

the variance of the mean of a parameter scales as 1
NF (Θ)

. The Fisher information

F (Θ) is further bounded by the quantum Fisher information H(Θ) which signifies

the most precise measurement allowed by quantum mechanics. Similarly, the QFI is

additive and for N measurements we have the bound

〈∆Θ̂2〉 ≥ 1

NF (Θ)
≥ 1

NH(Θ)
. (4.2)

The general problem we wish to address in this section is to determine the

Cramér-Rao bound for the beamsplitter parameter Θ if the probe states initially

evolve under a lossy quantum channel given by a known transmission coefficient t.

We represent the situation diagrammatically in Fig. 4.1. It is always possible to

decompose the lossy channels into orthogonal modes. We begin by introducing an

auxiliary mode and treating the loss and parameter estimator as two beamsplitters

with transmissions t and Θ.

We consider the beamsplitter transformations,

b̂† = tâ†in −
√

1− t2 ĉ†, (4.3)

â†out = Θb̂† −
√

1−Θ2 d̂†. (4.4)

Where âin is the annihilation operator corresponding to Alice’s input mode and

b̂ is annihilation operator corresponding to the mode Bob receives. The auxiliary

modes are ĉout and d̂out. Our goal is to determine an appropriate probe state for âin

that maximises the QFI under the evolution of the lossy quantum channel. The QFI

can be written in terms of the symmetric logarithmic derivative (SLD) Λ̂(Θ) defined

as a Hermitian operator that has the form [11]

dρ̂Θ

dΘ
=

1

2
[ρ̂ΘΛ̂(Θ) + Λ̂(Θ)ρ̂Θ], (4.5)

where Λ̂(Θ) is an optimal system observable with an expectation value Tr[Λ̂(Θ)ρ̂Θ] =

0, and ρΘ is the density operator describing the output state of the probe. In order to

determine the QFI, we can evaluate the operator Λ(Θ) and thus H(Θ) = Tr[Λ̂2(Θ)ρ̂Θ]

as done in Ref [11].

However, we consider a more practical and succinct approach to determine the

QFI that is useful if the additional known loss parameter t is introduced and the probe

state is Gaussian. We assume that t is completely characterised beforehand. The

representation of this lossy quantum channel in Fig. 4.1 consists of a two beamsplitter
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setup with t and Θ corresponding to the transmissions. A pure Gaussian probe

state passes through a lossy channel of transmission t represented by the probe state

evolving under the unitary beamsplitter operator UBSt . The subsequent ‘lossy probe

state’ will be used to measure the beamsplitter parameter Θ of the unitary operator

UBSΘ
. To determine the QFI, we begin from the properties of two density matrices.

The Bures distance is the minimal distance between purifications of two density

matrices ρ and σ [12]

dB(ρ, σ) = [2(1−
√
F(ρ, σ) ]

1
2 , (4.6)

where F(ρ, σ) is the quantum fidelity

F = (Tr(
√√

ρ σ
√
ρ ))2. (4.7)

The quantum fidelity or Uhlmann’s transition probability is a well known quan-

tification [13] for the similarity of quantum states. The Bures distance can be related

to the quantum Fisher information via

H(Θ) = lim
dΘ→0

8(1−
√
F(ρΘ, ρΘ+dΘ) )

dΘ2
. (4.8)

For pure states, the fidelity reduces to the transimission probability between

the initial probe state and the final evolved state F = | 〈ψ|ψ′〉 |2. For a general

Gaussian state of any mixedness, the fidelity can be expressed in terms of the

quadrature variances V + = 〈∆X(φ)2〉 and V − = 〈∆P (φ)2〉, where X = a+ a† and

P = −i(a − a†). The variances V ± are directly measurable values. We wish to

determine the final quadrature variances of the evolved state V ±1 for a parameter

value Θ, and the variance V ±2 for an infinitesimal change Θ + dΘ. The fidelity can

be expressed in the form [13–15]

F = F(φs)D(x), (4.9)

where φs is the angle between the two states and x is the complex coherent

amplitude. We assume that for the rest of this chapter that this is unchanged φs = 0.

F at φs = 0 can be expressed in terms of the quadrature variances V1 and V2

F(φs = 0) = 2{
√

(V +
1 V

−
2 + 1)(V −1 V

+
2 + 1) −

√
(V +

1 V
−

1 − 1)(V +
2 V

−
2 − 1) }−1.

(4.10)
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In addition, if the two states are separated by xr + ixi in phase space, a factor

D(x) is introduced

D(x) = exp[− 2x2
r

V +
1 + V +

2

− 2x2
i

V −1 + V −2
], (4.11)

where xr and xi are the real and imaginary parts of the coherent amplitude,

respectively.

4.2.1 Coherent probe state with thermal noise

We can use these expressions to determine the QFI for a coherent probe state with

a mixed thermal state in the auxiliary mode ĉ. The variances of the quadratures are

obtained from the Heisenberg picture. The variances add as follows 〈(∆Xout)
2〉 =

t2 〈(∆Xin)2〉+ (1− t2) 〈(∆Xc)
2〉 and 〈(∆Xb)

2〉 = Θ2 〈(∆Xout)
2〉+ (1−Θ2) 〈(∆Xd)

2〉.
A thermal state has variance 〈(∆Xc)

2〉 = 2ñTh + 1 and 〈(∆Xd)
2〉 = 1 is the vacuum

state. Hence

V +
1 = 2ñThΘ2(1− t2) + 1, (4.12)

where ñTh = 1

e
~ω
kBT −1

is the average number of photons in a single mode of frequency

ω and temperature T . Thus for a slight variation in the parameter Θ + dΘ, the

variance is

V +
2 = V +

1 + 4ñThΘdΘ(1− t2) + 2ñThdΘ2(1− t2). (4.13)

It can be shown that V −1 = V +
1 = V1 and V −2 = V +

2 = V2. Thus the equation for

the fidelity 4.9 is reduced to

F(φs = 0) = 2{(V1V2 + 1)−
√

(V 2
1 − 1)(V 2

2 − 1) }−1. (4.14)

Thus the total fidelity to second order in dΘ is

F = 1− dΘ2|tα|2

V1

− 4
dΘ2ñ2

ThΘ2(1− t2)2

(V 2
1 − 1)

= 1− dΘ2|tα|2

2ñThΘ2(1− t2) + 1
− dΘ2ñTh(1− t2)

ñThΘ2(1− t2) + 1
.

(4.15)
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We make use of the definition in Eq. (4.8) and the binomial expansion for x << 1,
√

1− x ≈ 1− x/2. Finally, the QFI is given by

H(Θ) =
4|tα|2

V1

+
16ñ2

ThΘ2(1− t2)2

(V 2
1 − 1)

=
4|tα|2

2ñThΘ2(1− t2) + 1
+

4ñTh(1− t2)

ñThΘ2(1− t2) + 1
.

(4.16)

We note that for room temperature T = 300 K and signal frequency ω = 700

THz (λ = 430 nm), the thermal number occupation ñTh is negligible. Thus, the QFI

can be approximated to that of an attenuated coherent state

H(Θ) = 4|tα|2. (4.17)

Therefore, for this signal frequency at room temperature, the effect is negligible.

However, for lower frequencies ω < kBT
~ the average number of photons increases

and thus the channel loss is much greater.

4.2.2 Squeezed Coherent probe state

We now consider a squeezed coherent probe state. We assume the auxiliary

vacuum states in either beamsplitters have variance ∆Xc = ∆Xd = 1. A squeezed

coherent state can have a quadrature variance that is better than the shot noise

〈(∆Xin)2〉 = e−2r and 〈(∆Pin)2〉 = e2r. The level of squeezing is determined by the

parameter r where we have assumed the maximum squeezing without loss of generality

is in the X quadrature. We note that the squeezing parameter r, the magnitude |α|
and the angle θ of the coherent state are the only relevant parameters Thus, the

variances of the evolved state are V +
1 = Θ2t2(e−2r−1)+1 and V −1 = Θ2t2(e2r−1)+1.

Since we are estimating how well a change in Θ can be detected, the second state is

the same state with an infinitesimal shift in the parameter Θ + dΘ. In phase space,

the separation is given by xr + ixi = dΘt(cos(θ) + i sin(θ))|α|. We approximate the

fidelity expression to second order in dΘ and disregarded any higher orders.

The fidelity for the squeezed coherent state is

F =1− t2(2(Θt)4 − 2(Θt)2 + 1)

(1− t2Θ2)(2Θ2t2(1− t2Θ2) + (sinh−2(r)))
dΘ2

− |α0t|2(
cos2(θ)

V +
1

+
sin2(θ)

V −1
)dΘ2.

(4.18)
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Figure 4.2: The QFI for perfect transmission t = 1 for various probe energies
ñ = 10, 102, 103, 104, 105, 106, 107 (blue to green). For ñ ≥ 104, it is no longer
advantageous to use a large fraction of squeezed photons. The parameter to be
measured is chosen to be Θ = 1− 1.0× 10−3. The red line is the maximum QFI for
each probe energy.
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Figure 4.3: The quantum Fisher Information for a squeezed coherent state with
probe state energy ñ = 1. The channel transmission t varies from t = 0 (blue) to
t = 1.00 (green) in 0.02 intervals. The red curve represents the maximum QFI for
each t. The parameter is Θ = 1− x ≈ 1− 1.0× 10−3. The red line is the maximum
QFI.
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Figure 4.4: The QFI for a squeezed coherent state with probe state energy ñ = 10.
The channel transmission t varies from t = 0 (blue) to t = 1.00 (green) in 0.02
intervals. Same Θ as in Fig. 4.3.
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Figure 4.5: The QFI for a squeezed coherent state with probe state energy ñ = 100.
The channel transmission t varies from t = 0 (blue) to t = 1.00 (green) in 0.02
intervals. Same Θ as in Fig. 4.4. The red line is the maximum QFI.
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One can show that, the optimal angle is arg(α) = θ = 0 [17]. The quantum

Fisher information is simply

H(Θ) =
4t2(2(Θt)4 − 2(Θt)2 + 1)

(1− t2Θ2)(2Θ2t2(1− t2Θ2) + (sinh−2(r)))
+

4|α0t|2

Θ2t2(e−2r − 1) + 1
. (4.19)

We restrict the pure Gaussian probe state to finite energy with mean photon

number ñ = sinh2 r + |α|2 and we optimize H(Θ) over the squeezed fraction y =

sinh2 r/ñ. We note that the squeezing parameter r and the amplitude α are the only

relevant parameters.

An estimate for Θ is needed because H(Θ) explicitly depends on the parameter

we are estimating. We will graphically report the fraction of squeezed photons for

maximum information if Θ is near unity. For the ideal case where t = 1, the quantum

Fisher Information improves with more squeezing for a low number of photons as

seen in figure 4.2. For ñ ≥ 100, a large fraction of squeezed photons becomes less

advantageous and it would be inefficient to squeeze all photons.

For less than ideal transmission, there is a tendency for the maximum QFI to

occur for small fractions of squeezing. In figures 4.3, 4.4 and 4.5, the quantum

Fisher Information is shown for three mean photon numbers ñ = 1, 10 and 100 and

transmission coefficient t ranging from t = 0 to t = 1.00. For a small number of

photons ñ = 1 to ñ = 10 and low transmission, the squeezing does not affect the

information. For high transmission, the maximum information occurs for a large

fraction of squeezed photons. However, for increasing number of photons ñ ≥ 100

(see Fig. 4.5), this maximum is attained for a smaller fraction of squeezing until

squeezing becomes irrelevant and fully coherent photons are the most advantageous

for all levels of loss. Furthermore, for very lossy transmission, we observed that

the maximum QFI occurs for a finite fraction of squeezed photons. Nonetheless,

fully coherent probe states differ negligibly from the maximum QFI of these lossy

channels.

Now that we have fully characterized the QFI of a lossy quantum channel, we

can apply the results to the measurement of space-time parameters.

4.3 Estimating space-time parameters

Quantum metrology has been successfully applied to the design of experiments

that beat the quantum shot noise limit by using quantum resources [19]. However,

the physical parameters in question are non-relativistic. The effect of relativity
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is becoming increasingly important in quantum communications in space-based

networks. Since the quantum communication protocols extend over large distances,

gravitational phenomenon is of fundamental, as well as practical importance. Namely,

there have been proposals for entanglement based experiments in space such as

SPACEQUEST [20] and Quantum Key Distribution (QKD) protocols [9]. There

have also been proposals for optical clocks in space (“The Space Optical Clocks

Project”) [21]. Also, effects from curved space-time on teleportation protocols were

shown to affect the final fidelity [10].

In Chapter 3.3, we have seen that the space-time parameter rs is encoded in

the frequency shift of the propagating light. We can thus apply the framework of

quantum metrology to design protocols with optimal quantum resources for the

measurement of the gravitational redshift and therefore rs. D. Bruschi et. al. [10]

considered the fidelity of the red-shifted wavepacket received by Bob interfering with

the original wavepacket sent by Alice. Therefore, we require the quantum field theory

solution of the wavepacket propagating through the curved space-time as outlined in

Chapter 3.7.1.

In this section, we will use the previously outlined model to estimate the space-

time curvature using a lossy quantum channel. The probe state sent by Alice from

Earth’s surface will experience attenuation both due to scattering by the atmosphere

but also from diffraction of the beam as it propagates to Bob. We will begin by

presenting an approximate model for wave packets propagating in Earth’s space-time

as derived in Ref [10].

Earth’s space-time can be approximated to be a non-rotating spherical body in

the (1 + 1)- dimensional Schwarzschild metric if we assume Bob is geostationary.

Therefore, the angular momentum is negligible because Alice and Bob are radially

aligned. Disregarding the angular coordinates, the reduced Schwarzschild line element

is ds2 = gµνdx
µdxν = −f(r)dt2 + 1

f(r)
dr2 where f(r) = 1 − rs/r and rs = 2GM

c2
is

Earth’s Schwarzschild radius [23, 24]. An observer at radius r = r0 in this metric

will measure the proper time τ =
∫
ds =

√
f(r0) t where t is the proper time as

measured by an observer at infinite distance r =∞.

As in Chapter 3.7.1, the electromagnetic field of a photon can be described

by a bosonic massless scalar field and Klein-Gordon equation �Φ = 0 where the

d’Alambertian is given by 1√
−g ∂µ

√
−g ∂µ [28]. Using the Eddington-Finkelstein

coordinates as done in Ref [10], the solutions of this equation are given by outgoing

u = ct − (r + rs log | r
rs
− 1|) and v = ct + (r + rs log | r

rs
− 1|) ingoing waves that

follow geodesics [23, 24]. It it straightforward to show that the field operator Φ is
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expressed as the combination of bosonic annihilation and creation operators of these

outgoing and ingoing waves∫ +∞

0

dω[φ(u)
ω aω + φ(v)

ω bω +H.c.], (4.20)

where u and v are the geodesic coordinates of the outgoing and incoming waves

(see Chapter 3.3.1). The annihilation/creation operators obey the relations [aω, a
†
ω′ ] =

[bω, b
†
ω′ ] = δ(ω−ω′). We define localized annihilation and creation operators in terms

of the frequency distribution F (ωA) of the mode ã†ωA =
∫ +∞

0
dωAF (ωA)e−iωA

uA
c a†ωA .

In the Schwarzschild background, the mode Bob will receive is transformed to

ã†ωB =
∫ +∞

0
dωBF (ωB)e−iωB

uB
c a†ωB and if Bob tunes his detector to receive Alice’s

frequency distribution F (ωA), then the field can be divided into a part which matches

Bob’s detector and a part which does not [26]. This is formally equivalent to a

beamsplitter with transmission parameter Θ. To implement this scheme, Bob would

have to employ a mode selective beamsplitter transformation that extracts the desired

mode [29]. In Appendix A, we outline a method for a mode splitter using linear

optics such that the commutation relation [a, a′†] = Θ holds, and Bob effectively

implements a beamsplitter with transmission Θ.

The frequency ωB =
√

f(rA)
f(rB)

ωA that Bob measures is said to be gravitationally

redshifted, a famous result of general relativity [24]. For any arbitrary frequency

distribution, the relation between Alice’s and Bob’s modes can be used to find the

relation in the different reference frames [22],

F (B)
ωB,0

(ωB) =

(
f(rB)

f(rA)

)1/4

F (A)
ωA,0

(√
f(rB)

f(rA)
ωB

)
. (4.21)

Thus the effective beamsplitter ratio is characterised by the overlap of the

frequency distributions sent by Alice and received by Bob. Or equivalently, the com-

mutation relation of the annihilation and creation operators is no longer normalized.

[ãωA , ã
†
ωB

] =

∫ +∞

−∞
dωBF

∗B
ωB,0

(ωB)FA
ωA,0

(ωB)eiωB
uB−uA

c = Θ, (4.22)

where uB − uA = cτ − (rB − rA)− rs log | rB−rs
rA−rs

| and τ is the proper time interval

between Alice and Bob as measured by Bob at height rB. We assume Alice and Bob

directly measure their separation. Thus, Bob can tune τ such that uB − uA = 0.

Since the source is not monochromatic, we need a frequency distribution for

the mode, we first assume it takes the form of a normalized Gaussian wavepacket

F (ω) = e
− (ω−ω0)2

4σ2

(2πσ2)1/4 centred around the frequency ω0 and with a spread of σ [30]. We
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derive a general expression for the overlap between Alice’s transformed wavepacket

and Bob’s arbitrary choice of the Gaussian shape. For the latter, we denote Bob’s

detector centre frequency as bω0 and the frequency spread cσ0. By using equations

4.21 and 4.22, the overlap Θ for this case is given by

Θ =

√
2c(1− δ)

c2 + (1− δ)2
e
−

(1−δ−b)2ω2
B,0

4(c2+(1−δ)2)σ2 , (4.23)

where

δ = 1−

√
f(rA)

f(rB)
≈ rs

2

L+ rs log | rB
rA
|

rA(rA + L+ rs log | rB
rA
|)
, (4.24)

where L+rs log | rB
rA
| is the measured distance between Alice and Bob, and L = rB−rA.

This approximation holds because rs of Earth is very small compared to rB and rA.

We can make a further approximation and disregard the height corrections due to

the geodesic in Schwarzschild space-time since these are of the order of rs. Therefore

we are left with

δ ≈ rs
2

L

rA(rA + L)
. (4.25)

However, Bob can adjust the overlap artificially by changing the shape of his

detector. We assume that Bob can adjust his detector parameters to be very closely

matched with a deviation of ε such that b = c = 1− ε. Setting uB − uA = 0 in Eq.

(4.22), the overlap becomes

Θ ≈ e−
(δ−ε)2ω2

0
8σ2 . (4.26)

We denote the exponent as x =
(δ−ε)2ω2

0

8σ2 .

