THE ERGODICITY OF THE MOTION OF A PARTICLE IN A POTENTIAL FIELD

Izumi KUBO

Department of Mathematics Nagoya University Nagoya, Japan

1. Introduction

The ergodicity of classical dynamical systems which appear actually in the statistical mechanics was discussed by Ya. G. Sinai [11]. He announced the ergodicity of the dynamical system of particles with central potentials of a special type which are enclosed in a rectangular box. However no proofs have been published yet, except the simplest one-particle model which is called a Sinai billiard system. The ergodicity of the system and the K-property are shown in [13], [8], and the Bernoulli property is shown in [5]. The purpose of this report is to show the ergodicity and the Bernoulli property of the motion of a particle in a potential field. The proofs for a special case of a compound central potential field are separately presented in [9], [10].

2. Observation

Let T be a two dimensional torus and let $U_1(q)$, i = 1, 2, ..., I, be several potential functions with finite ranges \overline{Q}_1 's defined on T. Suppose that the potential ranges do not overlap and that the boundary ∂Q_1 of the range \overline{Q}_1 is a closed curve of C^3 -class. Assume that every $U_1(q)$ is continuous in the torus T and is continuously differentiable in \overline{Q}_1 .

Observe the motion of a particle with mass m and energy E in the potential field. Denote by $\{S_t\}$ the flow induced from the dynamical system; that is, for each (q, p) the point $S_t(q, p)$ means the state of the particle at time t whose initial state is (q, p), where $q = (q^{(1)}, q^{(2)})$ and $p = (p^{(1)}, p^{(2)})$ are the position and the momentum. As usual the flow $\{S_t\}$ can be restricted to the energy surface M_E , $M_E \equiv \{(q, p) ; (p^{(1)})^2 + (p^{(2)})^2 = 2m(E-U(q)), q \in Q_E\}$, where $Q_E \equiv \{q ; U(q) \le E\}$. Moreover the measure

$$d\mu_{\rm F} \equiv {\rm const.} d\omega dq^{(1)} dq^{(2)}$$

on M_E is invariant under $\{S_t\}$, where $(p^{(1)}, p^{(2)}) = (\kappa \cos \omega, \kappa \sin \omega)$ with $\kappa^2 = 2m(E-U(q))$. Let π be the natural projection from M_E to I the configuration space Q_E ; $\pi(q, p) = q$. Put $Q \equiv T - \bigcup_{\substack{i=1 \\ i=1}}^{u} Q_i$ and $M_0 \equiv \pi^{-1}(Q)$. It is easily seen that almost every orbit of the particle crosses the boundary $\partial Q = \bigcup \partial Q_1$ of Q. A point q of the boundary can be parametrized by (ι, r) , where ι is the number of the curve ∂Q_1 which contains q, and r is the arclength between the point q and a fixed origin of ∂Q_1 measured along the curve ∂Q_1 clockwise. Further, a point (q, p) in the set $\pi^{-1}(\partial Q)$ can be parametrized by (ι, r, φ) , where φ is the angle between p and the inward normal of ∂Q_1 at q. Put

$$M \equiv \{(\iota, r, \boldsymbol{\varphi}) \in \pi^{-1}(\partial Q) ; \frac{1}{2}\pi \leq \boldsymbol{\varphi} \leq \frac{3}{2}\pi\},\$$

namely M is the set of all incident vectors at ∂Q . Then a transformation T_* of M is defined by that $T_*^{-1}(\iota, r, \mathcal{G}) = (\iota_1, r_1, \mathcal{G}_1)$ shows the next incident position and angle after starting from (ι, r, \mathcal{G}) . Then it is seen that T_* preserves the measure ν of M defined by

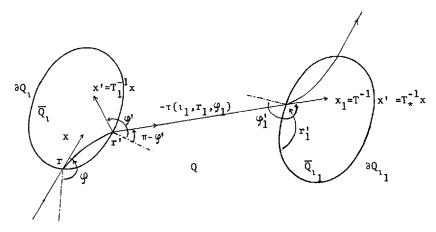
$$dv = -v_0 \cos g d g dr du$$

with normalized constant v_0 , where d_1 means the unit mass on each ι .

