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1 Introduction

In recent years phenomenological aspects of F-theory compactifications [1] have been con-

sidered intensively. While a complete understanding of the effective actions arising in such

compactifications is still lacking there has been major progress investigating core aspects of

the theories that arise. Much of these efforts have focused on uncovering the geometric man-

ifestation of symmetries of the effective theories in F-theory. For example, a detailed picture

of the local continuous non-Abelian and Abelian gauge symmetries has started to emerge.

A state-of-the-art discussion on non-Abelian symmetries in F-theory can be found in [2–5],

while recent results on Abelian gauge symmetries are found in [6–21]. The investigation of

discrete symmetries in F-theory has only recently attracted more attention [17, 22–28]. The

class of discrete symmetries are thereby realised as low energy remnants of Abelian gauge

symmetries that are massive even in the absence of any flux background. This makes these

symmetries necessarily Abelian. In this work we aim to generalize the results of [24, 25, 27]

and discuss the appearance of non-Abelian discrete symmetries in F-theory.
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In F-theory various aspects of the physics of intersecting seven-branes are captured by

higher-dimensional two-torus fibered geometries. It turns out, however, that extracting the

low energy implications of a given geometry is a challenging task. This can be traced back to

the fact, that there is no known twelve-dimensional formulation of F-theory and the theory

has to be studied either by a generalised Type IIB string perspective or by performing a

duality to M-theory. Approaching F-theory directly from the Type IIB perspective seems

to avoid the use of any dualities. However, as of now the correct global treatment of

intersecting seven-branes is poorly understood and can be very involved, even in simple

higher-dimensional compactifications. This is particularly apparent when dealing with two

or more seven-branes that are mutually non-local, i.e. they cannot be rotated to D7-branes

by the Sl(2,Z) symmetry at the same time.1 As we will find in this work, this is precisely

the kind of brane configurations that can realise certain non-Abelian discrete symmetries.

Such situations are better understood using the duality to M-theory. In this case, however,

one also has to face a major complication. Since generating global discrete symmetries

in a theory of quantum gravity requires that these are obtained from broken local gauge

symmetries (see, e.g. [30]), one typically has to have a proper treatment of massive states

in the effective action. This can be involved when using the M-theory to F-theory limit,

since one needs to disentangle whether a mass of a state is actually present in F-theory or

is a remnant of the fact that the F-theory limit has not been performed.

A key example of the complications which arise when dealing with massive modes in

F-theory is given by so-called ‘geometrically massive’ U(1) gauge symmetries discussed

in [6, 31–33]. Such massive U(1)s are familiar from Type IIB orientifold compactifications,

where they arise from specific configurations of D7-branes and their orientifold images [34].

The brane U(1)s are massive even in the absence of brane fluxes with a mass proportional to

the string coupling. Leaving the Type IIB weak string coupling limit requires one to realise

such massive U(1)s via a torus-fibered geometry used in M-theory. Geometrically massive

U(1)s are then believed to arise from the expansion into non-harmonic forms. These forms

might be described by non-trivial torsion in cohomology [27, 31, 35, 36], but eventually

require the M-theory geometries considered to be extended to include non-Kähler spaces [6,

31–33]. Remarkably, this allows these U(1)s to mix also with the Kaluza-Klein vector

used in connecting F-theory and M-theory. It was argued in [24, 25, 27] that this is the

proper interpretation of the physics induced on certain torus-fibered geometries with multi-

section. Such massive U(1)s were argued to lead to interesting discrete Abelian symmetries

restricting, for example, the Yukawa couplings of the effective theories [25, 26, 37].

Given the success of identifying at least certain discrete Abelian symmetries in the

F-theory geometry one might hope to be able to straightforwardly generalize the setting to

the non-Abelian case. However, this leads immediately to some obstacles. Firstly, the study

of geometries with multi-section seems to suggest that only Abelian symmetries naturally

appear in such settings.2 Secondly, as we will see in more detail below, including non-closed

forms in the reduction of M-theory accessed via eleven-dimensional supergravity seemingly

1A recent example of this fact is analysed in [29].
2Indeed, it has been proposed that the Tate-Shafarevich group determines the discrete symmetries arising

in F-theory [22]. This group, however, is always Abelian and therefore obscures any generalisation.
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only yields Abelian gaugings. How can a non-Abelian discrete symmetry ever arise? This

appears particularly puzzling, since we know from the analysis of the Type IIB supergravity

actions that non-Abelian discrete symmetries actually do occur in reductions with non-

closed forms representing torsion cohomology [36, 38]. These arise from gauging a subgroup

of the isometry group of the moduli space and are known to span a generalisation of the

Heisenberg group. In this work we resolve these puzzles by explaining that they can be

traced back to the fact that the M-theory reduction is performed in an inconvenient duality

frame working with the M-theory three-form C3 only. While the gaugings in the M-theory

reduction with C3 appear to be Abelian they actually dualise into non-Abelian gaugings

of the Heisenberg algebra in the duality frame required to perform the F-theory limit.

Our findings admit an interesting Type IIB interpretation using the geometric

Stückelberg mechanism. Recall that on a D7-brane this mechanism only allows one to

gauge the R-R two-form axion with the brane U(1). This implies that the Sl(2,Z)-images

generally allow for a gauging of the NS-NS two-form axions as well. If one now includes

two seven-branes that are mutually non-local we will show that this can imply that a third

vector has to complete the gauging into a non-Abelian group. This additional vector can

arise either from the R-R bulk sector, in which case the gaugings are purely geometrical,

or from another seven-brane, in which case brane fluxes are required. We argue that the

former possibility admits a direct interpretation in the M-theory fourfold geometry. The

non-Abelian completion of the gauging turns out to be a consistency condition on the

compact fourfold when considering non-closed forms. It admits a natural mathematical

interpretation in terms of torsion cohomology for Calabi-Yau fourfolds. Let us stress that

while we believe the required fourfolds with the appropriate torsion cohomology exist, we

will not attempt to find an explicit example but rather study the general implications.

The non-Abelian gauge groups that we find are shown to be generalisations of the

Heisenberg group. The fact that these groups are neither semisimple nor compact has

important consequences on the form of the effective action. It implies that the gauge

coupling function of this group cannot be simply constant, since there exists no positive

definite Killing form for these groups. It instead has to be a non-trivial holomorphic

function of the complex scalars transforming under the gauge group. Interestingly the

gauge coupling function is independent of the constants determining the gauged subalgebra

of the isometry group. This implies that they are present for any gauging and we argue

that they can be used to determine the allowed non-Abelian gauge algebra.

The paper is organised as follows. In section 2 we review how non-Abelian discrete

symmetries can arise as gaugings of isometries in four dimensions. The Type IIB string

theory embedding of a special type of gaugings is discussed in section 3. We show that

when using seven-brane gauge fields to yield such gaugings the introduction of mutually

non-local seven-branes is crucial. This suggests that a proper treatment should invoke

an F-theory geometry and the duality to M-theory. The F-theory setting and the allowed

gaugings are discussed in section 4, while the explicit M-theory reduction is then performed

in section 5. We show that the Abelian gaugings dualize to non-Abelian gaugings upon

changing to the duality frame that allows the F-theory limit to be performed. Details on

the computations are supplemented in appendix A.
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2 Non-Abelian discrete symmetries in four dimensions

In this section we briefly review the realisation of discrete gauge symmetries in field the-

ory [30, 36, 39]. We also include a discussion of supersymmetry and comment on the struc-

ture of non-minimal gauge-kinetic terms for non-Abelian groups that are neither semisimple

nor compact.

2.1 Non-Abelian discrete symmetries

By discrete gauge symmetry we simply mean a discrete remnant of a spontaneously broken

gauge symmetry. Let us consider the simplest Abelian example to illustrate this, namely

the Stückelberg Lagrangian for a vector A and a scalar φ of periodicity 2π,

L = −
1

2g2
dA ∧ ∗dA− µ2(dφ− kA) ∧ ∗(dφ− kA) , (2.1)

where g is the YM coupling constant, µ is a mass scale and k ∈ Z. This Lagrangian is

invariant under the local transformations

δA = dλ, δφ = kλ (2.2)

and we find that the space of physically distinct vacua is given by A = 0 and φ = φ0 with

φ0 a constant in [0, 2π). Then, we immediately see that this system breaks the underlying

U(1) symmetry since under a constant gauge transformation we find that the vacuum is

not invariant. Indeed, if we consider the vacuum defined by |φ0〉, then after such gauge

transformation we arrive at |φ0+kλ〉, which is in general different from |φ0〉. However, due

to the presence of the integer k and the periodicity of φ, we may still find non-trivial gauge

transformations that preserve the vacuum, namely λ = 2π
k
, which form a Zk subgroup of

U(1) parameterised by eiλ. Let us stress that the fluctuations of the vector A around these

vacua is massive with mass k2µ2. This implies that an effective theory arising from string

theory has to include massive modes.

As shown in [36], in order to generalise this to non-Abelian discrete symmetries, it

proves useful to think of (2.1) as the gauging of a scalar manifold with a U(1) isometry

with charge k. In that case we start with a scalar manifold S1, whose isometry group is

generated by t = ∂φ. Furthermore, the particular gauging we consider is related to picking

a Killing vector with the following normalisation

X = k∂φ. (2.3)

Then, the orbit associated to X is a map Q : S1 × U(1) → S1 that takes a point φ0 ∈ S1

and the element eiλ ∈ U(1) to give Q(φ0;λ) = φ0 + kλ. Then, we see that for a given

vacuum φ0, the subgroup that is not broken corresponds to the solutions to Q(φ0;λ) = φ0

which again leads to Zk. Notice that the discrete symmetry is encoded in the relative

normalisation of the Killing vector (2.3) with respect to the gauge algebra generator.

Next we discuss the gauging of non-Abelian isometries with the appropriate charges.

Consider a sigma model with a d-dimensional manifold M endowed with a Riemannian

metric g and coordinates φa,

L0 = −gabdφ
a ∧ ∗dφb, (2.4)
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and let t
Â
be generators of the group of isometries Iso(M) which satisfy

[t
Â
, t

B̂
] = f

ÂB̂
Ĉt

Ĉ
, (2.5)

where f
ÂB̂

Ĉ are the structure constants. A particular gauging is specified by picking a set

of Killing vectors

XA = kÂAtÂ (2.6)

where kÂA are constants and the vectors generate the gauge algebra

[XA, XB] = fAB
CXC . (2.7)

The gauging is implemented by considering the following Lagrangian

L = −
1

2
f1
ABF

A ∧ ∗FB −
1

2
f2
ABF

A ∧ FB − gabDφa ∧ ∗Dφb , (2.8)

where we included gauge bosons AB with field strengths FB = dAB + fAC
BAA ∧AC . The

functions f1
AB and f2

AB are in general dependent on the scalars φa. f1
AB determines the

gauge couplings and has to be positive definite. We stress that f i
AB, i = 1, 2 in general

have to transform non-trivially under the gauge group in order to ensure gauge invariance

of the Lagrangian, i.e. one has to have

δf i
AB = λC(fCA

Df i
BD + fCB

Df i
AD) , (2.9)

where λD are the gauge parameters. In particular, for groups that are noncompact one

cannot use the Killing form and therefore f1
AB and f2

AB have to be non-trivial functions of

the fields φa. Furthermore, we defined the covariant derivatives

Dφa = dφa −ABXa
B. (2.10)

Now we may proceed formally in analogy to the Abelian case. The space of inequivalent

vacua of the gauged theory (2.8) is AB = 0 and constant φa ∈ M. Then, under a constant

gauge transformation along λAXA we find that the vacuum φa
0 goes to Q(φa

0;λ
A) which, if

different from φa
0, signals a spontaneous breaking of the generator λAXA. Alternatively, the

set of eiλ
AXA that satisfy Q(φa

0;λ
A) = φa

0 corresponds to a preserved symmetry. Clearly,

this construction may lead to a case in which the preserved symmetry is a non-Abelian

discrete subgroup of Iso(M). In the following section we consider a particular example in

which Iso(M) is a generalisation of the Heisenberg group.