Since Θ is equivalent to the beamsplitter transmission parameter, we can use

the quantum Fisher Information found in Eq. (4.19) to determine the Cramér-Rao

bound and in particular we can incorporate the loss of the probe beam. However,

to estimate the Schwarzschild parameter rs, we must determine the corresponding

quantum Fisher informations. From the definition of fidelity, this only requires the

application of the chain rule such that H(rs) = ( dΘ
drs

)2H(Θ).

4.4 Relativistic Quantum Cramér-Rao Bound

The ultimate quantum limit for a space-time parameter is given by the Quantum

Cramér-Rao bound. Therefore for any space-time parameter rs that is encoded
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in the beamsplitter parameter Θ(rs) or the phase φ(rs) in an interferometer, the

Quantum Cramér Rao bound is given by

∆rs
rs

=
1

rsMH(rs)
, (4.27)

where the quantum Fisher Information for the encoded space-time parameter is

H(rs) =

(
dΘ(rs)

drs

)2

H(Θ). (4.28)

This simply comes from the definition of H(Θ) in terms of the second order

derivative of the fidelity as in Eq. (4.8).

4.5 Estimating the Schwarzschild radius with a

lossy quantum probe

In this section we will optimize our choice for the parameter Θ, and consequently

the probe state energy, to provide the most precise bound on the relative error

∆rs/rs.

In transforming H(Θ) to H(rs), the chain rule dΘ = dΘ
drs
drs = −(

(δ−ε)ω2
0δ

4σ2rs
)e−xdrs =

−( 2xδ
rs(δ−ε))e

−xdrs was used.

Therefore, H(rs) = 4x2δ2

r2
s(δ−ε)2H(Θ) for the Gaussian frequency profile. The bound

for the relative error in the Schwarzschild radius is

∆rs
rs
≥ 1

rs
dΘ
drs

√
NH(Θ)

=
4σ2

(δ − ε)ω2
0δe
−x
√
NH(Θ)

. (4.29)

Let us explore some properties of this equation. From Eq. (4.29) and the quantum

Fisher information of a coherent state H(Θ) = |tα|2, we can see that as t→ 1 and

Θ→ 1 which corresponds to ε→ δ + ∆2

4δΩ2
0
, the variance diverges and it is impossible

to measure the Schwarzschild radius rs with coherent states around the point Θ = 1.

However, if the probe energy is completely squeezed, then the denominator reduces

to

lim
ε→δ,t→1

(δ − ε)ω2
0δe
−x
√
NH(Θ)

= (δ − ε)ω2
0δe
−x

√
4N sinh2 r

1−Θ2
.

(4.30)
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Figure 4.6: Relative error in the Schwarzschild radius versus squeezing fraction at
the operating point (δ − ε)ω = 1 Hz (x = 3× 10−10) with ñ = 2 from t = 0.02 (blue)
to t = 1.00 (green) in 0.02 intervals. The number of measurements in a second are
N = σ/10 = 2× 102. We take rA = 6.37× 106m, rB = 42.0× 106 m, σ = 2000 Hz,
ω0 = 700 THz and hence δ = 6.0× 10−10. The red line is the minimum precision for
each transmission.
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Figure 4.7: (δ − εopt)ω = 2σ Hz (xopt = 1/2) with ñ = 2 from t = 0.02 (blue) to
t = 1.00 (green) in 0.02 intervals. This is the optimal operating point for coherent
states. The parameters are the same as in Fig. 4.6. The red line is the minimum
precision for each transmission.
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Figure 4.8: For each squeezing fraction and transmission from t = 0.02 (blue) to
t = 1.00 (green) in 0.02 intervals, we have optimized for the best ε. Every other
parameter is the same as in Fig. 4.6. The red line is the minimum precision for each
transmission.
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We can make further approximations about Θ2 ≈ 1− 2x. Thus, since 1√
2x
∝ 1

δ−ε

this cancels out, and the limit is well behaved. The relative error bound of ∆rs
rs

approaches

∆rs
rs
≥ σ

ω0δ
√
N sinh2 r

. (4.31)

It is evident that coherent states do not contribute to the error bound if Θ = 1

and Bob matches up his wavepacket with the one he receives δ = ε. Squeezing is

absolutely necessary to detect the small deviation from Θ = 1. As seen in Fig. 4.6, if

the overlap is Θ = 1−3×10−10, the error of rs is far too large for lossy channels. The

only exception is when t = 1 which depends strongly on the amount of squeezing.

However, if Bob’s detector is using Alice’s original wavepacket ε = 0 then the

error bound for coherent states is sensible

nc
∆rs
rs
≥ 2σ2

ω2
0δ

2e−x
√
N |α|2

, (4.32)

and no squeezing is necessary. Furthermore, we determine the optimal ε for which

the coherent state is most advantageous. We simply minimize 4.29 with respect to ε

to obtain εopt = δ − 2σ
ω0

and xopt = 1
2
. The rs lower error bound for t = 1 is thus

∆rs
rs
≥ 3.3σ

ω0δ
√
N |α|2

. (4.33)

As seen in Fig. 4.7, the lossy channels now have reasonable error bounds. Finally,

we can determine the optimal ε for a given squeezing fraction and transmission as seen

in Fig. 4.8. In figure 4.8, ∆rs
rs

is plotted against the fraction of squeezed photons for

ñ = 2 average photons of the initial probe state. For low transmission t, the minimum

error occurs for a small fraction of squeezing that is less than 10%. Therefore, it is

more advantageous to use coherent photons for heavily attenuated signals. However,

for almost perfect transmission, it is considerably more advantageous to squeeze

100% of the photons.

In figures 4.6 to 4.15 we adopt parameters similar to Ref. [10]. We assume that

Alice is on the surface of Earth rA = 6.37× 106m and Bob is in geostationary orbit

rB = 42.0× 106 m. With these parameters, we obtain δ = 6.0× 10−10. In contrast to

Ref. [10], we relate the number of measurements N per second to the frequency width

σ = 2 kHz. We assume that the length of the pulse is ∆t = 1/σ = 0.5 ms and thus

within one second, we can have up to 103 measurements. For minimal correlation

between pulses, we assume that one pulse has 50 milliseconds of space, and as a rule

of thumb N = σ/10 = 2 × 102 measurements in a second. Counterintuitively, by
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making the width of σ smaller and thus the number of measurements smaller, we

find rs is more precise.

4.5.1 Rectangular frequency profile

It is apparent that the overlap between Alice’s and Bob’s Gaussian wavepackets

is very near unity. However, it is known that Gaussian wave-packets are the best

at maintaining their overlap given a displacement [31]. This means they are least

optimal for our purposes. We require a frequency profile that is more sensitive.

Hence, we consider a rectangular frequency profile. In the time-domain, this would

correspond to a sinc(kt) function.

For a normalised rectangular function of width σ0 and height 1/
√
σ0 at frequency

ω0, we wish to calculate the overlap with the transformed rectangular function in

Bob’s reference frame. From Eq. (4.21), Bob measures the width
√

f(rA)
f(rB)

σ0 and

height 1√
σ1

= 1√√
f(rA)

f(rB)
σ0

centred at frequency ω1 =
√

f(rA)
f(rB)

ω0. The rectangular

function profile must be normalised
∫ +∞
−∞ dωB|FB(ωB)|2 = 1. Since

√
f(rA)
f(rB)

< 1, the

transformed rectangular function will have lower frequency and smaller overall width

but larger height. Thus, making use of Eq. (4.22), the overlap is

Θ =

[ωB + σB
2
− (ωA − σA

2
)] 1√

σBσA
, ωB + σB

2
> ωA − σA

2

0, ωB + σB
2
< ωA − σA

2

(4.34)

Bob can adjust his detector by varying the central frequency ω0 by an arbitrary

factor b and also the frequency spread σ0 by a factor of c. Therefore,

Θ =
[(
√

f(rA)
f(rB)

ω0 +

√
f(rA)

f(rB)
σ0

2
)− (bω0 − cσ0

2
)]

( f(rA)
f(rB)

)1/4
√
c σ0

=
ω0

σ0

(
1√
c

(
f(rA)

f(rB)

)1/4

− b√
c

(
f(rA)

f(rB)

)−1/4
)

+
1

2

(
1√
c

(
f(rA)

f(rB)

)1/4

+
√
c

(
f(rA)

f(rB)

)−1/4
)
.

(4.35)

We note the useful approximation
(
f(rA)
f(rB)

)1/4

≈ 1− rsL
4rArB

= 1− δ
2

and
(
f(rA)
f(rB)

)−1/4

≈
1 + rsL

4rArB
= 1 + δ

2
. This approximation holds if rs is extremely small as is the case
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for Earth. We can further set the factors b = c = 1 − ε. We make the necessary

approximations and keep terms to first order

Θ =
ω0

σ0

(
(1 +

ε

2
)(1− δ

2
)− (1− ε

2
)(1 +

δ

2
)

)
+

1

2

(
(1 +

ε

2
)(1− δ

2
) + (1− ε

2
)(1 +

δ

2
)

)
= 1− ω0|δ − ε|

σ0

.

(4.36)

In the last step, we have generalised to the case when Bob adjusts his detector

to overestimate the frequency spread and central frequency. Thus ε > δ but the

overlap will remain smaller than unity, as expected. The expression above is only

valid if ω0 >
σ0

2
because we are disregarding the negative frequencies. For sufficiently

large ω0

σ0
, the rectangular frequency profiles will no longer overlap because of the

gravitational redshift Θ = 0. The modes remain completely orthogonal for ω0

σ0
≥ 1
|δ−ε| .

The error lower bound for rs is

∆rs
rs
≥ σ0

ω0δ
√
NH(Θ)

. (4.37)

We note that there is a discontinuity at δ = ε and the derivative w.r.t. rs of the

absolute value is undefined at this point. However, in reality we adopt a continuous

frequency distribution and thus Θ will have a well defined derivative. We note that

for a coherent state, in the limit that t→ 1 and ε→ δ, the error lower bound for rs

is

∆rs
rs
≥ σ

2ω0δ
√
N |α|2

. (4.38)

This behaviour is evident in Fig. 4.9, where the overlap is Θ = 1/2, there is

small dependence on the squeezing fraction. In comparison, the optimal point of the

Gaussian is up to a factor of 5 worse than for the same overlap using the rectangular

frequency profile. Conversely, for a fully squeezed probe state, we can express the

error bound as

∆rs
rs
≥

√
σ0(δ − ε)

√
2ω0 δ

√
N sinh2 r

. (4.39)

This indicates that the bound can approach 0 up to an error in matching up

the exact frequency distribution. For example, if Bob’s detector guesses the correct

distribution within (δ− ε)ω = 1 Hz then a perfect channel would have 10−6 precision.
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Figure 4.9: Relative error in the Schwarzschild radius with total probe state energy
ñ = 2 for rectangular frequency profile. Squeezing is not effective. The number
of measurements are N = 2× 102 in a second. The transmission coefficient varies
t = 0.02 (blue) to t = 1.00 (green) in 0.02 intervals. (Parameters: (δ− ε)ω = σ/2 Hz
(x = 1/2) with ñ = 2 and N = 2× 102 measurements). The red line is the minimum
precision for each transmission.
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Figure 4.10: Same parameters as in Fig. 4.9 with the exception (δ − ε)ω = 1 Hz
(x = 5× 10−5) with ñ = 2. In this regime, the rectangular frequency profile is 100
times more precise than the optimal Gaussian point if the initial probe state is fully
squeezed. The red line is the minimum precision for each transmission.
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Figure 4.11: For each squeezing fraction and transmission, we have optimized for
the best ε (not including t = 1 which is optimal at δ = ε and approaches 0). The red
line is the minimum precision for each transmission.
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As seen in Fig. 4.10 and Fig. 4.8, squeezing is clearly advantageous. In comparison

to the best Gaussian precision, the rectangular frequency profile does 2 orders of

magnitude better.

4.6 More Realistic Scenarios

4.6.1 Non-ideal rectangular frequency profile

The shape of the rectangular frequency profile we have used is an ideal repre-

sentation with infinitely sharp edges which is unphysical. We can smooth the edges

using a tanhω function as follows

F (ωB) =
tanh σ+2(ωB−ω0)

∆σ
+ tanh σ−2(ωB−ω0)

∆σ

2
√

∆σ(−1
2

+ 1
∆

coth 2
∆

)
. (4.40)

As the parameter ∆→ 0, the frequency profile approaches a rectangular function.

In the time domain, the Fourier transform of 4.40 is proportional to sinσt
sinh ∆πσt/2

. The

function falls off exponentially depending on ∆. We use the transformation in Eq.

(4.21) and we similarly give Bob the freedom to choose the frequency spread bσ0 and

central frequency bω0 of his detector. The overlap is thus (after normalization of Eq.

(4.40))

Θ =

∫ +∞

−∞
dω

(tanh[
σ+ω

a
−ω0

∆σ
] + tanh[

σ−ω
a

+ω0

∆σ
])

4

√
a∆σ(−1 +

2 coth[ 2
∆

]

∆
)

×
(tanh[

σ+ω
b
−ω0

∆σ
] + tanh[

σ−ω
b

+ω0

∆σ
])√

b∆σ(−1 +
2 coth[ 2

∆
]

∆
)

.

(4.41)

We can further simplify this equation and group the constants Θ = Kθ(ω), where

the proportionality constant is

K =
tanh[ 2

∆
]2

∆σ
√
ab (−1 +

2 coth[ 2
∆

]

∆
)
, (4.42)

and

θ(ω) =

∫ +∞

−∞

dω

(1 + cosh[4(−aω0+ω)
∆aσ

]/ cosh[ 2
∆

])
× 1

(1 + cosh[4(−bω0+ω)
∆bω0

]/ cosh[ 2
∆

])
.

(4.43)

There is no closed form of this integral. However, we can make some approxi-

mations since a = 1 − δ and b = 1 − ε where δ and ε are very small. We also can
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suppose that the bounds of the integral are very close to the central frequency ω0

with the bounds extending over a region of width σ across the central frequency.

For the choice of ∆ = 0.1 and ∆ = 0.01, the overlap of the latter is approximately

rectangular as seen in Fig. 4.12. Furthermore, the overlap as a function of δ is

continuous at the point δ = ε and the derivative with respect to rs exists in contrast

to the ideal rectangular frequency profile. Approaching δ− from below has the same

minimum as approaching from above (as seen in Fig. 4.14) since the frequency profile

is symmetric. For the larger ∆ = 0.1, the same behaviour occurs but the relative

error of rs is larger than for the case of ∆ = 0.01.

In Fig. 4.15, we present the Schwarzschild radius lower error bound optimized

for each squeezing fraction y and transmission parameter t. Using the Θ in Fig. 4.13

we determined rs
dΘ
drs

= rs
dδ
drs

dΘ
dδ

and thus the optimal Θ that minimizes ∆rs/rs. The

behaviour is very similar to the rectangular frequency profile. We note that t = 1

is bounded because dΘ
drs
→ 0 as δ± → ε (when Alice matches exactly the frequency

profile that Bob receives) and the relative error of rs approaches a limit.

4.6.2 Large coherent pulses with additional squeezing

For large scale interferometers such as GEO and the Laser Interferometer

Gravitational-Wave Observatory (LIGO), it has been shown that coherent sources of

light with large amplitude and additional squeezing can significantly improve the

detector sensitivity [34].

For the Gaussian frequency profile, operating at the optimal point xopt = 1/2

requires coherent states with large amplitude rather than squeezed states. As seen

in Fig. 4.16, the addition of squeezing does not significantly improve the precision.

Conversely, for the rectangular frequency distribution, squeezing significantly

improves the precision. As seen in Fig. 4.17, for good transmission coefficients,

squeezing increases the precision up to a factor of 1
2

for 17.4 dB of squeezing. Current

state-of-art technologies have been able to achieve squeezing of up to 15 dB [35]. In

both cases, the error improves with additional coherent photons.

4.6.3 Optimal position of Bob

Up to this point we have assumed that Bob is located in a geo-stationary orbit and

that different levels of loss can be achieved. We consider a more realistic scenario in

which the loss is a function of Bob’s position relative to the ground is and investigate

the position of Bob for which the relative Schwarzschild radius error is minimal. We
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Figure 4.12: The frequency profile squared for ∆ = 0.01 (solid line) and ∆ = 0.1
(dashed line) plotted against the shifted and rescaled frequency ω

1−δ0 − ω0. We

take rA = 6.37 × 106m, rB = 42.0 × 106 m, σ = 2000, ω0 = 700 THz and hence
δ = 6.0× 10−10 (the same as in Section 4.5).
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Figure 4.13: We vary δ around the fixed point ε = δ0 and plot the overlap Θ. Here
we see a sharp turn at this point for ∆ = 0.01 (solid line) but for ∆ = 0.1 (dashed
line), the Θ dependence on δ is smoother. The parameters are the same as in Fig.
4.12.
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Figure 4.14: At t = 1 for a fully squeezed probe state of ñ = 2, we plot the limit
as Θ→ 1. We note that the optimal point is before this limit. The reason for this
is the competing effect of dΘ

drs
. In this case, the derivative dΘ

drs
= 0 at Θ = 1 and we

are not impeded by the discontinuity that arose in the rectangular frequency profile.
The red line is δ− from below and the blue line from above δ+. These two lines are
essentially equivalent. Note: the solid line corresponds to ∆ = 0.01 and the dashed
line to ∆ = 0.1.
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Figure 4.15: The Schwarzschild radius lower error bound optimized for each
squeezing fraction y and transmission parameter t for the smoothed rectangular
function. Using the Θ in Fig. 4.13 we determined rs

dΘ
drs

= rs
dδ
drs

dΘ
dδ

and determined
the optimal Θ that minimizes ∆rs/rs. We note that t = 1 is bounded because
dΘ
drs
→ 0 as δ → ε and the relative error of rs approaches a limit.(Other parameters:

∆ = 0.01, ñ = 2).
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Figure 4.16: The relative Schwarzschild error for a coherent pulse of energy ñ = 1000
with injection of additional squeezing for Gaussian frequency profile at optimal
operating point xopt = 1/2. The squeezing parameter is given in units of decibels
with respect to the shot noise quadrature variance. Squeezing has little effect on
the lossy channels. (Parameters: (δ − εopt)ω0 = 2σ Hz and all other parameters the
same as in Fig. 4.12).
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Figure 4.17: As in Fig. 4.16 but for ∆ = 0.01 rectangular frequency profile at the
optimal operating point Θ = 0.999 with ñ = 1000. For almost no loss, squeezing
improves the error bound up to a factor of 1

2
for 17.4 dB of squeezing.
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model the attenuation with distance of the Gaussian beam using the characteristic

Rayleigh length defined by zR =
πw2

0

λ
where w0 is the width of the beam and λ is

the centre wavelength [36]. The initial position of Bob corresponds to the position

of the Rayleigh length and we assume that the detector has a width
√

2 w0 which

captures all the intensity. Therefore, the transmission coefficient t = 1 at this point.

