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Abstract

In 1954, C. Yang and R. Mills created a Gauge Theory for strong interaction of
Elementary Particles. More generally, they proved that it is possible to define a
Gauge Theory with an arbitrary compact Lie group as Gauge group. Within this
context, it is interesting to find critical values of a functional defined on the space of
connections: the Yang-Mills functional. If the based manifold is four dimensional,
there exists a natural notion of (anti-)self-dual 2-form, which gives a natural notion
of (anti-)self-dual connection. Such connections give critical values of the Yang-
Mills functional. Moreover, the Gauge group acts on the set of (anti-)self-dual
connections. The set of (anti-)self-dual connections modulo the Gauge group
is called the Moduli space of (anti-)self-dual connections. It is interesting for
physicists because it provides critical values of the Yang-Mills functional and for
mathematicians because it is an invariant of the based manifold. In dimension
greater than four...
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Introduction

§1. State of the art
In 1954, Chen N. Yang and Robert L. Mills published their ground-

breaking paper Conservation of Isotopic Spin and Isotopic Gauge Invari-
ance [YM54] in the Physical Review that would revolutionize the Physics.
Generalizing the well-known Gauge Theory for Electromagnetism, they
built a Gauge Theory for the strong interaction of Elementary Particles.
In this context, the Gauge group is SU(2) instead of U(1). In fact, they
even discovered that this theory can be generalized with any arbitrary
compact Lie group as Gauge group.

G. ’t Hooft has summarized this idea in the preface of [’H05] published
50 years later:

Gauge Theory has [...] grown into a pivotal concept in the
Theory of Elementary Particles, and it is expected to play
an equally essential role in even more basic theoretical con-
structions that are speculated upon today, with the aim of
providing an all-embracing picture of the universal Laws of
Physics. ([’H05, Preface])

One of the main ideas of C.N. Yang and R.L. Mills was to examine
invariants under local, instead of global, symmetries of the strong inter-
action in Elementary Particle Physics. Mathematical objects that model
local symmetries are the principal bundles with the Gauge groups as Lie
groups.

Another main idea of C.N. Yang and R.L. Mills was to add a quadratic
term, a commutator, to the field strength to get a Gauge invariant field
strength. This commutator is in fact hidden in Electromagnetic Gauge
Theory because of the commutativity of the Gauge group. C.N. Yang
has expressed this idea in [’H05]:

It was only in 1953-1954 when Bob Mills and I revisited
the problem and tried adding quadratic terms to the field
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strength Fµν that an elegant theory emerged. For Mills and
me it was many years later that we realized the quadratic
terms were in fact natural from the mathematical viewpoint.
([’H05, Chapter 1])

He means that a field strength with its added commutator corresponds
mathematically to the curvature of a connection on the principal bundle.

If the reader would like to learn more about the physical viewpoint of
Yang-Mills theory, a must would be their initial article [YM54]. Moreover,
among all the books and articles covering this subject, we point out 50
years of Yang-Mills Theory edited by G. ’t Hooft in 2005 [’H05]. In our
text, we are looking at some mathematical viewpoints.

Let P be a principal bundle with compact Lie group G over a compact
Riemannian manifold M . Let us denote by EAd the associated vector
bundle corresponding to the adjoint representation of G (definition
in Subsection 1.5.1). The curvature F of a connection 1-form α on P
(Definitions 1.5.2 and 1.5.4) can be seen as an element of Λ2(M)⊗Γ∞(EAd)
(Definition 1.5.10). The Yang-Mills functional is defined on the set of
connection 1-forms on P by

YM(α) =
∫
M
|F |2ε, (1)

where the norm on Λ2(M) ⊗ Γ∞(EAd) is defined with respect to the
Riemannian metric and a given AdG-invariant scalar product on g :=
Lie(G) (which exists because G is compact) and ε is a given volume form
on M .

The Euler-Lagrange equation of the Yang-Mills action is

D∗F = 0 (2)

for D : Λk(P )⊗ g→ Λk+1(P )⊗ g the exterior covariant differentiation
([KN63, Section II.5]) and D∗ its adjoint.

A curvature F of a connection 1-form α on P which is a solution
of this Euler-Lagrange equation is called a Yang-Mills field. In general,
searching Yang-Mills fields is not easy.

With respect to the Hodge-star operator ∗ (definition in Section 2.1),

D∗ = − ∗D ∗ .

So the curvature F of a connection 1-form α is a Yang-Mills field if and
only if

D ∗ F = 0.
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If M is 4-dimensional, it is easy to characterize some Yang-Mills
fields. To build them, let us remark that ∗2 = 1 on Λ2(M) so Λ2(M)
splits into two parts: the eigenspace of eigenvalue 1, written Λ2

+(M), and
the eigenspace of eigenvalue −1, written Λ2

−(M). Elements of Λ2
+(M)

(respectively Λ2
−(M)) are called self-dual 2-forms (respectively anti-self-

dual 2-forms) (Definition 2.1.1).
A connection 1-form is called (anti-)self-dual if the 2-form part

of its curvature is (anti-)self-dual. The curvature F of any self-dual
or anti-self-dual connection 1-form is automatically a Yang-Mills field
because the Bianchi identity says that DF = 0. Moreover, self-dual
connections minimize the Yang-mills functional (see [Tau82, Section 1]
and [GP87, Section 1]).

An (anti-)self dual connection is mapped to an (anti-)self-dual connec-
tion by the (global) Gauge group (i.e. the group of vertical automorphisms
of the principal bundle). Hence mathematicians and physicists are in-
terested in the space of (anti-)self-dual connections on P modulo Gauge
equivalence. It is called the moduli space of (anti-)self-dual connections
on P and denoted byM.

Topological and differential structures of this moduli space have been
important studies for both mathematicians and physicists during the
seventies and eighties. Famous scientists have worked on this project. We
can for example list A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S.
Tyupkin in 1975 [BPST75], M.F. Atiyah, N.J. Hitchin, V.G. Drinfel′d
and Y.I Manin in 1978 [AHDM78], M.F. Atiyah, N.J. Hitchin and I.M.
Singer in 1978 [AHS78], T.H. Parker in 1982 [Par82], C.H. Taubes in
1982 [Tau82], M.F. Atiyah and R. Bott in 1983 [AB83], S.K. Donaldson
in 1983 [Don83], M. Itoh in 1983 [Ito83], D.S. Freed and K.K. Uhlenbeck
1984 [FU84]...

But physicists and mathematicians are interested in the search of
Yang-Mills fields in every dimension. Hence they have been quickly
interested in the search of possible generalized definitions of (anti-)self-
dual connections and moduli spaces in any dimension. It was first of all
initiated by the physicists E. Corrigan, C. Devchand, D. Fairlie and J.
Nuyts in 1983 [CDFN83] and then by the mathematicians S.K. Donaldson
and R.P. Thomas in 1998 [DT98]. In particular, they have worked on
spaces of dimension greater than 4. Papers about Yang-Mills theory,
(anti-)self-duality and moduli spaces in dimension greater than four have
emerged in subsequent years: G. Tian in 2000 [Tia00], S.K. Donaldson
and E. Segal in 2011 [DS11], A. Haydys in 2012 [Hay12], Y. Tanaka in
2012 [Tan12], S. Wang in 2015 [Wan15], V. Muñoz and C.S. Shahbazi in
2017 [MS17]...
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In particular, they have found different suitable ways to extend
the notion of (anti-)self-duality in higher dimension. One of those is
particularly interesting for us: if Ω is a closed (n− 4)-form on M (where
dim(M) = n), we can say that a 2-form µ is (anti-)self-dual if

∗µ = ±µ ∧ Ω.

This definition of (anti-)self-duality is used, among others, by G. Tian
in [Tia00]. As in the four dimensional case, curvatures of (anti-)self-
dual connections are automatically Yang-Mills fields. Indeed, if α is
(anti-)self-dual, then

D ∗ F = ±D(F ∧ Ω)
= ± ((DF ) ∧ Ω + F ∧ dΩ)
= 0

because Ω is closed and thanks to the Bianchi identity. Moreover, if
the norm of Ω is less than 1, anti-self-dual connections minimize the
Yang-Mills functional. This fact is claimed in [Tia00, Section 1].

§2. Our contribution
We present in this text the author’s contribution in this framework.

We are working in a context which provides the form Ω for free: almost
Kähler manifolds (Definition 2.2.3). If (M, g, J, ω) is an almost Kähler
manifold of real dimension 2n, then

ω∧(n−2)

(n− 1)!

is a closed (2n− 4)-form. Hence, we can consider the following definition:
a 2-form µ on M is (anti-)self-dual (Definition 2.2.4) if

∗µ = ±µ ∧ ω
∧(n−2)

(n− 1)! .

Lemma 2.1.8 shows that taking ω∧(n−2)

(n−2)! as closed (2n− 4)-form would
be consistent too. We will give a word about our choice of normalization
in the conclusion. Moreover, the same lemma proves that there is no
anti-self-dual 2-form for our choice of definition. So we are interested in
self-dual 2-forms for the (2n− 4)-form ω∧(n−2)

(n−1)! .
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The definitions of self-dual connections, Gauge group and moduli
space of self-dual connections are naturally adapted (Definitions 3.1.1,
3.1.3 and 3.1.5). As explain above, curvatures of such self-dual con-
nections are Yang-Mills fields. However, we do not know if self-dual
connections minimize the Yang-Mills functional. The goal of our work is
to identify suitable hypotheses under which we are able to characterize
the moduli space of self-dual connections for our choice of definition and
to build a Lie group structure on it.

First of all, with proper hypotheses, we characterize the moduli space
M of self-dual connections. The more restrictive hypothesis asks that
the Gauge group is abelian. If the Gauge group is abelian, we write it
Z instead of G to avoid confusions. Moreover, M has to be compact,
connected and of real dimension 2n > 4. If π : P →M is a Z-principal
bundle, we prove that eitherM is empty, orM is in bijection with

H1(M, z)/KZ ,

where H1(M, z) is the de Rham cohomology of M valued in z := Lie(Z)
and KZ := {[ϕ−1dϕ]|ϕ ∈ C∞(M,Z)} (Theorem 3.2.3).

Secondly, if we add a connectedness hypothesis on the Gauge group
and if M is non empty, then we prove that there exists a manifold
structure on M which turns it into an abelian Lie group (Theorem
3.2.9).

For now, physicists are of course mainly interested in non-abelian
Gauge group. We hope that our theorems will be generalized in the
future. We will give a word about it in the conclusion.

Here is the outline of the thesis. In order to prove both theorems,
we remind in Chapter 1 well known notions of algebraic topology and
differential geometry. It deals among others with de Rham cohomology,
symplectic vector spaces and manifolds, line integrals, Lie groups, the
path lifting property, fiber bundles and symmetric spaces. It is not a
complete text about discussed subjects. It simply gives definitions and
theorems needed for the understanding of what follows thereafter. Each
topic is given with suitable references where the reader can find more
details.

Chapter 2 deals with the generalized definition of self-duality of 2-
forms for spaces of dimension greater than 4. The first section is devoted
to the case of a vector space and the second one to the case of a manifold.

The first section begins with some recalls about the Hodge-star
operator and the notion of (anti-)self-duality in dimension 4 (Definition
2.1.1). Then we give the chosen definition of self-duality for spaces of
dimension greater than 4. Vector spaces suitable for our generalized
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definition are the Kähler vector spaces (Definition 2.1.2). On those
spaces, we consider the following definition (Definition 2.1.3):

Definition A. Let (V, ω, J, g) be a Kähler vector space of real dimension
2n ≥ 4 endowed with the orientation given by the canonical volume form
of the underlying symplectic vector space (V, ω) (see Section 1.1). A
2-form µ on V is called generalized self-dual (or simply self-dual) if

∗µ = µ ∧ ω
∧(n−2)

(n− 1)! .

Eventually, and it is where it gets interesting, we prove a characteri-
zation of the space of self-dual 2-forms (Proposition 2.2.5):

Proposition B. Let (V, ω, J, g) be a Kähler vector space of real dimen-
sion 2n > 4 endowed with the orientation given by the canonical volume
form of the underlying symplectic vector space (V, ω) (see Section 1.1).
Then a 2-form µ on V is self-dual if and only if there exists c ∈ R such
that µ = cω.

This proposition holds only if the dimension of V is strictly greater
than 4. It is a beautiful result, easy to use in the following.

The proof is based on Lemma 2.1.6. The latter asserts that there
exists an orthonormal Darboux basis on each Kähler vector space (i.e.
an orthonormal basis for the metric which is also a Darboux basis for
the symplectic form). With respect to an orthonormal Darboux basis,
we compute explicitly the Hodge star operator and determine a useful
decomposition of Λ2(V ∗) (Lemmas 2.1.7 and 2.1.8) which eventually
allows to prove the characterization.

The structure of the second section is a carbon copy of the structure
of the first one, extended to the case of almost Kähler manifolds. The
definition of the self-duality is clear (Definition 2.2.4):

Definition C. Let (M, g, J, ω) be an almost Kähler manifold of real
dimension 2n ≥ 4 endowed with the orientation given by the canonical
volume form of the underlying symplectic manifold (M,ω) (see Section
1.1). A 2-form µ onM is called generalized self-dual (or simply self-dual)
if

∗µ = µ ∧ ω
∧(n−2)

(n− 1)! .