2.2 Supersymmetric non-Abelian gaugings and non-minimal kinetic terms

Up to now we did not discuss the supersymmetric version of the above setting. In order to

do that one has to first realise that four-dimensional N = 1 supersymmetry implies that

M is a Kähler manifold. We denote the complex coordinates by ΦI . The couplings f1
AB

– 5 –
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and f2
AB have to combine into a function fAB = f1

AB + if2
AB that is holomorphic in the ΦI .

The bosonic part of a supersymmetric Lagrangian will then include the terms

L = −
1

2
RefABF

A ∧ ∗FB −
1

2
ImfABF

A ∧ FB −KIJ̄DΦI ∧ ∗DΦ̄J − V ∗ 1, (2.11)

where KIJ̄ = ∂ΦI∂Φ̄JK is locally the derivative of a Kähler potential K. Crucially the

isometries that can now be gauged have to be holomorphic such that

δAA = dΛA + fBC
AABΛC δΦI = ΛAXA

I(Φ) (2.12)

which induces the transformation (2.9).

Let us stress that in general one has to impose additional conditions on gaugings

allowed by N = 1 supersymmetry. Consider, for example, the simple Kähler potential

K = 1
2(φ + φ̄)2, which yields a constant Kähler metric and a Lagrangian that admits the

shift symmetry φ → φ+ λ1 + iλ2 with real constants λi. Supersymmetry implies that the

two shift symmetries labelled by λi cannot be gauged by different U(1) vectors Ai, since the

D-term scalar potential would not be gauge-invariant. In our examples the situation will be

even more subtle. Since the gaugings also have to be compatible with the holomorphicity

of the gauge coupling function even if there exists a gauge-invariant scalar potential.

If the isometry group Iso(M) that we want to gauge is semisimple and compact, we

may take fAB to be a holomorphic function of the ungauged scalars proportional to the

Killing form. In this case fAB satisfies the constraints imposed by supersymmetry. This

implies that one can also add the kinetic terms for AA to the Lagrangian without having

any gauged scalars. However, the isometry group need not be compact nor semisimple in

which case we might be forced to include non-minimal kinetic terms for the vectors. In such

cases, holomorphicity of the gauge kinetic function imposes non-trivial constraints [40].

Let us close this section with recalling yet another important issue related to the

gauge-transformation of the gauge coupling function. If the four-dimensional N = 1 theory

contains chiral fermions charged under an Abelian gauge symmetry, it might be necessary

to employ a Green-Schwarz mechanism to chancel the one-loop anomaly induced by these

fields [41, 42]. The classical terms 1
2 ImfABF

A ∧ FB are then allowed to be non-gauge

invariant and fixed to induce tree-level diagrams that cancel the one-loop anomalous dia-

grams of the chiral fermions. In consistent string theory compactifications this mechanism

is automatically implemented in the situations that require such a cancellation.

3 Non-Abelian discrete symmetries in Type IIB orientifolds

In this section we study the possibility of obtaining non-Abelian discrete symmetries by

gauging R-R and NS-NS scalars in Type IIB orientifolds with O7-planes. We first examine

the symmetries of the orientifold moduli space in subsection 3.1. The Heisenberg isometry

group that appears is a special version of the symmetry groups later encountered in the

complete F-theory setting. We then turn to the discussion of the gauging of this non-

Abelian group in subsection 3.2 by performing a reduction with non-harmonic forms. It

turns out that there is a tension between performing a supersymmetric orientifold quotient

and the gauging of a non-Abelian group.

– 6 –



J
H
E
P
0
2
(
2
0
1
6
)
0
6
6

3.1 Heisenberg isometries in Type IIB orientifold compactifications

To begin with let us consider Calabi-Yau orientifold compactifications of Type IIB with

O7-planes. The effective action for the bulk fields in such compactifications contains the

following terms [43]

L = −Gαβdv
α ∧ ∗dvβ −

1

4V2
dV ∧ ∗dV +

3ivα

(τ − τ̄)
Kαab(dc

a − τdba) ∧ ∗(dcb − τ̄ dbb)

−
Gαβ

16V2

(

dρα +
1

2
Kαab(b

adcb − cadbb)

)

∧ ∗

(

dρβ +
1

2
Kβcd(b

cdcd − ccdbd)

)

. (3.1)

In this expression τ = C0 + ie−φ is the axiodilaton, ba, ca, a = 1, . . . h1,1− arise from the

reduction of B2 and C2 on harmonic orientifold-odd two-forms, and ρα, α = 1, . . . , h1,1+

comes from the reduction of C4 on orientifold-even harmonic four-forms. The real scalars

vα are the deformations of the Kähler form of the underlying Calabi-Yau geometry. The

intersection numbers of the Calabi-Yau manifold are given by

Kαβγ =

∫

Y3

ωα ∧ ωβ ∧ ωγ , Kαab =

∫

Y3

ωα ∧ ωa ∧ ωb . (3.2)

The first of these is related to the definition of the volume V = 1
6Kαβγv

αvβvγ and the

metric Gαβ . The Lagrangian defines a Kähler metric when written in the form (2.11) with

a Kähler potential K = −2 logV and complex coordinates

Ga = ca − τba , Tα = ρα +
1

2(τ − τ̄)
KαabG

a(G− Ḡ)b −
1

2
iKαβγv

βvγ . (3.3)

Clearly, there will be additional moduli corresponding to the complex structure deforma-

tions and brane fields. These will suppressed in the following, since our current focus is on

the identification of candidate non-Abelian symmetries in this sector of the theory. As we

will see later, similar structures appear in the seven-brane sector.

One now readily checks that this Kähler metric has the following 2h
(1,1)
− + h

(1,1)
+ holo-

morphic isometries

δGa = λa
1 − τλa

2 , δTα = λα −KαabG
bλa

2 . (3.4)

where λa
1, λ

a
2, λα are the real scalar gauge parameters. Using the transformations (3.4) one

determines the holomorphic Killing vectors to be

t(1,a) = ∂Ga , t(2,a) = −τ∂Ga −KαabG
b∂Tα , tα = ∂Tα . (3.5)

Upon exponentiation these vectors yield the Lie group of isometries of M, which we denote

by Iso(M). The explicit algebra reads,

[t(1,a), t(2,b)] = −Kαabt
α , (3.6)

with all other commutators vanishing. This algebra is a generalisation of the Heisenberg

algebra and will be our prime example for the non-Abelian structures appearing in our

– 7 –
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string theory set-ups. Comparing with (2.5) this implies that the only non-vanishing non-

Abelian structure constants are f(1,a)(2,b)
α = −Kαab. Finally, the fact that ca, ba and ρα

are periodic with period 2π, imposes the following identifications in the scalar manifold

ca ≃ ca + 2π , and ρα ≃ ρα + πKαabb
b ,

ba ≃ ba + 2π , and ρα ≃ ρα − πKαabc
b ,

ρα ≃ ρα + 2π . (3.7)

These identifications render the field-space spanned by ca, ba and ρα to be compact.

Let us now address the question of gauging the non-Abelian symmetries (3.6). This

requires the introduction of gauge fields that arise from the bulk sector. In section 4 we

will develop this further by including vectors that arise from the brane sector.

3.2 Non-Abelian gaugings from Type IIB orientifolds with torsion

In this section we briefly review the construction in [36] which shows that the reduction

of Type IIB on manifolds Y3 with torsion homology may lead to an effective theory where

the non-Abelian isometries analysed in the last section are gauged.

In general, cohomology groups with integer coefficients are finitely generated Abelian

groups, which means that they are the direct sum of cyclic groups, namely

Hp(M,Z) = Z⊕ · · · ⊕ Z
︸ ︷︷ ︸

free

⊕Zk1 ⊕ · · · ⊕ Zkn
︸ ︷︷ ︸

torsion

(3.8)

which, as indicated above, is the sum of a free part and a non-free (or torsion) part. The

former plays a central role in string compactifications since Hodge’s theorem provides an

isomorphism between the free part and the space of harmonic forms, which correspond to

the internal wave function of massless modes. The torsion part, however, does not yield

massless modes so its role in compactifications is not as straightforward. It was argued

in [35, 36] that including torsion forms in string reductions naturally yields discrete gauge

symmetries. Also, one can obtain the correct spectrum of charged states under such discrete

symmetry by wrapping different branes in the torsion homology cycles, in agreement with

the expectations for a theory of quantum gravity [30].

Let us now illustrate the reduction on torsion cohomology in a simple example before

moving to a more general case. We will consider the reduction of a theory with a two form

potential B2 to four dimensions on a space M with torsion cohomology TorH2(M,Z) = Zk.

Then we have a closed two-form Λ2 which, in integer cohomology, is not exact but such

that k times Λ2 is, namely

kΛ2 = dλ1, dΛ2 = 0 (3.9)

for some form λ1. Now if we include the torsion element Λ2 in the reduction, then we must

also reduce along the non-closed form λ1. This follows from the fact that the Laplacian ∆

commutes with the exterior derivative and from demanding that we include all the modes

– 8 –
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of a given mass scale. Indeed, if ∆Λ2 = −m2Λ2, we should include the form λ1 which

satisfies ∆λ1 = −m2λ1. Thus, we find that

B2 = bΛ2 +A ∧ λ1, dB2 = (db− kA) ∧ Λ2 + dA ∧ λ1 (3.10)

where b is a four-dimensional scalar and A is a four-dimensional vector. These appear in

the field strength for B2 in the combination (db− kA) which gives a Stückelberg coupling.

This then leads to a theory of a massive vector with a Zk discrete gauge symmetry.

Now we are ready to discuss the more involved case of Type IIB orientifolds with

torsion. A six-dimensional manifold has only two independent torsion cohomology groups,

namely

TorH2(Y3) ≃ TorH5(Y3) ≃
⊕

a

Zka , TorH3(Y3) ≃ TorH4(Y3) ≃
⊕

α

Zkα (3.11)

where the isomorphisms follow from the universal coefficient theorem. Then, in analogy

with equation (3.9) we have that3

dγi = kai ωa , dωα = kακβ
κ , dακ = kακω̃

α ,

dωa = 0 , dβκ = 0 , dω̃α = 0 (3.12)

which are compatible with the conditions
∫

Y3

ακ ∧ βλ = δλκ ,

∫

Y3

ωα ∧ ω̃β = δβα. (3.13)

We note that in the pure torsion case the kai and kακ would be invertible. However, by

not imposing conditions on the rank we allow harmonic and torsion forms to be consid-

ered simultaneously in the following analysis. Also, we assume that the parity under the

orientifold action of ακ, β
κ and ωα, ω̃

α is even while the parity of γi and ωa is odd.

In addition to this we will also demand that the basis of forms also satisfies

ωa ∧ γi = Mia
κακ , ωa ∧ ωb = Kαabω̃

α , γi ∧ γj = Nij
αωα . (3.14)

In the first of these identities we have demanded that there is no term proportional to βκ.