Since it is true that $\{S_t\}$ is ergodic if and only if T_* is ergodic, it is important to investigate the transformation T_* . Then the transformation T_* can be resolved into the product

$$\mathbf{T}_* = \mathbf{T}_1 \mathbf{T},$$

where T_1 is the transformation such that for $(\iota, r', g') \equiv T_1^{-1}(\iota, r, g)$, the point $(\iota, r', \pi - g')$ shows the position and the momentum at the instant when the particle goes out from \overline{Q}_1 , and T is the Sinai billiard transformation which maps $T_{\pi}^{-1}(\iota, r, \mathcal{G}) = (\iota_1, r_1, \mathcal{G}_1)$ to $(\iota_1, r', \mathcal{G}')$.



Generally, let us call a transformation T_{*} a perturbed billiard transformation if T_{*} is expressed in the form

 $T_* = T_T$

with the Sinai billiard transformation T defined for Q and with a C^2 -diffeomorphism T_1 of M which preserves the measure ν and each set $\pi^{-1}(\partial Q_1)$, $\iota = 1, 2, \cdots, I$.

Obviously, the transformation T_* induced from $\{S_t\}$ is a perturbed billiard transformation. If the perturbation of T by T_1 is small, then the ergodic theoretical properties of T should be preserved under the perturbation.

3. Theorems

In this section, assume the following assumptions (H-1) \sim (H-3): (H-1) Every $\overline{\mathbb{Q}}_1$ is a strictly convex domain with the boundary $\Im_{\mathbb{Q}}$ of \mathbb{C}^3 -class.

(H-2) $T_{\rm l}$ is a ${\rm C^2-diffeomorphism}$ of M which preserves the measure ν and satisfies

$$T_1(1, r, \frac{1}{2}\pi) = (1, r, \frac{1}{2}\pi)$$
 and $T_1(1, r, \frac{3}{2}\pi) = (1, r, \frac{3}{2}\pi).$

Denote by $k(\iota, r)$ the curvature of Q_{ι} at r and by $-\tau(\iota_1, r_1, \mathscr{G}_1)$ the distance between (ι_1, r_1) and (ι, r') measured along the orbit with $(\iota, r', \mathscr{G}') = T(\iota_1, r_1, \mathscr{G}_1)$. Put $A \equiv \frac{\partial r_1}{\partial r}$, $B \equiv \frac{\partial r_1}{\partial \mathscr{G}}$, $C \equiv \frac{\partial \mathscr{G}_1}{\partial r}$ and $D \equiv \frac{\partial \mathscr{G}_1}{\partial \mathscr{G}}$.

(H-3) There exist positive constants n, L_{max} , $L_{min}^{+}(1)$ and $L_{min}^{-}(1)$, $1 \le i \le I$, such that for $(1, r, \mathcal{G})$ with $(1, r', \mathcal{G}') = T_{1}^{-1}(1, r, \mathcal{G})$ and $(1_{1}, r_{1}, \mathcal{G}_{1}) = T_{*}^{-1}(1, r, \mathcal{G})$ and for $s \ge L_{min}^{+}(1)$ (resp. $s \ge L_{min}^{-}(1)$) the following inequalities hold

$$-Cs-D \ge 1+\eta \qquad (resp. -\frac{\cos \mathscr{P}_1}{\cos \mathscr{P}} (Cs+A) \ge 1+\eta),$$

$$L_{max} \ge \frac{As+B}{Cs+D} \ge L_{min}^+(\iota_1) \qquad (resp. L_{max} \ge \frac{Ds+B}{Cs+A} \ge L_{min}^-(\iota)),$$

$$\frac{\cos \mathscr{P}_1}{\cos \mathscr{P}} (A+\frac{1}{s}B)(Cs+D) \ge 1+\eta \qquad (resp. \frac{\cos \mathscr{P}_1}{\cos \mathscr{P}} (D+\frac{1}{s}B)(Cs+A) \ge 1+\eta).$$

The assumption (H-3) may look rather complicated. However the assumption is satisfied if the perturbation by T_1 is small. For example, the following proposition gives sufficient conditions under which the assumption (H-3) is satisfied. For a function f, put $[f]^+ \equiv \max\{f, 0\}$.

Proposition 1.