The characterization of the self-dual 2-forms comes directly from the
vector space case (Theorem 2.1.9).
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Theorem D. Let (M, g, J, ω) be an almost Kähler manifold of real
dimension 2n > 4 endowed with the orientation given by the canonical
volume form of the underlying symplectic manifold (M,ω) (see Section
1.1). Then a 2-form µ is self-dual if and only if there exists c ∈ C∞(M,R)
such that

µ = cω.

In Chapter 3, we study the moduli space of self-dual connections.
This chapter is split into two sections. While the first one gives general
definitions of self-dual connection, Gauge group and moduli space, the
second one looks at moduli space of self-dual connections in a particular
context: the case of an abelian Gauge group. it Z in stead of G.

To define what is a self-dual connection, by abuse, we can say that
its curvature has to be a self-dual 2-form on M . As explained above, the
curvature of a connection can be seen as an element of Λ2(M)⊗Γ∞(EAd).
Precisely, a connection is called self-dual if the 2-form part of its curvature
is self-dual. In the beginning of Section 3.1, we give this definition
(Definition 3.1.1) and two examples (Example 3.1.2): the first one is
constructed from the Heisenberg group, the second one is constructed on
some Hermitian symmetric spaces.

The second part of Section 3.1 is devoted to the definition of the
moduli space of self-dual connections (Definition 3.1.5). For this, we
recall what a Gauge transformation is (Definition 3.1.3) and we show
that self-duality is preserved by those transformations (Proposition 3.1.4).
Moreover, we prove that the Gauge group is isomorphic to C∞(P,G)G -
the group of G-equivariant functions where G acts on itself by conjugation
(with group structure induced by the group structure of G).

If the Gauge group is abelian, some simplifications appear. The
first part of Section 3.2 explains these simplifications. EAd is the trivial
bundle so the curvature of a connection can be seen as a 2-form valued in
z := Lie(Z). In the same way, the difference of two connections can be
seen as an element of Λ1(M)⊗Γ∞(EAd), hence as a 1-form on M valued
in z. The curvature of a connection is its differential plus a bracket term.
So in the abelian case, it is simply the differential of the connection.
Eventually, the Gauge group is isomorphic to C∞(M,Z) because the
conjugation on Z is trivial.

In the second part of Section 3.2, we prove the following theorem
(Theorem 3.2.3):

Theorem E. Let Z be an abelian compact Lie group, (M, g, J, ω) be a
compact connected almost Kähler manifold of real dimension 2n > 4 and
π : P → M be a Z-principal bundle. Then, either the moduli space of
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self-dual connectionsM is empty, orM is in bijection with

H1(M, z)/KZ ,

where KZ := {[ϕ−1dϕ]|ϕ ∈ C∞(M,Z)}.

IfM is non empty, there exists a self-dual connection α0. For every
other self-dual connection α, α−α0 can be seen as a 1-form on M valued
in z. Lemma 3.2.1 proves that the map

M→ H1(M, z)/KS1 : [α] 7→ [α− α0]

is well-defined, injective and surjective.
The end of Section 3.2 gives an interesting structure on the moduli

space of self-dual connections, if one more hypothesis holds: the connect-
edness of the Gauge group (i.e. the Gauge group is a k-torus for k ∈ N0).
It gives the following theorem (Theorem 3.2.9):

Theorem F. Let Z be a k-torus for k ∈ N0, (M, g, J, ω) be a compact
connected almost Kähler manifold of real dimension 2n > 4 and π : P →
M be a Z-principal bundle. Then, eitherM is empty, or there exists a
manifold structure onM which turnsM into an abelian Lie group.

H1(M, z) is a real finite dimensional vector space so, in particular, a
Lie group. By Section 1.3, we have simply to prove that KS1 is closed in
H1(M, z). Lemma 3.2.7 gives a characterization of KS1 which allows to
prove it easily. Eventually, we give some examples of moduli spaces of
self-dual connections (Example 3.2.10).

A last chapter concludes our work and presents open questions. In
our definition of self-duality in dimension greater than 4, we chose 1

(n−1)!
as coefficient. We could have chosen 1

(n−2)! instead. Moreover, hypothesis
that we used are restrictive (in particular, the fact that the Gauge group
has to be abelian). The main open questions are: what would happen
for the coefficient 1

(n−2)! and in a more general context ?

In the Appendix, the reader will find some words about the Loos and
the Grassmann connections. Before the beginning of our work about
moduli space of self-dual connections, we looked at the equality of these
two well-known definitions of connections. Although it is not linked to
moduli spaces, it seems to us that it is a nice result, so we decided to
include it as an appendix.

Results of this text are joint work with Pierre Bieliavsky, Giovanni
Landi and Chiara Pagani.



Notations

The following notations will be commonly used throughout this text:

• 2n: the dimension of the symplectic spaces,

• •̂: omission of the factor •,

• Ad: the adjoint representation of G on g,

• α: a connection 1-form,

• α̃2 − α1: see Definition 1.5.10,

• α2 − α1: see Section 3.2,

• F : the curvature of a connection 1-form α,

• F̃ : see Definition 1.5.10,

• F : see Section 3.2,

• ∗: the Hodge-star operator,

• Bτ , for τ ∈ R: see Lemma 2.1.8,

• Cg : G→ G: the conjugation by g ∈ G, for G a Lie group,

• C∞(P, V )G: the vector space of smooth G-equivariant functions,
where G is a Lie group acting on a vector space V on the left and
P is the total space of a G-principal bundle,

• d: the exterior differentiation of forms,

• EAd: the vector bundle associated to a G-principal bundle for the
adjoint representation,

• [: the flat operator, i.e. on (V, ω) a symplectic vector space,
[ : V → V ∗ is defined by v[ = ω(v, .) for every v ∈ V ,
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• g: an inner product on a vector space or a Riemannian metric on
a manifold,

• G: a Lie group in general ; the transvection group in the symmetric
space framework,

• g, (respectively k and z): the Lie algebra Lie(G) (respectively
Lie(K) and Lie(Z)) of the Lie group G (respectively K and Z),

• g = k⊕p: the decomposition of g with respect to σ in the symmetric
space framework,

• Γ∞(E): the vector space of smooth sections of a vector bundle E,

• TpP = Qp ⊕ Gp: the decomposition of TpP in horizontal and
vertical vectors, where P is the total space of a principal bundle
endowed with a connection 1-form,

• h : TpP → Qp: the projection on the horizontal part of TpP , where
P is the total space of a principal bundle endowed with a connection
1-form,

• Hk(M,V ): the de Rham cohomology of k-forms on a manifold M
valued in a real finite vector space V ,

• J : a complex structure,

• K: the isotropy group in the symmetric space framework,

• KZ := {[ϕ−1dϕ]|ϕ ∈ C∞(M,Z)}, where M is a manifold and Z a
Lie group,

• Λk(V ): the vector space of skew-symmetric k-forms on a real finite
vector space V ,

• Λ∗(V ): the graded algebra of skew-symmetric forms on a real finite
vector space V ,

• Λk(M): the vector space of k-differential forms on a manifold M ,

• Λ∗(M): the graded algebra of differential forms on a manifold M ,

• Λ2
+(M): the vector space of self-dual 2-forms on an oriented 4-

dimensional Riemannian manifold M ,

• Λ2
−(M): the vector space of anti-self-dual 2-forms on an oriented

4-dimensional Riemannian manifold M ,
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• M: the moduli space of self-dual connections,

• ∇G: the Grassmann connection,

• ω: a symplectic form,

• P : the total space of a principal bundle,

• ϕ: a smooth section on an associated vector bundle or a Gauge
transformation on a principal bundle,

• ϕ̂ or (ϕ)ˆ: the equivariant function corresponding to a smooth
section ϕ on an associated vector bundle,

• ϕ̃: the equivariant function corresponding to a Gauge transforma-
tion ϕ on a principal bundle or the lifting of the path ϕ ◦ γ in the
proof of Proposition 3.2.7,

• ϕ: the smooth function corresponding to a Gauge transformation
ϕ on a principal bundle if the Gauge group is abelian (see Section
3.2),

• f∗µ: the pullback of the form µ by the (piecewise) smooth map f ,

• Rg: right product by g ∈ G on a Lie group G,

• s: a local smooth section of a principal bundle,

• σ: the natural automorphism of the transvection group in the
symmetric space framework,

• T k: the k-torus for k ∈ N0,

• V ∗: the vector space dual to a vector space V ,

• ∧: the wedge product on forms,

• X∗: a fundamental vector field,

• YM: the Yang-Mills functional,

• Z: an abelian compact Lie group,

• z(k): the center of the Lie algebra k.





Chapter 1

Useful mathematical background

The first chapter recalls some mathematical background useful for
the understanding of this text. In Section 1, we deal with differential
geometry. We begin by fixing the notion of manifold which is not
universal. Then we recall basic facts about the de Rham cohomology
and symplectic vector spaces and manifolds.

In Section 2, we recall the notion of line integral and its basic prop-
erties. Line integral is used in the proof of Proposition 3.2.7. This
proposition characterizes a subgroup, that we denote by KS1 and which
is fundamental in the understanding of the moduli space of self-dual
connections in our context (Theorems 3.2.3 and 3.2.9).

In Section 3, we give the definitions of Lie groups and Lie subgroups
and three proposition and theorems about it. These properties are central
in the proof of Theorem 3.2.9 which states that the moduli space of
self-dual connections in our context is an abelian Lie group.

Section 4 is a short section about algebraic topology. It recalls the
path lifting property useful for the proof of Proposition 3.2.7 too.

Section 5 is the longest and probably the most important section of
this first chapter. It deals with fiber bundles which are the mathematical
foundations of the Yang-Mills theory. It is divided into two subsections.
The first one recalls some definitions. First of all, it defines the notions
of principal bundles and connections and curvatures on principal bundles.
These notions are of fundamental importance for the definition of the
moduli space of self-dual connections (Definition 3.1.5). Secondly, it
recalls the notion of associated vector bundle. It is useful directly in
the second subsection where we prove a technical proposition about
connections and curvatures. This proposition allows us to consider
Definition 1.5.10, which will be used in Chapter 3.

Eventually, Section 6 recalls some definitions and basic facts about
symmetric spaces. Symmetric spaces give examples of applications of
our theorems in Chapter 3.

This first chapter is certainly not an exhaustive text about those
basic notions. It has two goals: first of all fixing the main definitions and
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notations that we use and secondly pointing out definitions and theorems
which are central for the understanding of our text. In each section, we
give references for more details about these subjects.

1.1. Basic notions of differential geometry
The notion of manifold is not universal in differential geometry. Hence,

we begin by fixing our definition of manifold. Then we recall what is the
de Rham cohomology. Eventually, we give some words about symplectic
vector spaces and symplectic manifolds. For more details about basic
differential geometry, we refer to [KN63], [Hel62] and [War83].

In our text, a smooth n-manifold (or simply a n-manifold or a mani-
fold) is an Hausdorff second countable space with a differentiable structure
of class C∞ of dimension n. Let us remark that this notion of manifold
is quite different in [KN63] and [Hel62] because they do not ask second
countability.

We denote by Λk(V ) the vector space of skew-symmetric k-forms on
a vector space V and

Λ∗(V ) := ∪k∈NΛk(V )

the graded algebra of skew-symmetric forms on V . In the same way,
we denote by Λk(M) the vector space of k-differential forms (or simply
k-forms) on a manifold M and

Λ∗(M) := ∪k∈NΛk(M)

the graded algebra of forms on M . The wedge product ∧ is defined on
forms on vector spaces and on manifolds as follows ([KN63, Section I.1]):
for k ∈ N0 and µ1, ..., µk k 1-forms on V (respectively M) and X1, ..., Xk

k vectors of V (respectively vector fields onM), µ1∧ ...∧µk is the k-form
defined by

µ1 ∧ ... ∧ µk(X1, ..., Xk) := 1
k! det (µi(Xj))1≤i,j≤k .

Exterior differentiation on forms on M can be characterized by
([KN63, Section I.1]):

• d : Λk(M)→ Λk+1(M) is an R-linear mapping,

• if f ∈ C∞(M), df is the total differential of f ,
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• for µ ∈ Λk(M) and ν ∈ Λl(M),

d(µ ∧ ν) = dµ ∧ ν + (−1)kµ ∧ dν,

• d2 = 0,
for every k, l ∈ N.

In particular, we point out the following ([KN63, Section I.3]): for α
a 1-form on M and X,Y vector fields on M ,

dα(X,Y ) = 1
2 (X(α(Y ))− Y (α(X))− α([X,Y ])) .

Some authors drop the factor 1
k! in their definition of the wedge

product. It influences the definition of the exterior differential too.
As d2 = 0, (⊕k∈NΛk(M), d) forms a differential complex and we can

consider the related cohomology, called the de Rham cohomology,

H∗(M,R) =
∑
k∈N

Hk(M,R)

where
Hk(M,R) = Ker(d) ∩ Λk(M)/Im(d) ∩ Λk(M).

Elements of Ker(d) ∩ Λk(M) are called closed forms of degree k and
elements of Im(d)∩Λk(M) exact forms of degree k ([BT82, Section I.1]).

In the compact case, we have the following:

Lemma 1.1.1. [BT82, Theorem 5.1 and Proposition 5.3.1] If M is a
compact manifold, its de Rham cohomology is finite dimensional.