This is imposed in order to prevent electric and magnetic degrees of freedom from being

simultaneously gauged. The quantities Mia
κ and Nij

α appearing in these identities define

the additional intersection numbers

Mia
κ =

∫

Y3

γi ∧ ωa ∧ βκ , Nij
α =

∫

Y3

ω̃α ∧ γi ∧ γj . (3.15)

Compatibility of these conditions then implies that

kai Mja
κ = kajMia

κ , kακMia
κ = kbiKαab , kακNij

α = 0 . (3.16)

In the second identity in (3.14), we have allowed for a non-trivial product between the

torsion two-forms which, as we will see, is coupling responsible for a non-Abelian gauge

symmetry.

3We did not include the torsion five-forms since we will not need them here.
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Given this setup, the ansatz for the reduction is

C4 = V κ ∧ ακ − Uκ ∧ βκ + ραω̃
α + Cα

2 ∧ ωα , (3.17)

B2 = A1 i ∧ γi + baωa , C2 = A2 i ∧ γi + caωa .

where C4 has an expansion into orientifold-even three-forms while B2, C2 are expanded into

orientifold-odd one-forms and two-forms. Here A1 i, A2 i and V κ, Uκ are four-dimensional

vectors. Note that V κ and Uκ are electric-magnetic duals by means of the self-duality of

the field-strength of C4. Similarly, the two-form Cα
2 is the four-dimensional dual of the

scalar ρα already used in (3.1).

The effective action which results from the ansatz (3.17) can be described in terms of

the fields Cα
2 and Uκ or in terms of their duals ρα and V κ. When working with Cα

2 and Uκ

the 10d field strength

F5 = dC4 +
1

2
(B2 ∧ dC2 − C2 ∧ dB2) , (3.18)

gives rise to the four-dimensional field strengths

DCα
2 = dCα

2 +
1

2
Nα

ij(A
1 i ∧ F 2 j −A2 i ∧ F 1 j) , Fκ = dUκ − kακC

α
2 , (3.19)

where

F 1 i = dA1 i , F 2 i = dA2 i . (3.20)

Here we see that the nonlinear terms in F5 have generated a Chern-Simons modification

in DCα
2 , but that all gaugings remain Abelian.

In contrast, if one works in the dual picture and encodes all degrees of freedom by ρα
and V κ, one finds the field strengths

F 1 i = dA1 i , F 2 i = dA2 i , F κ = dV κ +Mia
κkajA

1 i ∧A2 j , (3.21)

where, in this dual picture, the nonlinear terms in F5 have generated a non-Abelian struc-

ture F κ. In fact, one checks by performing the reduction that the isometries of (3.4) are

gauged due to the non-trivial kακ and kai . Explicitly, the covariant derivatives read

DTα = dTα + kακV
κ −KαabG

akbiA
1 i , DGa = dGa + kai (A

2 i − τA1 i) . (3.22)

This suggests that the gaugings are compatible with the holomorphic structure of the

reductions. However, by performing the dimensional reduction [36] we see that the gauge

coupling function derived fails to be holomorphic in the coordinates introduced above. We

therefore propose that this construction is not compatible with supersymmetry without

modifying the ansatz (3.12) and (3.17).

Let us add some more observations to support this further. We stress that there is a

curiosity in the gaugings (3.22): for the gauged scalars Ga it appears that the real and imag-

inary parts are gauged at the same time with two different vectors corresponding to non-

commuting generators. We find that the Kähler potential both depends on these scalars and
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is invariant under the symmetry. This property of the gauged Ga implies that constructing

a holomorphic gauge coupling function which transforms in the appropriate fashion appears

to be impossible. Furthermore we see that in the underlying N = 2 theory obtained by

a Calabi-Yau reduction the fields completing ca, ba into hypermultiplets are the scalars ρa
from C4 and va from the Kähler form. One can check that these scalars are ungauged and

admit a scalar potential. This shows that the truncation associated with the orientifold quo-

tient inconsistently removes the two ungauged degrees of freedom from the hypermultiplets.

We therefore find that the inclusion of torsion cohomology is by no means straight-

forward in the presence of an orientifold projection. It would be interesting to reveal the

underlying physical reason of the incompatibility of the N = 1 orientifold truncation with

the torsion proposal of [36]. Our findings suggest that torsion cohomology can only be

‘straightforwardly’ included for orientifold-even forms, i.e. where there are chains associ-

ated to the forms with non-vanishing physical volume. In the next subsection we will argue

that when generalising the setting away form the weak string coupling limit the gaugings

can be made compatible with N = 1 supersymmetry.

4 Non-Abelian discrete symmetries in F-theory

In this section we discuss the appearance of four-dimensional non-Abelian discrete symme-

tries in brane-bulk and brane-flux systems from the Type IIB perspective. This will allow

us to develop different settings that naturally admit such symmetries. In order to realise

these symmetries in a seven-brane sector, however, it requires the introduction of mutually

non-local branes that cannot be treated at weak string coupling. To find a globally con-

sistent description of such a system we therefore will use F-theory. While we are able to

heuristically motivate our findings directly using the language of Type IIB string theory

with (p, q)-seven-branes a more thorough justification will later, in section 5, be given by

using the M-theory approach to F-theory.

4.1 Heisenberg symmetries in non-perturbative Type IIB

In the previous subsection we have shown that the non-harmonic reduction yielding a non-

Abelian gauge theory is not compatible with the N = 1 supersymmetry imposed by the

Type IIB orientifold projection. This conflict arose from the fact that the modes arising

from the fields B2 and C2 naturally combine into N = 1 four-dimensional scalars Ga =

ca−τba with real and imaginary parts simultaneously gauged by two different vector fields.

Importantly, this analysis was a weak string coupling analysis in which the ten-dimensional

τ did not vary over the internal manifold but rather descended to a four-dimensional

degree of freedom. This led to the fact that the behaviour of the modes ba and ca cannot

be decoupled. However, in the more general situation in which we depart from weak

string coupling, the Sl(2,Z) symmetry group will have non-trivial monodromies on the

compactification space and neither τ nor ca, ba are well-defined fields in the effective theory.

In the following we introduce the analogs for the fields Ga in compactifications with varying

τ and describe how the coupling to seven-branes introduces a non-Abelian gauge structure.
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Let us now work on the Kähler manifold B3, which is the base of an elliptically fibered

Calabi-Yau fourfold Y4 that we use for the F-theory treatment. In settings with weak

coupling limit one has B3 = Y3/Z2. When working in Type IIB language one would need

to expand

C2 − τB2 = NaΨ̂a , (4.1)

where Ψ̂a are appropriate two-forms on an Sl(2,Z)-bundle on B3 and Na are complex

scalar fields in four dimensions. The two-forms Ψ̂a will in general depend on the complex

structure moduli of B3 and the seven-brane positions. It is expected that the explicit

construction of the Ψ̂a is challenging. However, the Calabi-Yau fourfold Y4 turns out to be

a powerful tool to capture this information in a more tractable way.

On Y4 the information encoded in Ψ̂a is captured by a certain basis of (2,1)-forms Ψa

that do not descend from (2, 1)-forms of the base B3. The additional constraint is often

stated as the requirement that the Ψa have a component with one leg in the fiber of Y4. In

the simplest situation Ψa are harmonic forms that are parameterising H2,1(Y4) but are not

elements of H2,1(B3). In the following, we will first consider only harmonic (2, 1)-forms,

but later generalise to include non-closed and exact forms. To obtain the four-dimensional

fields Na in (4.1) one now has to expand a three-form C3 into the (2, 1)-forms Ψa as follows

C3 = NaΨa + N̄aΨ̄a + . . . . (4.2)

This is motivated by the M-theory to F-theory limit as we discuss in section 5. In this

limit the Na lift to four-dimensional scalars that include the scalars coming from B2, C2.

Furthermore, despite the abuse of notation for the indices, the Na will also contain the

seven-brane Wilson lines. To display the effective action one first has to gain some deeper

understanding of the moduli dependence of Ψa. Clearly, since these are (2, 1)-forms on Y4
they will vary with the complex structure moduli of Y4. For H

2,1(Y4) one can in fact argue

that the Ψa admit an expansion

Ψa =
1

2
Refab(β

b − if̄ bcαc) , Ψa − Ψ̄a = −iαa , (4.3)

where (αa, β
a) are a real three-form basis for the elements of H3(Y4) which are not in

H2,1(B3) and fab is a holomorphic function of the complex structure moduli. The Ψa are

not anti-holomorphic in the complex structure moduli due to the appearance of Refab, the

inverse of Refab. Using the real basis (αa, β
a) we can also expand

C3 = aaαa − baβ
a + . . . (4.4)

where (aa, ba) are real scalars. Comparing (4.2) with (4.4) and using (4.3), we see that

Na = −i(aa + ifabbb) . (4.5)

In a next step we recall the effective action for the complex scalars Na coupled to vα, ρα
and study its symmetries. The derivation of this action proceeds via M-theory as carried out

in [44]. This yields the generalisation of the weak string coupling action (3.1) to F-theory as
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L = −Gαβdv
α ∧ ∗dvβ −

1

4V2
dV ∧ ∗dV +

3vα

K
dαab dN

a ∧ ∗dN̄ b (4.6)

−
Gαβ

16V2

(

dρα +
i

2
(dαacN̄

cdNa − dαcaN
cdN̄a)

)

∧∗

(

dρβ +
i

2
(dβbdN̄

ddN b − dβdbN
ddN̄ b)

)

,

with

dαab = i

∫

Y4

ωα ∧ Ψa ∧ Ψ̄b . (4.7)

Here ωα is a two-form dual to vertical divisors Dα = π−1(Db
α), where Db

α are divisors in

the base B3. Thus, d̄αab = dαba. In terms of the real basis we have that

dαab =
1

2
Refac

(

Mαb
c + if̄ cdMαdb

)

, (4.8)

where we defined

Mαab =

∫

ωα ∧ αa ∧ αb, Mαa
b =

∫

ωα ∧ αa ∧ βb . (4.9)

The action (4.6) can be expressed in terms of a Kähler potential and complex coordi-

nates as in the weak string coupling setting. The correct complex coordinates are the Na

as well as complex coordinates Tα containing the Kähler structure deformation defined as

Tα = ρα −
i

2
dαabN

a(N + N̄)b −
i

2

∫

Db
α

Jb ∧ Jb (4.10)

where Jb is the Kähler form in the base. The Kähler potential is given by

K = −log

(
∫

Y4

Ω ∧ Ω̄

)

− 2logVb , (4.11)

where it is crucial to express the base volume Vb = 1
6

∫

B3
Jb ∧ Jb ∧ Jb in terms of the

complex coordinates Na, Tα given in (4.10), and the complex structure deformations.

Let us now turn to the analysis of the isometries of the metric (4.6). The metric has

the following holomorphic isometries

δNa = −i(λa + ifabλb) ,

δTα = λα −
i

2
N bMαabλ

a −Na

(

iMαa
b +

1

2
f bcMαca

)

λb , (4.12)

with λa, λa, λα real. The corresponding Killing vectors read

t̃b = fab∂Na −Na

(

iMαa
b +

1

2
f bcMαca

)

∂Tα , (4.13)

ta = −i∂Na −
i

2
N bMαab∂Tα , tα = ∂Tα . (4.14)

It is then straightforward to check that the only non-vanishing commutator is

[ta, t̃
b] = −Mαa

b tα , (4.15)
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which again defines an algebra that is a generalisation of the Heisenberg algebra. Notice

that Mαab does not appear in the structure constants.