Away from the Rayleigh length, the transmission decreases with distance L as

t = t0

√√√√ 2

1 +
(
L
zR

)2 . (4.44)

For the Gaussian frequency profile, the relative Schwarzschild error is plotted

in Fig. 4.18 for two Rayleigh lengths (blue curves). We compare between fully

coherent photon probe states ñ = 1000 (solid lines) and with additional squeezing

of 10 dB (dashed lines). With 10 dB of squeezing, if Bob’s distance is exactly at

the Rayleigh length, the error is of the same order as the minima at L ≈ 105 m.

Nonetheless, the best situation is when zR = 103 m corresponding to a beam width

of w0 = 1.4 cm which has a minimum error of 10−1 between L = 104 m and L = 106

m. Squeezing has no effect on this minimum because the signal is heavily attenuated

at Bob’s location. For the Gaussian frequency profile, the best relative error is rather

poor. We now present the tanh rectangular frequency profile as an alternative to

this resource intensive scheme.

Now consider the red curves in Fig. 4.18, which report the relative error for

the same parameters using a rectangular frequency profile with ∆ = 0.001. We

immediately note for the squeezed coherent probe state that there are no minima

at any location. The minimum occurs at the Rayleigh lengths (where t = 1) with

an impressive 1 order of magnitude improvement in precision over the Gaussian

frequency profile. Thus, it is now possible to measure the Schwarzschild radius

with excellent precision with Bob at the Rayleigh lengths L = zR = 100 m and

L = zR = 1000 m to achieve 10−1 and 10−2 relative error respectively. We note that

squeezing has a significant effect at the Rayleigh length because Θ ≈ 1 since L is

small and the transmission coefficient is t = 1. In this regime, squeezing becomes

important. We observe that the precision increases up to a factor of 5×10−1 for both

Rayleigh lengths with the added 10 dB of squeezing. However, for fully coherent

photons, the minima are recovered and occur at approximately L = 105 m. Therefore,

a ∆ = 0.001 rectangular frequency profile works well for short distances and is always

up to 10 times more precise than Gaussian profiles of the same frequency spread.
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Figure 4.18: Log- log plot of relative Schwarzschild error for Rayleigh lengths
zR = 100m and zR = 1000m using Gaussian frequency profile (blue) at the optimal
point x = 1/2 and ∆ = 0.001 rectangular frequency profile (red) also at its optimal
point with ñ = 1000. The solid lines are fully coherent photons with no squeezing,
and the dashed lines have an added squeezing of 10 dB. (Other parameters: N = 200
measurements, rA = 6.37× 106m, rB = 42.0× 106 m, σ = 2000, ω0 = 700 THz and
hence δ = 6.0× 10−10)
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4.6.4 Measurement basis of rs

In our derivation, the Bures distance definition of the QFI assumes a Gaussian

measurement basis. To determine the measurement basis, we refer back to the

definition of the QFI used by Ref [11]. The eigenspace of Λ̂(Θ) represents the optimal

measurement for which the Fisher information is maximised. We note that the

measurement strategy in Ref [17] takes this into account and a one-step adaptive

strategy is proposed. In the first step, one makes a fraction of the total measurements

N ξ where 1/2 < ξ < 1 and provides an estimate for the parameter Θ0. Consequently,

the eigenspace Λ̂(Θ0) can be built from the knowledge of Θ0 and used to make a

better estimate on the remaining measurements.

In Ref [11], it has been proven that the optimal measurement for the beamsplitter

parameter using a pure Gaussian probe state is of the form D(α)S(r)S†(η)D(β) |n〉.
Here, D(α) = exp(αa† − α∗a) is the displacement operator and S(r) = exp(1

2
r2a†2 −

1
2
r∗2a2) is the squeezing operator. The coherent amplitude β and squeezing parameter

η depend on the final evolved state. The measurement bases for the beamsplitter

parameter using a lossy probe state are Gaussian operations and photon counting [11].

4.7 Conclusion

We have studied the optimal estimation of the beamsplitter parameter using a

Gaussian quantum probe that is mixed due to loss. We determined the relevant

quantum Fisher informations using the definition of the Bures distance and an

expression for the fidelity in terms of the quadrature variances. Using this convenient

expression, we have considered a squeezed coherent probe state prepared by Alice.

We have optimized the QFI with respect to the squeezing fraction and found that for

very lossy probe states or low beamsplitter transmission, coherent states are more

favourable. However, for low loss and high beamsplitter transmission, squeezing the

photons is more advantageous. We have applied these results to a situation where

loss is inevitable. In particular we have studied the use of a lossy probe state to

estimate the Schwarzschild radius rs of Earth. We have shown that the frequency

profile of the modes sent by Alice is important. By identifying the optimal point that

Bob can choose to achieve the best precision, we determined that an approximate

rectangular frequency profile achieves error bounds an order of magnitude better than

a Gaussian. We also considered more realistic scenarios in which the transmission

coefficient depends on the distance from the source and found that approximate
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rectangular mode shapes are better overall.

The current analysis is restricted to Gaussian states. Other non-classical probe

states such as NOON and entangled coherent states (ECS) may enhance the precision

even further. Also, the current analysis assumes a specific protocol for estimating rs.

A comparison with other strategies would be interesting.
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4.8 Appendix A: Mode Splitter

Consider that we have an input mode that can be written:

a′ =
√
ε a+

√
1− ε a′′ (4.45)

For our purposes the mode a′ can be considered the mode that Alice sent, as it

appears when it reaches Bob, whilst a is the mode that Bob expects. The mode a′′

is the unmatched part which has the property [a, a′′†] = 0. Now Bob applies a mode

sensitive beamsplitter described by the unitary:

U = exp iθ(ab† + ba†) (4.46)

This looks like a normal beamsplitter but it is not because it only acts specifically on

the modes a and b (where the vacuum mode entering the other beamsplitter port can

be assumed to be in the mode b without loss of generality). The transfer functions

for the modes through the beamsplitter can be written, for the transmitted beam:

a′T =
√
ε (
√
η a+

√
1− η b) +

√
1− ε a′′ (4.47)

where
√
η = cos θ. For the reflected beam:

a′R =
√

1− η a−√η b

=
√

1− η (
√
ε a′ +

√
1− ε v′)−√η b (4.48)

where in the second line we have introduced a vacuum mode defined as v′ =
√

1− ε a −
√
ε a′′. Notice if we set θ = π/2 and hence η = 0 we get the

transformation we desire, i.e. a′R =
√
ε a′ +

√
1− ε v′ where

√
ε = [a, a′†].

One way to implement the mode-sensitive beamsplitter of Eq. (4.4) is described

in Ref [29].
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The following publication has been incorporated as Chapter 5.

[1] S. P. Kish, T. C. Ralph, Quantum limited measurement of space-time

curvature with scaling beyond the conventional Heisenberg limit, Phys. Rev. A 96,

041801(R) (2017).
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Chapter 5

Quantum limited measurement of

space-time curvature with scaling

beyond the conventional

Heisenberg limit

In the previous chapter we considered non-classical squeezed states, which in some

cases, enhanced the precision of estimating the Schwarzschild radius. In the following

chapter, we propose using a nonlinear interferometer to enhance the sensitivity of a

measurement apparatus to changes of the parameter rs. The increased sensitivity

will reduce the size of current optical interferometers and potentially make them

practical for small scale probing of the gravitational field. We study the problem

of estimating the phase shift due to the general relativistic time dilation in the

interference of photons using a nonlinear Mach-Zehnder interferometer setup. By

introducing two nonlinear Kerr materials, one in the bottom and one in the top arm,

we can measure the nonlinear phase φNL produced by the space-time curvature and

achieve a scaling of the standard deviation with photon number (N) of 1/Nβ where

β > 1, which exceeds the conventional Heisenberg limit of a linear interferometer

(1/N). The nonlinear phase shift is an effect that is amplified by the intensity of the

probe field. In a regime of high photon number, this effect can dominate over the

linear phase shift.
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5.1 Introduction

Metrology can be seen as an important application driving technological ad-

vancement. The ability to estimate parameters of physical systems is restricted

by quantum mechanics. Quantum metrology studies how the fundamental bounds

on the resolution of such estimates depend on resources such as energy [2]. It is

hoped that such studies will lead to new techniques allowing the development of

measurement devices of unprecedented precision.

For example, the use of a laser probe to measure a phase-shift, θ, is fundamentally

limited by the quantum noise of the probe coherent state. The standard deviation

of the estimate, 〈∆θ〉, scales with the average photon number of the probe states,

N , as 〈∆θ〉 ∝ 1/
√
N . This is known as the standard quantum limit. Very high

laser powers are used in gravitational wave interferometers to exploit this scaling [3].

It is well known that a squeezed state probe can do better, leading ideally to a

〈∆θ〉 ∝ 1/N scaling known as the Heisenberg limit [4]. Achieving the Heisenberg

limit under practical conditions is extremely demanding.

Recently it has been observed that if there is a strong nonlinear coupling to the

probe then energy scalings better than the conventional Heisenberg limit can be

achieved [5, 6]. These claims have generated some controversy [7, 8]. Nevertheless a

spin-based experimental system has been demonstrated [9]. In the optical domain

an example is that of probe transmission through a Kerr medium where it has

been shown that estimation of the nonlinear parameter, χ, can be achieved with a

〈∆χ〉 ∝ 1/N3/2 scaling [10]. Whilst this is intriguing, there have been few proposed

applications for such an effect [11]. Normally we would be interested in estimating

some external parameter – not the strength of the measurement system nonlinearity

itself.

In this chapter we note that, due to time dilation, the effective nonlinearity of

a fixed length of a nonlinear medium is a function of the local gravitational field.

This is in addition to the linear phase that is also a function of the proper time.

We use this effect to construct an interferometric arrangement that allows one to

estimate the space-time curvature of the field with a scaling beyond the conventional

Heisenberg energy limit of a linear interferometer [12]. Current techniques for

measuring gravity such as atom interferometry [13] are limited to the standard

quantum limit (SQL). Squeezing and entanglement could enhance the performance

of atom interferometers [14–17] but only up to the Heisenberg limit.

Consider light propagating through a Kerr nonlinearity in a gravitational field
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described by the Schwarzschild metric. We assume that the metric is approximately

constant over the length of the medium. The Kerr nonlinearity constant χ is coupled

to the proper time τ it takes to interact with the medium, as measured locally [18].

Thus the effective nonlinearity becomes χ′ = χτ . This essentially means that the

effective nonlinearity depends on the curvature of space-time. For a nonlinearity of

length L, the light propagation time in the medium as measured by the observer at

radius r = r0, relative to a reference observer situated at a different radius, is the

proper time τ ≈ (1− Krs
2r0

)L
c

where rs = 2GM
c2

is the Schwarzschild radius and K is a

constant that depends on the position of the reference observer. The local clocks of

the two observers are compared to determine the amount of time dilation. We can

see that the nonlinear coupling is approximately proportional to the Schwarzschild

radius. The stronger the curvature rs, the stronger the space-time coupling to

the nonlinearity. In principle we can estimate the spacetime curvature using this

dependence.

We model the transmission of a coherent state probe with amplitude α through

the medium as the unitary evolution |αNL(τ)〉 = Û |α〉 where Û = eiχτn̂(n̂+1)+in̂kcτ

with n̂ the number operator, and k the wave number of the optical mode [19] (see

Chapter 2). Hence we find

|αNL(τ)〉 = e−|α|
2/2

∞∑
n=0

(αeiχτ(n+1)+ikφ(τ))n√
n!

|n〉 . (5.1)

We want to determine the ultimate quantum bound for estimating rs using nonlinear

couplings. The bound for the variance of an unbiased estimator τ̂ is determined by

the Cramér-Rao inequality [20]. In quantum information theory, for M independent

measurements, the inequality is 〈∆τ̂ 2〉 ≥ 1
MH(τ)

. Where H(τ) is the quantum

Fisher Information which characterizes the ultimate achievable parameter estimation

precision by an optimal quantum measurement [21]. This type of analysis determines

the local precision [7] i.e. it assumes we start with a good initial estimate of rs,

which we seek to refine.

We determine the quantum Fisher Information via [22–26]

H(τ) = lim
dτ→0

8(1−
√
F(ρ(τ), ρ(τ + dτ)) )

dτ 2
, (5.2)

where F(ρ, σ) = (Tr(
√√

ρ σ
√
ρ ))2 is the Uhlmann fidelity between two density

matrices ρ and σ. We want to determine the QFI for the probe coherent state

undergoing the nonlinear evolution (Eq. (5.1)). We disregard orders higher than
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2 in dτ as dτ → 0 and Na is finite. Therefore we find the modified fidelity is (see

Appendix 5.7 for the calculation of the overlap)

F = | 〈αNL(τ + dτ)|αNL(τ)〉 |2

= 1− dτ 2Na(2(2 + 5Na + 2N2
a )χ2 + 4(1 +Na)χω + ω2)

(5.3)

and hence

H(τ) = 4Na((ω + 2(Na + 1)χ)2 + 2Naχ
2), (5.4)

Where ω = kc is the frequency and Na = |α|2 is the photon number of the single

mode. As in Chapter 4.4, by noting that H(rs) = ( dτ
drs

)2H(τ) and dτ
drs

= −KL
2cr0

, we

find the relative error of the space-time parameter rs is given by

〈∆rs〉opt
rs

≥ cr0

KLrs
√
Na((ω + 2(Na + 1)χ)2 + 2Naχ2)

. (5.5)

For large Na we see the scaling beyond the conventional Heisenberg limit of the

relative error.

We can generalize this result for the case of higher nonlinearities where the light

that propagates through nonlinear media experiences self-interaction described by

the general Hamiltonian Ĥ = χ(a†a)q. Where q ≥ 2 and χ is a coupling constant.

For large Na the relative error of the parameter rs is given by (see Appendix 5.8)

〈∆rs〉opt
rs

≥ cr0

KLrs

√
Na(qχN

q−1
a + ω)2

. (5.6)

Clearly, the standard deviation of the space-time parameter scales as 〈∆rs〉opt ∝
1

qχN
2q−1

2
a

. Since the time dilation is coupled to the nonlinearity, when qχN q−1
a >> ω,

it is advantageous to measure the nonlinear phase rather than the linear phase.

5.2 A nonlinear interferometer

We now propose a device for realising the enhanced sensitivity suggested by Eq.

(5.5). We consider the Mach-Zehnder interferometer shown diagrammatically in Fig

5.1. We describe the gravitational field via the Schwarzschild metric with line element

ds2 = gµνdx
µdxν = −f(r)dt2 + 1

f(r)
dr2 + r2dφ2 where f(r) = 1− rs

r
. An observer at

a fixed radius r = r0 will measure the proper time τ =
∫
ds =

∫
f(r)dt =

√
f(r0) t

where t is the proper time measured by an observer at infinite distance r = ∞.
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r = rB

r = rA3
1

2
4

Û2 = eχ∆τ24(a
†)2a2+φ24a

†a

Û1 = eχ∆τ13(a
†)2a2+φ13a

†a

β

g

Figure 5.1: Nonlinear interferometer of arm length L in a gravitational field pointing
downwards (Note that rB > rA). Coherent light passes through a 50/50 beamsplitter
at 1. The phase from 1 to 3 at r = rA is set to φ13 = 0 and the time interval that
light traverses is τ13 = L

c
. The effect of the gravitational redshift cancels out and

no phase shift is accumulated as light traverses vertically. In the top and bottom
arms, we have a nonlinear medium with χ coupling. A phase difference due to
shorter interaction time with the nonlinearity in the bottom arm is detected after
recombining at the second beamsplitter. The time intervals ∆τ13 and ∆τ24 contain
the Schwarzschild radius rs. β represents an adjustable linear phase shift.
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Without loss of generality we have assumed we are in the equatorial plane with dφ

the usual angular coordinate. Let us first consider evolution of a probe state through

the interferometer in Fig 6.1 without the Kerr nonlinearities.

The output modes can be written in terms of the input modes as (see Chapter

2.5.2) [12]

bk =
1

2
(ak(e

−ik(φ12+φ24) − e−ik(φ13+φ34))

+ vk(e
−ik(φ12+φ24) + e−ik(φ13+φ34))),

(5.7)

where ak is prepared in the coherent state and vk in the vacuum state. The phase shifts

in the vertical arms are equal and so cancel out. Therefore we can set φ12 = φ34 = 0

without loss of generality. In the bottom horizontal arm, we can choose the time

interval so that the phase φ13 = 0 and thus ∆xrA,13 = c∆τrA,13. We are assuming that

∆xrA,13 is sufficiently small that we can disregard the curvature of space-time in the

horizontal direction. The unknown phase shift is φ24 = ∆xrB ,24 − c
n′

∆τrB ,24, where

n′ is the first order refractive index of the material. In the Schwarzschild metric,

the proper time interval at r = rA is c∆τrA = c
√

1− rs
rA

∆t = ∆xrA , where ∆t is

the time interval as seen by a far-away observer, and rs = 2GM
c2

is the Schwarzschild

radius. We also know that at r = rB the proper time is

c

n′
∆τ24 =

c

n′

√
1− rs

rB
∆t =

√
1− rs

rB

n′
√

1− rs
rA

∆x24. (5.8)

Since the length of the top arm is the same as the bottom arm we set ∆x13 =

∆x24 = L, and to simplify the nomenclature we redefine τ13 = τ1 and τ24 = τ2,

τ2 =

√
1− rs

rB√
1− rs

rA

τ1 ≈ (1 − rsh
2rArB

)L
c

= (1− δ)L
c
, where we have defined δ = rsh

2rArB
. This

approximation assumes rA,B >> rs. The linear phase simplifies to

φ24 = φ2 = L− c

n′
τ2 = (1−

√
1− rs

rB

n′
√

1− rs
rA

)L ≈ (1− 1

n′
+

rsh

2rArBn′
)L. (5.9)

Now we place two nonlinear Kerr media in the top and bottom arms, we expect

a phase shift due to the same time dilation, but the Kerr nonlinear medium induces

an additional intensity dependent phase shift. The Heisenberg evolution of the

annihilation operator for the Kerr nonlinear effect is ak(τ) = eiχτa
†
kakak [27]. Thus

the output mode of the Mach-Zehnder nonlinear interferometer is given by

bk =
1

2
((e−ikφ2+iχτ2a

†
kak − e−ikφ1+iχτ1a

†
kak+iβ)ak

+ (e−ikφ2+iχτ2a
†
kak + e−ikφ1+iχτ1a

†
kak+iβ)vk).

(5.10)
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We know from Eq. (5.8) and (5.9) the measured proper time τ2 and the phase φ2.

The time intervals τ1 and τ2 contain the Schwarzschild radius rs. We also include an

additional adjustable linear phase shift, β.