More details about forms, wedge product and differentiation can be
found in [KN63].

Let us now turn to symplectic vector spaces and manifolds. A real
vector space V endowed with a 2-form ω is called a symplectic vector
space if ω is skew-symmetric and non-degenerate. Such vector space has
to be of even dimension. A symplectic vector space of dimension 2n
admits a natural orientation given by its canonical volume form

Ω := 1
n!ω ∧ ... ∧ ω (n-times).

With respect to a Darboux basis (i.e. a basis {ei, fj}1≤i,j≤n such that
ω =

∑
i ξi ∧ ηi for ξi := e[i and ηi := f [i ),

Ω = ξ1 ∧ η1 ∧ ξ2 ∧ η2 ∧ ... ∧ ξn ∧ ηn.
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(M,ω) is called a symplectic manifold if M is a real manifold and
ω a non-degenerate closed 2-form on M . As in the symplectic vector
space case, a symplectic manifold has even dimension. Moreover, a
symplectic manifold of dimension 2n admits a natural orientation given
by its canonical volume form

Ω := 1
n!ω ∧ ... ∧ ω (n-times).

In the compact case, we have the following:

Lemma 1.1.2. [Wal11, Proposition 1.1.3(ii)] If (M,ω) is a compact
symplectic manifold, then ω is a non exact form.

1.2. Line integrals
In Proposition 3.2.7 appears a line integral. It allows us to characterize

a subgroup, denoted by KS1 , which appears in the understanding of the
moduli space of self-dual connections in our context (Theorems 3.2.3 and
3.2.9).

This notion of line integral is explained in details in [Lee03] in Chapter
11. Here, we recall this definition, first of all for 1-forms defined on R
and secondly for 1-forms defined on a manifold. Eventually, we give some
useful properties of it.

First of all, let us define the line integral of a 1-form defined on an
interval of R.

Definition 1.2.1. Let [a, b] ⊆]c, d[ be intervals of R and β be a 1-form
on ]c, d[. If t denotes the standard coordinate in R, β can be written

β = f(t)dt

for f :]c, d[→ R a smooth function. The line integral of β along [a, b] is
defined by ∫

[a,b]
β :=

∫ b

a
f(t)dt.

Secondly, let us look at the corresponding definition for a 1-form on
a smooth manifold. This line integral is defined along what is called a
piecewise smooth curve segment. We explain what it is and then give
the definition of line integral in this context.
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A piecewise smooth curve segment on a smooth manifold M is a
continuous curve γ : [a, b] → M with the property that there exists a
finite subdivision a = a0 < a1 < ... < ak = b of [a, b] such that, for each
j ∈ {0, ..., k − 1}, γ[aj ,aj+1] is smooth (i.e. it has a smooth extension to
an open set containing [aj , aj+1]).

Definition 1.2.2. Let us suppose that M is a smooth manifold and β a
1-form on M . If γ : [a, b]→M is a piecewise smooth curve segment with
underlying decomposition a = a0 < a1 < ... < ak = b, the line integral of
β along γ is defined by

∫
γ
β :=

k−1∑
j=0

∫
[aj ,aj+1]

γ∗β.

Eventually, we state the following proposition, which is proved in
[Lee03]:

Proposition 1.2.3 ([Lee03], Proposition 11.34 and Proposition 11.37).
Let M be a smooth manifold. If γ : [a, b] → M is a piecewise smooth
curve segment and β1 and β2 are 1-forms on M , then

(i) for any c1, c2 ∈ R,∫
γ
(c1β1 + c2β2) = c1

∫
γ
β1 + c2

∫
γ
β2,

(ii) for c ∈]a, b[, if we denote γ1 := γ|[a,c] and γ2 := γ|[c,b], then∫
γ
β1 =

∫
γ1
β1 +

∫
γ2
β1.

(iii)
∫
γ−1 β1 = −

∫
γ β1, where γ−1 is the path γ covered in the reverse

side.

1.3. Lie groups
Lie groups are fundamental in Yang-Mills theory. Indeed, one of the

ideas of C.N. Yang and R.L Mills was to take a general compact Lie
group as Gauge group, instead of U(1) or SU(2). General theory about
Lie groups and Lie algebras is developed in details in a lot of books. We
refer for example to [War83]. The goal of this section is quite different.
It points out properties about Lie groups and Lie subgroups useful in
the proof that the moduli space of self-dual connections in our context is
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a Lie group (Theorem 3.2.9). We still begin by giving the definition of
Lie groups and Lie subgroups.

A Lie group is a manifold with a group structure such that the maps
G×G→ G : (g, h) 7→ gh and G→ G : g 7→ g−1 are smooth maps. K is
a Lie subgroup of a Lie group G if K is a Lie group, a submanifold of
G and an abstract subgroup. We denote by g (respectively k, z) the Lie
algebra of a Lie group G (respectively K,Z).

The following proposition and theorems about Lie groups are essential
in Chapter 3:

Proposition 1.3.1. [War83, Section 3.3] The product G × H of two
Lie groups is itself a Lie group with the product manifold structure
and the direct product group structure ; that is, for every (g1, h1) and
(g2, h2) ∈ G×H, (g1, h1).(g2, h2) := (g1g2, h1h2).

Theorem 1.3.2. [War83, Section 3.42] Let G be a Lie group, and let
K be a closed abstract subgroup of G. Then K has a unique manifold
structure which makes K into a Lie subgroup of G.

Theorem 1.3.3. [War83, Section 3.64] Let G be a Lie group and let K
be a closed normal subgroup of G. Then the homogeneous manifold G/K
with its natural group structure is a Lie group.

1.4. Path lifting property
We need simply to recall one notion of algebraic topology: the path

lifiting property [Hat02, Section 1.3]. As already mention above, it will
be useful in the proof of the characterization of KS1 (Proposition 3.2.7),
a subgroup appearing in the identification of the moduli space of self-dual
connections in our context (Theorem 3.2.3).

If p : M̃ → M is a covering space (i.e. there exists an open cover
{Ui} of M such that for each i, p−1(Ui) is a disjoint union of open sets
of M̃ which are all homeomorphic to Ui), then for each continuous path
f : I → M (I is an interval of R containing a) and each x̃0 ∈ M̃ such
that p(x̃0) = f(a) ∈M , there exists a unique path f̃ : I → M̃ such that
f̃(a) = x̃0 and p ◦ f̃ = f .

1.5. Fiber bundles
The notion of fiber bundle is central in Yang-Mills theory. The most

important fiber bundles used in our text are the principal bundles. We
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will recall this definition and the notions of connections, curvatures and
associated vector bundles. Moreover, we will give some of their properties.
Definitions and more details about fiber bundles can be found for example
in [KN63].

This section is divided into two subsections. The first one recalls some
definitions and basic properties about principal bundles, connections,
curvatures and associated vector bundles. The second one identifies the
difference of two connections on a principal bundle and the curvature
of a connection on a principal bundle with forms on the based manifold.
These properties are fundamental for the identification of the moduli
space of self-dual connections in our context (Theorem 3.2.3).

1.5.1. Definitions and basic facts

In this subsection, first of all, we define the notion of principal bundle.
Secondly, we define the notion of connection on a principal bundle, the
underlying notions of horizontal lifts and horizontal sections and the
notion of curvature of a connection. Eventually, we turn to the definition
of associated vector bundles. This last point will be useful directly in
the following subsection.

Let us begin with the notion of principal bundle.

Definition 1.5.1. [KN63, Section I.5] Let M be a manifold and G a
Lie group. A principal bundle over M with group G (or a G-principal
bundle) consists of a manifold P and an action of G on P satisfying the
following conditions:

(i) G acts freely on P on the right: (p, g) ∈ P ×G 7→ pg = Rgp ∈ P ;

(ii) M is the quotient space of P by the equivalence relation induced by
G, M = P/G, and the canonical projection π : P →M is smooth;

(iii) P is locally trivial, that is, every point x of M has a neighborhood U
such that π−1(U) is isomorphic with U×G in the sense that there is
a diffeomorphism ψ : π−1(U)→ U×G such that ψ(p) = (π(p), ϕ(p))
where ϕ is a mapping of π−1(U) into G satisfying ϕ(pg) = (ϕ(p)g)
for all p ∈ π−1(U) and g ∈ G.

Now, we can define the notion of connections on a principal bundle
and the underlying notions of horizontal lifts and horizontal sections.

Definition 1.5.2. [KN63, Section II.1] A connection on a G-principal
bundle P →M is a 1-form α on P valued in the Lie algebra g such that
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(i) for every X ∈ g and every p ∈ P , αp(X∗p ) = X, for X∗ the funda-
mental vector field corresponding to X, i.e. X∗p := d

dt

∣∣∣
0
p exp(tX),

(ii) for every g ∈ G, R∗gα = Adg−1α.

On a G-principal bundle P →M endowed with a connection 1-form
α, a vector v ∈ TpP is said to be horizontal if αp(v) = 0. The subspace
of horizontal vectors at p is denoted by Qp. If Gp denotes the subspace
of vectors tangent to the fiber at p (i.e. vectors v ∈ TpP such that
π∗pv = 0), we have a decomposition of TpP for each p ∈ P :

TpP = Gp ⊕Qp.

We denote by h : TpP → Qp the projection on the horizontal part at
p ∈ P .

For every X ∈ Γ∞(TM), there exists a unique horizontal vector field
on P which projects on X. It is called the horizontal lift of X and it is
denoted by X ∈ Γ∞(TP ). A local section s of P in a neighborhood of
a point x ∈M is called horizontal at x if its differential dsx at x maps
TxM to Qs(x) [Mor07, Definition 5.6]. The following proposition about
horizontal sections is proved in [Mor07]:

Proposition 1.5.3. [Mor07, Lemma 5.7] Let P →M be a G-principal
bundle on a manifold M endowed with a connection 1-form. Then for
every x ∈M and p ∈ P such that π(p) = x, there exist local sections of
P horizontal at x.

We can turn to the notion of curvature of a connection 1-form.

Definition 1.5.4. [KN63, Section II.5] On a G-principal bundle P →M ,
we can define the curvature F of a connection 1-form α as follows:

F := (dα)(h(.), h(.)). (3)

In this text, we denote by F (respectively F0, F1, F2) the curvature
of a connection 1-form α (respectively α0, α1, α2).

Before ending this subsection, let us deal with the notion of associated
vector bundle. For G a Lie group and M a manifold, we consider a G-
principal bundle π : P →M and a representation ρ of G on an R-vector
space V of dimension k. We define an equivalence relation on P × V by
(p, v) ∼ (pg, ρ(g−1)v) for every g ∈ G, p ∈ P, v ∈ V and obtain a vector
bundle

Eρ := P × V/∼ →M : [(p, v)] 7→ π(p),

called associated vector bundle. We denote by C∞(P, V )G the vector
space of G-equivariant functions from P to V , i.e. the vector space of
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smooth functions f : P → V such that f(pg) = ρ(g−1)f(p) for every
p ∈ P and g ∈ G, where the vector space structure comes naturally from
the vector space structure of V . There exists an isomorphism between
the vector space of smooth sections on Eρ and C∞(P, V )G given by
ϕ(π(p)) = [(p, ϕ̂(p)] for each p ∈ P , for ϕ a smooth section on Eρ and ϕ̂
the corresponding G-equivariant function. In our text, we denote always
by ϕ̂ or (ϕ)ˆ the G-equivariant function corresponding to a smooth
section ϕ.

More details about connections and curvatures can be found in
[KN63].

1.5.2. Useful properties

In this subsection, we write the difference of two connection 1-forms
and the curvature of a connection 1-form on a principal bundle as forms
on the based manifold valued in a given vector bundle. First of all, we
give some lemmas. They will drive us to the proof of Proposition 1.5.9,
which asserts that these forms are well-defined.

The proofs of the following lemmas can be found in [KN63, Sec-
tion II.5].

Lemma 1.5.5. On a G-principal bundle P →M , the curvature F of a
connection 1-form α can be computed as

F (X,Y ) = dα(X,Y ) + 1
2[α(X), α(Y )]

for X and Y smooth vector fields on P .

Lemma 1.5.6. On a G-principal bundle P →M , the curvature F of a
connection 1-form α can be computed as

F (X,Y ) = −1
2α([X,Y ])

for X and Y horizontal smooth vector fields on P .

Moreover, we need two other lemmas that we will prove here.

Lemma 1.5.7. Let P → M be a G-principal bundle endowed with a
connection 1-form α. Then for every g ∈ G, Rg∗ and h commute.

Proof. The lemma follows from this remark: for every p ∈ P , v ∈ TpP
and g ∈ G,

(i) π∗Rg∗v = π∗v, then v is vertical if and only if Rg∗v is vertical,
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(ii) α(Rg∗v) = Adg−1α(v) then v is horizontal if and only if Rg∗v is
horizontal.

Lemma 1.5.8. Let P → M be a G-principal bundle endowed with a
connection 1-form α. Then

F (Rg∗v,Rg∗w) = Adg−1F (v, w)

for every v and w ∈ TpP and g ∈ G.

