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1. Introduction

The ergodicity of classlical dynamical systems which appear actually
in the statistical mechanics was discussed by Ya. G, Sinai [11]. He
announced the ergodicity of the dynamlical system of particles with
central potentials of a special type which are enclosed in a rectangular
box. However no proofs have been published yet, except the simplest
one-particle model which is called a Sinai billiard system. The
ergodicity of the system and the K-property are shown in [13], [8], and
the Bernoulll property is shown in [5]. The purpose of this report
1s to show the ergodicity and the Bernoulli property of the motion of
a particle in a potential fileld. The proofs for a special case of a

compound central potential field are separately presented in [9], [10].

2. Observation

Let T be a two dimensional torus and let U1<Q)’ 1= 1,2,00s,1,
be several potential functions with finlte ranges ﬁl’s defined on T.
Suppose that the potentlal ranges do not overlap and that the boundary
an of the range @1 is a closed curve of 03-class. Assume that
every Ux(qj is continuous in the torus T and is continuously
differentiable in TQ’1 .

Observe the motion of a particle with mass m and energy E in
the potential field. Denote by {St} the flow induced from the
dynamical system ; that is, for each (q, p) the point St(q, p) means

the state of the particle at time +t whose initial state is (g, p),

(l), q(2) (1)’ p(2)y

where q = (q and p = (p are the position and the

momentum. As usual the flow {St} can be restricted to the energy



231

(p(l))2

surface My, My = {(a, p) ; +0®N? = on(E-u(a)), q e ag,

where QE = {q ; U(q) < E}. Moreover the measure

duE = const. dwdq(l)dq(z)

on ME is invariant under {St}’ where (p(l), p(2)) = (kcosw, ksSing)

with k2 = 2m(E-U{q)). Let = be the natural projection from M, to
I

the confilguration space QE ; m{qa, p) = Q. Put Q=T -~ wu Ql and
1=1

MO = n_l(Q). It is easily seen that almost every orbit of the particle
crosses the boundary 23Q = an1 of Q. A polnt g of the boundary

can be parametrized by (1,1r), where 1 1s the number of the curve aQ1
which contains q, and r 1s the arclength between the polnt g and

a fixed origin of an measured along the curve 8Q1 clockwise,
Further, a polnt (g, p) 1n the set n'l(aQ) can be parametrized by

(1, r, ), where ¢ 1s the angle between p and the inward normal

of an at q. Put
Mz {(, r, 8« (0Q) ;5 31 < ¢ < 3},

namely M 1s the set of all incident vectors at 3Q. Then a trans-
formation Ty of M 1is defined by that Ty (1, r, $) = (1, r, #)
shows the next incident position and angle after starting from (1, r, ¢).

Then it 1s seen that T, preserves the measure v of M defined by
dv = -vocosfd?drdl
with normalized constant Vg where di1 means the unit mass on each .
Since it 1s true that {St} is ergodic if and only if T, is

ergodic, it is important to investigate the transformation Ty.

Then the transformation T, can be resolved into the product

where Tl is the transformation such that for (1, r', ¥") = T£1(1, r, ¥,

the point (1, r', 7=¢) shows the position and the momentum at the
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instant when the particle goes out from @;, and T 1is the Sinai
billiard transformation whilch maps T;l(1, r, §) = (11, Ty, 93) to
(1, v, 3")'

X

Generally, let us call a transformatlon T, a perturbed billiard

trans formation 1f T, 1s expressed in the form

with the Sinal billiard transformatlon T defined for Q@ and with a
C2—diffeomorphism 'I‘1 of M which preserves the measure v and each
set n_l(BQI), 1 =1, 2,000, I.

Obviously, the transformation Ty, induced from {St} 1s a
perturbed bllliard transformation. If the perturbation of T by Tl
is small, then the ergodic theoretical properties of T should be

preserved under the perturbation.

3. Theorems
In this section, assume the following assumptions (H-=1) ~ (H-3)
(H~1) Every @1 is a strictly convex domaln with the boundary
3Q of 03—class.
(H-2) Tl is a Ca-diffeomorphism of M which preserves the

measure v and satisfies

Tl(ls r, %ﬂ) = (1, r, %ﬂ) and Tl(1, r, %ﬂ) = (1, r, %ﬂ).
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Denote by k(1, r) the curvature of Q1 at r and by —T(Il, T,

?l) the dilstance between (11, rl) and (1, r') measured along the

. .o
orbigywith (1, r'gyy') = T(1l, Ty ?1). Put A= x==, B = PRt
1 1
c = 5o and D = 5
(H-3) There exist positive constants n, L ., min(1) and
min(‘) < I, such that for (1, r,¥) with (1, r', ¢') =

-1 -1 +
7, v, §) and (11, Ty, ?1) =Ty (1, vy, $ and for s 2 L, (1)

{resp. s = L;in(‘l)) the following inequalities hold

cos?&
-C0s-D 2> 14n (resp., 505§ (Cs+4) =2 1+n),
As+B Ds+B
Lmax Z Ts¥D 2 Lmin<11) (resp. Lmax 2 Ts¥k 2 L (‘>)’
os?
A (A+—B)(CS+D) 2 1+n (resp. o5 (D+—B)(Cs+A) > 14n).
The assumption (H-3) may look rather complicated. However the

assumption 1s satisfled 1f the perturbation by T1 is small. For
example, the followlng proposition gives sufficient conditions under
which the assumption (H-3) is satisfiled. For a function f, put

(1" = max(r, 0}.

Proposition 1.
(1 If there exists a positive constant n such that

cos?

-D 2 14n, A 2 14n

“cos®

and if -B 2 0, ~C 2 0, then the assumption (H-3) 1s fulfilled.
(11) 1If

+ (1 + ”'“—T—T———)[ —%* + 13+ < 1,

aF 4+ rEd +
k (1+--—T—r—-)[ ]+(1+———T—-I—-—)[_—-——-+1] <1
ax kmin Tlmin ar’ kmin Timin oF! ’

- 2t
min

then the assumption (H~-3) is fulfilled, where kmin = min k(1, r),
1,r
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k z max k(1, r) and 1] 2 min |t(r, v, ).
max 1,7 min 1L, ¢ ’

Theorem 2. Under the assumptions (H-1), (H-2) and (H-3), the

transformation Ty = T.T 1s Bernoulllan, and hence it is ergodlc and

1
a K-system,

Theorem 3. Let {St} be the flow glven in 81 which 1s governed
by potential functions {U1}' Ir {Ul} and the energy E of the
particle admit the assumptions (H-1), (H-2) and (H-3), then {St} is
ergodic, Moreover, 1if {St} has no point spectrum, then {St} is
a K-system and a Bernoulli flow.

If Ul's are central potentlals, then one can state the sufflcient
condition for the ergodicity in terms of {Ul]. A central potential
V(s) 1s called bell-shaped if

(BS-1) V(s) 1is continuous for s >0 and V(s) = 0 for s >R
with some R,

(BS~-2) V(s) belongs to Cz-class in (0, R) and there exist left
derivatives V'(R-0) and V"(R-0),

(Bs-3) -3V'(8) 1s monotone decreasing and V'(R-0) < 0.

Theorem 4, If every U1 i1s bell~shaped and if the energy E

satisfies the conditlon

R ||
0 < E < § min{- ﬁ—‘ﬂﬁ‘—i“— U (R,-0)},
1 1 min

then {St} is ergodic. Moreover if {St} has no point spectrum,

then {St} is a K-system and a Bernoulli flow.
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