5.3 Estimating the space-time curvature

To achieve the optimal error bound, we need to make an appropriate measurement

at the interferometer output. We choose to measure the quadratures which can be

done using balanced homodyne detection (see Chapter 2.7). We assume the coherent

amplitude of the probe is large enough to treat as a classical coherent amplitude

with added vacuum fluctuations which are only retained to first order. Hence writing

a = α + δa, this allows us to approximate the Kerr evolution in the following way

e−ia
†aχτa ≈ e−i|α|

2χτ−iχτ(α∗δa+αδa†)(α+δa) ≈ e−i|α|
2χτ (1−iχτ(α∗δa+αδa†))(α+δa) =

e−i|α|
2χτ (1− iχτ(α∗δa+ αδa†))α + e−i|α|

2χτδa.

This approximation is justified provided that τχα = τχ
√
N << 1. Unlike

Ref. [11] which enforce the condition τχ|α|2 = τχN << 1, this is a looser restriction

on the parameters τ , χ, and N . By remaining in the linearized Gaussian regime

(where only the mean and variance characterize the state), it is a good approximation

to work with single-mode pulses [28,29]. That is, there is no mode mixing because

the coherent amplitudes and the vacuum fluctuations commute. Thus, we continue

our analysis in single modes. By applying this approximation to the interferometer

mode at the output given by Eq. (5.10), we can write the approximate output

quadrature amplitude at angle θ as

Xb = b(τ)eiθ + b†(τ)e−iθ

= |α| cos (θ + ζ2)− |α| cos (θ + ζ1 + β)

− χ|α|2(τ2 sin (θ + ζ2)− τ1 sin (θ + ζ1 + β))X

+
1

2
(Xθ+ζ2 −Xθ+ζ1+β)

+
1

2
(Xv(θ+ζ2) +Xv(θ+ζ1+β)),

(5.11)

where, to simplify the notation, we define ζ1 = kφ1 − τ1χ|α|2 and ζ2 = kφ2 − τ2χ|α|2

where τ2 ≈ (1− δ)τ1. We find 〈Xb〉 = |α|(cos (θ + ζ2)− cos (θ + ζ1 + β)). Therefore,

the dark port occurs at βdark = ζ2− ζ1. Noting that dτ2
drs

= − δ
rs
L
c

and dτ1
drs

= 0 we find

the derivative w.r.t. rs of the quadrature is d〈Xb〉
drs

= −|α|(kc
n′

+ |α|2χ)(dτ2
drs

sin (θ + ζ2)−
dτ1
drs

sin (θ + ζ1 + β)) = |α|(kc
n′

+|α|2χ) δL
rsc

sin(θ+ζ2)). The quadrature variance is given
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by 〈(∆Xb)
2〉 = χ2|α|4(τ2 sin (θ + ζ2) − τ1 sin (θ + ζ1 + β))2 − χ|α|2(τ2 sin (θ + ζ2) −

τ1 sin (θ + ζ1 + β))× (cos (θ + ζ2)− cos (θ + ζ1 + β)) + 1.

The effect of the nonlinearity creates undesirable noise from anti-squeezing in the

axis of rotation. However, we can optimize for our choice of β to force the variance to

be shot noise. More generally the solution is sin (θ+ζ2)
sin (θ+ζ1+β)

= τ1
τ2

implying that we require

β = −θ − ζ1 + arcsin ( τ2
τ1

sin (θ + ζ2)). Furthermore, the derivative of the quadrature

is |α|(kc
n′

+ |α|2χ) δL
rsc

sin(θ+ ζ1 +β)(1 + τ1
τ2

) = |α|(kc
n′

+ |α|2χ) δL
rsc

( τ2
τ1

sin (θ + ζ2))(1 + τ1
τ2

).

The optimal measurement angle is θ = π
2
− ζ2, and β = ζ2 − ζ1 − π

2
+ arcsin ( τ2

τ1
) ≈

ζ2 − ζ1 − 2
√
δ . Thus the maximum derivative with respect to the Schwarzschild

parameter rs is |α|(kc
n′

+ |α|2χ) δL
rsc

(1 + τ2
τ1

).

Putting all this together we are able to estimate the error bound of the Schwarzschild

radius rs. The variance of the estimator is

〈(∆rs)2〉
r2
s

=
〈(∆X)2〉

r2
s(
d〈X〉
dτ

dτ
drs

)2

=
〈∆X2〉

r2
s |α|2(kc

n′
+ |α|2χ)2(L

c
δ
rs

)2(1 + τ2
τ1

)2

≈ 1

N(kc
n′

+Nχ)2(L
c
)2( rsh

rArB
)2(1− rsh

2rArB
)2
,

(5.12)

where N = |α|2 is the average number of coherent photons injected into the interfer-

ometer. Thus the relative error of the Schwarzschild radius rs of M measurements is

〈∆rs〉
rs
≈ rArBc

Lhrs(1− rsh
2rArB

)
√
MN( ω

n′
+Nχ)2

. (5.13)

This can be compared to the Fisher information bound obtained from Eq. (5.5)

where the lower bound is exact.

〈∆rs〉opt
rs

≥ rArBc

Lhrs
√
MNa((ω + 2(Na + 1)χ)2 + 2Naχ2)

. (5.14)

Although the nonlinear interferometer does not saturate the Fisher bound it does

have the same photon number scaling for large intensities 1/N3/2, which is beyond

the usual Heisenberg limit.

5.4 Beyond-conventional-Heisenberg advantage for

measuring space-time curvature

We now wish to know at which point the scaling beyond the conventional

Heisenberg limit becomes apparent. In Fig. 5.2, we plot the optimized error bound
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of the Schwarzschild radius against the number of coherent photons for various

nonlinear couplings χ. We have optimized this error with respect to the quadrature

measurement angle. We have fixed the interferometer arm lengths to L = 1 cm to

ensure the condition |α|χτ << 1 for all values of |α|χ in Fig. 5.2.

Furthermore, the height h = 10 m with light at a central frequency of ω = 100 THz

and M = 10 measurements in a second which are reasonable repetition rates [30].

The ∝ 1
N3/2 scaling becomes apparent for increasing number of photons N . As

expected, for stronger coupling χ, the scaling beyond the Heisenberg limit becomes

dominant for smaller numbers of photons. The quadrature measurement (dashed

line) follows but never reaches the ultimate precision bound (Eq. (5.14)) represented

by the solid line. We also plot the SNL for interferometer heights h = 10 m, 102 m

and 103 m represented by the red solid lines. For a pulse with 1018 photons, we’d only

need χ = 0.1 for a precision of 10−8 which is a 4 order of magnitude improvement

over the SQL scaling. State-of-the-art laser-cooled atom interferometry can measure

gravity with a resolution of 2 × 10−8 for a 1.3s measurement [13]. However, this

is limited to the SQL scaling. Future atom interferometers may be able to exploit

entanglement resources to approach Heisenberg scaling and improve up to an order of

103, as well as using a much longer measurement time [14]. Nonetheless, our optical

scheme has the potential to outperform current state-of-the-art gravity measuring

devices.

By adding the Kerr nonlinearities we reduce the area of the interferometer needed

for a particular precision significantly. More generally, in terms of the dimensionless

parameter ỹ = Nχn′

ω
we find that the effect of the nonlinearity becomes significant

when ỹ ≈ 1, and dominates the scaling when ỹ ≈ 100. However, we have previously

assumed the condition χτα = ỹω L
c
√
N
<< 1 ≈ 0.01. Therefore, for N = 1015, we

have to limit the size of the nonlinearity to L = 0.01c
√
N

100ω
≈ 0.01 m. Comparing the

h = 10 m nonlinear noise limit and SQL, we see two or more orders of magnitude

improvement equivalent to having a larger linear interferometer h = 103 m. Thus by

introducing the nonlinearity, we can downsize the interferometer size while keeping

the precision the same. We note that the anti-squeezing noise for an error in the

phase β of ∆β = 10−3 radians only changes 〈∆X2〉 by 1 dB (see Appendix 5.9) and

thus ∆rs/rs only increases an order of magnitude. Our scheme allows us to measure

standard error in the phase of 10−10 radians in a single shot measurement, thus the

added noise is negligible and doesn’t affect ∆rs/rs.
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Figure 5.2: Error bound of the Schwarzschild radius plotted against number of
coherent photons for various nonlinearity couplings of interferometer arm size L = 1
cm and height h = 10 m (blue/ green lines). The solid lines represent the exact
lower bound for the best possible measurement. The dashed lines are the quadrature
measurement error bounds. These lines terminate before the condition |α|χτ << 1
is violated (this depends on the values of χ). The solid black line is the case where
squeezing of all photons is used to enhance the sensitivity, however small amounts
of loss (ε = 1− 10−6) means the scaling is still at the SQL (h = 10 m). From top
to bottom, the red solid lines represent the SQL limit for a linear interferometer of
heights h = 10 m, 102 m and 103 m. (Other parameters: Number of measurements
M = 1010, the central frequency ω = 100 THz and the radius rA = 6.37 × 106 m
(Earth’s radius)).
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5.4.1 The effect of loss

- Whilst loss has a highly detrimental effect on the resolution improvements

achieved via squeezing, it has a much smaller effect on the nonlinear interferometer.

We can model loss introduced due to non-unit detection efficiency via a beamsplitter

of transmission εa after the nonlinearities, and insertion losses on the probe via a

beamsplitter of transmission εb before the nonlinearities. These effects are straight-

forward to incorporate in the model (see Appendix 5.11) giving the revised error

bound

〈∆rs〉
rs

=
rArBc

Lhrs(1− rsh
2rArB

)
√
εaεbN( ω

n′
+ εbNχ)2

. (5.15)

The loss reduces the effective size of the coherent amplitude but does not change the

beyond-conventional-Heisenberg scaling. In contrast, a squeezed coherent state will

rapidly lose its non-classical properties through a lossy quantum channel. In Fig. 5.2

we have plotted for comparison the performance of an equivalent linear interferometer

of the same size (h = 10 m) with squeezed light injected [31]. As shown, the presence

of a very small amount of loss keeps the scaling at the SQL whilst having virtually

no effect on the Schwarzschild bounds of the nonlinear interferometer as seen in Eq.

(5.15).

5.5 Experimental feasibility

Surpassing the conventional Heisenberg limit for the parameter χ, rather than

τ was recently demonstrated experimentally [32]. The energy scaling was seen

in a regime of low photon numbers by canceling the linear phase. Unlike in our

approach, effects of anti-squeezing were not considered and a stricter condition of

χτN << 1 was imposed, limiting the photon number to N < 108. In our proposal,

the values of the nonlinearity χ and number of photons N at which we get a significant

improvement in the precision of rs are more challenging but may become available

in the future. We note that the Kerr nonlinearity constant depends on the pulse

duration and the finite time of interaction of the single mode [28]. Our definition of

χ describes an effective nonlinearity that is determined from classical theory (see

Appendix 5.10). For femto-second pulses in glass fibre the nonlinearity is χ ≈ 10−6

which would require over 1020 photons per pulse to see the enhancement. In Ref. [33],

30 femto-second pulses at ω = 100 THz frequency with P = 440 GW peak power

were produced, corresponding to N = 1018 photons per pulse, too low to observe the
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nonlinear phase difference in glass fibre. However, in Ref [2], pico-second pulses in

photonic crystal fibres were shown to exhibit a much larger nonlinearity of χ ≈ 6

which implies from our results that over N = 1015 photons are needed. A further

requirement is to ensure that the nonlinear material can withstand intense pulses

without optical damage, Kerr saturation or plasma cladding [35–37].

5.6 Conclusion

We have studied the problem of estimating the phase shift due to the general

relativistic time dilation in the interference of photons. We have identified that

a nonlinear interferometer with Kerr nonlinearities χ in both arms couples to the

space-time via a nonlinear phase difference φNL. The quantum error bound of the

Schwarzschild radius was found to scale beyond the Heisenberg limit for a coherent

probe state input. In principle, nonlinear interactions of order q ≥ 2 would scale

∝ 1

Nq− 1
2
. We analysed a sub-optimal quadrature measurement that nevertheless

shows the same scaling. We found that our nonlinear interferometer is more practical

against loss compared to using squeezed coherent states. Finally, we believe that we

are within reach of future experiments.
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5.7 Appendix A: Calculation of coherent state

overlap in Eq. (5.3)

We consider the coherent state undergoing the nonlinear evolution UNL =

e−iχτ(a†a)2
. To determine the fidelity F = | 〈α(τ)|α(τ + dτ)〉 |2 for a small change in

the measured parameter τ , we first determine the overlap:

〈αNL(τ + dτ)|αNL(τ)〉 = e−|α|
2
∞∑
n=0

(|α|2e−iχdτ(n+1)+ikcdτ )n

n!

≈ e−|α|
2
∞∑
n=0

|α|2neinkcdτ

n!
(1− iχdτ(n+ 1)n

− χ2dτ 2(n+ 1)2n2

2
)

= e−|α|
2(1−eikcdτ )(1− iα2eiωdτ (2 + α2eiωdτ )χdτ

− |α|
2eiωdτ

2
(4 + 14eiωdτ |α|2 + 8e2iωdτ |α|4

+ e3iωdτ |α|6)χ2dτ 2)

(5.16)

Expanding and only retaining terms up to second order in dτ gives Eq. 3 in the

main text.

5.8 Appendix B: Approximate quantum Fisher

Information for q order nonlinearity

We want to determine the Cramér-Rao bound for q order nonlinear interaction

with Hamiltonian H = χ(a†a)q. We can approximate the unitary evolution using a ≈
|α|+ δa for very large coherent amplitude. Thus, the evolved coherent state becomes

eiχτ(a†a)q |α〉 ≈ eiχτ |α|
2q(1+ qδa†

|α| )(1+ qδa
|α| ) |α〉 ≈ eiχτ |α|

2q
eiχτq|α|

2q−1(δa†+δa)e|α|(δa
†−δa) |0〉 ≈

eiχτ |α|
2q |α(1 + iqχτ |α|2(q−1))〉. In general, for q ≥ 2,

〈αNL(τ + dτ)|αNL(τ)〉

= e
|α|2

2
|(1−iqχ(τ+dτ)|α|2(q−1))eikc(τ+dτ)−(1−iqχdτ |α|2(q−1))eikcτ |2

≈ e−
|α|2

2
(qχ|α|2(q−1)dτ+kcdτ)2

(5.17)
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Figure 5.3: Quadrature noise at the chosen measurement angle θ = π
2
− ζ2. For

approximately ∆β = βa − β = 1.5× 10−3 corresponding to a large systematic phase
error, we only have an increase of 1 dB of noise.

Therefore, the fidelity is

F = 1−N(qχN q−1 + kc)2dτ 2 (5.18)

And the quantum Fisher information is:

H(τ) = 4N(qχN q−1 + kc)2 (5.19)

5.9 Appendix C: Quadrature noise

We consider the effect of how a systematic error in the choice of the phase β can

change the amount of noise. For the parameters χ = 0.1 and N = |α|2 = 1017, we

choose θ + ζ2 = π
2

and β is the independent variable. As it turns out, for a small

off-set from the optimum point of 10−3 radians in this β phase, less than 1 dB of

noise is added (see Fig. 5.3). This doesn’t seem to be a major issue since we predict

a ∆rs/rs = 10−3 and thus we can detect an absolute change of 10−10 radians in the

phase for a single shot measurement. Therefore, a large systematic error doesn’t add

significant noise to destroy the beyond-conventional-Heisenberg scaling.



106 BIBLIOGRAPHY

5.10 Appendix D: Experimental feasibility

In Fig. 5.4, we present the relative Schwarzschild error bound plotted against

the dimensionless parameter ỹ = Nχn′

ω
. Thus, we can rewrite the error bounds as:

〈∆rs〉
rs

=
rArBcn

′

Lhrsω(1− rsh
2rArB

)
√
MN(1 + ỹ)2

(5.20)

And

〈∆rs〉opt
rs

≥ rArBcn
′

2Lhrsω
√
MNa((1 + 2ỹ + 2χ)2 + 2ỹχ)

(5.21)

Where M is the number of single shot measurements. From these expressions,

we expect that the turning point at which the nonlinearity becomes significant is

approximately when ỹ ≈ 10. As seen in Fig. 5.4, for a fixed number of photons N

and central frequency ω, there is approximately an order of magnitude improvement

over a SNL linear interferometer. A conservative estimate of χ for N = 1015, 1017,

1020 respectively is χ = ỹω
N

= 1, 10−2 and 10−5. Let’s consider the case of χ = 10−5

for which the number of photons per ∆t = 30 fs pulse duration is N = 1020

with M = 1010 number of measurements would correspond to a peak power of

P = N~ω
∆t
≈ 4× 1013 W=40 TW (Average power P̃ = 10 GW). On the other hand,

for a stronger linearity of χ = 1, the peak power required to see the enhancement

with N = 1015 photons per pulse would reduce to P = 400 MW and an average

power of P̃ = 100 kW. We note similarities in these values with Ref. [1].

The definition of the nonlinearity constant χ′ in Ref. [1] is slightly different from

our definition. Namely, χ′ represents the phase shift per unit photon. It is defined

as:

χ′ =
ñ

n0

~ω
A∆t

(5.22)

Where ñ is the second order refractive index from the expansion n = n0 + ñI, A is

the area of the pulse, and ∆t is its duration. Thus, the nonlinear phase shift per

photon can be increased by reducing the area and the pulse duration. It follows

that the phase shift is given by φ′NL = n0ωL
c

χ′

2
N . Comparing with our phase shift

φNL = L
c
χN , the relation between our nonlinear coefficient and that in Ref [1] is

χ = n0

2
ωχ′.

The values of the nonlinearities quoted in the main text are based on converting

the given formula of the phase φNL = |α|2χτ from the values given. For example,
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Figure 5.4: Error bound of the Schwarzschild radius plotted against the dimensionless
quantity Nχ

ω
for various N and fixed length L = 1000 m and h = 1 m. From top

to bottom, each colour represents N = 1015, N = 1017 and N = 1020. The solid
lines represent the theoretical quantum error bound. The dashed represent the
quadrature measurement. The dotted lines represent the shot noise limit for a linear
interferometer. (Other parameters are M = 1010)

a nonlinear phase shift of 10−8 − 10−7 with the given fibre length of L = 4.5 m in

Ref. [2] for a single photon correponds to χ = 1 to χ = 6. The same calculation was

done for the optical fibre.

5.11 Appendix E: Including loss

The effect of loss on the nonlinear interferometer - Whilst loss has a highly

detrimental effect on the resolution improvements achieved via squeezing, it has a

much smaller effect on the nonlinear interferometer. We can model loss introduced

due to non-unit detection efficiency via a beamsplitter of transmission εa after the

nonlinearities, and insertion losses on the probe via a beamsplitter of transmission

εb before the nonlinearities. These effects are straightforward to incorporate in the

model giving the revised error bound in Eq. (5.15).