The expression (4.15) is the analog of the weak string coupling algebra (3.6). In fact,

the setup reduces to the one of subsection 3.1 in a special limit. In order to see that one

interprets all fields Na to arise from the bulk as the fields Ga used in subsection 3.1. Setting

fab = iτδab , Na = −iGa , (4.16)

one recovers the weak coupling expressions for all couplings. However, it is crucial to point

out that away from weak string coupling fab will in general not be diagonal. The non-

diagonal generalisation will be crucial when considering the gauging of the holomorphic

isometries as we discuss in the next subsection. In contrast to the weak coupling setting

there can now be gauged scalars Na for which the real and imaginary parts are not gauged

simultaneously while preserving the non-Abelian structure.

It is interesting to stress that in F-theory the Na also contain the Wilson line de-

grees of freedom. Even at weak string coupling, i.e. when considering Na to be Wilson

line moduli for D7-branes, one finds that they couple via a holomorphic function fab of

the complex structure moduli and D7-brane positions. It appears that this holomorphic

function does not have to be diagonal in its indices. This yields another non-trivial gener-

alisation of the setting discussed in subsection 3.1. In F-theory the various generalisations

are elegantly combined due to the combination of bulk and brane degrees of freedom in a

higher-dimensional geometry.

4.2 Non-Abelian gaugings from seven-branes — origins

Having determined the holomorphic symmetries of the general Type IIB configuration away

from the weak string coupling limit, one can now ask which subalgebra of these symmetries

can be gauged. In particular, given the complications encountered for the orientifold setup

in subsection 3.2, it will be crucial to argue that in more general F-theory settings a non-

Abelian group can indeed be gauged. The gaugings we will discuss arise from gauge fields

on general (p, q)-seven-branes and we also consider possible gaugings using R-R gauge fields

due to non-closed forms in the base B3. The non-closed forms can be interpreted as param-

eterising torsional cohomology TorH3(B3,Z) similar to the discussion of subsection 3.2.

To begin with we first recall the gaugings arising when D7-branes are included in

a weak string coupling scenario. If we include D7-branes wrapping a divisor Si, the

U(1) gauge boson Ai with field-strength F i = dAi may become massive due to the

interaction with the closed string sector for two independent reasons, which in either case

are compatible with supersymmetry.

Firstly, we consider a configuration with brane image-brane pairs in an orientifold con-

figuration in which some of the divisors Si and the image-brane divisors S′
i are in different

homology classes, i.e. situations in which some of the S−

i = 1
2(Si − S′

i) are homologically

non-trivial. The Chern-Simons action then contains a coupling of the form

SD7i ⊃

∫

R1,3×S−

i

C6 ∧ F i = k̃ai

∫

R1,3

c̃(2)a ∧ F i , k̃ai =

∫

S−

i

ω̃a (4.17)
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where we have expanded C6 = c̃
(2)
a ∧ ω̃a with ω̃a being an integral harmonic four-form that

is odd under the orientifold action. This induces a Stückelberg gauging of the axion ca

dual to the two-form c̃
(2)
a as

DGa = dGa − k̃ai A
i . (4.18)

One can show that, generically, this leads to a spontaneous breaking of the symmetry (see

e.g. [30]). The surviving unbroken symmetry may contain a discrete part which is always

Abelian. The details of this discrete part are discussed in [39, 45].

Secondly, there is a possibility of switching on fluxes F i on the D7-branes. The gauging

induced by this generalisation is of the form

DTα = dTα −ΘαiA
i , Θαi =

∫

Si

F i ∧ ωα , (4.19)

with DGa being unmodified. We note that these considerations generalize if we include

several D7-branes. Taking into account the appropriate Chern-Simons couplings, we may

find a discrete Abelian gauge symmetry [39, 45].

To gain a intuition how this D7-brane setting generalises, let us naively consider a

configuration that contains O7-planes and (0,1)-seven-branes. In this case, the analogous

coupling to (4.17) is

S(0,1) ⊃

∫

R1,3×S−

i

B6 ∧ F i = δabkbi

∫

R1,3

b̃(2)a ∧ F i, (4.20)

with B6 dual to the NS-NS two-form, B6 = b̃
(2)
a ∧ ω̃a. One would therefore expect that in

this case the ba scalar, dual to b̃
(2)
a , receives a gauging of the form

DGa = dGa − τδabkaiA
i . (4.21)

Of course, this setting cannot be fully trusted, since we have included a (0, 1)-seven-brane

in a weak coupling scenario. We should instead return to the F-theory setting outlined in

subsection 4.1 as we will do below.

Let us finally turn to the discussion of gaugings due to non-closed two-forms in the

base B3. This will lead to gaugings involving the R-R gauge-fields just as in subsection 3.2.

As before this requires non-closed forms to be included among the ωα in the base B3 such

that

dωα = kακβ
κ , (4.22)

where βκ are three-forms in B3. Carrying out the expansion of C4 in a process similar so

that shown in subsection 3.2 one finds that (4.22) induces the gauging

DTα = dTα − kακA
κ , (4.23)

which is of similar form as (4.19) but only uses the bulk vectors Aκ. The relation (4.22)

can be interpreted as arising from torsional cohomology TorH3(B3,Z) ∼= TorH4(B3,Z) as

introduced in subsection 3.2. Note that the Hp(B3) have to be identified with H3
+(Y3) if a

double-covering Calabi-Yau threefold Y3 exists in the weak coupling limit. We thus do not

require that torsion in the negative cohomology be considered. This modification of the

setting may evade the problems encountered in subsection 3.2.
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4.3 Non-Abelian gaugings from seven-branes — gauge invariant structures

We have just motivated that the gaugings in a Type IIB setting with (p, q)-seven-branes

can be more general than in the weak coupling configurations of section 3.2. In order to

study the system away from the weak string coupling limit we return to the configuration

introduced in subsection 4.1. To gain some intuition about the gaugings that occur one

can formally perform the replacement (4.16) introducing Na and fab in the gaugings of

subsection 4.2. An honest derivation, however, can only be performed via the duality with

M-theory. In fact we will justify some of the following results using this duality in section 5.

In general, one finds that only a subalgebra of the isometry algebra (4.12) discussed

in subsection 4.1 will be gauged. Clearly, to define a subalgebra one has to respect various

constraints ensuring, for example, the closure of this algebra. The structure constants

will generically also differ from the ones of the full isometry algebra. Let us exemplify

this by using a subset of the gaugings introduced in subsection 4.2. In a first F-theory

example will only use seven-brane vectors in the gaugings, and hence the structure constants

of the subalgebra will be of the form f̂ij
k. Motivated by the structures which appear

in (4.18), (4.19) and (4.21) we will consider a subalgebra of (4.12) that is associated with

the generators

Xi = kai ta − kiat̃
a +Θαit

α , [ti, tj ] = f̂ij
ktk , (4.24)

which defines the structure constants f̂ij
k. Then by using (4.15) we find that

(k̃ai kjb − k̃aj kib)Mαa
b = f̂ij

kΘαk , f̂ij
kkka = 0 , f̂ij

kk̃ak = 0 . (4.25)

We note that this analysis is not sufficient to uniquely fix the structure constants f̂ij
k but

only certain projections on them. This is familiar from the standard embedding tensor dis-

cussions (see e.g. [46, 47]). The covariant derivatives associated with gauging this subgroup

are then given by

DNa = dNa + i(k̃ai A
i − ifabkibA

i) , (4.26)

DTα = dTα −ΘαiA
i +

i

2
N bMαabk̃

a
i A

i −Na

(

iMαa
b +

1

2
f bcMαca

)

kibA
i ,

and the field strength F i = dAi + f̂jk
iAj ∧Ak is constrained such that

ΘαiF
i = ΘαidA

i + k̃akkjbMαa
bAj ∧Ak , kiaF

i = kiadA
i , kai F

i = kai dA
i . (4.27)

If we recall that, roughly speaking, k̃aj labels (1, 0)-brane part of the gauging, kjb is the

(0, 1)-brane part of the gauging, and Mαa
b is the non-trivial twisting of the moduli space

metric (4.6), then we see that it is the presence of gaugings associated with mutually non-

local seven-branes that is crucial for generating the non-Abelian structure in (4.27). In

addition to this we see that the non-Abelian structure is linked to the presence of fluxes

in this picture. It is well-known that fluxes induce chirality and accordingly the classical

action does not need to be gauge invariant as discussed briefly at the end of subsection 2.2.
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The second example of non-Abelian gaugings occurring in F-theory is obtained by

switching off fluxes on the seven-branes (i.e. setting Θαi = 0) and turning on kακ appearing

in (4.22). It will be this example that we will study in much more detail using the M-

theory dual in section 5. Analysing the subalgebra spanned by k̃aj , kia, and kακ, we find

that the only non-vanishing structure constants are in this case of the form f̂ij
κ. They are

constrained only by

f̂ij
κΠκ

λ = (k̃ai kjb − k̃aj kib)Mαa
bǩλα , (4.28)

and thus for the gauged subalgebra to close we must demand that

Πα
β(k̃aj kib − k̃ai kjb)Mβa

b = (k̃aj kib − k̃ai kjb)Mαa
b . (4.29)

In these equations we have defined the projectors Πκ
λ and Πα

β as well as the Moore-Penrose

pseudo-inverse ǩκα of kακ. These quantities satisfy

kακǩ
λα = Πκ

λ , kακǩ
κβ = Πα

β , Πκ
λkαλ = kακ , Πα

βkβκ = kακ . (4.30)

In this case the gaugings (4.26) are replaced by

DNa = dNa + i(k̃ai A
i − ifabkibA

i) ,

DTα = dTα − kακA
κ +

i

2
N bMαabk̃

a
i A

i −Na

(

iMαa
b +

1

2
f bcMαca

)

kbiA
i , (4.31)

and the field strengths are constrained such that

kακF
κ = kακdA

κ + k̃aj kkbMαa
bAj ∧Ak , F i = dAi . (4.32)

We stress that in this case only the R-R bulk gauge-field admits a non-Abelian modification.

This second possibility of obtaining non-Abelian gaugings has the advantage of being

purely geometrically induced. In particular, one expects following [6, 31–33] that the

geometrically massive gauge fields gauging Na are obtained from non-closed forms on

the Calabi-Yau fourfold in M-theory. Together with the possibly non-closed two-forms

ωα satisfying (4.22), one thus expects to find a geometric M-theory reduction that yields

precisely the gaugings (4.31) upon lifting to F-theory. We will show in section 5 that this

is indeed the case. Furthermore, we are able to directly determine the structure constants

f̂ij
κ to be given by

f̂ij
κ = k̃a[jMi]a

κ + k[jaMi]
aκ . (4.33)

Here Mia
κ and Mi

aκ are constant coupling matrices that are explicitly given in section 5.

To get an idea about the meaning of these couplings, let us give their weak string

coupling expressions in the Calabi-Yau orientifold setting B3 = Y3/σ. If the index a counts

bulk scalars Ga then we find for D7-branes

Mia
κ = 0 , Mi

aκ = δab
∫

Ci

ωb ∧ βκ , (4.34)

where Ci is a chain ending on the ith D7-brane world-volume and ωa is the orientifold-odd

harmonic two-form on Y3. Note that Mia
κ, as defined in section 5, should only include the
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constant part of the chain integral in (4.34). Once again we can see that the non-Abelian

gaugings disappear for settings with only D7-branes, since in this case kia = 0 andMia
κ = 0

in (4.33).