(i) If there exists a positive constant η such that

$$-D \ge 1+n$$
, $-\frac{\cos g}{\cos g} A \ge 1+n$

and if $-B \ge 0$, $-C \ge 0$, then the assumption (H-3) is fulfilled. (ii) If

$$\frac{1}{k_{\min}} \left[-\frac{\partial g'}{\partial r} \right]^{+} + \left(1 + \frac{1}{k_{\min} |\tau|_{\min}} \right) \left[-\frac{\partial g'}{\partial g} + 1 \right]^{+} < 1,$$

$$k_{\max} \left(1 + \frac{2}{k_{\min} |\tau|_{\min}} \right) \left[\frac{\partial g}{\partial r} \right]^{+} + \left(1 + \frac{1}{k_{\min} |\tau|_{\min}} \right) \left[-\frac{\partial g'}{\partial g'} + 1 \right]^{+} < 1,$$

then the assumption (H-3) is fulfilled, where $k_{\min} \equiv \min_{\iota, r} k(\iota, r)$,

 $\underset{i,r}{\operatorname{kmax}} = \underset{i,r}{\operatorname{max}} k(i, r) \text{ and } |\tau|_{\min} = \underset{i,r,\mathcal{G}}{\operatorname{min}} |\tau(i, r, \mathcal{G})|.$

Theorem 2. Under the assumptions (H-1), (H-2) and (H-3), the transformation $T_* = T_1 T$ is Bernoullian, and hence it is ergodic and a K-system.

Theorem 3. Let $\{S_t\}$ be the flow given in §1 which is governed by potential functions $\{U_t\}$. If $\{U_t\}$ and the energy E of the particle admit the assumptions (H-1), (H-2) and (H-3), then $\{S_t\}$ is ergodic. Moreover, if $\{S_t\}$ has no point spectrum, then $\{S_t\}$ is a K-system and a Bernoulli flow.

If U_{l} 's are central potentials, then one can state the sufficient condition for the ergodicity in terms of $\{U_{l}\}$. A central potential V(s) is called *bell-shaped* if

(BS-1) V(s) is continuous for s > 0 and V(s) = 0 for s > R with some R,

(BS-2) V(s) belongs to C^2 -class in (0, R) and there exist left derivatives V'(R-0) and V"(R-0),

(BS-3) -sV'(s) is monotone decreasing and V'(R-0) < 0.

Theorem 4. If every ${\rm U}_{\rm l}$ is bell-shaped and if the energy E satisfies the condition

$$0 < E < \frac{1}{4} \min_{1} \{-\frac{R_{1}|\tau|_{\min}}{R_{1}+|\tau|_{\min}} U'(R_{1}-0)\},\$$

then $\{S_t\}$ is ergodic. Moreover if $\{S_t\}$ has no point spectrum, then $\{S_t\}$ is a K-system and a Bernoulli flow.

REFERENCES

- [1] Бунимович, Л. А. : Об ергодических свойствах некотрых бильярдов. Функц. анализ. 8(1974), 73-74.
- [2] Бунимович, Л. А. : Центральная предельная теорема для одного класса бильярдов. Теор. вероят. и ее примен. 19 (1974), 63-83.

- [3] Бунимович, Л. А. : О бильярдах, близких к рассеивающим. Матем. сб. 94(1974), 49-73.
- [4] Bunimovich, L.A. = Sinai, Ya.G. : On a fundamental theorem in the theory of dispersing billiards, Math. USSR-Sb. 90 (1973), 407-423.
- [5] Galavotti, G.=Ornstein, D.S. : Billiards and Bernoulli schemes (preprint).
- [6] Kubo, I. : Ergodicity of the dynamical system of a particle on a domain with irregular walls, Proc. 2nd Japan-USSR Symp. Prob. Theory. Lecture Notes in Math. 330, Springer (1973), 287-295.
- [7] Kubo, I.: The motion of a particle in a central field, 数理解析研究所講究録 204, RIMS (1974), 100-109.
- [8] Kubo, I. : Billiard systems, Lecture Notes (preparing).
- [9] Kubo, I. : Perturbed billiard systems I. The ergodicity of the motion of a particle in a compound central field. (preprint).
- [10] Kubo, I. = Murata, H. : Perturbed billiard systems II. The Bernoulli property. (preparing).
- [11] Sinai, Ya. G. : On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics, Sov. Mat. Dokl. 4 No.6 (1963), 1818-1822.
- [12] Sinai, Ya. G. : Classical dynamical systems with countably multiple Lebesgue spectra II, A.M.S. Transl. (2) 68 (1968), 34-68.