Loss after the nonlinearity leads to e−ia
†aχτa → e−ia

†aχτ√εa a +
√

1− εa d and
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after the beamsplitter becomes:

Xb = b(τ)eiθ + b†(τ)e−iθ

=
√
εa |α| cos (θ + ζ2)−

√
εa |α| cos (θ + ζ1 + β)

− χ|α|2(τ2 sin (θ + ζ2)− τ1 sin (θ + ζ1 + β))
√
εa δXa

+

√
ε

2
(δXa(θ+ζ2) − δXa(θ+ζ1+β))

+

√
1− ε√

2
(δXd(θ+ζ2) − δXd′(θ+ζ1+β))

+

√
ε

2
(Xv(θ+ζ2) +Xv(θ+ζ1+β))

(5.23)

And the variance is:

〈∆X2
b 〉 = εaχ

2|α|4(τ2 sin (θ + ζ2)− τ1 sin (θ + ζ1 + β))2

− εaχ|α|2(τ2 sin (θ + ζ2)− τ1 sin (θ + ζ1 + β))

× (cos (θ + ζ2)− cos (θ + ζ1 + β)) + 1

(5.24)

For the optimal angle, the variance reduces also to shot noise 〈∆X2〉 = 1. Loss

before the nonlinearities simply reduces the input photon number by the factor εb.

Therefore, the error bound for the combined case of having loss before and after the

nonlinearities is:

〈∆rs〉
rs

=
rArBc

Lhrs(1− rsh
2rArB

)
√
εaεbN( ω

n′
+ εbNχ)2

(5.25)

The loss reduces the effective size of the coherent amplitude but does not change the

super-Heisenberg scaling. In contrast, a squeezed coherent state will lose its non-

classical properties through a lossy quantum channel. In Fig. 5.2 of the main text we

have plotted for comparison the performance of an equivalent linear interferometer

with squeezed light injected [3]. As shown, the presence of a very small amount of

loss destroys the advantage of the squeezing whilst having virtually no effect on the

nonlinear interferometer. The ultimate limit for a lossy interferometer with squeezed

coherent probe states is [3]:

〈∆rs〉
rs
≥ rArBcn

′

2Lhrsω
√

εNc
1−ε+εe−2r + εNs

(5.26)

Where Nc and Ns is the number of coherent and squeezed photons, respectively.

We assume the squeezing parameter r is positive and very large. Consequently,

for significant loss ε << 1, the Heisenberg scaling of ∝ 1
N

is lost for the optimal

number of squeezed photons Ns = Nc and reduces to the SNL. Loss on the order of
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ε ≈ 1− 1
Nχ

where Nχ is the turning point of the scaling for the respective value of

the nonlinearity is enough to destroy the Heisenberg scaling as seen in Fig. 5.2 of

the main text. On the other hand, our nonlinear interferometer setup requires only

a 1
ε

increase in the input number of coherent photons to compensate for the loss.
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Chapter 6

Quantum metrology in the Kerr

metric

The aim of this thesis is to consider the measurement of space-time curvature

using quantum metrology tools. In this chapter, we consider the Kerr metric around

a rotating massive body and consider the quantum limits for precision of estimating

the frame dragging effect characteristic of this metric. A surprising feature of the

Kerr metric is the anisotropy of the speed of light. The angular momentum of a

rotating massive object causes co- and counter-propagating light paths to move at

faster and slower velocities, respectively as determined by a far-away clock. Based

on this effect we derive ultimate quantum limits for the measurement of the Kerr

rotation parameter a using a interferometric setup. As a possible implementation, we

propose a Mach-Zehnder interferometer to measure the “one-way height differential”

time effect. We isolate the effect by calibrating to a dark port and rotating the

interferometer such that only the direction dependent Kerr-metric induced phase term

remains. We transform to the Zero Angular Momentum Observer (ZAMO) flat metric

where the observers see c = 1. We use this metric and the Lorentz transformations

to calculate the same Kerr phase shift. We then consider non-stationary observers

moving with a planet’s rotation, and find a method for cancelling the additional

phase from the classical relative motion, thus leaving only the curvature induced

phase.
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6.1 Introduction

Quantum metrology is the study of the lower limits for the estimation of physical

parameters [2]. Techniques in quantum metrology can assist in developing devices to

measure the fundamental interplay between quantum mechanics and general relativity

at state-of-the-art precision. A prime example is the detection of gravitational waves

from black-hole mergers by LIGO [3].

Recently there have been investigations of how we can exploit quantum resources

to measure space-time parameters such as the Schwarzschild radius rs and the Kerr

parameter a in the rotating Kerr metric [4–7]. Quantum communications were shown

to be affected by the rotation of Earth [8]. However, more fundamental effects in

general relativity induced by the Kerr metric were not analysed. One interesting

feature of the Kerr metric is the anisotropy of the velocity of light (null geodesics).

The rotating massive object causes co- and counter- propagating light to move at

faster and slower velocities, respectively.

In this chapter, we note that there is a phase shift of co-moving light beams

at different radial positions in the Kerr metric. We use a Mach-Zehnder (MZ)

interferometer to probe this phase. We isolate the effect by calibrating to a dark

port and rotating the interferometer and due to the anisotropy of c, only the Kerr

phase term remains. From this, we can construct lower bounds for the variance of

parameter estimation of the Kerr rotation parameter a using Quantum Information

techniques [4, 7, 9].

Locally, we can find a co-rotating frame in which the space-time is locally flat

(“the zero angular momentum ring-riders”) [10]. We find that the locally measured

velocity of light is c = 1 as expected in the flat metric. If an observer Alice compares

the locally measured time with Bob who is a ring-rider at a different radius, there

will be a disagreement of simultaneity of events. We also consider non-stationary

observers that are moving in the rotational plane of Earth. As expected, we find an

additional phase term from rotation and special relativistic time dilation. We find

that this term is dominant compared to the Kerr phase. Finally, we compare the

magnitude of the Kerr phase on Earth to that achievable by microwave resonator

experiments [11].

This chapter is organized as follows. We first introduce the full Kerr metric in

Section 6.2 for a rotating black hole. In Section 6.2.1, we approximate the Kerr

metric to first order in angular momentum where the mass quadrupole moment for

massive planets or stars is dropped in the weak field limit. In Section 6.2.2, we solve
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for the null geodesic to determine the velocity of light in the equatorial plane. We

find the anisotropy in c. Next in Section 6.2.3, we calculate the “height differential

effect” which could be detected by a Mach-Zehnder interferometer above a massive

planet.

In Section 6.3, we determine quantum limits of the estimation the Kerr space-

time parameter a for the height differential effect. In Section 6.3.1, we focus on the

stationary Mach-Zehnder interferometer in the weak field limit and calculate the

phase shift. We comment on how we can calibrate to a dark port and rotate the

interferometer to isolate the Kerr phase. We compare the magnitude of the Kerr

phase with the Schwarzschild phase for Earth parameters. In Section 6.4, we use

the co-moving flat metric in which the so-called “ring-rider” measures c = 1. In

Section 6.5, we demonstrate an alternative calculation using Lorentz transformations

between stationary and ring-riders to find the phase detected at the output of the

MZ interferometer. We also confirm that the “two-way” velocity of light is c = 1 as

detected by a Michelson interferometer at rest in the Kerr metric. Furthermore, we

consider the motion of non-stationary observers on the rotating planet. In Section

6.6, we consider an extremal black hole and we numerically find the full strong field

solution of the Kerr phase. Finally, we conclude by commenting on the feasibility of

detecting the light anisotropy.

6.2 Kerr Rotational Metric

The metric describing the space-time of an axially symmetric rotating massive

body is given by the Hartle-Thorne metric, which includes the dimensionless mass

quadrupole moment q and the angular momentum (mass normalized) j of the massive

body [12, 13]. The mass quadrupole moment is q = kj2 where k is a numerical

constant that depends on the structure of the massive body. The Kerr metric for

a black hole is obtained from the Hartle-Thorne metric by setting q = −j2 and

transforming to Boyer-Lindquist coordinates [14,15].

A rotating black hole tends to drag the space-time with its rotation. The Kerr

metric used to describe this space-time includes the Kerr rotation parameter “a”

which quantifies the amount of space-time drag. The Kerr line element in Boyer-
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Lindquist coordinates (t, r, θ, φ) is [10,12,17]

ds2 = −(1− rsr

Σ
)dt2 +

Σ

∆
dr2 + Σdθ2

+ (r2 + a2 +
rsra

2

Σ
sin2 θ) sin2 θdφ2 − 2rsra sin2 θ

Σ
dφdt,

(6.1)

where ∆ := r2 − rsr + a2, Σ := r2 + a2 cos2 θ and a = J
Mc

where J is the

angular momentum of the black hole of mass M . Note that the Schwarzschild

radius rs = 2GM
c2
≡ 2M where we work in natural units for which c = 1 and G = 1.

Compared with the Schwarzschild metric, the cross term dtdφ introduces a coupling

between the motion of the black hole and time, which leads to interesting effects.

When rs = 0, the space-time is flat and reduces to ds2 = −dt2 + 1

1+a2

r2

dr2 + (r2 +

a2)dφ2. At first glance, this metric doesn’t seem flat. However, we have used the

oblong sphere coordinates x =
√
r2 + a2 sin θ cosφ, y =

√
r2 + a2 sin θ sinφ and

z = r cos θ.

6.2.1 Approximate Kerr metric for rotating massive bodies

The mass quadrupole moment of a massive planet is proportional to the angular

momentum squared. Thus, we cannot use the Kerr metric in Eq. (6.1) where the

proportionality constant for black holes is k = −1. However, in the weak field limit

a << r, we can truncate the Kerr metric to first order in a
r
. Thus the approximate

Kerr metric is given by

ds2 = −(1− rs
r

)dt2 + (1− rs
r

)−1dr2 + r2dθ2

+ r2 sin2 θdφ2 − 2rsa sin2 θ

r
dφdt.

(6.2)

This approximate Kerr metric disregards the mass quadrupole moment of the

massive body. It is equivalent to the Hartle-Thorne metric with the same first order

approximation [16]. When we refer to a massive planet or star, we will use this

approximate Kerr metric. We wish next to determine the tangential velocity of light

close to the massive object as seen by a far-away observer.

6.2.2 Far-away velocity of light

As was done in the Schwarzschild metric in Chapter 3.4, we can derive the velocity

of light as inferred by a far-away observer. In the equatorial plane (where θ = π
2
), for

the null light geodesic, we set ds2 = 0 and determine the solution for the tangential
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velocity of light according to Kerr time coordinate t. The Kerr time coordinate

corresponds to a clock from the gravitating massive body hence this is the speed of

light inferred by a far-away observer. Using Eq. (6.2)

ds2 = 0 = −(1− rs
r

)dt2 + (1− rs
r

)−1dr2

+ r2dφ2 − 2rsa

r
dφdt.

(6.3)

The tangential distance is dx = rdφ and the light geodesic solution is

0 = −(1− rs/r) + ẋ2 − 2rsa

r2
ẋ, (6.4)

where ẋ = dx
dt

. However, if a
r
<< 1 and rs

r
<< 1 we have the weak field solution

dx

dt
≈ rsa

r2
±
√

1− rs
r

≈ ±(1− rs
2r
± rsa

r2
),

(6.5)

where we have used the Taylor expansion
√

1− x ≈ 1 − x
2
. We have two

solutions representing counter- and co-rotating light. Notice that locally, dx
dt

dt
dτ
≈

(1− rs
2r

+ rsa
r2 )(1 + rs

2r
) = 1 + rsa

r2 can exceed 1 for the positive solution. However, we

cannot naively use the Schwarzschild coordinate time in this curved metric. Later

we will show that there is a locally flat metric where c = 1.

6.2.3 Height differential effect

Let’s consider a stationary observer in the Kerr metric sending co-moving beams

of light that travel tangentially at velocities c1 = 1− v1 − rs
2r1

and c2 = 1− v2 − rs
2r2

at radiuses r1 and r2 = r1 + h where h is the coordinate height. For simplicity we

made the weak field approximation and only retained terms from Eq. (7.3) to first

order in v1,2 = rsa
r2
1,2

. The light travels the distance L with time t1 = L
c1

. Similarly, the

second observer measures the travel time t2 = L
c2

. The far-away observer agrees that

the length L is the same for both. Thus the time delay to first order is

∆tr =
L

c1

− L

c2

= L(
1

(1− v1 − rs
2r1

)
− 1

(1− v2 − rs
2r2

)
)

≈ L(rsa(
1

r2
1

− 1

r2
2

)) +
Lhrs
2r1r2

≈ Lrsah(2r1 + h)

r4
1(1 + h

r1
)2

+
Lhrs

2r2
1(1 + h

r1
)

≈ 2Lrsah

r3
1

+
Lhrs
2r2

1

,

(6.6)
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where we have ignored the cross term rsv1

2r1
− rsv2

2r2
since it is much smaller and

enforced the approximation h << r1. This time delay can be incorporated into a

Mach-Zehnder interferometric arrangement which can be rotated along its centre to

measure the phase for +a and −a as will be discussed shortly.

6.3 Quantum Limited Estimation of the Kerr space-

time parameter

Using these time delays, we want to determine the ultimate bound for estimating

the Kerr metric parameter a. The optimal variance of an unbiased estimator is

determined by the Quantum Cramér-Rao (QCR) bound [9]. In quantum information

theory, for M independent measurements, the QCR bound for the linear phase

estimator φ is given by 〈∆φ̂2〉 ≥ 1
MH(∆φ)

. Where H(φ) is the quantum Fisher Infor-

mation which characterizes the ultimate achievable parameter estimation precision

by an optimal quantum measurement.

We have seen that we can measure the phase ∆φ = ω∆tr at different heights

where ω is the central frequency of the probe and ∆tr is given by Eq. (6.6). The

QCR bound for the Kerr rotation parameter is then (as in Chapter 4.4)

〈∆a〉
a
≥

r3
1(1 + h

r1
)2

ωLarsh(2 + h
r1

)
√
MH(∆φ)

. (6.7)

In general r1 >> h and therefore the Kerr parameter standard deviation scales

as 〈∆a〉 ' r3
1

2ωLrsh
√
MN

.

A larger height difference h or length L reduces the noise limit. For coherent

probe states undergoing linear phase evolution, H(φ) = |α|2 = N . Therefore,

we have the standard quantum noise limit ∝ 1√
N

as expected for coherent probe

states. By using non-classical squeezed states the noise scales as 1
N

, known as the

conventional Heisenberg limit [19,20] or with χ Kerr non-linearities the noise can

scale as 1
N3/2 [21, 22].

6.3.1 Mach-Zehnder interferometer

Let’s consider a physical system that can detect the discrepancy in the velocity

of light from the differential height effect in the Kerr metric. We consider a Mach-

Zehnder interferometer (see Fig. 6.1) that is stationary with respect to the centre of

mass of a rotating planet. We will work in far-away time coordinates. Although the
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cB

cA

r = rB4

r = rA3
1

2

Φ

g

Figure 6.1: A Mach-Zehnder interferometer of length L and height h stationary
above the rotating planet where rB > rA and the direction of the gravitational field
is downwards. Φ is a phase shifter in the bottom arm to calibrate the interferometer
to a dark port of zero intensity.

final implications will be the same, this is an approach where no assumption is made

about how the speed of light is measured locally.

The measured phase of the bottom arm of the Mach-Zehnder interferometer is

∆φA = ω∆tA where ω is the frequency of light measured locally at the source and

∆tA is the time as seen by a faraway observer, and Φ is a local phase shifter. At

r = rA the faraway time ∆tA = L
cA

where cA is the speed of light as measured by

a faraway observer (see Eq. (7.3)) and L is the arm length also seen by a faraway

observer. We have set both arm lengths to be the same. Thus, in the top arm at

r = rB = rA + h, the phase is ∆φB = ω∆tB = ω L
cB

.

We assume that dr = 0 and the Mach-Zehnder interferometer arms are sufficiently

small that the curvature is negligible. The tangential velocity of light depends on R

and the sign of a. The solution in the weak field limit is c′ = dx
dt

= Rdφ
dt
≈ 1± rsa

r2 − rs
2r

.

Where we have chosen the co-moving direction such that cA ≈ 1 − rsa
r2
A
− rs

2rA
and
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Figure 6.2: Measured phase differences of L = 1 m and h = 1 m Mach-Zehnder
interferometer in co- and counter- moving directions (blue and red respectively) with
respect to the radial position in units of the Schwarzschild radius rs. Black line is in
the Schwarzschild metric with a = 0. We use the values for the Earth’s Schwarzschild
radius rs = 9 mm, rotation parameter a = 3.9 m and the operating frequency of
light ω = k = 2× 106 m−1 corresponding to 500 nm measured locally at the source.

cB ≈ 1− rsa
r2
B
− rs

2rB
. The phase is thus

∆φMZ − Φ = ω(
L

cB
− L

cA
)

≈ ωL((1 +
rsa

r2
B

+
rs

2rB
+
r2
sa

r3
B

+
r2
s

4r2
B

+
r2
sa

2

r4
B

)

− (1 +
rsa

r2
A

+
rs

2rA
+
r2
sa

r3
A

+
r2
s

4r2
A

+
r2
sa

2

r4
B

))

≈ ωL(−rsah(2rA + h)

r4
A(1 + h

rA
)2
− hrs

2r2
A(1 + h

rA
)
),

(6.8)

where we have used the Taylor expansion 1
1−x−y ≈ 1 + x + y. Note that the

quadratic terms are too small and can be neglected in further calculations. We have

made the approximations rs
rA,B

<< 1, a
rA,B

<< 1 and h << rA, rB. Note that for the
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vertical arms, the accumulated phases are equal ∆φ12 = ∆φ34 implying that there is

no contribution to the total output phase.

We note that on Earth scale the effect of the Kerr rotation parameter is small. If

we use the values for the Earth’s Schwarzschild radius rs = 9 mm, rotation parameter

a = 3.9 m and radius rB = 6.37× 106 m, and take the area of the interferometer as

A = L×h = 1 m2 and the operating frequency of light k = 2× 106 m−1 (wavelength

of 500 nm) then the order of magnitude of the dominant term for the Kerr rotating

effect is

|∆φKerr| ≈
2krsaLh

r3
B

≈ 5× 10−16. (6.9)

Conversely, the Schwarzschild time dilation effect is of the order ∆φSchwarzschild =
ωLhrs
2rArB

= 2.2× 10−10.

MZ interferometer calibration. We set the total phase shift ∆φMZ = 0 and thus

the phase shifter Φ balances the interferometer to the dark port. Isolating the Kerr

phase around the dark port is an optimal strategy for maximizing signal to noise ratio.

