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Abstract. In this review, we discuss the role of quantum statistics in twisted Poincaré
invariant theories. It is shown that, in order to have twisted Poincaré group as the symmetry
of a quantum theory, statistics must be twisted. It is also confirmed that the removal of UV-
IR mixing (in the absence of gauge fields) in such theories is a natural consequence.

1. Introduction

Following the application of Drinfel’d’s twist for the Poincaré group on the noncommutative
Groenewold-Moyal (GM) plane [2, 3], much interest has been generated in the study of its
physical consequences. One such consequence pointed out in [4, 5] is that the usual statistics
is not compatible with the twisted action of the Poincaré group. This is in agreement with
what is already known in quantum group theory. Among the consequences of this result is
the removal of UV-IR mixing [6] in the S-matrix in the absence of gauge fields.

In this talk we demonstrate that if one wants to retain the twisted Poincaré symmetry in
a quantum theory, then one is forced to implement twisted statistics. Secondly, the form of
the interaction is dictated by quantum symmetry as well.

The paper is organized as follows. After briefly reviewing the Drinfel’d twist for Poincaré
group in the section 2, we elaborate on its implications for quantum statistics in section 3.
Section 4 discusses the choice of the correct twisted Lorentz-invariant interaction Hamiltonian.
In section 5, we show by an explicit calculation that the correlation functions and hence the
S-matrix of the noncommutative quantum field theory (NCQFT) with usual statistics are
not invariant under the twisted symmetry, while the same are manifestly so for the theory
with twisted statistics. Section 6 discusses some issues related to the functional integral for
theories with twisted Poincaré symmetry. Section 7 describes the notion of locality in the
twisted statistics approach.

! The talk is based on the work in reference [1]
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2. The Twist
The action of a symmetry group on the tensor product of representation spaces carrying the
same representation p is given by a coproduct A:

g> (d@x) = (p@p)Ag) (¢ ® X). (2.1)

If the representation space happens to be an algebra as well, we further have the compatibility
condition

m((p® p)A(g)(¢ ® x)) = plg) m(¢ ® x) (2:2)

where m is the multiplication map.
The GM plane is the algebra Ay of functions f € R™ with the product defined by

frg=m(f®@g)=mo(Ff®g) (2.3)
where myg is the usual point-wise multiplication,
F =2 hel  p o~ g, (2.4)

is called the twist element, and this rule for multiplication is often called the star product.
Explicitly (2.3) gives

_ igw 00
(720 = o (39 55 ) T (2.5
The usual coproduct Ay on the Poincaré group,
Ag(A) = A x A, A € Poincaré group, (2.6)

is not compatible with the star product. But a new coproduct Ay obtained using the twist is

compatible, where
Ag(A) = F7LAQ(N)F. (2.7)

For details see [2, 3]. Note that Ag(a) = Ao(a) if a is a translation.

3. Twisted Statistics

Twisting the coproduct implies twisting of statistics in quantum theory, as we will argue in
this section. This result holds for an n-particle quantum mechanical system and also for
quantum field theory.

3.1. Quantum Mechanics
The wave function of a two-particle system for 8#¥ = 0 in position representation is a function
of two variables, hence lives in Ay ® Ap, the tensor product of two copies of the algebra of
functions on commutative R”, and transforms according to the usual coproduct Ag. Similarly
in noncommutative case, the wavefunction lives in Ay ® Ay and transforms according to the
twisted coproduct Ay.

A general element of the tensor product has no particular symmetry. Usually we require
that the physical wave functions describing identical particles are either symmetric (bosons)
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or antisymmetric (fermions). This requires us to work with either the symmetrized or
antisymmetrized tensor product

4OsX = (GOX+XDE), (31)
p®ax = %(¢®X—X®¢) (3:2)
which satisfy
¢ ®sx =+x @5 ¢, (3.3)
¢ Rax=—X®a0. (3.4)

In a Lorentz-invariant theory, these relations have to hold in all frames of reference. In other
words, performing a Lorentz transformation on ¢ ® x and then (anti-)symmetrizing has to be
the same as (anti-)symmetrization followed by the Lorentz transformation.