Proof. Let X and Y be two vector fields such that Xp = v and Yp = w.
Then using Equation (3) and Lemmas 1.5.6 and 1.5.7, we see that

F (Rg∗X,Rg∗Y ) = F (h(Rg∗X), h(Rg∗Y ))

= −1
2α ([h(Rg∗X), h(Rg∗Y )])

= −1
2α ([Rg∗h(X), Rg∗h(Y )])

= −1
2α (Rg∗[h(X), h(Y )])

= Adg−1

(
−1

2α([h(X), h(Y )])
)

= Adg−1F (X,Y )

So
F (Rg∗v,Rg∗w) = Adg−1F (v, w).

The following proposition will allow the Definition 1.5.10.

Proposition 1.5.9. Let π : P →M be a G-principal bundle. Then

(i) if α1 and α2 are connection 1-forms on P and X ∈ Γ∞(TM), the
function

fX : P → g : p 7→ (α2 − α1)(s∗Xπ(p)),

where s : U ⊆M → P is a local section defined on U 3 π(p) such
that s(π(p)) = p, is independent of the choice of s and equivariant
(i.e. fX(pg) = Adg−1fX(p) for every p ∈ P and g ∈ G),
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(ii) if α is a connection 1-form on P and X,Y ∈ Γ∞(TM), the function

gX,Y : P → g : p 7→ F (s∗Xπ(p), s∗Yπ(p)),

where s : U ⊆M → P is a local section defined on U 3 π(p) such
that s(π(p)) = p, is independent of the choice of s and equivariant
(i.e. gX,Y (pg) = Adg−1(gX,Y (p)) for every p ∈ P and g ∈ G).

Proof. (i) First of all, let us show that fX is independent of the choice
of local section.
If s′ : U ′ ⊆ M → P is another local section of P such that
s′(π(p)) = p , then there exists a smooth function

g : U ∩ U ′ → G

such that s′(y) = s(y).g(y) for all y ∈ U ∩ U ′ and g(π(p)) = 1.
Hence, if we consider γ : I ⊆ R → M such that γ(0) = π(p) and
d
dt

∣∣∣
0
γ(t) = Xπ(p),

s′∗Xπ(p) = d

dt

∣∣∣∣
0
s′(γ(t))

= d

dt

∣∣∣∣
0
s(γ(t))g(γ(t))

= s∗(Xπ(p)) +
(
dg(Xπ(p))

)∗
p

and using the definition of a connection 1-form, we find

(α2 − α1)(s′∗Xπ(p))

= (α2 − α1)
(
s∗(Xπ(p)) +

(
dg(Xπ(p))

)∗
p

)
= (α2 − α1)(s∗Xπ(p)).

This shows that fX is well-defined.
Now, let us show that fX is equivariant.
For every g ∈ G, s′ := s.g is a local section of P such that
s′(π(pg)) = pg. Then, for γ : I ⊆ R→M such that γ(0) = π(pg)
and d

dt

∣∣∣
0
γ(t) = Xπ(pg),

s′∗Xπ(pg) = d

dt

∣∣∣∣
0
s′(γ(t))

= d

dt

∣∣∣∣
0
s(γ(t)).g

= Rg∗s∗Xπ(p).
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Using the definition of a connection 1-form, we find

fX(pg) = (α2 − α1)(s′∗Xπ(pg))
= (α2 − α1)(Rg∗s∗Xπ(pg))
= Adg−1(α2 − α1)(s∗Xπ(p))
= Adg−1fX(p).

(ii) First of all, let us show that gX,Y is independent of the choice of
local section.
If s′ : U ′ ⊆ M → P is another local section of P such that
s′(π(p)) = p , then there exists a smooth function

g : U ∩ U ′ → G

such that s′(y) = s(y).g(y) for all y ∈ U ∩ U ′ and g(π(p)) = 1.
Hence, with the same kind of computation as in item (i), we show
that

s′∗Xπ(p) = s∗(Xπ(p)) +
(
dg(Xπ(p))

)∗
p

and

s′∗Yπ(p) = s∗(Yπ(p)) +
(
dg(Yπ(p))

)∗
p

and using Equation (3), we find

F (s′∗Xπ(p), s
′
∗Yπ(p))

= F

(
s∗(Xπ(p)) +

(
dg(Xπ(p))

)∗
p
, s∗(Yπ(p)) +

(
dg(Yπ(p))

)∗
p

)
= F

(
h

(
s∗(Xπ(p)) +

(
dg(Xπ(p))

)∗
p

)
,

h

(
s∗(Yπ(p)) +

(
dg(Yπ(p))

)∗
p

))
= F

(
h(s∗(Xπ(p))), h(s∗(Yπ(p)))

)
= F

(
s∗(Xπ(p)), s∗(Yπ(p))

)
.

This shows that gX,Y is well-defined.
Now, let us show that gX,Y is equivariant.
For every g ∈ G, s′ := s.g is a local section of P such that
s′(π(pg)) = pg.
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With the same kind of computation as in item (i),

s′∗Xπ(pg) = Rg∗s∗Xπ(p).

and

s′∗Yπ(pg) = Rg∗s∗Yπ(p).

Then, using Lemma 1.5.8, we find

gX,Y (pg) = F (s′∗Xπ(pg), s
′
∗Yπ(pg))

= F (Rg∗s∗Xπ(p), Rg∗s∗Yπ(p))
= Ad−1

g F (s∗Xπ(p), s∗Yπ(p))
= Adg−1(gX,Y (p)).

We are now ready to write the difference of two connection 1-forms
and the curvature of a connection 1-form on a principal bundle P →M
as forms on M valued in a given vector bundle. This fact is claimed in
[AHS78, Sections 2 and 6].

Definition 1.5.10. Let π : P → M be a G-principal bundle. For
α, α1, α2 connection 1-forms on P , let us consider α̃2 − α1 ∈ Λ1(M)⊗
Γ∞(EAd), defined by (

α̃2 − α1(X)
)

ˆ := fX

for all X ∈ Γ∞(TM), and F̃ ∈ Λ2(M)⊗ Γ∞(EAd), defined by(
F̃ (X,Y )

)
ˆ := gX,Y

for all X,Y ∈ Γ∞(TM).

Thanks to Proposition 1.5.9, α̃2 − α1 and F̃ are well-defined.

1.6. Symmetric spaces
Symmetric spaces give examples of applications of our theorems

of Chapter 3. We present here the main definition and basic facts
about symmetric spaces. After the definition, we show that a connected
symmetric space can be seen as a homogeneous space. Then, we look at
a decomposition of the Lie algebra of its transvection group (the group
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of compositions of even numbers of symmetries). Eventually, we present
a natural principal bundle and a natural connection 1-form defined on it.
For more details, we refer to [Loo69].

First of all, let us give the definition of symmetric spaces.

Definition 1.6.1. [Loo69, Chapter II] A symmetric space is a manifold
M with a smooth multiplication µ : M ×M →M , written as µ(x, y) =
sxy, and with the following properties: for every x, y ∈M ,

(i) sxx = x,

(ii) s2
x = Id,

(iii) sxsysx = ssxy,

(iv) x is an isolated fixed point of sx, i.e. there exists a neighbourhood
U of x such that sxz = z implies z = x for all z ∈ U .

Secondly, let us show that a connected symmetric space can be seen
as a homogeneous manifold. A group G is canonically attached to a
symmetric space: the transvection group. The elements of this group are
the compositions of even numbers of symmetries

G :=< sx ◦ sy|x, y ∈M > .

If M is connected, then G is a finite dimensional Lie group acting
transitively on M (see e.g. Proposition 1.4.9 of [Vog11]).

For the rest of the section, we suppose that M is connected and we
fix a point o in M . The subgroup

K := {g ∈ G|g.o = o}

is a closed subgroup of G (see e.g. [War83, Section 3.61]). It is called
the isotropy group at o.

In Theorem 3.58 of [War83], F.K. Warner proves that G/K admits
a unique manifold structure such that the projection π : G → G/K is
smooth and there exist local smooth sections of G/K in G, (i.e. for every
gK ∈ G/K, there exists an open set U of G/K containing gK and a
smooth map s : U → G such that π ◦ s = id). F.K. Warner proves in the
Theorem 3.62 of [War83] that the map

G/K →M : gK 7→ g.o

is a diffeomorphism for this natural manifold structure.
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Thirdly, we define a natural automorphism of G which allows a
decomposition of its Lie algebra. Let us consider the automorphism

σ : G→ G : g 7→ sogso.

We remark that then sg0KgK = g0σ(g−1
0 g)K for every g0K, gK ∈M '

G/K. σ2 = IdG implies σ2
∗e = Idg. So the only possible eigenvalues of

σ∗e are 1 and −1. As Gσ0 ⊆ K ⊆ Gσ where Gσ := {g ∈ G|σ(g) = g} and
Gσ0 is its identity component, k is the space of eigenvectors of eigenvalue
1. Let us write p the space of eigenvectors of eigenvalue −1. Then there
exists a canonical decomposition of g:

g = k⊕ p.

Eventually, we observe that there exist a natural principal bundle
and a natural connection 1-form on each connected symmetric space.
Thanks to the foregoing, it is easy to verify that the projection

G→ G/K

defines naturally a K-principal bundle.
A natural connection 1-form can be defined on it:

α : TG→ k : Xg 7→ prk(Lg−1∗(Xg)).

It is called the Loos connection.
To understand the link between the more famous Loos connection

on the tangent space of a symmetric space (the only one which is sx-
invariant for every x ∈M) and this Loos connection 1-form, we refer to
the Appendix.





Chapter 2

From self-duality of 2-forms in

dimension four to a generalized
definition

This text is devoted to the research of critical points of the Yang-
Mills functional (see Equation (1) in the introduction). In dimension
4, (anti-)self-dual connections provide such critical points. The notion
of (anti-)self-dual connections comes directly from the natural notion of
(anti-)self-dual 2-forms. Since in dimension 4, the Hodge-star operator ∗
maps a 2-form to a 2-form, a 2-form µ is called (anti-)self-dual simply if
∗µ = ±µ (Definition 2.1.1).

To find critical points of the Yang-Mills action on compact manifolds
of dimension greater than 4, we would like to consider a notion of self-
duality of connections, so of 2-forms, on these spaces. In this chapter,
we define and study a generalized notion of self-duality of 2-forms. The
first section works on some vector spaces and the second one on some
manifolds.

Our definition makes sense on Kähler vector spaces (respectively
almost Kähler manifolds). We denote by 2n the real dimension of the
space and ω the underlying symplectic form. Since on 2n-dimensional
oriented inner product spaces and on 2n-dimensional oriented Riemannian
manifolds the Hodge-star operator ∗ maps a 2-form to a (2n− 2)-form,
we say that a 2-form µ is self-dual if (Definition 2.1.3)

∗µ = µ ∧ ω
∧(n−2)

(n− 1)! .

This definition is a particular case of the well-known generalized
definition presented among others in [Tia00, Lemma 1.2.1 and Remark 1].

The first section of this chapter recalls first of all the notion of Hodge-
star operator and of (anti-)self-duality on vector spaces of dimension
4. Secondly, it generalizes the definition of self-duality for dimension
greater than 4 on the case of vector spaces. The 1

(n−1)! -factor chosen in
the definition leads to a characterization of the space of self-dual 2-forms
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if 2n > 4 (Proposition 2.1.9): a 2-form µ is self-dual if and only if there
exists c ∈ R such that µ = cω. We will understand in the following why
this proposition is not valid in dimension 4. The end of the first section is
a sequence of technical lemmas which give the proof of this proposition.

This proof is based on four lemmas. The fundamental one is Lemma
2.1.6. The latter states that there exists an orthonormal Darboux basis
(i.e. an orthonormal basis for the metric which is also a Darboux basis for
the symplectic form) on each Kähler vector space. Lemma 2.1.7 computes
explicitly the Hodge-star operator of 2-forms written with respect to an
orthonormal Darboux basis. Lemma 2.1.8 gives a decomposition of Λ2(M)
which takes the role of the decomposition Λ2(M) = Λ2

+(M)⊕ Λ2
−(M) in

dimension 4. The proof of Proposition 2.1.9 comes directly from this last
lemma.

The structure of the second section is a carbon copy of the structure
of the first one, in the manifold’s case. The characterization in this case
comes directly from the vector space case: a 2-form µ is self-dual if and
only if there exists c ∈ C∞(M,R) such that µ = cω (Proposition 2.2.5).

2.1. On vector spaces
First, we recall the definition of the Hodge-star operator on an

oriented inner product space and the definition of self-duality and anti-
self-duality on their natural framework: real 4-dimensional oriented inner
product spaces. Secondly, we define the notion of Kähler vector spaces
and explain in details how we generalize the self-duality on such spaces
of dimension ≥ 4. Thirdly, four lemmas drive us to the main proposition
of this section. It determines the space of generalized self-dual 2-forms
on Kähler vector spaces, for real dimension 2n > 4.

First of all, let us recall the definition of the Hodge-star operator and
the notion of (anti-)self-duality in dimension 4. We consider (V, g) an
inner product space of dimension n, i.e. an R-vector space of dimension
n endowed with g a positive definite symmetric bilinear form (inner
product). It gives naturally an inner product on V ∗ that we can extend
to an inner product on ΛkV ∗ for every k ∈ {1, ..., n} by

g(α1 ∧ ... ∧ αk, β1 ∧ ... ∧ βk) := det (g(αi, βj))i,j∈{1,...n}

for every α1 ∧ ... ∧ αk and β1 ∧ ... ∧ βk ∈ ΛkV ∗. By abuse of notation we
write all these inner products g.