We can see in Fig. 6.2 the phase of the interferometer if it were positioned in the co-

and counter-moving directions. Thus, we can rotate the Mach-Zehnder interferometer

with angle π around its vertical axis and measure the a sign dependence directly.

Since only the sign of a changes and Φ stays the same then we have,

∆′φMZ − Φ ≈ 2ωL(ΩArA − ΩBrB − rs(ΩB − ΩA))

≈ 2|∆φKerr|.
(6.10)

Note that we have defined ΩA,B = rsa
r3
A,B

. Therefore, we have a signal which only

depends on a. Without the anisotropy of the speed of light, there would be no signal

and the phase would remain a dark port.

6.4 Zero Angular Momentum Observer metric

The co- and counter-propagating null light geodesics differ in the Kerr metric.

However, locally we expect observers to isotropically measure c = 1. It would be

useful to transform to a reference frame in which the cross terms dφdt vanish and

where locally we obtain a flat space-time metric with c = 1 [17]. To determine this

transformation, we consider the Killing vectors ∂t and ∂φ that are responsible for

two conserved quantities along the geodesic. These are the energy

E = −kµuµ = −gtµuµ = −pt = (1− rs
r

)
dt

dτ
+
rsa

r

dφ

dτ
, (6.11)
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and the angular momentum

L = gφµu
µ = −rsa

r

dt

dτ
+ r2dφ

dτ
. (6.12)

When we set L = 0 then we have that dφ
dt

= rsa
r3 . Thus there remains an angular

motion even with zero angular momentum. The interpretation here is that the

rotating space-time drags an object close to the rotating mass, as seen by a far-away

observer. If we are co-rotating in the zero angular momentum reference frame

dφ′ = dφring + Ωdt with angular velocity Ω = rsa
r3 then the metric cross terms dφdt

cancel out and the line element becomes

ds2 = −(1− rs
r

)dt2 + r2dφ2
ring. (6.13)

This is known as the zero angular momentum observer (ZAMO) metric [17]. Taking

dtring =
√

1− rshell
r

dt we have that

ds2 = dt2ring − r2dφ2
ring, (6.14)

giving a locally flat metric for the ringriders in which c = 1.

We seek the metric in stationary shell coordinates

ds′2 = dt2s − r2
shelldφ

2
ring, (6.15)

where obviously again c = 1 locally.

However, there is a lack of simultaneity between events in the shell metric and

events in the ring-rider metric (and hence faraway events). This is the source of

the anisotropy of the speed of light. We have from the Lorentz transformation

that a space-like event implies dtring = γ(dts − vdxs) = 0 where v = Ωr and

dxs = rshelldφring, thus dts = vrshelldφring.

From the equivalence of the line elements we have

ds2 = ds′2

−r2dφ2
ring = v2r2

shelldφ
2
ring − r2

shelldφ
2
ring.

(6.16)

Therefore the ring-rider radius and stationary observer radius are equivalent r = rshell.

We have redefined the coordinate times of the respective ring-riders as the

Schwarzschild time dτ =
√

1− rs
r
dt. Between ring-riders, we have the usual

Schwarzschild time dilation, as expected. The advantage of the ring-rider frame

is that we can use Lorentz transformations to the stationary observer frame to

determine the much more significant height differential effect.
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Massive object ΩA ΩB

ΩE
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h

Figure 6.3: A Mach-Zehnder interferometer of length L and height h stationary above
the rotating massive object in the Kerr metric. Zero angular momentum ring-riders
(blue) will have a locally flat space-time with c = 1. Their angular frequency as seen
from a far-away observer (red) are given by ΩA = rsa

r3
A

and ΩB = rsa
r3
B

.

6.5 Ring-rider perspective

We have previously shown that in the ZAMO flat metric the speed of light is

c = 1. It is helpful in understanding the physics of our estimation protocols to

consider them from the perspective of ring-rider observers. This is also a convenient

method to generalize to non-stationary interferometers.

6.5.1 Stationary Mach-Zehnder above rotating massive ob-

ject

Let’s consider the Mach-Zehnder interferometer from the reference frames of

the ring-riders. The ring-riders are in the flat metric (see Fig. 6.3). Therefore, for

each ring-rider, we can use the Lorentz Transformations. We maintain for now the

weak field approximations that a
R
<< 1 and rs

r
<< 1 such that the Mach-Zehnder

interferometer is far enough away from the centre of the massive body. Taking into
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account special relativity, a stationary observer would measure the travel time of

light

t′1 = γ(t1 + vAxA) = γ(L+ vAL)

=

√
1 + vA
1− vA

L ≈ (1 + vA)L,
(6.17)

where vA = ΩArA is the relative velocity between the ring-rider and stationary

observer at rA and t1 = L is the travel time in the ZAMO flat metric. Note that the

stationary observer as seen by the ring-rider is travelling in the negative x direction.

Similarly, for the ring-rider at RB, t′2 =
√

1+vB
1−vB

L ≈ (1 + vB)L where vB = ΩBrB.

For an observer at r =∞, we use the coordinate times of the ZAMO metric. Since

the coordinate times are

t′′1 =
t′1√

1− rs
rA

≈ (1 +
rs

2rA
)L(1 + vA), (6.18)

and

t′′2 =
t′2√

1− rs
rB

≈ (1 +
rs

2rB
)L(1 + vB). (6.19)

Thus the time delay is

∆t = t′′2 − t′′1 = L((1 +
rs

2rB
)(1 + ΩBrB)

− (1 +
rs

2rA
)(1 + ΩArA))

≈ L(ΩBrB − ΩArA −
rsh

2rArB
).

(6.20)

These calculations are equivalent with using the null geodesics obtained from using

the Kerr Metric in far-away coordinates in Eq. (6.8).

6.5.2 Michelson interferometer

Given that the far-away observer sees an anisotropic speed of light it is instructive

to ask why a local Michelson interferometer fails to see an effect. A stationary

observer sends a light beam tangential to the equator that bounces off a mirror L

distance away and returns to the observer. The time delay in this signal arm would

be

∆tSignal =
L√

1− rs
r

(1 + v)

+
L√

1− rs
r

(1− v)

≈ 2L(1 +
rs
2r

).

(6.21)
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The reference arm perpendicular to the equator is approximately the Schwarzschild

local time as found in Eq. (6.29) (see Appendix 6.8). This is the same phase as the

signal arm ∆tRef ≈ 2L(1 + rs
2r

). Thus the total phase difference is ∆φMichelson = 0,

implying that the speed of light is c = 1 locally and isotropic, as expected from

the special theory of relativity. From the point of view of the far-away observer,

although the speed of light is anisotropic, they find the “two-way” speed, to the

mirror and back, is the same in each direction, leading to no phase shift. It may

seem a contradiction with the results of the height differential effect, which requires

c to be anisotropic to see a signal in the MZ interferometer. However, this is due to

a difference in the amount of space-time dragging at different radial positions in the

Kerr metric that the MZ interferometer measures non-locally.

6.5.3 Non-stationary co-moving observers on Earth

In an experiment conducted say on Earth, the rotation of the non-stationary Earth

observers must be taken into account. Our previous calculations have considered

only a stationary Mach-Zehnder interferometer with the Earth rotating beneath.

However, let’s consider the bottom arm of the MZ interferometer on Earth’s surface

with the tangential velocity v′A = ΩErA − ΩArA and the top arm co-moving at

v′B = ΩErB − ΩBrB with the same angular velocity ΩE of Earth. This relative

velocity between observers introduces an additional time dilation.

Using the Lorentz transformations, a stationary observer observer would measure

the travel time of light at rA

t′1 = γ(t1 + vAxA) = γ(L+ v′AL) =

√
1 + v′A
1− v′A

L

≈ (1 + v′A +
v′2A
2

)L.

(6.22)

Similarly, for the moving observer at rB

t′2 =

√
1 + v′B
1− v′B

L ≈ (1 + v′B +
v′2B
2

)L. (6.23)

For an observer at r = ∞, we use the coordinate times of the ZAMO metric,
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t′′A =
t′1√

1− rs
rA

and t′′B =
t′2√

1− rs
rB

. Thus

∆t = t′′B − t′′A

= L((1 +
rs

2rB
)(1 + v′B +

v′2B
2

)

− (1 +
rs

2rA
)(1 + v′A +

v′2A
2

))

≈ L(
rsh

2rArB
+ v′B − v′A +

rsv
′
B

2rB
− rsv

′
A

2rA
)

≈ ∆tMZ + ΩEhL+
Ω2
EhL(2rA + h)

2
,

(6.24)

where we have neglected the terms (ΩArA)2 and (ΩBrB)2. The term ΩEhL is a

classical effect due to the relative motion of the observers but the term
Ω2
Eh(2rA+h)L

2
is

the higher order correction due to special relativity. We calibrate the MZ interferom-

eter such that the total phase ∆φMZ = 0 and then we rotate it. The only remaining

terms in Eq. (6.24) are linear with the rotation. Thus the new phase is

∆φ′MZ = 2∆φKerr + 2ω0ΩEhL. (6.25)

The Kerr phase varies inversely with r3, and thus in principle can be distin-

guished from the classical effect. However, let’s consider unequal arm lengths of the

interferometer such that the classical term cancels. Thus we have rALA = rBLB,

and the Kerr phase is

|∆φKerr| ≈
ω0LBrsa

r2
B

− ω0LArsa

r2
A

= ω0rsa(
LArA

r3
A(1 + h

rA
)3
− LA
r2
A

)

≈ 3ω0LAhrsa

r3
A

.

(6.26)

We note that the vertical phases ∆φ12 and ∆φ34 are not equal to each other. However,

since we rotate the Mach-Zehnder interferometer through π then ∆′φ12 = ∆φ34 and

∆′φ34 = ∆φ12. Thus the phase difference (given calibration to the dark port before

rotation) at the output has no contribution from the phases of the vertical arms.

6.5.4 Probing the Kerr phase on Earth using MZ interfer-

ometer

An interesting calculation is to estimate how compact an object with Earth mass

and spin would need to be such that the Kerr term was dominant over the effect
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Figure 6.4: Measured phase differences of L = 1 m and h = 1 m Mach-Zehnder
interferometer around the radial position at which the Kerr phase (blue) becomes
dominant on Earth compared to the phase due to the classical rotation (red).

of the spin. The relative velocity term is |∆φRotation| = ω0LΩEh ≈ 5 × 10−7 for a

fixed interferometer with the angular frequency of the Earth ΩE = 7.2×10−5

c
Hz. To

determine a, we need to isolate it from the dominant effect of Earth’s rotation.

We can vary the position of the interferometer while keeping its size constant. The

contribution from the rotation term ∆φRotation ≈ ω0
ΩEhL

2
is approximately constant.

We want to determine at what radial position the Kerr effect becomes dominant.

This occurs when ∆φKerr > ∆φRotation. Therefore, ω0L
rsah
r3
B

= ω0LΩEh which implies

that rB = ( rsa
ΩE

)1/3 ≈ 5 km. Note that the condition a
RA

<< 1 is still satisfied. In

Fig. 7.3, we have the same interferometer over a range of positions extending 2 km

around the point at which the Kerr phase becomes significant. Clearly an Earth

bound measurement is very far from this condition. However, for a compact object

such as a neutron star of the same Schwarzschild radius it is possible in principle.
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Figure 6.5: Measured phase differences of L = 1 m and h = 1 m Mach-Zehnder
interferometer near a black hole of Schwarzschild radius rs = 10 km, angular
momentum a = rs

8
and the operating frequency of light k = 2× 106 m−1. Here we

have the MZ phases for co-moving (red), counter-moving (blue) and no rotation
a = 0 (black).

6.6 Extremal Black Holes

To explore the strong field situation, let’s now lower our stationary Mach-Zehnder

interferometer close to a black hole. We can no longer use the approximations a
r
<< 1

and rs
r
<< 1. We must use the full solution of cA and cB of the unapproximated

Kerr metric as in Eq. (6.1) and calculated in Appendix 6.9. We note that the Kerr

metric is a good description for a collapsed black hole, but not for the exterior metric

of neutron stars [23]. We can see in Fig. 6.5 for a black hole of Schwarzschild radius

rs = 10 km and angular momentum a = rs
8

, the phase difference for a co- (red) and

counter- (blue) direction Mach Zehnder interferometer. The two directions of the

Mach-Zehnder interferometer become increasingly distinguishable as it gets closer to

the event horizon at r = rs.
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6.7 Conclusion

We have determined the quantum limits of estimating the Kerr parameter which

arises from the anisotropy of the speed of light. We propose a stationary Mach-

Zehnder interferometer that can directly measure the Kerr parameter a direction

dependence. We identify the flat metric where the ring-rider velocity of light is

locally c = 1. We find the same Kerr phase using Lorentz transformations between

stationary and ring-riders in this ZAMO flat metric. Also, we find that the “two-way”

velocity of light is isotropic and c = 1 as measured by a Michelson interferometer.

However, our Mach-Zehnder interferometer is no longer a dark port after it is rotated

by π because of the combined effect of the anisotropy of light and the difference

in the amount of space-time dragging in the radial position. On Earth, we have

to consider non-stationary observers which adds an additional classical phase that

dominates the Kerr phase. Using a variation on the Mach-Zehnder set-up can cancel

this additional classical phase with only the Kerr phase remaining.

Recent experiments using microwave resonators have been able to detect the

anisotropy of light with a precision of ∆c/c ≈ 10−17 [11]. Our Mach-Zehnder

interferometer predicts a change in the speed of light due to the Kerr metric of

∆cKerr/c = hars
r3 ≈ 10−20. In principle, future devices need to increase precision by

3 orders of magnitude to measure the Kerr phase on a small scale Mach-Zehnder

interferometer. Using coherent probe states, the noise of the phase is the standard

noise limit (SNL) ∆φ ≥ 1√
MN

. For M = 10 GHz measurements [24], this suggests

that N = 1022− 1026 per light pulse. This would imply extremely high power, which

is one of the current limiting factor to increasing phase sensitivity.
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6.8 Appendix A: Proper length perpendicular to

the equator

Let’s consider the proper length perpendicular to the equator. The Kerr metric

away from the equator is [10]:

ds2 = −(1− rsr

Σ
)dt2 +

Σ

∆
dr2 + Σdθ2 (6.27)

Where θ is the azimuth in spherical coordinates, and Σ = r2 + a2 cos θ2.

Therefore, we set dt = 0 and dr = 0 and get the proper distance dσ =
√
r2 + a2 cos2 θ dθ. However, for a massive planet, in the weak field limit, we

have dσ = r
√

1 + a2

r2 cos2 θ dθ ≈ rdθ. The velocity of light is given by solving the

null geodesic for the weak field Kerr metric

ds2 = 0 = −(1− rsr

r2 + a2 cos2 θ
)dt2 + (r2 + a2 cos2 θ)dθ2

≈ −(1− rs
r

)dt2 + dσ2
(6.28)

And thus the time travelled by light is

∆tNormal =
L
dσ
dt

=
L√

1− rs
r

≈ 2L(1 +
rs
2r

) (6.29)

Which is the same as in the Schwarzschild metric.

6.9 Appendix B: Extremal black holes

Let’s consider the full solution to the speed of light without any weak field

approximations. The phase is therefore

∆φ = ω(tB − tA) = kL(
1

cB
− 1

cA
) (6.30)

Where cB = rsa

rB
√
r2
B+a2(1+rs/rB)

±
√

r2
sa

2

r2
B(r2

B+a2(1+rs/rB))
+ (1− rs

rB
) . Using units of

rs, a→ a′rs, rA → r′Ars and rB → r′Brs. This simplifies to cB = 1

r′B

√
r′2
B
a′2

+(1+1/r′B)

±√
1

r′2B ((
r′2
B
a′2

+(1+1/r′B))
+ (1− 1

r′B
) . Let’s consider the values of an almost extremal black
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Figure 6.7: Difference in exact phase as determined numerically for full solution of c
(red) and weak field approximation (blue) for Earth parameters. (Note that rs = 9
mm, h′ = 111 and a′ = 433)

hole with rs = 10 km, a′ = 1
8

with r′B = r′A + h′ where h′ = 1
10000

since h = 1 m. We

can see in Fig. 7.3 the phase difference for the full solution of c (red) and the weak

field approximation (blue) for this extremal black hole. The weak field approximation

obviously fails near the event horizon. However, for Earth parameters rs = 9 mm,

h = 111 and a = 433 representing h = 1 m and a = 3.9 m, there is no difference

between the exact solution for c and the weak field approximation on the Earths

surface (see Fig. 6.7).
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Chapter 7

Quantum effects in rotating

reference frames

The aim of this thesis is to consider high precision measurements in the cross

realm of quantum physics and general relativity. In this chapter, we consider a highly

sensitive scheme to measure relativistic effects at the quantum level. In contrast

with the previous chapter, we consider the time delay of interfering single photons

oppositely travelling in the Kerr metric of a rotating massive object. Classically,

the time delay shows up as a phase difference between coherent sources of light.

In quantum mechanics, the loss in visibility of interfering photons with Gaussian

mode distribution is directly related to the time delay. We can thus observe the Kerr

frame dragging effect using the Hong-Ou-Mandel (HOM) dip, a purely quantum

mechanical effect. By Einstein’s equivalence principle, we can analogously consider a

rotating turntable to simulate the Kerr metric. We look at the feasibility of such an

experiment using optical fibre, and note a cancellation in the second order dispersion

but a direction dependent difference in group velocity. However, for the chosen

experimental parameters, we can effectively assume light propagating through a

vacuum.

7.1 Introduction

Most experiments performed to date could be explained by a classical theory

of curved space-time or quantum mechanics in flat space-time. These remain to

large degree mutually exclusive fields of physics. One of the most fundamental

questions of physics today is about the reconciliation between quantum mechanics
137
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and Einstein’s theory of general relativity. Quantum mechanics in curved space-

time has not been as accessible by experiment. Nonetheless, there have been many

proposals to test quantum phenomena such as superposition in curved space-time.

For example, Ref. [1] considers single photons in superposition at different heights

in a gravitational potential. These photons will experience a classical phase shift

due to time dilation that is proportional to the gravitational acceleration. The

same classical phase can be detected by classical light which doesn’t exhibit the

quantum mechanical effect of superposition. In previous chapters of this thesis we

have exploited this phase shift for parameter estimation. However, if the photons

have a pulse (coherence) time comparable to the time dilation, significant loss of

quantum interference occurs between the photon wavepackets. A loss in the visibility

is seen at the output.

Similarly, we can consider single photons in a large Sagnac interferometer around

a rotating massive body described by the Kerr metric. Due to frame dragging,

photons co-propagating with the rotation will have a different arrival time compared

with photons that counter-propagate with the rotation. Thus, if this time difference

is comparable to the pulse time of the photon, loss of quantum interference between

photon wavepackets occurs. The loss in visibility now depends on the Kerr parameter

a. We can consider an analogous system on a rotating turntable. By Einstein’s

equivalence principle, the physics should be equivalent whether they are in the

space-time of a Kerr metric or accelerating due to the rotation of the turntable. We

can observe the time difference due to light velocity using the Hong-Ou-Mandel

effect, a purely quantum mechanical effect [2]. The time delay due to rotation at

the single photon level as a phase shift has been observed previously [3] and also

more recently, with a N = 2 NOON state [4]. However, loss in the visibility of the

quantum interference has yet to be observed.