Alternatively the index a could also parameterise Wilson line moduli on the seven-

branes. Let us introduce one-forms (γai , γ
bi) on the ith seven-brane with world-volume Si.

Then we find that

Miai
κ =

∫

Si

γai ∧ βκ , Mi
aiκ =

∫

Si

γai ∧ βκ . (4.35)

In this case one finds indeed that both Miai
κ and Mi

aiκ are non-zero. However, in order

to realise a non-Abelian symmetry with non-vanishing (4.33) we need to gauge the Wilson

line scalars. We are not aware that such a setting has been investigated yet.

Let us close this section with another crucial observation which ties in with the discus-

sion of the gauge coupling function presented at the end of subsection 2.2. It also explains

how we were able to deduce the expressions (4.34) and (4.35). It turns out, as we will see

in section 5, that the Mia
κ and Mi

aκ precisely encode the kinetic mixing of the R-R gauge

fields Aκ and the seven-brane gauge-fields. More precisely, we find

Refλi = Refλκ(Mia
κaa −Mi

aκba) , (4.36)

Refij = Ǧij +Refλκ(Mia
κaa −Mi

aκba)(Mja
λaa −Mj

aλba) ,

where fλκ is the holomorphic gauge coupling function of the R-R gauge fields Aκ, and Ǧij is

a Kähler moduli dependent metric. The fact that the gauge couplings depend on the scalars

(aa, ba) nicely matches the requirement that for a gauged non-semisimple and non-compact

group this coupling needs to transform non-trivially. The kinetic mixing (4.36) is present

independent of the gaugings, i.e. even if we set k̃ia = kia = 0 and kακ = 0. If we allow for

non-Abelian gaugings then the terms in (4.36) are actually essential for gauge-invariance.

Let us note that the results (4.34) and (4.35) were deduced by comparing the kinetic

mixing terms on seven-branes with (4.36). Kinetic mixing on D7-branes was studied also

in [34, 48, 49]. One therefore expects that (4.36) can be made the real part of a holomorphic

function in the correct N = 1 complex coordinates as required by supersymmetry. We leave

the details of this investigation to a further publication [50].

Let us close this section by stressing some of the differences to the discrete Abelian

symmetries recently considered in [17, 22–28]. As of now, most of the considerations were

for the effective theory and the continuous non-Abelian symmetry. Focusing on the vacua

of the theory one expects that there is, in contrast to the Abelian case, no vacuum in which

a continuous non-Abelian group is preserved. This can be inferred from the fact that the

background gauge coupling function can not be positive definite and invariant as no such

tensor exists. In the Abelian case a more complete analysis was possible and it was argued

that in this case there exists a transition in complex structure moduli space that restores

a global U(1) symmetry.
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5 Non-Abelian discrete symmetries via F-/M-theory duality

In this section we use the duality of M-theory and F-theory to show the appearance of

discrete non-Abelian gauge symmetries in F-theory as claimed in section 4. More pre-

cisely, we perform a dimensional reduction of eleven-dimensional supergravity including

a number of non-harmonic forms. These forms might be viewed as representing torsion

cohomology elements.4 The three-dimensional effective action is determined in subsec-

tion 5.1 and possesses only Abelian gaugings. The non-Abelian gaugings arise when bring-

ing the three-dimensional action into the duality frame relevant for the F-theory up-lift

to four dimensions. The relevant dualisations of the fields are discussed in subsection 5.2

and appendix A. We are then able to show that the covariant derivatives (4.31) and field

strengths (4.32) are reproduced by the reduction. We also find that the structure constants

are given by (4.33) and the gauge coupling function takes the form (4.36).

5.1 Non-harmonic reduction of M-theory

Recall that the duality between M-theory and F-theory asserts that compactifying the

former theory on an elliptically fibered Calabi-Yau manifold is dual to the latter theory

on the same manifold times a circle. The comparison of effective theories of M-theory and

F-theory is therefore performed in three dimensions. One can thus start with a candidate

four-dimensional action, the F-theory effective action, and compactify the theory on a

circle. The lower-dimensional theory can be pushed to the Coulomb branch and all heavy

modes, including the Kaluza-Klein states, can be integrated out to obtain the effective

theory for massless states only. However, we claim that the M-theory reduction will also

contain massive modes that arise due to the inclusion of non-harmonic forms. Therefore,

we have to carefully keep track of certain charged or massive states in the matching of

the M-theory and F-theory actions. This is in complete analogy to the case in which one

considers background fluxes. In the following we will thus discuss three-dimensional gauged

supergravity theories to justify the F-theory effective action of section 4. Our main focus

will be on inferring the couplings (4.31), (4.27), and (4.36), which dictate the presence of

a non-Abelian gauge symmetry.

The M-theory reduction is performed by using eleven-dimensional supergravity. This

implies that we have to work with a resolved fourfold Ŷ4. Furthermore, all linearly charged

matter states corresponding to M2-branes on the resolution cycles are integrated out and

will not appear in the following three-dimensional effective action. The starting action is

the bosonic part of eleven-dimensional supergravity given by

S(11) =
1

2

∫ (

R̂ ∗̂1−
1

2
Ĝ ∧ ∗̂Ĝ−

1

6
Ĉ ∧ Ĝ ∧ Ĝ

)

, (5.1)

where R̂ is the eleven-dimensional Ricci scalar and Ĝ = dĈ is the four-form field strength

for the three-form Ĉ. In the following a hat will indicate that the quantity is defined in

eleven dimensions.

4While we believe that Calabi-Yau four-folds with such torsion cohomology exist, we refrain from con-

structing explicit examples.
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Clearly, the M-theory reduction should not only include harmonic forms, but also

contain non-closed and exact forms that account for possible gaugings. These forms can be

viewed as parameterising torsion cohomology. We thus introduce the two-forms ωΣ, and

three-forms (αI , β
I) on Ŷ4 that need not be harmonic but should be definite eigenstates of

the Laplace-Beltrami operator. They are related by the non-closure of ωΣ given by

dωΣ = k̃IΣαI + kΣIβ
I . (5.2)

This expression is a generalisation of (4.22) in which ωα and βκ are elements of the base B3

of Ŷ4. It also contains the case that ωΣ yields a gauge field of a seven-brane and the non-

closure yields the gaugings induced from the geometric Stückelberg term (4.17) and (4.20).

For D7-branes this has already been suggested in [6, 31, 33].

Next we introduce the modes of the effective theory that arise from expanding the

eleven-dimensional metric and the M-theory three-form into ωΣ and (αI , βI). We will

therefore make an ansatz for the reduction where

dŝ2 = gµνdx
µdxν + 2(g0mn̄ + iδvΣωΣmn̄)dy

mdyn̄ , (5.3)

Ĉ = AΣ ∧ ωΣ + ξ̃IαI + ξIβ
I .

In this expression δvΣ, ξ̃I and ξI are three-dimensional scalar fields, while AΣ are three-

dimensional vector fields. Note that δvΣ parameterise the deformations of the Calabi-Yau

metric g0mn̄ that are in general non-Kähler. Setting J = J0 + δvΣωΣ one has

dJ = δvΣdωΣ = δvΣk̃IΣαI + δvΣkΣIβ
I , (5.4)

which implies that there will be a potential induced for the scalars δvΣ. We will denote

the complete three-dimensional scalar potential by V , but will refrain discussing its precise

form. We will also introduce the scalars vΣ, which parameterise the expansion of J = vΣωΣ.

More important in the following is the reduction of the M-theory three-form part of the

action. Using (5.4) and (5.2) we see that Ĝ is given by

Ĝ = dAΣ ∧ ωΣ +Dξ̃I ∧ αI +DξI ∧ βI + ξ̃IdαI + ξIdβ
I . (5.5)

Here we have defined the covariant derivatives

Dξ̃I = dξ̃I −AΣk̃IΣ, DξI = dξI −AΣkΣI . (5.6)

As we will show in the following it will be these simple gaugings that are responsible for

the gauge structure encountered in the F-theory effective action of section 4.

Substituting the ansatz (5.4) and (5.5) into the action (5.1) and performing a Weyl

rescaling, which puts the effective action in Einstein frame, we find the three-dimensional

effective theory given by

S(3) =
1

2

∫ [

R ∗ 1−
1

2
GΣΛdL

Σ ∧ ∗dLΛ −
1

2
GΣΛF

Σ ∧ ∗FΛ

−
1

2
G̃IJDξ̃I ∧ ∗Dξ̃J −

1

2
GIJDξI ∧ ∗DξJ −HI

JDξ̃I ∧ ∗DξJ
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+
1

3
MΣI

JFΣ ∧ (ξ̃IDξJ − ξJDξ̃I) +
1

3
MΣIJF

Σ ∧ ξ̃IDξ̃J +
1

3
MΣ

IJFΣ ∧ ξIDξJ

+
1

3
MΣI

JAΣ∧Dξ̃I∧DξJ+
1

6
MΣIJA

Σ∧Dξ̃I∧Dξ̃J+
1

6
MΣ

IJAΣ∧DξI∧DξJ

−
1

3
NΣΛI ξ̃

IAΣ ∧ FΛ +
1

3
ÑΣΛ

I ξIA
Σ ∧ FΛ + V ∗ 1

]

. (5.7)

The first line contains the kinetic terms for the scalars vΣ and vectors AΣ. To write them

in this simple form, we have used the definitions

GΣΛ = V

∫

Ŷ4

ωΣ ∧ ∗ωΛ , LΣ =
vΣ

V
, (5.8)

where V is the volume of the manifold Ŷ4. To display the couplings of the scalars (ξI , ξ̃
J)

we have introduced the definitions

G̃IJ =
1

V

∫

Ŷ4

αI ∧ ∗αJ , GIJ =
1

V

∫

Ŷ4

βI ∧ ∗βJ ,

HI
J =

1

V

∫

Ŷ4

αI ∧ ∗βJ , MΣI
J =

∫

Ŷ4

ωΣ ∧ αI ∧ βJ ,

NΣΛI =

∫

Ŷ4

ωΣ ∧ ωΛ ∧ dαI , Ñ I
ΣΛ = −

∫

Ŷ4

ωΣ ∧ ωΛ ∧ dβI . (5.9)

The tensors NΣΛI and Ñ I
ΣΛ can be written in terms of the other couplings by integrating

by parts and using (5.2), which gives

NΣΛI = kΣJMΛI
J + k̃JΣMΛIJ + kΛJMΣI

J + k̃JΛMΣIJ , (5.10)

Ñ I
ΣΛ = kΣJMΛ

JI + k̃JΣMΛJ
I + kΛJMΣ

JI + k̃Λ
JMΣJ

I ,

kΛIN
I
Σ∆ = k̃IΛNΣ∆I .

Let us close this subsection with a few crucial observations. It is straightforward to

see that the action (5.7) enjoys an Abelian gauge symmetry given by

δAΣ = dλΣ, δξ̃I = k̃IΣλ
Σ, δξI = kΣIλ

Σ , (5.11)

where λΣ is a gauge parameter. However, in the last sections we argued that this sys-

tem should posses non-Abelian symmetries. Surprisingly, such a non-Abelian structure

is present in this setup although it is not obviously realised in terms of the fields we in-

troduced. In the next section we will see how by performing a change of duality frame

for certain fields we unravel the non-Abelian symmetries. This new frame turns out to

be the correct one in which to perform the F-theory limit and so compare with the four-

dimensional effective theory.