It is not difficult to show that the twisted coproduct (2.7) is not compatible with usual
symmetrization/antisymmetrization (3.1, 3.2). To see this, let us write ! and F in the
Sweedler notation (see for e.g. page 5 of [7]) as

Fo= ) fWeerd, F=) fYefP, wih (3.5)
FIF = 101=) fWeflig f@fe) (3.6)
of

Under a Lorentz transformation A,

Arp@x — (p®@p)Ag(A)(d ® x)
= Y p(fVAfVNe @ p(FOATD)x. (3.7)
a,B

Subsequent symmetrization/antisymmetrization gives us

ST (p(fVAFDG @ p(FONFD I £ p(FPAF)x @ p(fVNFDP)g)  (3.8)

8
whereas
(P @ p)Ag(A) (P ®s.4 x) =
ST (p(fVNFD)g @ p(fPAFT)x + p(FDAFDP)x @ p(fPAF)0)  (3.9)
o'

which is not the same as (3.8) [See [5] for the same proof which avoids Sweedler notation.].
The origin of this difference can be traced to the fact that the coproduct is not cocommutative
except when 0*” = 0.

There is another way to phrase this compatibility (or lack thereof) of Lorentz
transformations and symmetrization. Let 79 be the statistics (flip) operator associated with
exchange:

(¢ ®x) =x®¢. (3.10)
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In usual quantum theory, we have the axiom that 7y is superselected, i.e., all the observables
commute with 9. What this means is that no operator in the physical Hilbert space can
change statistics. In particular the quantum operators that implement Lorentz symmetry
must commute with the statistics operator. Also all the states in a given superselection
sector are eigenstates of 7y with the same eigenvalue. Given an element ¢ ® x of the tensor
product, the physical Hilbert spaces can be constructed from the elements

(*57) @e . @)

As is obvious from eq (3.8,3.9),
7o Dg(A) # Ag(A)To (3.12)

showing that the usual statistics is not compatible with the coproduct. But notice that the
new statistics operator

= F 1 nF, =131 (3.13)

does commute with the twisted coproduct. The states constructed according to

1 —my
2

1 4+7
2

¢®sgx5< )(¢®x)7 ¢®AGXE< )(¢®X) (3.14)

form the physical two-particle Hilbert spaces of (generalized) bosons and fermions and obey
twisted statistics. '
For plane waves e,(x) = e”"P¥ we get

1 :l: 7-9 . v
( 2 ) (ep®eq) = ep®sy,a €q= £ P Ve @, 4, ¢p, (3.15)
_iaa.# orv ai'f
(ep ®S,44 eq)($1’ z2) = +e 2 (ep 89,40 eq)(x% 1) . (3.16)

Using the anti-symmetry of 6*” 1y may also be equivalently written as
19 =F ?1p. (3.17)

This form of 7y allows to make contact with quantum group theory, and identifies F~2 as the
corresponding R-matrix.

3.2. Statistics of Quantum Fields

A quantum field on evaluation at a spacetime point (or more generally on pairing with a test
function) gives an operator acting on a Hilbert space. A field at z; acting on the vacuum
gives a one-particle state centered at z1. When we write ®(x1) ®(z2) we mean (PQ®)(z1,x2).
Acting on the vacuum we generate a two-particle state, where one particle is centered at xy
and the other at xo. (We retain just the creation operator part of ® here.) Notice that it
just involves evaluation of the two functions in the tensor product and not a multiplication
map as we get a function of two variables. On the other hand the star product is a map from
Ay @ Ag to Ay and gives a function of a single variable.
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If a,, is the annihilation operator of the second-quantized field ®(x), we want, as in standard
quantum field theory,

02 @afl0) = ela), (3.18)
50000 @alalio) = (F57) (60 clana)
= (ep®59,140 eq)(xlax2> (3~19)

[We suppress spin indices. Also here we retain only the annihilation part of the field in
®(-)]. Note the reversal of p and ¢ from LHS to RHS of (3.19). This is the standard
prescription used to establish the connection between quantum field operators and (multi-
)particle wavefunctions. The correctness of this prescription can be verified by applying it to
the fermionic case, for 6#¥ = 0.