We fix an orientation on V choosing a preferred n-form ε ∈ ΛnV ∗. It
allows us to give the definition of the Hodge-star operator ∗ on ΛkV for
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k ∈ {1, ..., n} by
∗ : ΛkV ∗ → Λn−kV ∗ : µ 7→ ∗µ

where ∗µ is the only (n− k)-form such that

λ ∧ ∗µ = g(λ, µ)ε (4)

for every λ ∈ ΛkV ∗.
∗ respects the important following property:

∗2 = (−1)k(n−k). (5)

The proof that the Hodge-star operator is well defined and the proof of
Equation (5) (for general signature of g) can be found in [Dra99].

If we restrict to a vector space of dimension 4,

∗ : Λ2V ∗ → Λ2V ∗.

So there exists a natural notion of (anti-)self-duality on 4-dimensional
vector spaces:

Definition 2.1.1. Let (V, g) be an oriented inner product space of real
dimension 4. A 2-form µ is called self-dual if

∗µ = µ

and anti-self-dual if
∗µ = −µ.

Now, we extend the definition of self-duality on vector spaces of
dimension greater than 4. The way that we choose to extend this
definition makes sense on Kähler vector spaces. We recall what is a
Kähler vector space. Then we give the extended definition.

Definition 2.1.2. [Boa09, Section 4] A Kähler vector space of real
dimension n (V, ω, J, g) is an inner product space (V, g) of dimension n
endowed with

• ω a symplectic form on V , i.e. a skew-symmetric and non-
degenerate bilinear form,

• J : V → V a complex structure, i.e. an R-linear endomorphism
such that J2 = −IdV ,

such that
ω(v, Jw) = g(v, w)

for each v, w ∈ V .
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Definition 2.1.3. Let (V, ω, J, g) be a Kähler vector space of real dimen-
sion 2n ≥ 4 endowed with the orientation given by the canonical volume
form of the underlying symplectic vector space (V, ω) (see Section 1.1).
A 2-form µ on V is called generalized self-dual (or simply self-dual) if

∗µ = µ ∧ ω
∧(n−2)

(n− 1)! .

This definition is a particular case of the definition used in [Tia00,
Lemma 1.2.1 and Remark 1].

Remark 2.1.4. We will see in Lemma 2.1.8 that there does not exist
what we would like to call anti-self-dual 2-form, i.e. 2-form µ such that

∗µ = −µ ∧ ω
∧(n−2)

(n− 1)! .

It is why we consider only self-dual 2-forms in the following.

To characterize the space of self-dual 2-forms on Kähler vector spaces,
we need four technical lemmas. The first one deals with the J-invariance
of g in a Kähler vector space.

Lemma 2.1.5. Let (V, ω, J, g) be a Kähler vector space. Then g(Jv, Jw) =
g(v, w) for every v, w ∈ V .

Proof.

g(Jv, Jw) = ω(Jv,−w) (6)
= ω(w, Jv) (7)
= g(w, v) (8)
= g(v, w) (9)

The second lemma shows that there exists a basis on each Kähler
vector space which is orthonormal for the inner product and Darboux
for the symplectic form.

Lemma 2.1.6. Let (V, ω, J, g) be a Kähler vector space of real dimension
2n. Then there exists {ei, fj}1≤i,j≤n a basis of V such that

(i) {ei, fj}1≤i,j≤n is an orthonormal basis for g,
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(ii) {ei, fj}1≤i,j≤n is a Darboux basis for ω, i.e.

ω =
n∑
i=1

ξi ∧ ηi

for ξi := e[i and ηi := f [i , where .[ means the flat operator for ω.

Such a basis is called an orthonormal Darboux basis in our text.

Proof. Let us write E0 := V and iterate the following for 1 ≤ i ≤ n:
We choose ei a normalized vector of Ei−1 and denote fi := Jei and

Ei := E⊥
<ei,fi>

i−1 (the vector subspace of Ei−1 orthogonal to < ei, fi >).
By induction, we can easily see that for every i ∈ {1, ..., n}, Ei is

stable under J thanks to Lemma 2.1.5. Lemma 2.1.5 also tells us that fi
is normalized and orthogonal to ei.

At the end of the iteration, as ω(v, Jw) = g(v, w) for every v, w ∈ V ,
{ei, fj}1≤i,j≤n is an orthonormal Darboux basis of V .

The following lemma computes the Hodge-star operator of 2-forms
written with respect to an orthonormal Darboux basis.

Lemma 2.1.7. Let (V, ω, J, g) be a Kähler vector space of real dimension
2n ≥ 4. Let us consider an orthonormal Darboux basis {ei, fj}1≤i,j≤n
and write ξi := e[i and ηi := f [i for every i ∈ {1, ..., n}. We consider the
orientation of V given by the canonical volume form of the underlying
symplectic vector space (V, ω) (see Section 1.1). Then

(i) for i < j ∈ {1, ..., n},

∗ (ξi ∧ ξj) = −ηi ∧ ηj ∧
ω∧(n−2)

(n− 2)! ,

(ii) for i < j ∈ {1, ..., n},

∗ (ηi ∧ ηj) = −ξi ∧ ξj ∧
ω∧(n−2)

(n− 2)! ,

(iii) for i 6= j ∈ {1, ..., n},

∗ (ξi ∧ ηj) = ηi ∧ ξj ∧
ω∧(n−2)

(n− 2)! ,

(iv) the vectors ∗ (ξi ∧ ηi) for 1 ≤ i ≤ n are linearly independent,
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(v) for every i ∈ {1, ..., n},

ξi ∧ ηi ∧
ω∧(n−2)

(n− 2)! = ∗
∑
k 6=i

ξk ∧ ηk.

Proof. The proofs are similar for the items (i)-(iii). We remark that the
left and the right hand sides of the equalities are equal to

(i) −ηi ∧ ηj ∧ ξ1 ∧ η1 ∧ ... ∧ ξ̂i ∧ η̂i ∧ ... ∧ ξ̂j ∧ η̂j ∧ ... ∧ ξn ∧ ηn,

(ii) −ξi ∧ ξj ∧ ξ1 ∧ η1 ∧ ... ∧ ξ̂i ∧ η̂i ∧ ... ∧ ξ̂j ∧ η̂j ∧ ... ∧ ξn ∧ ηn,

(iii) ηi ∧ ξj ∧ ξ1 ∧ η1 ∧ ... ∧ ξ̂i ∧ η̂i ∧ ... ∧ ξ̂j ∧ η̂j ∧ ... ∧ ξn ∧ ηn,

where •̂ stands for omission.
For the left hand side, it is simply verification of the Equation (4).

For the right hand side, it is long but straightforward combinatorial
computations.

For i ∈ {1, ..., n}, we can check that

∗ (ξi ∧ ηi) = ξ1 ∧ η1 ∧ ... ∧ ξ̂i ∧ η̂i ∧ ... ∧ ξn ∧ ηn.

Then clearly, the vectors
∗ (ξi ∧ ηi)

for 1 ≤ i ≤ n are linearly independent.
Moreover, a combinatorial computation shows that

ξi ∧ ηi ∧
ω∧(n−2)

(n− 2)! =
∑
k 6=i

ξ1 ∧ η1 ∧ ... ∧ ξ̂k ∧ η̂k ∧ ... ∧ ξn ∧ ηn. (10)

So

ξi ∧ ηi ∧
ω∧(n−2)

(n− 2)! = ∗
∑
k 6=i

ξk ∧ ηk. (11)

The last lemma provides a decomposition of Λ2V ∗ if 2n > 4.

Lemma 2.1.8. Let (V, ω, J, g) be a Kähler vector space of real dimension
2n > 4. We consider the orientation of V given by the canonical volume
form of the underlying symplectic vector space (V, ω) (see Section 1.1).
Let us denote

Bτ :=
{
µ ∈ Λ2V ∗| ∗ µ = τµ ∧ ω∧(n−2)

}
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for each τ ∈ R.
Then,

Λ2V ∗ = B
1

(n−2)! ⊕B
−1

(n−2)! ⊕B
1

(n−1)! .

Moreover, with respect to an orthonormal Darboux basis {ei, fj}1≤i,j≤n,

B
1

(n−2)! = ⊕i<j 〈ξi ∧ ξj − ηi ∧ ηj , ξi ∧ ηj + ηi ∧ ξj〉 ,

B
−1

(n−2)! = ⊕i<j 〈ξi ∧ ξj + ηi ∧ ηj , ξi ∧ ηj − ηi ∧ ξj〉 ⊕ (12)
⊕i 6=1 〈ξ1 ∧ η1 − ξi ∧ ηi〉 (13)

and
B

1
(n−1)! =

〈
n∑
i=1

ξi ∧ ηi

〉
= 〈ω〉

where ξi := e[i and ηi := f [i for every i ∈ {1, ..., n}.

Proof. Lemma 2.1.7 (i), (ii) and (iii) implies that

⊕i<j 〈ξi ∧ ξj − ηi ∧ ηj , ξi ∧ ηj + ηi ∧ ξj〉 ⊆ B
1

(n−2)!

and
⊕i<j 〈ξi ∧ ξj + ηi ∧ ηj , ξi ∧ ηj − ηi ∧ ξj〉 ⊆ B

−1
(n−2)! .

It remains to work on the vector subspace

⊕i∈{1,...,n} 〈ξi ∧ ηi〉 .

Let us fix α1, ..., αn ∈ R and suppose that
n∑
i=1

αiξi ∧ ηi ∈ Bτ .

Thanks to Lemma 2.1.7 (v),
n∑
i=1

αi ∗ (ξi ∧ ηi) = ∗
n∑
i=1

αiξi ∧ ηi (14)

= τ
n∑
i=1

αiξi ∧ ηi ∧ ω∧(n−2) (15)

= τ
n∑
i=1

αi(n− 2)! ∗
∑
k 6=i

ξk ∧ ηk (16)

=
n∑
k=1

∑
i 6=k

τ(n− 2)!αi ∗ (ξk ∧ ηk) . (17)

(18)
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By Lemma 2.1.7 (iv),

αk =
∑
i 6=k

τ(n− 2)!αi. (19)

Let us denote T := τ(n − 2)!. Equation (19) means that the vector
(α1, ..., αn) is a solution of the homogeneous system

1 −T ... −T −T
−T 1 ... −T −T
... ... ... ... ...
−T −T ... −T 1


x1
...
xn

 = 0

which is equivalent to the system
1 −T ... −T −T
0 1− T 2 ... −T − T 2 −T − T 2

... ... ... ... ...
0 −T − T 2 ... −T − T 2 1− T 2


x1
...
xn

 = 0.

To solve this system, let us decompose the problem into two cases:
T = −1 (i.e. τ = −1

(n−2)!) and T 6= −1. In the first case, the system is
equivalent to the system

x1 + ...+ xn = 0.

This shows that

⊕i 6=1 〈ξ1 ∧ η1 − ξi ∧ ηi〉 ⊆ B
−1

(n−2)! .

In the second case, the system is equivalent to the systems
1 −T ... −T −T
0 1− T ... −T −T
... ... ... ... ...
0 −T ... −T 1− T


x1
...
xn

 = 0,


1 −T −T ... −T −T
0 1 0 ... 0 −1
0 0 1 ... 0 −1
... ... ... ... ... ...
0 −T −T ... −T 1− T


x1
...
xn

 = 0

and eventually
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
1 −T −T ... −T −T
0 1 0 ... 0 −1
0 0 1 ... 0 −1
... ... ... ... ... ...
−1 0 0 ... 0 1


x1
...
xn

 = 0.

Then (α1, ..., αn) is a solution of the systems{
x1 − Tx2 − ...− Txn= 0

x1 = x2 = ... =xn

and {
(1− T (n− 1))x1= 0
x1 = x2 = ... =xn.

So if T 6= 1
n−1 (i.e. τ 6= 1

(n−1)!), the unique solution is (0, ..., 0).
Otherwise, the solutions are

{(α, ..., α)|α ∈ R} .

In particular, this shows that〈
n∑
i=1

ξi ∧ ηi

〉
⊆ B

1
(n−1)! .

The lemma follows by counting dimensions.

To finish this section, we determine the set of self-dual 2-forms on a
Kähler vector space of real dimension 2n > 4 with the orientation given
by the canonical volume form of the underlying symplectic vector space
(see Section 1.1).

Proposition 2.1.9. Let (V, ω, J, g) be a Kähler vector space of real
dimension 2n > 4 endowed with the orientation given by the canonical
volume form of the underlying symplectic vector space (V, ω) (see Section
1.1). Then a 2-form µ on V is self-dual if and only if there exists c ∈ R
such that µ = cω.

Proof. The proof is clear thanks to Lemma 2.1.8.

Before ending this section, let us insist on an important fact: our work
is only valid on vector spaces of real dimension strictly greater than 4.
Indeed, the decomposition of Λ2V ∗ of the Lemma 2.1.8 is no more valid in
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dimension 4 because in this case, n = 2 and hence (n− 1)! = (n− 2)! = 1.
In fact, in dimension 4,

Λ2V ∗ = B1 ⊕B−1.

So this text is not a generalization but a complement of the job made
for dimension 4.