A final comment concerns the supersymmetry properties of the action (5.7). We have

not demonstrated that this action is indeed supersymmetric. In order to do that one

would have to introduce complex coordinates on the moduli space and demonstrate that

the couplings in (5.7) are of special form, e.g. obtained from a Kähler potential. This

requires the introduction of (2, 1)-forms on Ŷ4 that can be parameterised by a holomorphic
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function varying over the complex structure moduli space. This function is then used in

defining the complex coordinates in generalisation of (4.3) and (4.5). While the ungauged

action can then be shown to be supersymmetric, it is expected that additional conditions on

the allowed gaugings are imposed by supersymmetry. It would be nice to determine these

conditions from a more detailed analysis of the geometry. In the following we will continue

with our analysis on the bosonic action and focus on the appearance of the non-Abelian

gaugings manifested through (4.31) and (4.32).

5.2 Dualisation of the M-theory effective action

The action (5.7), obtained by dimensional reduction of eleven-dimensional supergravity, is

not yet in the duality frame that allows a lift to a four-dimensional F-theory configuration.

In the following we will perform a dualisation to bring it into the correct form. In order to

do this we must first split the three-dimensional fields into those which are affected by the

duality and those which are not. For this reason we will make the decomposition

LΣ = (Lı̂ , Lα) , AΣ = (Aı̂ , Aα) , ξ̃I = (aa, ξ̃κ) , ξI = (−ba, ξκ) . (5.12)

This is in complete analogy to the ungauged case [44]. The multiplet (Lα, Aα) will lift

to the bosonic part of a four-dimensional chiral multiplet with scalars Tα and therefore

Aα needs to be dualised into a scalar ρα in three dimensions. In contrast (ξ̃κ, ξκ) will

comprise the degrees of freedom of a vector in a four-dimensional vector multiplet. These

are the four-dimensional R-R vectors Aκ used in (4.31). Therefore one must dualise the

scalar ξκ into a three-dimensional vector Aκ before performing the uplift. Note that in this

section we slightly abuse notation and assert that Aκ and Aı̂ are three-dimensional vectors.

Finally the multiplet (aa, ba) lifts to chiral multiplet in the four-dimensional theory which

originates from either Type IIB bulk fields, decomposed with respect to internal space

two-forms, or from Wilson lines.

In order to make contact with section 4 and to keep the discussion simple, we restrict

to the case in which

dωα = kακβ
κ, dωı̂ = k̃a

ı̂
αa + kı̂aβ

a. (5.13)

The first condition is the non-closure of forms ωα stemming from the base B3 and agrees

with (4.22). The second condition accounts for the geometric Stückelberg gaugings with the

seven-brane gauge fields. It is important to stress that the dualisation we are preforming

only works if we impose additional conditions relating the constant couplings and gaugings.

Concretely, we find that the duality can be performed when imposing

k̃a
ı̂
M̂a

κ + k̂aMı̂
aκ = 0 ,

kı̂bMαa
b + kακMı̂a

κ = 0 , k̃b
ı̂
Mαab = 0 ,

k̃b
ı̂
Mαb

a + kακMı̂
κa = 0 , kı̂bMα

ba = 0 . (5.14)

It is not clear whether these are the weakest conditions that have to be imposed. In

particular, it appears that imposing only the sum of the expressions in the last two lines,
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yieldingNı̂αa = Ña
ı̂α = 0 by using (5.10) and (5.13), is also sufficient. It would be interesting

to give a precise geometric reasoning why in an elliptically fibered geometry these vanishing

conditions are imposed. It appears that these conditions are crucial to perform the F-theory

up-lift. This can be compared with the vanishing conditions of [13, 51, 52] on the G4-flux

intersections ΘΛΣ =
∫
ωΛ ∧ωΣ ∧G4 that need to be imposed for a four-dimensional gauge-

invariant setting to exist.

In addition there is a set of constraints that is readily inferred for an elliptically fibered

space by counting the number of legs in the fiber. These are given by

Mακ
λ = Mακ

a = Mαa
κ = Mα

κλ = Mα
κa = Mακλ = Mακa = Mı̂

κλ = Mı̂κλ = 0 , (5.15)

which we will see is true for the duality splitting assignments appropriate for the F-theory

lift.

In order to perform the duality, we proceed in the usual way. We propose a parent

Lagrangian that is a function of both the original and dual fields such that it gives back

the starting action (5.7) when we remove the dual fields by using their equations of motion.

Alternatively, we can use the equations of motion for the original fields to remove these

in favour of the dual ones which gives the dual action. This is a rather complicated

computation so we simply quote the result here and refer the reader to appendix A for

the details. A more detailed analysis of this Abelian to non-Abelian duality in various

dimension will appear in an upcoming paper [53]. The dual Lagrangian is given by

S =
1

2

∫ [

R ∗ 1−
1

2
Gı̂ ̂dL

ı̂ ∧ ∗dL̂ −
1

2
GαβdL

α ∧ ∗dLβ −Gı̂αdL
ı̂ ∧ ∗dLα (5.16)

−
1

2
G̃abDaa ∧ ∗Dab −

1

2
G̃abDba ∧ ∗Dbb + H̃a

bDaa ∧ ∗Dbb −
1

2
G−1αβD̂ρα ∧ ∗D̂ρβ

−
1

2
G̃κλDξ̃κ ∧ ∗Dξ̃λ − G̃aκDaa ∧ ∗Dξ̃κ + H̃κ

aDba ∧ ∗Dξ̃κ −
1

2
G−1

κλU
κ ∧ ∗Uλ

−
1

2
G̃ı̂ ̂F

ı̂ ∧ ∗F ̂ −
1

3
M ı̂aba

aDab ∧ F ı̂ −G−1
κλG

aκDba ∧ Uλ +G−1
κλHa

κDaa ∧ Uλ

+G−1
ληHκ

λDξ̃κ ∧ Uη −G−1αβGβ ı̂D̂ρα ∧ F ı̂ +
1

3
M ı̂κ

aξ̃κDba ∧ F ı̂

+
1

3
M ı̂a

baaDbb ∧ F ı̂ −
1

3
M ı̂aκa

aDξ̃κ ∧ F ı̂ −
1

3
M ı̂ b

abaDab ∧ F ı̂

−
1

3
M ı̂

abbaDbb ∧ F ı̂ −
1

3
M ı̂κ

abaDξ̃κ ∧ F ı̂ +
1

3
M ı̂aκξ̃

κDaa ∧ F ı̂

−
1

3
M ı̂aκA

ı̂ ∧Daa ∧Dξ̃κ −
1

3
M ı̂κ

aAı̂ ∧Dba ∧Dξ̃κ +
1

3
M ı̂a

bAı̂ ∧Daa ∧Dbb

−
1

6
M ı̂

abAı̂ ∧Dba ∧Dbb −
1

6
M ı̂abA

ı̂ ∧Daa ∧Dab + V ∗ 1

]

,

where, as promised, we traded the scalars ξκ and vectors Aα, for the vectors Aκ and scalars

ρα respectively. It should be stressed that for simplicity we did not take into account the

moduli dependence of the coupling functions. In particular, we have frozen the complex

structure moduli in all these considerations. The coupling functions appearing in the
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dualised action (5.16) are defined as

H̃a
b = Ha

b −GbλG−1
κλHa

κ, G̃aκ = G̃aκ −G−1
ληHa

λHκ
η,

H̃κ
a = Hκ

a −GaηG−1
ληHκ

λ, G̃ab = G̃ab −G−1
κλHa

κHb
λ,

G̃ab = Gab −GaκGbλG−1
κλ, G̃κλ = G̃κλ −G−1

ηρHκ
ηHλ

ρ,

G̃ı̂ ̂ = Gı̂ ̂ −G−1αβGα ı̂Gβ ̂ .

(5.17)

The action includes the gauge-invariant expressions

D̂ρα = Dρα +
1

2
Mαa

b(aaDbb − bbDaa)−
1

2
Mαaba

aDab −
1

2
Mα

abbaDbb , (5.18)

Uκ = F κ +Mı̂λ
κξ̃λF ı̂ +Mı̂a

κaaF ı̂ −Mı̂
aκbaF

ı̂ , (5.19)

where

Dρα = dρα − kακA
κ −

1

2
kακMı̂a

κaaAı̂ +
1

2
kακMı̂

aκbaA
ı̂ , (5.20)

F κ = dAκ +
1

2
(k̃a

̂
Mı̂a

κ + k̂aMı̂
aκ)Aı̂ ∧A̂. (5.21)

We expect that the non-Abelian structure is linked to the coupling Mαa
b. This is not

obvious from the expressions above but we may use the relations (5.14) to make it manifest,

namely

Dρα = dρα − kακA
κ +

1

2
Mαa

b(kı̂ba
a − k̃a

ı̂
bb)A

ı̂ ,

kακF
κ = kακdA

κ + k̃a
̂
kı̂bMαa

bAı̂ ∧A̂ . (5.22)

This also shows that the field strength satisfies the projection condition (4.32) that was

required for closure of the gauged subalgebra.

Let us now split the index ı̂ further into (0, i). This allows us to denote ω0 as the two-

form Poincaré dual to the base of the elliptic fibration (which we assume to be closed in

the following), ωi as dual to blow-up divisors and ωα as dual to vertical divisors. Similarly

we now understand the splitting αI = (αa, ακ) and βI = (βa, βκ) as being such that αa

and βa have a component with one leg in the fiber while ακ and βκ have legs only in the

base directions. This decomposition justifies the constraints (5.15) which may be seen by

counting legs of the forms present. We also now impose that

M0κ
λ = δλκ , Miκ

λ = 0 , (5.23)

the first of which shows that ακ and βκ form a symplectic basis for three-forms on the

base. With this decomposition we see that the gaugings decompose as k̃a
ı̂
= (0, k̃ai ) and

kı̂a = (0, kia).

Having performed this further decomposition the field strengths and covariant deriva-

tives may be written as

Uκ = F κ + (ξ̃κ +M0a
κaa −M0

aκba)F
0 +Mia

κaaF i −Mi
aκbaF

i ,
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F κ = dAκ +
1

2
(k̃ajMia

κ + kjaMi
aκ)Ai ∧Aj ,

D̂ρα = Dρα +
1

2
Mαa

b(aaDbb − bbDaa)−
1

2
Mαaba

aDab −
1

2
Mα

abbaDbb ,

Dρα = dρα − kακA
κ +

1

2
Mαa

b(kiba
a − k̃ai bb)A

i . (5.24)

From these expressions we clearly see that a non-Abelian gauge symmetry has emerged

after the dualisation. In particular, only the field strength F κ includes the usual non-

Abelian term Ai ∧ Aj so that together {F i, F κ} correspond to the field strengths of the

extended Heisenberg algebra.

To close this section let us discuss the gauge coupling function in some detail. As

already mentioned, the Heisenberg group is both non-compact and non-semisimple so the

kinetic terms for the gauge bosons cannot be proportional to the Killing form. From (5.16)

and using the definition for Uκ in (5.24) we can read off these kinetic terms as

G−1
κλU

κ ∧ ∗Uλ + G̃ijF
i ∧ ∗F j = G−1

κλF
κ ∧ ∗F λ + 2G−1

κλ(Mia
κaa −Mi

aκba)F
λ ∧ ∗F i

(G−1
κλ(Mia

κaa −Mi
aκba)(Mja

λaa −Mj
aλba) + G̃ij)F

i ∧ ∗F j ,

where here we have set A0 to zero in order to focus only on a particular set of terms. The

gauge kinetic function that we see here is independent of the gaugings that we have intro-

duced so corresponds to the supersymmetric result that is also present in the Calabi-Yau

fourfold reduction. We also note that it contains the scalars aa and ba in a way that causes

it to transform under the gauge symmetries. It is then clear that the constraints (5.14) are

needed in order to ensure that the transformation of aa and ba in the gauge kinetic function

cancels the variation of F i and F κ and so leaves these terms invariant. When the F-theory

limit is taken and these kinetic terms are lifted to the corresponding four-dimensional ef-

fective theory, this property must be preserved. In addition to this the the gauge kinetic

function must become a holomorphic function of the complex coordinates, in order for the

action to be supersymmetric.