We first consider the Kerr effect in the situation where a stationary observer

sends a superposition of a co- and counter-propagating photon half-way around the

Earth. We find that there is a visibility loss for Gaussian wavepackets due to the

time difference of the Kerr metric. Next, we consider a turntable experiment to

simulate this effect. We use a HOM Sagnac interferometer to see the loss in visibility

due to the time delay caused by rotation. We also consider the relativistic effects

of the optical fibre medium. Lastly, we provide calculations for the difference in

dispersion of the Gaussian wavepackets. We find that the second order dispersion

cancels out in agreement with Ref. [5], but small effects due to a difference in group

velocity remain. Nonetheless, for the parameters proposed, we can essentially assume
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propagation in a vacuum.

7.2 Kerr metric

As in Chapter 6, for a rotating black hole, the Kerr metric describes the effect of

the dragging of the space-time. The Kerr line element in Boyer-Lindquist coordinates

(t, r, θ, φ) is [6]

ds2 = −(1− rsr

Σ
)dt2 +

Σ

∆
dr2 + Σdθ2

+ (r2 + a2 +
rsra

2

Σ
sin2 θ) sin2 θdφ2 − 2rsra sin2 θ

Σ
dφdt,

(7.1)

where ∆ := r2 − rsr + a2, Σ := r2 + a2 cos2 θ and a = J
Mc

where J is the

angular momentum of the object of mass M . Note that the Schwarzschild radius is

rs = 2GM
c2
≡ 2M where we work in natural units for which c = 1 and G = 1. In the

equatorial plane of the metric (θ = π
2
), a tangential velocity of light can be obtained

in terms of tangential proper distance per Kerr coordinate time, solved by setting

ds2 = 0. From Chapter 6, the full solution is given by (see also Ref. [7])

dx

dt
=

rsa

r
√
r2 + a2(1 + rs/r)

±

√
r2
sa

2

r2(r2 + a2(1 + rs/r))
+ (1− rs

r
) .

(7.2)

However, if a
r
<< 1 and rs

r
<< 1 we have the weak field solution valid for massive

planets

dx

dt
≈ rsa

r2
±
√

1− rs
r

≈ ±(1− rs
2r
± rsa

r2
),

(7.3)

where we have used the Taylor expansion
√

1− x ≈ 1− x
2
. We have two solutions

representing counter- and co-rotating light.

7.2.1 Kerr phase difference

Using the solution for the speed of light as seen by a far-away observer in the

weak field limit, the phase difference between co- and counter- propagating single
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photon wavepackets is

∆Φ = ΦB − ΦA = ωL(
1

cB
− 1

cA
)

≈ ωL(
1

1− rs
2r

+ rsa

r
√
r2+a2(1+rs/r)

− 1

1− rs
2r
− rsa

r
√
r2+a2(1+rs/r)

)

≈ 2ωL
rsa

r2
(1 +

rs
r

) ≈ 2ωπ
rsa

r
.

(7.4)

Note that we’ve neglected second order terms in a
r

and above, since r >> a in

the weak field limit. For Earth’s parameters a = 3.9 m, rs = 9 mm on the surface

r = 6.37× 107 m with visible light of frequency ω = k = 2× 106 m−1, the magnitude

of the classical Kerr phase half way around the Earth is ∆ΦKerr = ω∆tKerr ≈
7× 10−3 where ∆tKerr = 2L rsa

r2 . In principle, we could use a large classical Sagnac

interferometer to measure this phase.

7.3 Single photon Sagnac interferometer in the

Kerr metric

Let’s consider a thought experiment where a single photon is in a superposition

of two paths around the rotating planet. A stationary single photon source hovering

above the rotating planet releases a photon that passes through a beamsplitter and

forms a superposition of the paths A and B with phases ΦA = ωtA and ΦB = ωtB.

Paths A and B move semi-circularly around the planet co- and counter- propagating,

respectively, with the rotation direction of the planet. These recombine at a second

beamsplitter that is half-way around the planet and are detected by a photon number

counter.

We begin with the initial state |1〉 |0〉 passing through a beamsplitter

|1〉 |0〉 → 1√
2

(|1〉 |0〉+ i |0〉 |1〉). (7.5)

The two arms experience a different phase shift depending on their trajectories.

If the photon is moving with the rotation, it will acquire the phase ΦA and against
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the rotation, it will acquire the phase ΦB. Thus we have the state after the first

beamsplitter and subsequent propagation to the second beamsplitter

1√
2

(eiΦA |1〉 |0〉+ ieiΦB |0〉 |1〉). (7.6)

After the second beamsplitter, the state becomes

1

2
(eiΦA(|1〉 |0〉+ i |0〉 |1〉+ ieiΦB(i |0〉 |1〉+ |1〉 |0〉)). (7.7)

Thus the number of photons at the output of the second beamsplitter is

〈N〉 = 〈0| 〈0| 1
2

(e−iΦA − ie−iΦB)
1

2
(eiΦA + ieiΦB) |0〉 |0〉

=
1

2
(1 + sin (ΦA − ΦB)).

(7.8)

This particular phase can also be measured using classical coherent probe states.

Due to this reason, it’s usually referred to as a “classical phase”.

Consider the single photon mode distribution f(ω)a†ω |0〉 where

f(ω) = (
1

πσ2
)1/4 exp (− 1

2σ2
(ω − ω0)2), (7.9)

is the Gaussian distribution with centre frequency ω0 and σ is the pulse width in

frequency space. Thus at the output we have

〈N〉 =

∫
dω|f(ω)|2 〈a†ωaω〉

=
1

2
(1 +

∫
dω(

1

πσ2
)1/2 exp (− 1

σ2
(ω − ω0)2) sinω∆t)

=
1

2
(1 + e

−( ∆Φσ
ω0

)2

sin ∆Φ),

(7.10)

where the integral is over all positive frequencies ω and ∆Φ is given by Eq. (7.4) in

the Kerr metric. The visibility is given by

V = e−( ∆φσ
ω

)2

= e−(∆tσ)2

(7.11)

The additional visibility loss is classified as a quantum effect because it is due to

the interference of wavefunctions as opposed to interference of classical modes of the

field had we used coherent probe states.
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7.3.1 Two-way velocity of light

We now want to determine the average velocity of light that returns to the

stationary observer. We expect this to be isotropic and equal to c = 1. Let’s now

consider a double-sided mirror at halfway around the rotating planet that reflects

both of the photons back to the original source and the photons interfere. The phase

of the co-propagating photon A before interfering with the counter-propagating

photon B is

ΦA + Φ′A = ωL(
1

1− rs
2r

+ rsa
r2

) + ωL(
1

1− rs
2r
− rsa

r2

) ≈ ωL(1 +
rs
2r

), (7.12)

where Φ′A = ΦB since this the counter-propagating phase. Note we have used the weak

field approximation. The mean velocity of the light as seen by a far-away observer is

thus cmean = 1
1+ rs

r
≈ 1− rs

r
. Locally, the velocity of light is dx

dτ
= cmean

dt
dτ

= 1 where
dt
dτ

= (1− rs
r

)−1 from setting dr = 0, dφ = 0, dθ = 0 in the Kerr metric. This implies

that the velocity of light is c = 1 and isotropic.

Similarly, for the initially counter-propagating photon we have the same phase.

Thus no phase difference is detected and the observer infers that c = 1.

7.3.2 Visibility loss in the Kerr metric of Earth

Although the Hartle-Thorne metric describes the exterior metric of a massive

object with a mass quadrupole moment q, the approximate Kerr metric in the weak

field limit disregards q which is of second order in angular momentum. Therefore,

massive planets or neutron stars can be described by the Kerr metric up to first

order in the angular momentum. If we consider the massive planet to be Earth, the

two photon paths will undergo a time delay due to the frame dragging caused by

the Kerr metric. Therefore, we have V = e−(∆tKerrσ)2
e−( 2πrsaσ

r
)2 ≈ 1 − 1.5 × 10−10

where a = 3.9 m, rs = 0.009 m and r = 6.37 × 106 m. The visibility loss in the

quantum interference would be far too small to be detected on Earth’s surface. The

radial position at which the visibility would be significant is r = 2πrsaσ ≈ 800 m,

assuming a neutron star with Earth’s mass.

7.3.3 Extremal black holes

Let’s consider the full solution to the speed of light without any weak field

approximations. The phase is therefore

∆Φ = ω(tB − tA) = kL(
1

cB
− 1

cA
), (7.13)
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Figure 7.1: Phase difference (light blue) and visibility (orange) of single photons
plotted against radial position in units of the Schwarzschild radius rs from centre of
a rotating black hole. (Note the extremal black hole parameters rs = 10 km, a′ = 1

4

and σ = 3.5× 103 m−1.)

where cB = rsa

rB
√
r2
B+a2(1+rs/rB)

±
√

r2
sa

2

r2
B(r2

B+a2(1+rs/rB))
+ (1− rs

rB
) . Using units of

rs, a→ a′rs, rA → r′Ars and rB → r′Brs. This simplifies to cB = 1

r′B

√
r′2
B
a′2

+(1+1/r′B)

±√
1

r′2B ((
r′2
B
a′2

+(1+1/r′B))
+ (1− 1

r′B
) . Let’s consider the values of an almost extremal black

hole with rs = 10 km, a′ = 1
4

and σ = 3.5× 103 m−1. In Fig. 7.1, we have the phase

and the visibility plotted against the radial distance away from the black hole centre.

At a particular radial distance, the visibility loss is significant and the wavepackets

become completely separated very near the event horizon.

7.4 Rotating reference frame

In this section, we will compare the metric of an inertial observer in a rotating

reference frame with an observer in the Kerr metric. Consider an inertial observer

on a rotating turntable at a constant radius r with angular frequency Ω as depicted
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Ω

|1〉

|1〉

tAtB

Figure 7.2: A HOM Sagnac interferometer on a turntable rotating at angular
frequency Ω. A photon source (white) releases two photons that pass through a
beamsplitter and forms a superposition of the paths A and B with phases ΦA and
ΦB. These recombine at the second beamsplitter and are detected by a photon
counter (gray).

in Fig. 7.2.

The metric for a rotating observer in the (1+1) space-time is given by transforming

the flat metric using dφ→ dφ+ Ωdt

ds2
Rotation = dt2 − r2dφ2 → (1− v2)dt2 − 2vrtdtdφ− r2

t dφ
2, (7.14)

where the t and φ coordinates are the inertial coordinates in the rotating metric and

where v = Ωrt is the tangential velocity. We compare the rotating metric with the

Kerr metric at constant radius in a (1+1) dimensional space-time

ds2
Kerr = (1− rs

r
)dt2 − 2rsa

r
dtdφ− r2dφ2. (7.15)

We require a coordinate transformation for it to match with equation 7.14. Evidently,

we require that rdφKerr = rtdφRotation implying the measured tangential distances

are the same. We set the size of the turntable rt = r which implies that the angular

coordinates are equivalent dφKerr = dφRotation. However, let’s make the following

time coordinate transformation in the Kerr metric

dt→

√
1− v2

1− rs
r

dt. (7.16)

Thus

ds2
Kerr = (1− v2)dt2 − 2rsa

r

√
1− v2

1− rs
r

dtdφ− r2dφ2. (7.17)
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The gtφ components must match and we have to solve for v in the equation vr =
rsa
r

√
1−v2

1− rs
r

. We find that the velocity of the rotating turntable for simulating a Kerr

reference frame must be

v = ± rsa

r2

√
1− rs

r
+ r2

sa
2

r4

≈ ± rsa

r2
√

1− rs
r

. (7.18)

By Einstein’s equivalence principle, the observer cannot tell whether they are in the

(1+1) local space-time of a Kerr metric or in an inertial rotating reference frame of a

turntable. Therefore, we can simulate tangential motion in a (1+1) Kerr space-time

if we choose an appropriate velocity for the turntable, and use appropriate clocks.

For example, for a turntable of Earth’s radius r = 6.37× 107 m, we can simulate

the Earth’s Kerr metric with a turntable velocity of v = rsa

r2
√

1− rs
r

≈ 2.6× 10−7 m/s

or angular frequency Ω = 4.1× 10−14 rad/s. Implying that it is extremely slowly

rotating. Alternatively, for an Earth mass black hole, and turntable radius of r = 100

m then the velocity of the turntable with the same radius would have to be v = 110

m/s to match the effects of the Kerr metric.

7.4.1 Time shift

An alternative scenario is where both observers in either metrics use their

respective coordinate times but we require the time shifts imposed on tangentially

propagating light rays to be equal. Let’s consider the perspective of an inertial

observer in the laboratory frame observing the rotating platform that sends light for

a round trip. The round trip for the light as seen by the inertial observer is obtained

by considering the distance travelled by the co-moving light L+ vt = t where t is

the total time of the round trip. Thus

∆t =
L

1− v
− L =

2πrt√
1− v2 (1− v)

− 2πrt√
1− v2

, (7.19)

where rt is the turntable radius as seen by the inertial observer in the laboratory

frame (note we have accounted for the time dilation). In the Kerr metric, as seen by

a far-away observer the time of the round trip (w.r.t. to the stationary observer)

around a massive planet is (we have used Eq. (7.3))

∆tKerr ≈
2πr

1− rsa
r2 − rs

2r

− 2πr

1− rs
r

≈ 2πr(1 +
rs
2r

+
rsa

r2
)− 2πr(1 +

rs
2r

) =
2πrsa

r
,

(7.20)



146 CHAPTER 7. QUANTUM EFFECTS IN ROTATING REFERENCE FRAMES

where r is the radius in the Kerr metric. Equating these two far-away times

(∆t = ∆tKerr) and without assuming v is small, we have

rsa

rrt
=

1√
1− v2 (1− v)

− 1√
1− v2

=
v√

1− v2
. (7.21)

Thus we have the velocity

v =
rsa

rrt

√
1 + r2

sa
2

r4

≈ ±rsa
rrt

(7.22)

For example, for a turntable of radius rt = 0.2 m and r = rE equal to the Earth’s

radius we have a turntable velocity of v = ±0.8 m/s or angular frequency Ω = 4

rad/s. Compared to the previous example of an Earth size turntable, the accumulated

effect on the smaller turntable is smaller and thus the velocity must be larger to

compensate. We note that if the turntable radius is equal to the Kerr metric radius

rt = r and we use the metric times in Equations 7.14 and 7.16. We obtain the

equation

rsa

r2

√
1− v2

1− rs
r

= v, (7.23)

which, solving for v is equivalent to Eq. (7.18). Therefore, we have proven that

a transformation of time coordinates isn’t necessary to quantitatively simulate the

Kerr metric with a rotating turntable.

7.4.2 Phase

For a rotating reference frame, we solve for the light null geodesic to obtain the

tangential velocity of light ẋ = r dφ
dt

. Setting ds2 = 0 we have (1− v2)− 2vẋ− ẋ2 = 0.

We thus have two solutions ẋ = 1± v. The cross term component dtdφ once again

is the cause of the anisotropy of light. With the rotation of the turntable, the

phase of the photon is ΦA = ω L
cA

= ω L
1+v

and against the rotation, with the phase

ΦB = ω L
cB

= ω L
1−v . Thus the phase difference for the turntable is

∆ΦRotation =
2ωvL

1− v2
, (7.24)

which is the same phase obtained by a classical Sagnac interferometer.

7.4.3 Minimum velocity for significant visibility loss

We substitute the phase in Eq. (7.24) in Eq. (7.11) to obtain the visibility

V = e−σ
2 ∆φ2

ω2 = e
−4 v

2L2σ2

(1−v2)2 = e
−4 v2

(1−v2)
π2r2σ2

. (7.25)
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Note that L is the total contracted length travelled by the light. For the case where

the photons meet half way we have L = πr
√

1− v2 . For significant visibility loss

the velocity needed for the rotating platform is given by solving 4 v2

(1−v2)
π2R2σ2 = 1.

Rearranging,

vmin =
1√

4π2r2σ2 + 1
≈ 1

2πrσ
. (7.26)

Let’s consider σ
c

= 1
∆tpc

= 3.3×103 m−1 corresponding to picosecond pulses and a

rotating platform of radius r = 5 m. Thus v ≈ 1
2πRσ

≈ 2900m/s. If smaller pulses of

100 femtoseconds are used then v ≈ 290m/s. The amount of g-force for this velocity

is 1700 g. However, we can simply increase L by increasing the number of windings

around the turntable, thus accumulating the effect, and making it significant for

much lower velocities.

7.5 Two photons input (HOM interference)

In our thought experiment, we considered a superposition of a single photon

travelling two paths. The probability of detection depends on the classical phase

shift ∆Φ, and also the visibility of the quantum interference. The Hong-Ou-Mandel

(HOM) interferometer uses two photons as input. However, in this setup, a physical

time delay between the paths is explicit in the probability of detection. The loss of

interference is due to loss of indistinguishability of the photons and has no classical

analogue. The HOM effect can be interpreted as more quantum due to this strong

quantum interference. Let’s consider a source of single photons travelling paths A

and B to a beamsplitter. The state after the beamsplitter becomes

a†1a
†
2e
iω∆t |0〉 |0〉 → 1

2
(a†3 + ia†4)(a†4 + ia†3) |0〉 |0〉

=
eiω∆ti

2
(|2〉 |0〉+ |0〉 |2〉),

(7.27)

where eiω∆t is a global phase difference between the two modes. We thus have

photon pair incidences at the final output of the beamsplitter. In this case the

time delay doesn’t affect the coincidence probability, since the photons are not

distinguishable.

Now let’s consider a source of photons with arbitrary frequency distributions f(ω1)

and g(ω2) sending the initial state |1〉 |1〉 =
∫
dω1f(ω1)a†1(ω1)

∫
dω2g(ω2)a†2(ω2)e−iω2∆t |0〉 |0〉
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to a beamsplitter. The transformation is

a†1a
†
2 |0〉 |0〉 →

1

2

∫
dω1f(ω1)(a†3(ω1) + ia†4(ω1))

×
∫
dω2g(ω2)(a†4(ω2) + ia†3(ω3))e−iω2∆t |0〉 |0〉

=
1

2

∫
dω1f(ω1)

∫
dω2g(ω2)e−iω2∆t

× (ia†3(ω1)a†3(ω2) + a†3(ω1)a†4(ω2)

− a†4(ω1)a†3(ω2) + ia†4(ω1)a†4(ω2)) |0〉 |0〉 .