2.2. On manifolds
The structure of this section is a carbon copy of the structure of

the previous one but it treats the notion of self-duality of 2-forms on
manifolds instead of self-duality of 2-forms on vector spaces. First of
all we explain how the definitions of the Hodge-star operator and of
(anti-)self-duality in dimension 4 of the previous section are adapted on
oriented Riemannian manifolds. Secondly, we recall the notion of almost
Kähler manifolds. Manifolds on which, thirdly, we define our generalized
notion of self-duality. We end this section with one of the most important
theorem of our text which characterizes the space of self-dual 2-forms on
almost Kälher manifolds of real dimension strictly greater than 4.

The Hodge-star operator on an oriented Riemannian manifold is
simply the Hodge-star operator of the previous section at each point of
the manifold.

Definition 2.2.1. [AHS78, Section 1] On (M, g) an oriented Rieman-
nian manifold of dimension n, the Hodge-star operator ∗ : Λk(M) →
Λn−k(M) is defined for every x ∈M by

(∗µ)x := ∗(µx)

where ∗(µx) is the Hodge-star operator of µx on the oriented inner product
space (TxM, gx).

The natural definition of (anti-)self-duality on a manifold of real
dimension 4 is clear.

Definition 2.2.2. [AHS78, Section 1] On (M, g) an oriented Rieman-
nian manifold of dimension 4, a 2-form µ is called self-dual if

∗µ = µ

and anti-self-dual if
∗µ = −µ.
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To extend this definition to real dimension greater than 4, we copy
the previous section. Manifolds corresponding to Kähler vector spaces
are the almost Kähler manifolds. Let us recall this definition and give
the extended definition of self-duality.

Definition 2.2.3. An almost Kähler manifold (M, g, J, ω) is a Rieman-
nian manifold (M, g) with

• an almost complex structure J , i.e. J ∈ Γ∞(End(TM)) such that
J2 = −idTM ,

• a symplectic 2-form ω, i.e. a closed nondegenerate 2-form

such that
ω(., J.) = g(., .).

Definition 2.2.4. Let (M, g, J, ω) be an almost Kähler manifold of real
dimension 2n ≥ 4 endowed with the orientation given by the canonical
volume form of the underlying symplectic manifold (M,ω) (see Section
1.1). A 2-form µ onM is called generalized self-dual (or simply self-dual)
if

∗µ = µ ∧ ω
∧(n−2)

(n− 1)! .

The following theorem comes from Proposition 2.1.9. It will be funda-
mental for the identification of the moduli space of self-dual connections
in our context in Chapter 3.

Theorem 2.2.5. Let (M, g, J, ω) be an almost Kähler manifold of real
dimension 2n > 4 endowed with the orientation given by the canonical
volume form of the underlying symplectic manifold (M,ω). Then a 2-form
µ is self-dual if and only if there exists c ∈ C∞(M,R) such that

µ = cω.

Proof. By Proposition 2.1.9, if µ is self-dual, there exists a function
c : M → R such that µ = cω. If we look at this equality with respect to
a Darboux basis {dqi, dpi}1≤i,j≤n, we see that µ is written locally

c
∑
i

dqi ∧ dpi.

µ is smooth so the function c has to be locally smooth, so globally. The
opposite implication is clear.





Chapter 3

Generalized moduli space of self-dual

connections

The generalized definition of self-duality of 2-forms of previous chapter
provides a natural definition of self-duality of connections. As in real
dimension 4, self-dual connections on manifolds of real dimension greater
than 4 are critical points of the Yang-Mills functional. Moreover the
set of self-dual connections on these spaces is stable under the action of
the Gauge group. The space of self-dual connections modulo the Gauge
group is called the moduli space of self-dual connections. It is interesting
for both mathematicians and physicists. This chapter is devoted to its
study. It is split into two sections.

The first one gives definitions of self-dual connections, Gauge group
and moduli space of self-dual connections. Moreover, it gives two exam-
ples of self-dual connections (Examples 3.1.2). One is constructed on a
torus bundle over a torus, thanks to the Heisenberg group. The other
one is constructed on the natural principal bundle over an Hermitian
symmetric space with proper properties.

The second section deals with the study of moduli space of self-dual
connections if the Gauge group is abelian. To avoid confusion, if the
Gauge group is abelian, we denote it by Z instead of G. In this case,
four things simplify:

• the curvature of a connection can be seen as a 2-form on M valued
in z := Lie(Z),

• the difference of two connection 1-forms can be seen as a 1-form
on M valued in z,

• the curvature of a connection α is simply dα,

• the Gauge group is isomorphic to C∞(M,Z).

This section is split into four parts. The first one explains these
simplifications. The second one identifies the moduli space of self-dual
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connectionsM when the based manifold is compact connected of real
dimension 2n > 4. It asserts thatM is either empty, or in bijection with
H1(M, z)/KZ , where KZ is a subgroup of H1(M, z). For this proof, in
the non-empty case, we define a natural map fromM to H1(M, z)/KZ .
The proof that this map is well-defined, injective and surjective comes
directly from Lemma 3.2.1.

The third part of this section gives a structure on the moduli space
of self-dual connections (if it is non empty) if one hypothesis is added:
the Gauge group has to be connected. We prove that there exists an
abelian Lie group structure on M. Section 1.3 tells us that the only
difficult thing to prove is that KS1 is closed in H1(M,Lie(S1)). It is
quite easily proved thanks to the characterization of KS1 formulated
with a line integral (Proposition 3.2.7).

The fourth part of this section studies some examples of moduli space
of self-dual connections (Examples 3.2.10).

3.1. Definition
In this section, we define the notion of moduli space of self-dual

connections. First of all, we define the self-duality of connections and
present some examples of self-dual connections. Secondly, we define
the notion of Gauge transformations. Thirdly, we show that a Gauge
transformation preserves the self-duality and eventually we give the
definition of moduli space of self-dual connections.

We generalize the definition of self-duality of connection of [AHS78,
Section 2] to even dimension greater than four using Chapter 2.

Definition 3.1.1. Let G be a compact Lie group, (M, g, J, ω) be an
almost Kähler manifold of real dimension 2n ≥ 4 and P → M be a
G-principal bundle. A connection 1-form α on P is called self-dual if F̃
(defined in Definition 1.5.10) is a self-dual 2-form on M .

By "F̃ is self-dual" we mean the following: if F̃ =
∑
j µj ⊗ sj for

µj ∈ Λ2(M) and sj ∈ Γ∞(EAd), each µj has to be a self-dual 2-form on
M for the generalized Definition 2.2.4. It is independent of the choice
of the representative

∑
j µj ⊗ sj in Λ2(M)⊗ Γ∞(EAd) because the self-

duality of 2-forms is stable under the product by a smooth function on
M .

Now, let us look at two examples of self-dual connection 1-forms.

Example 3.1.2. (i) Our first example of self-dual connection will be
constructed on a torus bundle over a torus. R.S. Palais and T.E.



3.1. DEFINITION 49

Stewart explain in [PS61] that bundles of this form has compact 2-
step nilmanifold as total space1. An easy example of 2-step nilpotent
compact Lie group is

G :=


1 a c

0 In b
0 0 1


∣∣∣∣∣∣∣ a, b ∈ Kn, c ∈ K

 ,
the Heisenberg group, for K = R,C or H (the real, complex or
quaternion numbers). If we denote by Γ the subgroup of G of
matrices with coefficients in Z := Z (respectively Z ⊕ iZ or Z ⊕
iZ⊕ jZ⊕ kZ) then

Hsbrgn(K) := G/Γ

is a compact 2-step nilmanifold.
Let us denote by T k ' K/Z the k-torus for k := dimR(K) and let
us consider the well-defined free right action of T k on Hsbrgn(K):

Hsbrgn(K)× T k → Hsbrgn(K)

1 a c

0 In b
0 0 1


 , [x]

 7→

1 a c+ x

0 In b
0 0 1


 .

π : Hsbrgn(K)→ T 2nk :


1 a c

0 In b
0 0 1


 7→ [(a1, b1, ..., an, bn)]

endowed with this T k-right action defines a T k-principal bundle
structure on Hsbrgn(K). We will construct a connection 1-form
α0 on it, if 2kn > 4.
For Xu ∈ Tu (Hsbrgn(K)), let us consider γ : I ⊆ R → G
such that [γ(0)] = u and d

dt |0[γ(t)] = Xu. We write γ(t) =1 a(t) c(t)
0 In b(t)
0 0 1

 ∈ G and define

α0 : T (Hsbrgn(K))→ Lie(T k) ' K : Xu 7→ c′(0)− a′(0).b(0).
1Roughly speaking, a compact 2-step nilmanifold is a quotient space N/H where

N is a 2-step nilpotent compact Lie group and H a closed subgroup of N (we refer to
[Wil82] for precise definitions and details about nilmanifolds).



50 CHAPTER 3. MODULI SPACE

It’s easy to show that α0 is independent of the chosen curve γ in
G. Moreover, it is a connection 1-form. Indeed,

• If T ∈ Lie(T k) and u =


1 a c

0 In b
0 0 1


 ∈ Hsbrgn(K),

T ∗u := d

dt

∣∣∣∣
0


1 a c

0 In b
0 0 1


 [exp tT ]

= d

dt

∣∣∣∣
0


1 a c+

∑
k

(tT )k
k!

0 In b
0 0 1


 .

So α0(T ∗u ) = T .

• If [τ ] ∈ T k and Xu ∈ T (Hsbrgn(K)) for u =


1 a c

0 In b
0 0 1


,

let us denote by γ : I ⊆ R→ G a curve in G such that [γ(0)] =

u and d
dt |0[γ(t)] = Xu and let us write γ(t) =

1 a(t) c(t)
0 In b(t)
0 0 1

.
Then

R∗[τ ]α0(Xu) = α0
(
R[τ ]∗Xu

)
= α0

 d

dt

∣∣∣∣
0


1 a(t) c(t)

0 In b(t)
0 0 1


 [τ ]


= α0

 d

dt

∣∣∣∣
0


1 a(t) c(t) + τ

0 In b(t)
0 0 1





= c′(0)− a′(0).b(0)
= α(Xu)
= Ad−1

[τ ]α(Xu).

There exists a natural structure of Kähler manifold on T 2nk. So we
can try to show that α0 is self-dual with respect to the underlying
metric and symplectic form.
Let us denote

IR :=
]
−1

2 ,
1
2

[(
respectively IC :=

]
−1

2 ,
1
2

[
+ i

]
−1

2 ,
1
2

[
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or IH :=
]
−1

2 ,
1
2

[
+ i

]
−1

2 ,
1
2

[
+ j

]
−1

2 ,
1
2

[
+ k

]
−1

2 ,
1
2

[)
.

For every [(a, b)] := [(a1, b1, ..., an, bn)] ∈ T 2kn, let us consider the
open subset of T 2kn

U[(a,b)] :=
{ [

(a1 + x1, b1 + y1, ..., an + xn, bn + yn)
]∣∣x, y ∈ (IK)n

}
and the local section s : U[(a,b)] → Hsbrgn(K) defined by

s
([

(a1 + x1, b1 + y1, ..., an + xn, bn + yn)
])

=


1 a+ x 0

0 In b+ y
0 0 1




for every
[
(a1 + x1, b1 + y1, ..., an + xn, bn + yn)

]
∈ U[(a,b)].

Hence
s∗α0 = −

n∑
i=1

(bi + yi)dxi

and
s∗F0 = s∗dα0 =

n∑
i=1

dxi ∧ dyi = ω,

where ω denotes the symplectic structure on T 2nk.
If 2nk > 4, Theorem 2.2.5 asserts that α0 is a self-dual connection
1-form on Hsbrgn(K).

(ii) The second example is constructed on some kind of Hermitian sym-
metric spaces. The symmetric structure gives canonical principal
bundle and connection: the K-principal bundle G→ G/K and its
Loos connection defined in Section 1.6. Naturally, we wonder if the
Loos connection is self-dual. In general, the answer is no. But we
will show that with restrictive hypotheses, the Loos connection is
still self-dual. We refer to [KN96, Section XI.9] for the definition of
Hermitian symmetric spaces and details about it and to the Section
1.6 for basic facts about symmetric spaces.
Let (M, g, J, ω) be an Hermitian symmetric space. M is in par-
ticular a connected symmetric space so we can consider the corre-
sponding K-principal bundle G→ G/K and its Loos connection as
in Section 1.6. If G is simple, K a 1-dimensional Lie subgroup of
G and M of real dimension strictly greater than 4, then the Loos
connection α0 on G→ G/K is self-dual.
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Indeed, ω is compatible with the symmetric structure so sx-invariant
for every x ∈M . In particular, ω is G-invariant.
So (π∗ω)e|p×p is k-invariant, i.e.

(π∗ω)e|p×p (adXY,Z) = − (π∗ω)e|p×p (Y, adXZ)

for every Y,Z ∈ p and X ∈ k.
G is simple, so by [Bie98, Theorem 2.1], there exists Z ∈ z(k) such
that

(π∗ω)e|p×p = −β(Z, [., .])

for β the Killing form on g. K is 1-dimensional, hence z(k) = k
and {Z} forms a basis of k
A vector field is horizontal with respect to α0 if and only if it is a
left-invariant vector field on G corresponding to a vector in p.
By Lemma 1.5.6, for every X,Y ∈ p,

F0(X̃g, Ỹg) = −1
2α0([X̃, Ỹ ]g)

= −1
2α0([̃X,Y ]g)

= −1
2prk([X,Y ])

= −1
2
β(Z, [X,Y ])Z
‖Z‖2

= 1
2(π∗ω)e(X,Y ) Z

‖Z‖2

= (π∗ω)g(X̃g, Ỹg)
Z

2‖Z‖2

because π∗ω is G-invariant.
If we denote by Qg the horizontal part of TgG with respect to α0,
on Qg ×Qg,

(F0)g = (π∗ω)g ⊗
Z

2‖Z‖2 .