This compatibility between twisted statistics and Poincaré invariance has profound
consequences for commutation relations. For example when the states are labeled by
momenta, we have, from exchanging p and ¢ in (3.19)

1P, q) 55,40 = £ P |q,p)s, 4, (3:20)
This is the origin of the commutation relation
a;g a}} = 0" Pudv ajz a;; . (3.21)

The adjoint relation ‘
apag =+ Pt g q, (3.22)

also follows from the complex conjugate of (3.19) on using (3.16).
The statistics induced on the free quantum fields by (3.19) is given, on using (3.16), by

ion -2, 59,
) (2)d T (20) = e 75T &) (29)® ) (21) . (3.23)

Any quantization has to be compatible with the above statistics of the fields.

So far we have had no occasion to use the algebraic properties of Ag. All we have used
is the assumption that the symmetry of the theory is the twisted Poincaré group symmetry.
That, of course, was forced on us from automorphism properties of Ajy.

4. Choice of Interaction Hamiltonian
The choice of the Hamiltonian is dictated by the requirement of twisted Poincaré invariance.

The interaction Hamiltonian is built out of fields. We need a multiplication map to write
down a Hamiltonian density starting from fields, as it is a scalar function of just one variable.
Also in order to have twisted Poincaré invariance, one has to ensure that the Hamiltonian
density transforms like a scalar field. This will only happen if we choose a star product (twisted
multiplication map) between the fields to write down the Hamiltonian density. Hence a generic
interaction Hamiltonian density involving just one Hermitian spin zero field (for simplicity)
is

Hi(z) = P(x)*xP(x) * - * P(x) (4.1)

where ®(x) obeys twisted statistics. This form of Hamiltonian and the twisted statistics of
the fields is all that is needed to show that there is no UV-IR mixing in this theory [4, 6].
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5. On the Invariance of Correlation Functions
i) The Twisted Action on the Tensor Product of Plane Waves:

As a preliminary to the calculations, we first consider the actions of the twisted coproduct
of the Poincaré group on the tensor products of plane waves.

On a single plane wave, the Lorentz transformation A and translation P, acts according
to

(Aep)(z) = ep(Aflx):eAp(x),

(Puep)(w) = —puep(x) (5.1)
where we used A~! = AT and P, = —i0,. Hence
Aep, =enp, Ouep = —ipuep . (5.2)

Let U denote the representation of the (enveloping algebra of the) Poincaré group on
arbitrary tensor products of plane waves. The latter respond to translations in the usual
manner, so we focus on Lorentz transformations A. On ey, the action of U(A) is as in (5.1):

U(A)ek = €Ak - (5.3)
On e, ® eg,, we must find the action using the coproduct:

UMNer, ®er, = Ap(Meg, @ ex,
—_ e—%auﬁll'/@au (A ® A)egauew(g)&,ekl ® Chy

e ¢ HARDOOL e, (5.4)
A
_ e%ky&,\e.kge/\kl @ €Akys
where
k1000 - ko = k1,(000)" Koy, 000 = AT1OA — 0. (5.5)
The action on ey, ® ey, ® ey, is found using the coproduct on Aj:
AH(Al) — (e—%(/\kl)”@“”au R e_%(Akl)HQF“/ay) (6_%6”6’“/@)8”/\ ® Ae%auetw@au) X
(e dpnan) o
It gives
U(AN)eg, ® e, ® ey = err, @ Dp(A1) (e, ® ery) (5.7)
where
Ag(Al) (6k2 X eks) = e%kl"sAe'erAkz X A26k3,
Mg = e BARIEMRLOMD, oL (i k)00, (5.8)
Thus _ .
U(A)ekl X ep, X gy = eEkl'5A'9'k2+§(k1+k2)'5A0'k3eAk1 & eAky ® EALs - (5.9)
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The action on ey, ® ey, ® er, ® ey, is found by splitting Ay again with a Ag. In this way
we see that in general,

i

k1-0A0-kg+2L(ki14ky)-6A0-k3+...(ki+ka..+kn_1)-0a-0k
U(A)er, @ep, . . .Qegy = 2k 245 (k1+k2)-070-k3+...(k1+k2...+kn_1)-0a Nepk; DAy - - DCARy -

(5.10)
it) Correlation Functions of NCQFT with Untwisted Statistics:
Consider the scalar field theory on the GM plane with the Lagrangian (density)
1 1, A
E*ziau@*a”q)—im@*CD—EQD*@*CI)*Q, (5.11)

where ®T = ®. Since statistics is not twisted, the annihilation and creation operators cp,c;r,
of ® are those for 6#¥ = 0.