(7.28)

The detection probability of a photon pair in either mode is determined by

modelling the detectors as having a flat frequency response with the projector

P3 =
∫
dωa†(ω) |0〉 |0〉 〈0| 〈0| a(ω). These calculations have been done in Ref. [9], and

for photons of the same frequency distribution f(ω) = g(ω), the probability is

P =
1

2
− 1

2

∫
dω1|f(ω1)|2e−iω1∆t

∫
dω2|f(ω2)|2eiω2∆t. (7.29)

For photons with Gaussian frequency distribution of pulse width σ, we evaluate

Eq. (7.29) to obtain

PGauss =
1

2
− 1

2
e−

σ2∆t2

2 . (7.30)

For zero time delay ∆t = 0, the photons are indistinguishable. At this point, the

visibility V = Tr(ρaρb) of the two photon states ρa, ρb is equal to the purity Tr(ρ2)

of the two photons ρ = ρb = ρa [9]. Thus the visibility is 100% which is known

as the Hong-Ou-Mandel dip. The coincidence count drops to zero when the two

input photons are completely identical. For the case of the rotating turntable, the

photons will become more distinguishable as ∆t increases. The velocity at which

this becomes significant is the same as in Eq. (7.26) since the visibility is the same

and the time delay is ∆t = 4vL
1−v2 .. We can calibrate the dip for 100 % visibility using

a controlled time delay in one of the arms and vary the rotational velocity of the

turntable.

Compared to using a single photon interferometer, the HOM interferometer is

based on the indistinguishability of the photons interfering with each other. As in

Ref. [2], the HOM effect measures a physical time delay as opposed to a phase shift.

7.5.1 Two-way velocity of light

Similarly to the Kerr metric, the two-way velocity of light as measured by the

inertial observer on the rotating turntable should be isotropic. Let’s now consider a
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double sided mirror that reflects both of the light beams back to the original source.

In this case, our phase difference is φ′A = φA + ωL
cB

= ωL( 1
1+v

+ 1
1−v ) = 2ωL

1−v2 but

L = πR
√

1− v2 . Therefore φ′A = 2ωL√
1−v2 . Similarly, for the counter-propagating

beam of light φ′B = φB + ωL
cA

= ωL( 1
1−v + 1

1+v
) = φ′A. Thus the phase difference

is zero. In other words, the “two-way velocity” of light is isotropic and c = 1.

This demonstrates that observers riding on the turntable would also measure c = 1

between points around the circumference.

7.6 Dispersion effects in optical fibre

In a medium, the dispersion relation describes the relation of the frequency

ω to its wavenumber k. The dispersion relation is Taylor expanded as ω(k) =

ω(k0) + (k − k0)vg + 1
2
(k − k0)

2 d2ω
dk2 where vg = 1

α
= dω

dk
is the group velocity and

1
β

= d2ω
dk2 is the inverse group velocity dispersion. Obviously for linear dispersion

ω = k
n

implying d2ω
dk2 = 0 and the group velocity vg = 1

n
= vp.

In relativity, the phase velocities of light in a medium in the stationary reference

frame of the laboratory transform according to the Lorentz transformations.

7.6.1 Lorentz transformations in a moving medium

We consider using fibre optic cable to guide the photon half-way around the

turntable as seen in Fig. 7.2. In a medium, the velocity of light is slowed down by

the factor 1/n where n is the refractive index. The velocity of light in the medium

depends on direction of the rotation relative to the observer in the laboratory

reference frame.

According to the velocity composition law, for a moving medium, the velocity of

light as seen in the laboratory reference frame of the rotating reference frame is

cA =
c
n
− v

1− v
cn

, (7.31)

which is equivalently the phase velocity. Therefore, L− vt = t
c
n
−v

1− v
cn

, and t = L(n−v)
1−v2

implying that the velocity of light is c′A = 1−v2

n−v . Then we can approximate c′A = 1−v2

n+v
.

Similarly, c′B = 1−v2

n−v .

7.6.2 Phase velocity

Using the phase velocity in Eq. (7.31), the new phase is therefore ∆Φ =

ω0(
L
c′A
− L

c′B
) = 2v

1−v2ω0L. Coincidentally, the final phase doesn’t depend on the
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Figure 7.3: Probability of photon detection with angular frequency of turntable for
parameters L = 10 km, R = 20 cm and σ = 4000π.

refractive index if the fibres are equal length L. However, if these are unequal

LA = L and LB = L+∆L, then ∆Φ′ = ∆Φ+ω0∆L n
1−v2 . The HOM dip will measure

the time delay ∆t′ = 4vL+2n∆L
1−v2 . If ∆L is on the length scale of the coherence length

then we can simply cancel this out with a controlled time delay.

As in Fig. 7.3, a time delay initially sets the visibility to 100% with the turntable

at rest. The turntable is slowly rotated and the visibility decreases to 0%. The HOM

dip will be initially centered around v = 0 where ∆t′0 = 2∆Ln+ ∆tControl = 0. Thus

as the turntable is slowly rotated we have

∆t′ =
4vL

1− v2
+ 2∆L

n

1− v2
− 2∆Ln

≈ 4vL

1− v2
+ 2∆Lnv2.

(7.32)

There is as shift in the centre of the HOM dip. ∆L depends on the experimental

error of the measured fibre lengths and the velocity of the turntable. For example,

for a slowly rotating turntable of Ω = 2π rad/s and R = 20 cm, a mismatch in the

length of the optical fibres of ∆L = 1 cm would shift the HOM dip by ∆tError =

2∆Lnv2 ≈ 3 × 10−11 s or relative to the leading term ∆tError
∆t

= ∆Lnv
2L
≈ 3 × 10−11

smaller. Since v is extremely small, the propagated error in the time difference and

thus the zero point of the HOM dip would be negligible.
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7.6.3 Coherence length of photons

We note that we can extend the time of rotation by increasing windings and

therefore L′ = (2N + 1)πR
√

1− v2 where N is the number of windings. Thus the

visibility for very slow rotation becomes V = e
−4 v2

1−v2 (2N+1)2π2R2σ2

. Thus far, we have

been assuming timed pulses of light. Alternatively, the source of down-converted

photons could be continuous characterized by a coherence length. Note that the

coherence length is defined as ∆x = 2π
σ

where σ is the width in frequency space.

We consider parameters of v = ΩR
c

where R = 20 cm and Ω = 2π Hz with optical

fibre of length L′ = 10 km. Therefore, the coherence length needed for significant

visibility loss is ∆x = 4πL′ΩR
c
≈ 500 µm which is the typical coherence length of

down-converted photons. In the next section, we will consider a quasi-continuous

source and the effect of dispersion.

7.6.4 Dispersion cancellation

We’ve seen that the phase velocity isn’t affected by the relativity of the co- and

counter- propagating light for fibre of equal length. However, we now consider the

full treatment of the effects of dispersive broadening and the group velocity. In a

moving medium, the phase velocity of light for co- and counter- propagating light is

given by

vp± =
ω

k
=

1− v2

n(k)∓ v
, (7.33)

and the group velocity is given by

vg± =
1

α±
= vp± −

dn(k)

dk

1− v2

(n(k)∓ v)2
= vp±(1− n′(k)

n(k)∓ v
), (7.34)

where α± = dk
dω

is the inverse group velocity. The second order effect responsible for

broadening is

d2ω

dk2
=

1

β±
= vg± − vp± −

d2n(k)

dk2

1− v2

(n(k)∓ v)2
+ 2(

dn(k)

dk
)2 1− v2

(n(k)∓ v)3
, (7.35)

where the group velocity dispersion (GVD) is defined as β = d2k
dω2 . For example,

for fused silica, the index of refraction is approximately linear with the wavelength.

Thus as a function of k, n(k) = 100000
k

+ 1.44 around the wavenumber k0 = 8× 106

m−1. Thus n(k0) = 1.453 and the derivative is dn(k0)
dk

= −105

k2
0

= −1.6× 10−9 m. The

second derivative is d2n(k0)
dk2 = 2×105

k3
0

= 4× 10−16 m2. Thus d2ω
dk2 ≈ 1× 10−9 m2/s2.
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Let’s consider the following quasi continuous wave input state of down-converted

light

|ψ〉 =

∫
dω′f(ω′) |ω0 + ω′〉A |ω0 − ω′〉B. (7.36)

After passing through the beamsplitter the modes in the two arms 1 and 2 are

a1(ω1) =
i√
2
aA(ω1)eikA(ω1)L +

1√
2
aB(ω1)eikB(ω1)L, (7.37)

a2(ω2) =
i√
2
aB(ω2)eikB(ω2)L +

1√
2
aA(ω2)eikA(ω2)L, (7.38)

where kA = k0+α+(ω−ω0)+β+(ω−ω0)2 is the wavenumber of the co-propagating light

as by the laboratory reference frame. Similarly, kB = k0 +α−(ω−ω0) + β−(ω−ω0)2

is the counter- propagating light.

As in Ref. [5], we assume a gate window time that is much larger than the

dispersive broadening. This implies that cross terms of annihilation operators at

different frequencies disappear for sufficiently long detector time scales. Thus the

probability Pc is

Pc ∝
∫
dω1

∫
dω2 〈ψ|a†1(ω1)a†2(ω2)a1(ω1)a2(ω2)|ψ〉 . (7.39)

As it turns out, the phase term β(ω − ω0)2 acquired is the same in both interfer-

ometer arms due to the condition that ωp = ωA + ωB. The kernel is

〈ψ|a†1(ω1)a†2(ω2)a1(ω1)a2(ω2)|ψ〉

=|1
2
δ(ωp − ω1 − ω2)f(ω′)[eikB(ω1)L+ikA(ω2)L − e−ikB(ω2)L−ikA(ω1)L]|2

= |1
2
δ(ωp − ω1 − ω2)f(ω′)[ei(∆αω

′+β′ω′2 − ei(−∆αω′+β′ω′2)L]|2,

(7.40)

where ∆α = α+ − α− and β′ = βA + βB. Evaluating the absolute squares

Pc =

∫
dω′|f(ω′)|2(1− cos (2ω′∆αL)). (7.41)

This gives the usual phase but with a correction

∆φvg = 2ω′L(
1

v−g
− 1

v+
g

) ≈ 4ω0vL

1− v2
(1 +

n′(k0)v

1− v2
), (7.42)

where ω′ = ω1 − ω0 = ω0 − ω2. Thus, as expected when the index of refraction is a

constant vg = vp and n′(k0) = 0 we obtain the usual phase shift with the cancellation

of the refractive index. The correction is negligible for an L = 10 km long fibre

at extremely slow rotation of Ω = 2π Hz and radius R = 20 cm. For optical fibre

n′(k0) = −10−9 m, which is much less than unity.
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Let’s consider the frequency distribution |f(ω′)|2 = ( 1
πσ2 )1/2 exp(−ω′2

σ2 ). The

probability is therefore

Pc =

∫
dω′|f(ω′)|2(1− cos (2ω′∆αL))

=
1

2
(1− exp (−4σ2(

vL

1− v2
(1 +

n′(k0)v

1− v2
))2)).

(7.43)

Thus, we have the visibility with the corrected time delay from the group velocity.

Ultimately, the effect of dispersion due to the material is cancelled out, and the group

velocity effect is far too small (n′(k) ≈ −10−9 in silicon fibre) for the parameters

suggested. For unequal lengths of the optical fibre, the phase term due to the index

of refraction can be cancelled out using a time delay.

7.7 Conclusion

We have shown how to measure the visibility loss of interfering paths of a photon

travelling in the Kerr metric. The Kerr effect manifests as a classical phase but

the effect of Kerr time dilation can be measured by the visibility of the detection

probability. We have analogously shown that the metric for light travelling around

a turntable is the same. We can directly measure the time delay and loss in the

visibility of quantum interference using a HOM Sagnac interferometer. Dispersion in

the optical fibre cancels out and the difference in group velocity is negligible for the

parameters considered. Photons can be treated as if travelling in free space. We thus

propose an experiment that will detect a relativistic effect in a quantum mechanical

setting. We find realistic parameters for a feasible experiment with current quantum

technology.
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Chapter 8

Conclusion

In this chapter, we consider the unanswered questions that could motivate future

research. Finally, we conclude the thesis by summarizing our work and the impact

of our research in a broader context.

8.1 Future outlook and open questions

1. What are the optimal measurements for lossy Gaussian quantum channels? In

Chapter 4, we have assumed that the measurement basis is optimal for the

lossy quantum channel. We have not specified the exact basis, and whether this

is experimentally feasible. Although we have some clues that the basis must

be Gaussian as in Chapter 4.6.4 and one must also have a priori knowledge of

the parameter that needs to be estimated. Nonetheless, the question remains

open.

2. How else can we use the nonlinear interferometer? We could potentially

consider the same nonlinear interferometer in Chapter 5 in the Kerr metric.

Since the time dilation couples to the nonlinearity in the same way as the

Schwarzschild time, we would have similar scaling and quantum limits for the

Kerr parameter a. Additionally, we note that Ref. [2] explores to measure the

nonlinear phase shift in traversable wormhole metrics using the same nonlinear

interferometer. The calculations by the authors are based upon work done by

us.

3. Does an anisotropy of light arise in radial null geodesics that could be detected

by SU(1,1) interferometers? In Chapter 3.3.1, we can see that metrics of the
157
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ingoing and outgoing photons in the Eddington-Finkelstein coordinates have

cross terms dvdr and dudr. This would result in the null geodesics having an

anisotropy in the speed of light.

It could be instructive to consider the SU(1,1) interferometer in Ref. [1] which

essentially measures the proper time of a photon that does a round trip in a

gravitational field. In this case, the phase difference is related to h2

r2 as opposed

to the area of the Mach-Zehnder interferometer hL
r2 . We can consider whether

we obtain the same phase difference but instead of considering the proper time

in the Schwarzschild metric, we would make use of the null geodesics in the

ingoing/ outgoing Eddington-Finkelstein metrics of a black hole.

4. How does Unruh or Hawking temperature affect the quantum limits of accelera-

tion or Schwarzschild parameters? A major result from quantum field theory for

accelerating observers and observers in curved space-time is the non-uniqueness

of the vacuum state [3]. The vacuum state of an accelerating observer is defined

with respect to Rindler modes which transform to the Unruh modes [5]. Unruh

modes correspond to positive-frequency superpositions of Minkowski modes

via a Bogoliubov transformation. Unruh’s prediction is that an accelerating

detector will observe a thermal bath with temperature given by [4]

TUnruh =
~a

2πckB
, (8.1)

where a is the proper acceleration. The Rindler space-time has an event horizon

which is locally equivalent to that of a non-extremal black hole. Thus, the

Unruh thermal radiation would be the Hawking radiation near the horizon

but with the acceleration equal to the gravitational acceleration g. A question

arises on whether the thermal radiation affects the fundamental quantum limit

on parameter estimation of the proper acceleration a or the Schwarzschild

radius rs. This would essentially require the interaction of the probe with the

thermal environment.

5. How does metric backaction affect the quantum limits of strong lasers? Thus far,

we have considered the space-time background to be classical and photons are

quanta of the electromagnetic field. This forms the semi-classical approximation.

However, in the regime of dense high energy photons, we enter a regime that

necessitates space-time to be quantized. The energy fluctuations would be high

enough to “gravitate”. That is, the energy-momentum tensor in the Einstein

equation is a quantum operator. In the semi-classical regime, fundamental
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quantum limits have been determined for the speed of light c in a cavity in

Ref. [6]. However, the speed of light was interpreted as an energy dependent

dispersion effect, and is a classical effect from general relativity. This is a

consequence of taking the quantum mechanical expectation value of the energy-

momentum tensor T µν . Any back-action on the metric due to large numbers

of photons and their fluctuations were disregarded. This motivates the open

question: How does metric backaction affect the quantum limits of strong

lasers? An approach to answering this question is using stochastic gravity [7].

8.2 Conclusion

The aim of this thesis is to provide the building blocks of unprecedented high

precision measurements in the overlap of quantum physics and general relativity. We

have hoped to establish the tools of quantum metrology applied to curved space-time

to an audience familiar only with undergraduate physics. Throughout the thesis,

we had made use of the definition of the Quantum Fisher Information related to

the Bures distance. This allowed us to easily derive ultimate quantum bounds on

estimation of parameters without the knowledge of the optimal measurement basis.

Subsequently, as in Chapters 4, 5 and 6 we applied this to calculate bounds on the

space-time parameters of the Schwarzschild and Kerr metrics. With these tools, we

can essentially design a quantum channel which encodes a space-time parameter

unitarily and allows us to easily determine the error scalings.

To summarize, in Chapter 4, we applied quantum metrology techniques to the

estimation of the Schwarzschild radius rs. We showed the optimal energy resources

and squeezing that are needed for light propagating in the Schwarzschild space-time

of Earth including the inevitable losses due to atmospheric distortion. This would

provide useful tools for Earth to satellite based quantum experiments, and will be

essential for designing continuous variable protocols for parameter estimation of

space-time parameters in lossy channels.

In Chapter 5, we proposed a new quantum interferometer using higher order

Kerr nonlinearities to improve the sensitivity of estimating rs. In principle, we

would be able to downsize linear interferometers and probe gravity over a small

scale potentially making it practical for measuring gravitational gradients. Also,

the robustness against loss of this protocol can be used to design protocols in lossy

free-space channels.

In Chapter 6, we studied the interesting features of the metric around a rotating
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massive body known as the Kerr metric. We made use of the anisotropy of light

to measure the Kerr rotation parameter a. We determined the quantum limits of

estimating this parameter. As a possible implementation, we considered a stationary

Mach-Zehnder interferometer set at a dark port that measures a phase due to the

anisotropy of light. Additionally, we found a geometry of the interferometer which

cancels out the phase due to the Earth’s rotation.

In Chapter 7, we studied the quantum effects of single photon systems in the

Kerr metric and rotating reference frames. We considered the superposition of a co-

and counter- propagating photon around the Kerr space-time of a rotating planet.

We have proven that we can simulate this space-time using an inertially rotating

reference frame i.e. a rotating turntable. We proposed to use the Hong-Ou-Mandel

(HOM) effect to measure the visibility loss of quantum interference due to the time

difference between co- and counter- propagating photons on a rotating turntable.

The importance of this is that a relativistic effect due to rotation has not yet been

observed in a purely quantum mechanical setting.

Ultimately, future quantum technologies will become more precise, and will enter

a new regime where general relativistic effects can be measured. The application

of quantum metrology to the estimation of space-time parameters as we have done,

will hopefully contribute to this effort. Our results could also help with the building

of future space-based experiments and Earth to satellite quantum communication.
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When you look at yourself from a universal standpoint, something inside always
reminds or informs you that there are bigger and better things to worry about.

-Albert Einstein (Excerpt from The World as I See It translated by A. Harris and
published in 1935 by John Lane The Bodley Head (London))
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