6 Conclusions

In this paper we discussed the appearance of discrete non-Abelian gauge symmetries in

Type IIB compactifications to four space-time dimensions. We first reviewed the relation-

ship between discrete symmetries and the gaugings of the isometries of the scalar manifold.

We then analysed the symmetries in weakly coupled Type IIB orientifold compactifications

that are captured by a generalisation of the Heisenberg algebra. We turned to the gaug-

ings and argued that, when including a D7-brane sector, it appears impossible to find

non-Abelian discrete symmetries at weak string coupling. In orientifold reductions with

torsion homology we argued that non-Abelian discrete symmetries appear to be in tension

with simple supersymmetry considerations. Having carried this out we suggested a concrete

scenario which demonstrated that non-Abelian discrete symmetries can arise in more gen-

eral F-theory compactifications with mutually non-local seven-branes. Remarkably, these

considerations require the use of the full power of F-theory away from the weak coupling
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limit. We argued that the gauge fields on general (p, q)-seven-branes can gauge both R-R

and NS-NS axions yielding a non-Abelian gauge structure generalising the Heisenberg alge-

bra. The sources of these gaugings where identified to be: (1) geometric Stückelberg terms

on (p, q)-seven-branes, (2) fluxes on seven-branes, (3) torsion three-form cohomology in the

six-dimensional compactification space B3. It was a non-trivial task to confirm these state-

ments using the duality between M-theory and F-theory. Importantly this required the

dualisation of an Abelian theory into a non-Abelian theory in three space-time dimensions.

We have argued that there is a setting in which all fields associated with the gaug-

ings we described arise from seven-branes. To make this more precise one can follow the

strategy of [24, 25]. In these works it was suggested that for Abelian groups the degrees of

freedom in the non-linearly charged Na can be captured by open string degrees of freedom

φ linearly charged under the Abelian group. It is natural to conjecture that one can proceed

analogously for the non-Abelian configurations considered in this work. For the Heisenberg

group such linearly charged states φ are, for example, given by the theta representation.

However, note that these representations of the continuous Heisenberg group are infinite

dimensional. At first, this appears to be at odds with the interpretation of φ as a matter

state on intersecting seven-branes. However, the theta representations of the discrete non-

Abelian group can be finite dimensional. Recalling that we have found that there is no

vacuum of our theory in which the continuous symmetry is unbroken it might therefore be

the case that geometrically only the discrete non-Abelian group is realised. Our analysis

suggests that it might be possible to find geometries with intersecting seven-branes that

have matter linearly charged under a discrete Heisenberg group [36, 54]. The non-Abelian

nature of the gaugings then might be tied to the requirement that string junctions between

certain seven-branes, as for example (1,0)- and (0,1)-branes, have to exist and end on a third

seven-brane. We leave a deeper investigation of such seven-brane settings to future work.

It is interesting to summarise the complications that we had to face in our analysis.

Firstly, one could have thought that a straightforward generalisation of the reductions with

torsion homology [36] leads to Calabi-Yau fourfold reductions with the desired non-Abelian

structure. However, an explicit computation shows that this is not the case. More precisely,

a direct reduction of eleven-dimensional supergravity formulated with the three-form field

yields only Abelian gaugings even when including torsional cohomology. The non-trivial ob-

servation is, however, that this direct reduction is not yet in the correct duality frame to per-

form the lift to F-theory. After performing the duality, non-Abelian gaugings arise and al-

low us to identify genuine F-theory gaugings in settings with (p, q)-seven-branes. Secondly,

showing consistency with supersymmetry turned out to be a non-trivial task which we will

to return to. Indeed, in the Type IIB analysis of section 3.2 we found that the reduction

considered is not supersymmetric. The local form of the N = 1 complex moduli space aris-

ing in a general F-theory setting dictates constraints on the allowed holomorphic gaugings.

Let us close by highlighting the intriguing observation we made concerning the gauge

coupling functions in the considered F-theory effective actions. If one is able to gauge a non-

compact and non-semisimple non-Abelian group, such as the extensions of the Heisenberg

groups we found in our settings, then one necessarily has to have a gauge coupling function

depending on the complex scalar fields that are charged. In fact, this dependence will by
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partly dictated by the gauge invariance of the action. We have shown that this consistency

requirement is automatically satisfied for the F-theory settings we considered. Interestingly,

in our setups the modifications of the gauge coupling function are independent of the

parameters determining the subgroup of the isometry group that is gauged. One can thus

infer properties of the gauge coupling functions in this F-theory reduction by analysing

the isometries of the scalar manifold. We have checked that the required modifications

give precisely the kinetic mixing terms in standard Type IIB reduction with D7-branes.

It would be interesting to understand if this link between holomorphic isometries and the

form of the gauge coupling function is a general feature of string theory effective actions.
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A Dualisation of the three-dimensional action

We wish to perform the dualisation of the action (5.7) and to put the fields of the action

into a frame that is appropriate for the F-theory lift. In order to simplify the analysis we

will first freeze out the moduli dependence of GΣΛ, G̃IJ , G
IJ and HI

J . We will also make

use of (5.10) to remove NΣΛ
I and NΣΛI from the action. We will then split the index on

each field such that those that are to be dualised are identified from those which are not.

This will be carried out by splitting

LΣ = (Lı̂ , Lα) , AΣ = (Aı̂ , Aα) , ξ̃I = (aa, ξ̃κ) , ξI = (−ba, ξκ) . (A.1)

where the fields ξκ and Aα are to be dualised. With this splitting we will also restrict the

gaugings as shown in (5.13) and (5.14) so that the covariant derivatives and field strengths

are given by

Daa = daa − k̃a
ı̂
Aı̂ , Dba = dba + kı̂aA

ı̂ ,

Dξ̃κ = dξκ , Dξκ = dξκ − kακA
α ,

F ı̂ = dAı̂ , Fα = dAα , (A.2)

and will restrict MΣI
J as shown in (5.15). Performing these steps gives the starting action

on which we will perform the duality, given by

S =
1

2

∫ [

R ∗ 1−
1

2
Gı̂ ̂dL

ı̂ ∧ ∗dL̂ −
1

2
GαβdL

α ∧ ∗dLβ −Gı̂αdL
ı̂ ∧ ∗dLα (A.3)

+Ha
bDaa ∧ ∗Dbb − G̃aκDaa ∧ ∗Dξ̃κ −Ha

κDaa ∧ ∗Dξκ +Hκ
aDba ∧ ∗Dξ̃κ

−Hλ
κDξκ ∧ ∗Dξ̃λ −

1

2
G̃abDaa ∧ ∗Dab −

1

2
GabDba ∧ ∗Dbb −

1

2
G̃κλDξ̃κ ∧ ∗Dξ̃λ

−
1

2
GκλDξκ ∧ ∗Dξλ −Gα ı̂F

α ∧ ∗F ı̂ +
1

3
Mαa

bAα ∧Daa ∧Dbb +GaκDba ∧ ∗Dξκ
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+
1

3
M ı̂a

bAı̂ ∧Daa ∧Dbb −
1

3
M ı̂aκA

ı̂ ∧Daa ∧Dξ̃κ −
1

3
M ı̂a

κAı̂ ∧Daa ∧Dξκ

−
1

3
M ı̂κ

aAı̂ ∧Dba ∧Dξ̃κ +
1

3
M ı̂

aκAı̂ ∧Dba ∧Dξκ +
1

3
M ı̂λ

κAı̂ ∧Dξκ ∧Dξ̃λ

−
1

2
GαβF

α ∧ ∗F β −
1

2
Gı̂ ̂F

ı̂ ∧ ∗F ̂ −
1

3
Mαaba

aDab ∧ Fα −
1

3
M ı̂aba

aDab ∧ F ı̂

+
1

3
Mαa

baaDbb ∧ Fα +
1

3
M ı̂a

baaDbb ∧ F ı̂ −
1

3
M ı̂aκa

aDξ̃κ ∧ F ı̂ −
1

3
M ı̂a

κaaDξκ ∧ F ı̂

−
1

6
Mα

abAα ∧Dba ∧Dbb −
1

6
M ı̂abA

ı̂ ∧Daa ∧Dab −
1

6
M ı̂

abAı̂ ∧Dba ∧Dbb

−
1

6
MαabA

α ∧Daa ∧Dab −
1

3
Mαb

abaDab ∧ Fα −
1

3
M ı̂ b

abaDab ∧ F ı̂

−
1

3
M ı̂

abbaDbb ∧ F ı̂ −
1

3
M ı̂κ

abaDξ̃κ ∧ F ı̂ +
1

3
M ı̂

aκbaDξκ ∧ F ı̂ −
1

3
Mα

abbaDbb ∧ Fα

+
1

3
M ı̂aκξ̃

κDaa ∧ F ı̂ +
1

3
M ı̂κ

aξ̃κDba ∧ F ı̂ +
1

3
kακM ı̂λ

κξ̃λAα ∧ F ı̂

+
1

3
kακM ı̂λ

κξ̃λAı̂ ∧ Fα −
1

3
M ı̂λ

κξ̃λDξκ ∧ F ı̂ +
1

3
M ı̂a

κξκDaa ∧ F ı̂

−
1

3
M ı̂

aκξκDba ∧ F ı̂ +
1

3
M ı̂κ

λξλDξ̃κ ∧ F ı̂ + V ∗ 1

]

.

This action has a purely Abelian set of gauge symmetries.