As both expressions are equal to 0 on Gg×Gg, Gg×Qg and Qg×Gg
(for Gg the vertical part of TgG),

F0 = (π∗ω)⊗ Z

2‖Z‖2

on TG.
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For every g ∈ G, every s : U ⊆ M → G local section such that
π(g) ∈ U and s(π(g)) = g and every X,Y ∈ Γ∞(TM),(

F̃0(X,Y )
)

ˆ(g) = gX,Y (g)
= F0(s∗Xπ(g), s∗Yπ(g))

= (π∗ω)(s∗Xπ(g), s∗Yπ(g))
Z

2‖Z‖2

= ω(Xπ(g), Yπ(g))
Z

2‖Z‖2 .

Hence Theorem 2.2.5 asserts that α0 is self-dual.
Let us remark that the conditions to have a self-dual Loos connection
are restrictive. We have not found an explicit example of Hermitian
symmetric space which respects these hypotheses. Nevertheless,
we wrote this theoretical example in our text because we built our
general theory from this Hermitian symmetric case.

The definitions of Gauge group and moduli space come directly from
the 4-dimensional case. Let us begin with the definition of the Gauge
group.

Definition 3.1.3. For G a compact Lie group, let P → M be a G-
principal bundle over a manifold M . A Gauge transformation is a
vertical isomorphism of the principal bundle, i.e. a diffeomorphism
ϕ : P → P such that for every p ∈ P and g ∈ G,

π(ϕ(p)) = π(p)

and
ϕ(pg) = ϕ(p)g.

We denote by G the set of Gauge transformations. It forms a group
for the composition law. It is called the Gauge group of P .

Let us denote by C∞(P,G)G the group of G-equivariant functions for
the action of G on itself by conjugation Cg : G → G : g′ 7→ gg′g−1, i.e.
the group of smooth functions ϕ̃ : P → G such that ϕ̃(pg) = Cg−1ϕ̃(p),
where the group laws come naturally from the group laws of G. Then
there exists a isomorphism between G and C∞(P,G)G given by

ϕ(p) = pϕ̃(p)

for ϕ ∈ G and ϕ̃ the corresponding G-equivariant function. The local
triviality of P proves that it is indeed a bijection. In our text, we denote
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always by ϕ̃ the G-equivariant function corresponding to the Gauge
transformation ϕ.

The following proposition shows that the set of self-dual connection
1-forms is stable by the action of the Gauge group. It is fundamental for
the definition of the moduli space.

Proposition 3.1.4. For G a compact Lie group and (M, g, J, ω) an
almost Kähler manifold of real dimension 2n ≥ 4, let π : P → M be
a G-principal bundle endowed with a connection 1-form α and ϕ be a
Gauge transformation. Then

(i) ϕ∗α is a connection 1-form,

(ii) α is self-dual if and only if ϕ∗α is self-dual.

Proof. (i) ϕ∗α is a 1-form on P valued in g. We have to check the
Definition 1.5.2. The first point is clear if we remark that, for
X ∈ g and p ∈ P ,

ϕ∗X
∗
p = d

dt

∣∣∣∣
0
ϕ(p exp(tX)) = d

dt

∣∣∣∣
0
ϕ(p) exp(tX) = X∗ϕ(p).

Let us compute the second point. For every Xp ∈ TpP and γ : I ⊆
R→ P such that γ(0) = p and d

dt

∣∣∣
0
γ(t) = Xp and for every g ∈ G,

R∗gϕ
∗α(Xp) = α(ϕ∗Rg∗Xp)

= α

(
d

dt

∣∣∣∣
0
ϕ(γ(t)g)

)
= α

(
d

dt

∣∣∣∣
0
ϕ(γ(t))g

)
= Adg−1α(ϕ∗Xp)
= Adg−1ϕ∗α(Xp).

(ii) First of all, we remark that, by Proposition 1.5.5, the curvature of
ϕ∗α is

dϕ∗α+ 1
2[ϕ∗α(.), ϕ∗α(.)] = ϕ∗F.

Let us look at ϕ̃∗F of Definition 1.5.10. For X,Y ∈ Γ∞(TM),
p ∈ P and s : U ⊆M → P a local section defined on U such that
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π(p) ∈ U and s(π(p)) = p,(
ϕ̃∗F (X,Y )

)
ˆ(p) = ϕ∗F (s∗Xπ(p), s∗Yπ(p))

= F
(
ϕ∗s∗Xπ(p), ϕ∗s∗Yπ(p)

)
= F

(
(ϕ ◦ s)∗Xπ(p), (ϕ ◦ s)∗Yπ(p)

)
=

(
F̃ (X,Y )

)
ˆ(ϕ(p))

because ϕ ◦ s : U ⊆ M → P is a local section of P such that
ϕ ◦ s(π(p)) = ϕ(p).
So if F̃ =

∑
j µj ⊗ sj , then ϕ̃∗F =

∑
j µj ⊗ s

ϕ
j where

ŝϕj = ŝj ◦ ϕ.

Hence ϕ∗α is self-dual if and only if α is self-dual.

Proposition 3.1.4 says that we can define an equivalence relation on
the set of self-dual connection 1-forms on P with respect to the Gauge
group:

ϕ∗α ∼ α

for every ϕ ∈ G.
We can generalize the well known notion of moduli space of self-

dual connections to almost Kähler manifolds of real dimension greater
than four. The classical definition can be found for example in [AHS78,
Section 6].

Definition 3.1.5. For G a compact Lie group and (M, g, J, ω) an almost
Kähler manifold of real dimension 2n ≥ 4, let π : P →M be a G-principal
bundle. The moduli space of self-dual connections on P is the set of
self-dual connections on P modulo the equivalence relation given by G,
the Gauge group on P .

We denote byM the moduli space of self-dual connections on P .

3.2. For abelian Gauge groups
In this section we identify the moduli space of self-dual connections

on a compact connected almost Kähler manifold of real dimension strictly
greater than four if the Gauge group is abelian. If we consider an abelian
Lie group, we write it Z instead of G as usual.
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The fact that Z is abelian simplifies most of what we did until now.
In this section, first of all, we present all these simplifications. It will
lead us to two theorems which characterize the moduli space of self-dual
connections in this context. Both of them are presented with some
propositions and lemmas. We end this section by some examples of
applications of these theorems.

The Lie group is abelian so EAd is isomorphic to the trivial bundle
M ⊗ z and Γ∞(EAd) ' C∞(M, z). By Definition 1.5.10, the difference of
two connection 1-forms α1 and α2 defines a element α̃2 − α1 ∈ Λ1(M)⊗
Γ∞(EAd). So if the Lie group is abelian, it defines naturally a global
element α2 − α1 ∈ Λ1(M, z). Locally

α2 − α1 := s∗ (α2 − α1)

for some s : U ⊆M → P local section of P .
In the same way, the curvature F of a connection 1-form α defines

naturally a global element F ∈ Λ2(M, z) which is locally

F := s∗F

for some s : U ⊆M → P local section of P .
If we denote

F =:
∑
j

µj ⊗ Yj ∈ Λ2(M, z) = Λ2(M)⊗ z,

α is self-dual if and only if the µj ’s are self-dual 2-forms on M for every
j.

We remark moreover that F = dα because the Lie algebra z is
abelian. Eventually let us remark that C∞(P,Z)Z is isomorphic to
C∞(M,Z) because the action of Z on itself by conjugation is trivial.
So G ' C∞(M,Z). For ϕ ∈ G, we write ϕ the corresponding smooth
function from M to Z. We have

ϕ(p) = p (ϕ ◦ π( p))

for every p ∈ P .

The following lemma will give us directly the proof of our first theorem,
which characterizesM.

Lemma 3.2.1. For Z an abelian compact Lie group and (M, g, J, ω) a
compact connected almost Kähler manifold of real dimension 2n > 4, let
π : P →M be a Z-principal bundle. Then
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(i) if α1 and α2 are self-dual connections on P , α2 − α1 is a closed
1-form on M valued in z,

(ii) if α0, α and β are connection 1-forms on P , then there exists ϕ ∈ G
such that β = ϕ∗α if and only if there exists ϕ ∈ C∞(M,Z) such
that β − α0 = α− α0 + ϕ−1dϕ,

(iii) if σ is a closed 1-form onM valued in z and α a self-dual connection
1-form on P , then π∗σ + α is a self-dual connection 1-form on P .

Remark 3.2.2. By ϕ−1dϕ we mean, for Xx ∈ TxM and γ : I ⊆ R→M
such that γ(0) = x and γ̇(0) = Xx,

ϕ−1dϕ(Xx) := d

dt

∣∣∣∣
0

(ϕ(x))−1 ϕ(γ(t)) ∈ z.

Proof. (i) Let us denote F 1 :=
∑
j µ

1
j ⊗ Y 1

j and F 2 :=
∑
j µ

2
j ⊗ Y 2

j

where µij ∈ Λ2(M) and Y i
j ∈ z for i = 1, 2. α1 and α2 are self-dual

so by definition µij are self-dual 2-forms on M for i = 1, 2 and for
every j. By Theorem 2.2.5, there exist cij ∈ C∞(M,R) such that
µij = cijω. Then

F 1 =
∑
j

c1
jω ⊗ Y j1 = ω ⊗ Y 1

for Y 1 :=
∑
j c

1
jY

1
j ∈ C∞(M, z) and in the same way

F 2 = ω ⊗ Y 2

for Y 2 :=
∑
j c

2
jY

2
j ∈ C∞(M, z).

For some s : U ⊆M → P local section of P ,

ω ⊗ (Y 2 − Y 1) = F2 − F1

= s∗(F2 − F1)
= s∗(dα2 − dα1)
= ds∗(α2 − α1)
= dα2 − α1

and so globally

ω ⊗ (Y 2 − Y 1) = dα2 − α1. (20)
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Hence, to finish the proof, it is enough to show that Y 2 − Y 1 = 0.
First of all, let us show that Y 1 and Y 2 are constants. For i = 1
and 2,

dFi = d2αi = 0.

Then for s : U ⊆M → P some local section of P ,

dFi = ds∗Fi = s∗dFi = 0.

But
dFi = dω ⊗ Yi + ω ⊗ dYi = ω ⊗ dYi

so Yi is constant on M because M is connected.
Now, we can show that Y 2 − Y 1 = 0. We consider {Xk}k∈{1,...,l} a
basis of z and we denote

Y 2 − Y 1 =
l∑

k=1
fkXk

for fk ∈ R and

α2 − α1 =
l∑

k=1
τk ⊗Xk

for τk ∈ Λ1(M,R).
Then for every k ∈ {1, ..., l}, fkω = dτk. If fk > 0 or fk < 0,
ω = d τkfk . So ω is an exact symplectic form which contradicts the
compactness of M , thanks to Lemma 1.1.2.
So fk = 0 for every k ∈ {1, ..., l} and Y 2 − Y 1 = 0. Hence α2 − α1
is a closed 1-form on M by Equation (20).

(ii) For every Xx ∈ TxM and γ : I ⊆ R→M such that γ(0) = x and
d
dt

∣∣∣
0
γ(t) = Xx and for every s : U ⊆ M → P local section such
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that x ∈ U , we remark that for every ϕ ∈ G,

ϕ∗α(s∗Xx) = α(ϕ∗s∗(Xx))

= α

(
d

dt

∣∣∣∣
0
ϕ (s(γ(t)))

)
= α

(
d

dt

∣∣∣∣
0
s(γ(t))ϕ ◦ π (s(γ(t)))

)
= α

(
d

dt

∣∣∣∣
0
s(γ(t))ϕ(γ(t))

)
= α

(
Rϕ(x)∗s∗Xx +

(
ϕ−1dϕ(Xx)

)∗
ϕ(s(x))

)
= Adϕ(x)−1α (s∗Xx) + ϕ−1dϕ(Xx)
= α (s∗Xx) + ϕ−1dϕ(Xx).

So for every s : U ⊆M → P local section,

s∗(ϕ∗α− α) = ϕ−1dϕ. (21)

If there exists ϕ ∈ G such that β = ϕ∗α, then by Equation (21),

β − α = ϕ−1dϕ

for ϕ the smooth function from M to Z corresponding to ϕ.
Conversely, if there exists ϕ ∈ C∞(M,Z) such that

β − α = ϕ−1dϕ,

then for every s : U ⊆M → P local section,

s∗(β − α) = ϕ−1dϕ,

i.e. thanks to Equation (21), s∗β = s∗α + ϕ−1dϕ = s∗ϕ∗α for ϕ
the Gauge transformation corresponding to ϕ.
To show that β = ϕ∗α, we will show that they have the same
horizontal vectors. For every p ∈ P , we can apply Proposition
1.5.3 with respect to β at π(p). So we can find an horizontal local
section s at π(p) such that s(π(p)) = p. If Xp ∈ TpP is horizontal
with respect to β, s∗π∗Xp = Xp, because there exists a unique
horizontal lift of π∗Xp at p.
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Then

0 = β(Xp)
= (s∗β)(π∗Xp)
= (s∗ϕ∗α)(π∗Xp)
= ϕ∗α(Xp).