The correlation functions of (5.11) are not Lorentz-invariant under the twisted coproduct.
It is enough to prove this result for the free field theory where A = 0.

The correlation functions for the product of an odd number of fields is zero. We show now
that the four-point function is not Lorentz-invariant under the twisted coproduct. That can
be adapted to show that the two-point function is Lorentz invariant. (Translational invariance
is preserved by both untwisted and twisted statistics.)

The scalar field has the mode expansion

d3p
O(x) = / 2r 22y <cpep(a:) + c;e,p(x)) (5.12)

where po = ++/[p]Z + m? and ¢, and ¢}, are the annihilation-creation operators for 9/ = 0:

[eprenl = 0= chcl],
er,cl] = 2pod®(p— k). (5.13)

The four point function in this case, with no statistics twist, is

(0|P(x1)P(22)P(23)P(24)|0) = D(z1—x2) D(x3 —x4) + D(z1 — x3) D(x9 — 24)
+D(x1 — x4) D(xg — x3)
= [+I11+1I1, (5.14)
D(z) = /d3p e”P® = D(Ax). (5.15)
(27)° (2po)
We now show that I and IT1 are invariant (for the twisted coproduct), but not I1.
Consider I:
I= 1/ (H d3pz) epy (T1)€py (T2)€ps (73)ep, (44) (2P10) (2p30) 0% (p1 — p2)0° (p3 — pa) -
(271‘)6 A (2]91'0) p1 P2 p3 P4
’ (5.16)

Applying (5.10) with k1 = p1, ke = —p2, ks = ps3, ks = —p4, we find that the phase in (5.10)
becomes 1 because of the §-functions and that

A:T — DAYz —20)) DA Hag —a4)) = 1. (5.17)
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A similar calculation shows the Lorentz invariance of I11.
Now consider I1:

3.,
II = 1)6/ <H (d bi ) epy (1) epy (T2)e—ps (23)e—p, (24) (2p10)(2020)5° (p1 — p3)5° (P2 — pa).

(27T 2]%’0)
_ (5.18)
So with k1 = p1, ko = po, k3 = —p3, ks = —p4 the phase becomes e3P10A0P2 g
3
A IT— / &*prd’py iP1-080-p2 i(Ap1)-(w1—x3) i(Ap2)-(w2—24) £ I1. (5.19)
271' 2p10 2p20)
It is not Lorentz-invariant.
i11) Correlation Functions of NCQFT with Twisted Statistics:
In this case the free field is
d3p
— T
2(w) = [ g eveala) + afeoy(a). (5.20)
Let P, be the Fock space momentum operator:
d3p
Pu = /mpucch- (5.21)
Then, as shown in [5, 8], the operators a,, a}; can be written as follows:
ap = cpe_%l?ueuyp”, T =clet 5Pub Py (5.22)
Using (5.16) and (5.18), we calculate the four-point function with twisted statistics:
<0|‘I’(351) (22)®@(23)®(24)|0) =1 + I11 +
d3p; v
s | T e em )2l ) )
(2p10)(2p20)5 (p1 = p3)6° (p2 — pa). (5.23)
= I+IIT+1T (5.24)

where I and II1 are Poincaré invariant as shown before. As for II’; we find, using (5.10)
with k1 = p1, ko = —po, k3 = p3, ks = —p4 and the J-functions,

d3p;
A:IT — 27-[- /H eApl (z1)e— Apz(xQ)eAPS(xg)e Ap4(x4)

P10 P2v ip1-76-p2 (2p10)(2p20)5 (p1 — p3)(53(p2 — p4). (5.25)

Since
ei}?mW”mueiPlﬁAﬂm — ei(/\pl);ﬁ””(/\pz)u (5.26)

the Poincaré invariance of 1T’ also follows. The phase eP1“P2v in (5.23) which comes from
twisted statistics is essential to reach this conclusion.
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6. Functional Integral

We saw above that in order to have twisted Poincaré invariance in a quantum theory, we
must also have twisted statistics. This has implications for a functional integral formulation
of the quantum theory too. This is because statistics of the fields is an input in a functional
integral. For example, in the case of usual fermions, statistics is not derived from functional
integral, but is rather inferred from other considerations and then built into the functional
integral by use of anticommuting classical fields.