Next let us define the projectors Πβ
α and Πκ

λ which allow us to identify the fields that

participate in the gaugings. These satisfy

Πβ
α kβκ = kακ , kαλΠ

λ
κ = kακ ,

Πγ
αΠ

β
γ = Πβ

α , Πκ
δ Π

δ
λ = Πκ

λ , (A.4)

and may be constructed using the so-called Moore-Penrose pseudo-inverse of the matrix

kακ which we denote by ǩκα. Then,

Πβ
α = kακǩ

κβ , Πλ
κ = ǩκαkαλ . (A.5)

In addition to these constraints we will also demand that the projectors satisfy certain

symmetry conditions such that

Πγ
αGγβ = Πγ

βGγα , Πκ
ηG

ηλ = Πλ
ηG

ηκ . (A.6)

These conditions make the pseudo-inverse ǩκα unique for a given kακ. For convenience we

will also define the projectors in the orthogonal directions given by

Π⊥
β
α = (δα

β −Πβ
α) , Π⊥

λ
κ = (δκ

λ −Πλ
κ) . (A.7)

Having defined these quantities we are now in a position to propose the parent action,

from which we will deduce the dual. This is given by,

S =
1

2

∫ [

R ∗ 1−
1

2
Gı̂ ̂dL

ı̂ ∧ ∗dL̂ −
1

2
GαβdL

α ∧ ∗dLβ −Gı̂αdL
ı̂ ∧ ∗dLα (A.8)

+ (G−1
ησHa

λHκ
σHa

b −GbλG−1
κηHa

κ)Π⊥

η
λDaa ∧ ∗Dbb −Ha

λΠκ
λDaa ∧ ∗Dξκ
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+ (G−1
λρHa

λHκ
ηΠ⊥

ρ
η − G̃aκ)Daa ∧ ∗Dξ̃κ

−GaηG−1
ησHκ

λΠ⊥
σ
λDba ∧ ∗Dξ̃κ +Hκ

aDba ∧ ∗Dξ̃κ +GaκDba ∧ ∗Dξκ

−GaλΠ⊥
κ
λDba ∧ ∗Dξκ +Hλ

ηΠ⊥
κ
ηDξκ ∧ ∗Dξ̃λ −Hλ

κDξκ ∧ ∗Dξ̃λ

−GβγΠ⊥
αγMαb

abaDab ∧ F β +
1

2
G−1

κηHa
κHb

λΠ⊥

η
λDaa ∧ ∗Dab

−
1

2
G̃abDaa ∧ ∗Dab +G−1

ηρHa
κΠ⊥

η
κDaa ∧ Uρ −

1

2
GabDba ∧ ∗Dbb

+
1

2
Dba ∧ ∗DbbG

aκGbλG−1
κηΠ⊥

η
λ −DbaG

aκG−1
ηρP

η
κ ∧ Uρ

+
1

2
Dξ̃κ ∧ ∗Dξ̃λG−1

ησHκ
ηHλ

ρΠ⊥
σ
ρ −

1

2
Dξ̃κ ∧ ∗Dξ̃λG̃κλ

+Dξ̃κG−1
ληHκ

λΠ⊥
η
σ ∧ Uσ −

1

2
GκρΠλ

ρDξκ ∧ ∗Dξλ +DξκΠ⊥
κ
η ∧ Uη −DξκΠ

κ
η ∧ Uη

− D̂ρ̃αΠ⊥
α
β ∧ F β − D̂ρ̃αGβ ı̂G

−1αβ ∧ F ı̂ −
1

2
G−1αβD̂ρ̃α ∧ ∗D̂ρ̃β

+Π⊥

η
λM ı̂κ

λξηDξ̃κ ∧ F ı̂ −Π⊥
κ
λM ı̂

aλξκDba ∧ F ı̂ +Π⊥
λ
κM ı̂a

κξλDaa ∧ F ı̂

+
1

3
M ı̂a

bAı̂ ∧Daa ∧Dbb −
1

3
M ı̂aκA

ı̂ ∧Daa ∧Dξ̃κ −
1

3
M ı̂κ

aAı̂ ∧Dba ∧Dξ̃κ

−
1

2
Π⊥

β
αMβaba

aDab ∧ Fα −
1

2
Π⊥

β
αMβ

abbaDbb ∧ Fα

−
1

2
Π⊥

η
λG

−1
ηρU

λ ∧ ∗Uρ +
1

2
Gα ı̂Gβ ̂G

−1αβF ı̂ ∧ ∗F ̂ −
1

2
Gı̂ ̂F

ı̂ ∧ ∗F ̂ −
1

3
M ı̂aba

aDab ∧ F ı̂

+
1

3
M ı̂a

baaDbb ∧ F ı̂ −
1

3
M ı̂aκa

aDξ̃κ ∧ F ı̂ −
1

6
M ı̂abA

ı̂ ∧Daa ∧Dab

−
1

6
M ı̂

abAı̂ ∧Dba ∧Dbb −
1

3
M ı̂ b

abaDab ∧ F ı̂ −
1

3
M ı̂

abbaDbb ∧ F ı̂

−
1

3
M ı̂κ

abaDξ̃κ ∧ F ı̂ +
1

3
M ı̂aκξ̃

κDaa ∧ F ı̂ +
1

3
M ı̂κ

aξ̃κDba ∧ F ı̂

]

.

In this action the quantities Uκ and D̂ρα are not a priori field strengths and covariant

derivatives but are instead given by

Uκ = Πκ
λdB

λ +Π⊥
κ
λH

λ +
1

2
Mı̂a

κF ı̂aa +
1

2
Mı̂a

κAı̂Daa

+
1

2
Mi

aκF iba +
1

2
Mı̂

aκAı̂Dba +Mı̂λ
κF ı̂ ξ̃λ ,

D̂ρα = Πβ
αdρβ +Π⊥

β
αhβ −

1

2
kακB

κ −
1

2
Mβaba

aDab +
1

2
Mαa

baaDbb

−
1

2
Mαa

bbbDaa −
1

2
Mα

abbaDbb) , (A.9)

where the fundamental variables in (A.8) are treated as being the variables of (A.3) as well

as Bκ, Hκ, ρβ and hβ .

To verify that the parent Lagrangian (A.8) is indeed equivalent to the starting La-

grangian (A.3) we perform the variation with respect to dual fields that we have introduced.

Varying with respect to Bκ and Hκ we find that

Uκ +
1

2
Daa ∧DabǩκαMαab −Daa ∧Dbbǩ

καMαa
b +

1

2
Dba ∧Dbbǩ

καMα
ab

− ∗DξηG
ηλΠ⊥

κ
λ − ∗DaaHa

λΠ⊥
κ
λ + ∗DbaG

aλΠ⊥
κ
λ − ∗Dξ̃ηHη

λΠ⊥
κ
λ
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− ξ̃ηΠκ
λF

ı̂M ı̂η
λ −Gαβ ǩ

καd ∗ F β −Gα ı̂ ǩ
καd ∗ F ı̂ = 0 , (A.10)

where the Πκ
λ projection of this equation is obtained from the variation with respect to

Bκ and the Π⊥
κ
λ projection is obtained from the variation with respect to Hκ. Similarly

varying with respect to ρβ and hβ gives

D̂ρ̃α +Gαβ ∗ F β +Gα ı̂ ∗ F
ı̂ = 0 , (A.11)

where the Πβ
α projection comes from the variation with respect to ρα and the Π⊥

β
α projection

comes from the variation with respect to hβ .

Substituting these equations into (A.8) and making use of certain total derivative

identities we return to the original Lagrangian (A.3). This identifies that the La-

grangian (A.8) represents an appropriate parent Lagrangian with which to perform the

dualisation of (A.3).

Next we may consider varying the action (A.8) with respect to the old variables ξκ and

Aα. The variation with respect to Aα is most easily understood by splitting it into its Πβ
α

and Π⊥
β
α projections. The Πβ

α projection contracted with ǩακ gives

DξηG
ηλΠκ

λ +Dξ̃ηHη
λΠκ

λ +DaaHa
λΠκ

λ −DbaG
aλΠκ

λ +Πκ
λ ∗ Uλ = 0 , (A.12)

while the Π⊥
β
α projection gives a Bianchi identity for hβ which implies that

D̂ρα = dρβ −
1

2
kβκB

κ −
1

2
Mαaba

aDab +
1

2
Mαa

baaDbb

−
1

2
Mαa

bbbDaa −
1

2
Mα

abbaDbb , (A.13)

Similarly the variation of (A.8) with respect to ξκ is most easily understood by considering

its projections with respect to Πκ
λ and Π⊥

κ
λ. The Πκ

λ projection gives an equation which

represents the derivative of (A.12) so imposes no additional constraint. Alternatively, the

Π⊥
κ
λ projection implies a Bianchi identity for Hκ which is solved by

Uκ = dBλ +
1

2
Mı̂a

κF ı̂aa +
1

2
Mı̂a

κAı̂Daa

+
1

2
Mı̂

aκF ı̂ba +
1

2
Mı̂

aκAı̂Dba +Mı̂λ
κF ı̂ ξ̃λ . (A.14)

Finally we may form a further useful equation by taking the exterior derivative of (A.12)

and contracting with ǩακ, which gives

Πα
βF

β −G−1
κλHa

κǩλαdDaa −G−1
ληHκ

λǩηαdDξ̃κ

+GaλG−1
κλǩ

καdDba −G−1
κλǩ

καd ∗ Uλ = 0 . (A.15)

Then splitting Dξκ and Fα into their two projections in (A.8) we may use (A.12)

to eliminate Πλ
κDξλ and (A.15) to eliminate Πα

βF
β . We may then use (A.13), (A.14)

and various total derivative identities to eliminate the remaining projections Π⊥
λ
kDξλ and

Π⊥
α
βF

β . Having done this we arrive at the dual Lagrangian
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S =
1

2

∫ [

R ∗ 1−
1

2
Gı̂ ̂dL

ı̂ ∧ ∗dL̂ −
1

2
GαβdL

α ∧ ∗dLβ −Gı̂αdL
ı̂ ∧ ∗dLα (A.16)

−
1

2
G̃abDaa ∧ ∗Dab −

1

2
G̃abDba ∧ ∗Dbb + H̃a

bDaa ∧ ∗Dbb −
1

2
G−1αβD̂ρα ∧ ∗D̂ρβ

−
1

2
G̃κλDξ̃κ ∧ ∗Dξ̃λ − G̃aκDaa ∧ ∗Dξ̃κ + H̃κ

aDba ∧ ∗Dξ̃κ −G−1
κλG

aκDba ∧ Uλ

+G−1
κλHa

κDaa ∧ Uλ +G−1
ληHκ

λDξ̃κ ∧ Uη −G−1αβGβ ı̂D̂ρα ∧ F ı̂

−
1

3
M ı̂aκA

ı̂ ∧Daa ∧Dξ̃κ −
1

3
M ı̂κ

aAı̂ ∧Dba ∧Dξ̃κ +
1

3
M ı̂a

bAı̂ ∧Daa ∧Dbb

−
1

2
G−1

κλU
κ ∧ ∗Uλ −

1

2
Gı̂ ̂F

ı̂ ∧ ∗F ̂ −
1

3
M ı̂aba

aDab ∧ F ı̂ +
1

2
G−1αβGα ı̂Gβ ̂F

ı̂ ∧ ∗F ̂

+
1

3
M ı̂a

baaDbb ∧ F ı̂ −
1

3
M ı̂aκa

aDξ̃κ ∧ F ı̂ −
1

6
M ı̂abA

ı̂ ∧Daa ∧Dab

−
1

6
M ı̂

abAı̂ ∧Dba ∧Dbb −
1

3
M ı̂ b

abaDab ∧ F ı̂ −
1

3
M ı̂

abbaDbb ∧ F ı̂

−
1

3
M ı̂κ

abaDξ̃κ ∧ F ı̂ +
1

3
M ı̂aκξ̃

κDaa ∧ F ı̂ +
1

3
M ı̂κ

aξ̃κDba ∧ F ı̂ + V ∗ 1

]

.

We may then make the symmetries of (A.17) more transparent by making the field redefi-

nition

Bκ = Aκ +
1

2
Mı̂a

κAı̂aa −
1

2
Mı̂

aκAı̂ba . (A.17)

This allows Uκ and D̂ρα to be written as shown in (5.18).
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[36] M. Berasaluce-González, P.G. Cámara, F. Marchesano, D. Regalado and A.M. Uranga,

Non-Abelian discrete gauge symmetries in 4d string models, JHEP 09 (2012) 059

[arXiv:1206.2383] [INSPIRE].
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[39] M. Berasaluce-González, L.E. Ibáñez, P. Soler and A.M. Uranga, Discrete gauge symmetries

in D-brane models, JHEP 12 (2011) 113 [arXiv:1106.4169] [INSPIRE].

[40] C.M. Hull, A. Karlhede, U. Lindström and M. Roček, Nonlinear σ models and their gauging
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