Similarly, in order to construct a functional integral which gives a twisted Poincaré
invariant quantum theory, we must use the correct statistics as an input and construct the
functional integral out of classical fields which obey the twisted statistics. In particular its
full measure consists of tensor products of individual measures at different points and the
individual measures must obey twisted statistics among themselves in order for the total
measure to be Poincaré invariant. This again is in analogy to the case of fermions, where
individual measures anticommute among themselves. We will not go here into the full details
of the construction of the functional integral which gives the twisted quantum field theory.
It has been done by Oeckl [9]. It will suffice here to show that the conventional functional
integral does not give a twisted Poincaré invariant theory.

The usual functional integral for a noncommutative scalar field theory is defined by:

W= [ PG (6.1)
where L, is for example the star-Lagrangian (density)

Lu(a) = S0u0(x)  90(x) — Tm?0(x) x 6(x) — 210(a) x 6(a) # 6(x) ¥ 0(x)  (62)
and D(¢(z)) is the usual measure.
With the functional integral defined with this measure, we obtain conventional quantization
of noncommutative field theory with no statistics twist, and its Feynman rules.
But this measure is not invariant under the twisted Poincaré group. We can show this by
a simple argument.
Consider

/ HD(¢($)) d(x1)p(z2)p(x3)P(24) ot [ d'z La()
= (0|T{P®(z1)P(x2)P(x3)P(24)}|0) . (6.3)

It is enough to consider A = 0. Let us suppose for convenience that x? > xg > xg > xg.

Then
(OT{®(21)®(22)P(23)P(24) }|0) = (0]@(21)P(w2)P(w3)P(24)[0) - (6.4)

which is the same as (5.14). But we saw above that
(0@ (1) P (22)P(23)P(24)|0) # A (0]@(21)P(22)P(23)P(24)[0) - (6.5)

Hence it follows that
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/ HD(¢(95)) d(x1)d(x2)p(x3)P(x4) i J die La(2)
# [ TIP6@) A» Genoteoo) #1150 6o

showing that the measure is not twist-Poincaré invariant.

7. Locality
i) 0" # 0, Untwisted Statistics:

The conventional quantization a scalar field on the noncommutative plane leads to non-
local physics. However this non-locality is due to nonlocal interaction terms and does not

show up in the free theory. As remarked earlier the free theory is identical to the scalar field
theory for 6*¥ = 0.

i1) 0" #£ 0, Twisted Statistics:
The situation is quite different when one quantizes using twisted statistics. In this case,
even the free theory is non-local. We have

[@(z), ®(y)] =
d*pd’k —~i(p-athy) —i0# pyk i(p-a-+hy) =" puky ot ot
/ (2)3(2po) (2ko) E (1 =™ P apay, +e O
e PrR (1 — Pk 0l — (2p0)6° (p — k) }
+ei(p.z—k.y){(1 _ eiG“Vpuku) a;rjak + (2}?0)53(]9 _ k)}] (7.1)

This operator is not zero when x and y are space-like separated. For example, we can calculate
it between two single-particle momentum eigenstates |¢) and |r). We have

<Q|[(p($), (I)(y)”r> —_ (eiG#unTy _ 1)(67ir-x+iq-y _ eiq-xfir-y)
+ (200)8°(q = 7)[D(@ —y) = Dly — )] (7.2)

where D(x — y) was defined in (5.15). The last two terms together vanish for space-like
separations, but the first term is in general nonzero for ¢ # r.

Although the free theory is (twisted) Poincaré invariant, it is non-local. Hence the spin-
statistics theorem does not apply to it and there is no internal inconsistency coming from this
theorem.
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