Hence Xp is horizontal with respect to ϕ∗α too. In the same way,
an horizontal vector for ϕ∗α is horizontal for β. So β and ϕ∗α are
the same connection forms.

(iii) Clearly π∗σ + α ∈ Λ1(P )⊗ z. Moreover, it is a connection 1-form.
Indeed, for every X ∈ z and every p ∈ P ,

(π∗σ + α) (X∗p ) = π∗σ(X∗p ) + α(X∗p )
= 0 +X

= X

and for every z ∈ Z and Xp ∈ TpP ,

R∗z (π∗σ + α) (Xp) = (π ◦Rz)∗σ(Xp) +R∗zα(Xp)
= π∗σ(Xp) +Adz−1α(Xp)
= Adz−1 (π∗σ + α) (Xp)

because Adz−1 = Idz. Finally, d(π∗σ+α) = π∗dσ+dα = 0+F = F
so π∗σ+α and α have the same curvature and π∗σ+α is self-dual.

We can now present our theorem which characterizesM:

Theorem 3.2.3. Let Z be an abelian compact Lie group, (M, g, J, ω) be
a compact connected almost Kähler manifold of real dimension 2n > 4
and π : P →M be a Z-principal bundle. Then, either the moduli space
of self-dual connectionsM is empty, orM is in bijection with

H1(M, z)/KZ ,

where KZ := {[ϕ−1dϕ]|ϕ ∈ C∞(M,Z)}.

Remark 3.2.4. IfM is non empty, then it depends only on M and Z.
It is independent of the total space of the principal bundle. To identify
M, the knowledge of this total space is useful simply to construct a first
self-dual connection 1-form and so to show thatM is non empty.
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Before going to the proof of this theorem, let us remark that the
expression H1(M, z)/KZ makes sense:

Remark 3.2.5. H1(M, z) is an R-vector space so, in particular, an
abelian group. We will show that KZ is a well-defined subgroup of
H1(M, z). For this, we prove:

(i) for every ϕ ∈ C∞(M,Z), ϕ−1dϕ is a closed 1-form,

(ii) for every ϕ1, ϕ2 ∈ C∞(M,Z), ϕ1
−1dϕ1 + ϕ2

−1dϕ2 ∈ KZ ,

(iii) if ϕ−1dϕ ∼ α in H1(M, z), then there exists ψ ∈ C∞(M,Z) such
that ψ−1

dψ = α.

Hence, (i) and (iii) prove that KZ is a well-defined subset of H1(M, z)
and (ii) proves that it is a subgroup.

(i) Using the fact that Z is abelian, we see that for every ϕ ∈
C∞(M,Z),

ϕdϕ−1 + ϕ−1dϕ = d
(
ϕ−1ϕ

)
= d(1)
= 0

so
dϕ−1 = −ϕ−2dϕ

and

d
(
ϕ−1dϕ

)
= d

(
ϕ−1

)
∧ dϕ+ ϕ−1d2ϕ

= −ϕ−2dϕ ∧ dϕ
= 0.

(ii) For Xx ∈ TxM and γ : I ⊆ R → M such that γ(0) = x and
γ̇(0) = Xx, using the fact that Z is abelian, we find

(ϕ1.ϕ2)−1 d (ϕ1.ϕ2) (Xx)

= d

dt

∣∣∣∣
0

(ϕ1.ϕ2)−1 (x) (ϕ1.ϕ2) (γ(t))

= d

dt

∣∣∣∣
0

(ϕ1(x))−1 ϕ1(γ(t)). (ϕ2(x))−1 ϕ2(γ(t))

= d

dt

∣∣∣∣
0

(ϕ1(x))−1 ϕ1(γ(t)). (ϕ2(x))−1 ϕ2(γ(0))

+ d

dt

∣∣∣∣
0

(ϕ1(x))−1 ϕ1(γ(0)). (ϕ2(x))−1 ϕ2(γ(t))

= ϕ1
−1dϕ1(Xx) + ϕ2

−1dϕ2(Xx).
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(iii) If α and ϕ−1dϕ are equivalent in H1(M, z), then there exists f ∈
C∞(M, z) such that α = ϕ−1dϕ+ df . For Xx ∈ TxM and γ : I ⊆
R→M such that γ(0) = x and γ̇(0) = Xx,

(exp ◦f)−1 d (exp ◦f) (Xx)

= d

dt

∣∣∣∣
0

((exp ◦f) (x))−1 (exp ◦f) (γ(t))

= d

dt

∣∣∣∣
0

exp(f(γ(t))− f(x))

= df(Xx).

Hence α = ϕ−1dϕ+ (exp ◦f)−1d(exp ◦f). So, thanks to (ii), α =
(ϕ exp ◦f)−1d(ϕ exp ◦f).

We can now prove the Theorem 3.2.3.

Proof. IfM = ∅, there is nothing to prove. So let us fix α0 a self-dual
connection 1-form on P .

We consider the map

[α] ∈M 7→ [α− α0] ∈ H1(M, z)/KZ .

Thanks to Lemma 3.2.1 items (i) and (ii), this map is well-defined
and injective. Eventually, by Lemma 3.2.1 item (iii), every [σ] ∈
H1(M, z)/KZ is the image of [π∗σ + α0] ∈ M so the map is surjec-
tive.

The next part of this section is devoted to the proof of the fact that
H1(M, z)/KZ admits a differentiable structure which turns it into an
abelian Lie group if we add one hypothesis: the Gauge group has to be
connected (so a k-torus for k ∈ N0). For this, we need one lemma and
one proposition.

Lemma 3.2.6. Let M be a compact manifold and Z1 and Z2 abelian
compact Lie groups. Then

H1(M,Lie(Z1 × Z2))/KZ1×Z2 ' H1(M,Z1)/KZ1 ×H1(M,Z2)/KZ2 .

Proof. Clearly,

H1(M,Lie(Z1 × Z2)) ' H1(M, z1)⊕H1(M, z2)

because Lie(Z1 × Z2) ' z1 ⊕ z2.
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Moreover, for every ϕ = (ϕ1, ϕ2) ∈ C∞(M,Z1 × Z2),

[ϕ−1dϕ] = [ϕ1
−1dϕ1] + [ϕ2

−1dϕ2] ∈ H1(M,Z1)⊕H1(M,Z2)

so the isomorphism descends to a well-defined isomorphism to the quotient
spaces

Theorem 4.22 of [Lee03] inspired us the next proposition.

Proposition 3.2.7. Let M be a connected n-manifold and α a 1-form
on M valued in Lie(S1). Then α ∈ KS1 if and only if∫

γ
α ∈ i2πZ

for every γ closed piecewise smooth curve segment on M .

Remark 3.2.8. The line integral is defined on 1-forms valued in R
while α in this proposition is a 1-form valued in Lie(S1). The integral
is defined thanks to the identification Lie(S1) ' R which consists in
dropping the i in Lie(S1) ' iR.

Proof. First of all, let us show that if α ∈ KS1 , then∫
γ
α ∈ i2πZ

for every γ closed piecewise smooth curve segment on M .
We fix γ : [a, b] ⊆ R→M a closed piecewise smooth curve segment

on M and we decompose [a, b] in a = a0 < ... < ak = b such that
γ|[aj ,aj+1] is smooth for every j ∈ {0, ..., k − 1}.

We can denote α = ϕ−1dϕ for ϕ ∈ C∞(M,S1). We consider the map

ϕ ◦ γ : [a, b]→ S1.
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By the lifting property (see Section 1.4) applied to the covering space
R→ S1 : θ 7→ eiθ, there exists a continuous map ϕ̃ : [a, b]→ R such that

eiϕ̃(t) = ϕ(γ(t))

for every t ∈ [a, b].
First, let us show that ϕ̃ is a piecewise smooth curve segment on

[a, b] for the same decomposition of [a, b]. For each t0 ∈ [a, b], let us
consider U ⊆ S1 an open set containing ϕ(γ(t0)) on which we can define
a smooth log : U → Lie(S1). There exists l ∈ Z such that, for every t in
the connected component of (ϕ ◦ γ)−1(U) containing t0,

log(eiϕ̃(t)) = iϕ̃(t) + l2πi

because ϕ̃ is continuous. So ϕ̃ = −l2π + 1
i log ◦ϕ ◦ γ on an open set

containing t0.
Secondly, let us remark that

eiϕ̃(a) = ϕ(γ(a)) = ϕ(γ(b)) = eiϕ̃(b)

so ϕ̃(b)− ϕ̃(a) ∈ 2πZ.
Now, we will look at

∫
γ ϕ
−1dϕ. By definition,

∫
γ
ϕ−1dϕ =

k−1∑
j=0

∫
[aj ,aj+1]

(
γ|[aj ,aj+1]

)∗
ϕ−1dϕ.

For every j ∈ {0, ..., k − 1} and for every t0 ∈ [aj , aj+1],

(
γ|[aj ,aj+1]

)∗ (
ϕ−1dϕ

)( ∂
∂t

)
t0

= d

dt

∣∣∣∣
0

(ϕ(γ(t0)))−1 ϕ (γ(t0 + t))

= d

dt

∣∣∣∣
0
ei(ϕ̃(t0+t)−ϕ̃(t0))

= i
d

dt

∣∣∣∣
0
ϕ̃(t0 + t)

= iϕ̃′(t0).

So (
γ|[aj ,aj+1]

)∗ (
ϕ−1dϕ

)
= iϕ̃′dt.

By the fundamental theorem, we can compute
∫
γ ϕ
−1dϕ:
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∫
γ
ϕ−1dϕ =

k−1∑
j=0

∫
[aj ,aj+1]

(
γ|[aj ,aj+1]

)∗
ϕ−1dϕ

=
k−1∑
j=0

∫ aj+1

aj

iϕ̃′(t)dt

= i
k−1∑
j=0

(ϕ̃(aj+1)− ϕ̃(aj))

= i (ϕ̃(b)− ϕ̃(a)) ∈ i2πZ.

Now, let us show the reverse side of the proposition, i.e. let us suppose
that ∫

γ
α ∈ i2πZ

for every γ closed piecewise smooth curve segment on M and let us show
that [α] ∈ KS1 .

We fix x0 ∈M and consider the function

ϕ : M → S1 : x 7→ e

∫
γ
α
,

where γ is a piecewise smooth curve segment from x0 to x. We will show
that ϕ is well-defined, smooth and that ϕ−1dϕ = α.

First of all, let us remark that for every x, y ∈M and every γ1 and
γ2 piecewise smooth curve segments on M from x to y, by Proposition
1.2.3, ∫

γ1
α−

∫
γ2
α =

∫
γ1#γ−1

2

α ∈ i2πZ

for # the concatenation law on paths. So ϕ is well-defined.
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To prove last points, we will work on (U ⊆ M,ψ : U → Rn) a
coordinate chart of M such that ψ(U) is an open ball of Rn centered at
0. We need to consider the following function:

f : ψ(U)→ Lie(S1) : a 7→
∫
γ

(
ψ−1

)∗
α

where γ is a piecewise smooth curve segment from 0 to a in ψ(U). By
Poincaré lemma,

(
ψ−1)∗ α is exact on ψ(U). By the Theorem 4.22 of

[Lee03] and its proof, f is independent of γ, smooth and
(
ψ−1)∗ α = df .

Now, let us fix γ0 a piecewise smooth curve segment from x0 and
ψ−1(0). For every a ∈ ψ(U), let us denote by σa : [0, 1] → ψ(U) the
piecewise smooth curve segment defined by σa(t) := ta. By Proposition
1.2.3, we observe that

ϕ
(
ψ−1(a)

)
= e

(∫
γ0
α+
∫
ψ−1◦σa

α

)
= e

∫
γ0
α
e

∫
ψ−1◦σa

α

= e

∫
γ0
α
e

∫
[0,1](ψ−1◦σa)∗α

= e

∫
γ0
α
e

∫
σa

(ψ−1)∗α

= e

∫
γ0
α
ef(a).

It shows first of all that ϕ ◦ ψ−1 is smooth. So ϕ is smooth and we can
consider ϕ−1dϕ.
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Moreover, for every a ∈ ψ(U) and i ∈ {1, ..., n},((
ψ−1

)∗ (
ϕ−1dϕ

))
a

(
∂

∂xi a

)
= d

dt

∣∣∣∣
0

(
ϕ(ψ−1(a))

)−1
ϕ(ψ−1(a+ (0, ..., 0, t, 0, ..., 0)))

= d

dt

∣∣∣∣
0
e
−
∫
γ0
α
e−f(a)e

∫
γ0
α
ef(a+(0,...,0,t,0,...,0))

= d

dt

∣∣∣∣
0
e(f(a+(0,...,0,t,0,...,0))−f(a))

= d

dt

∣∣∣∣
0
f(a+ (0, ..., 0, t, 0, ..., 0))

= dfa

(
∂

∂xi a

)
where in (0, ..., 0, t, 0, ..., 0), t is in the ith place.

Then on ψ(U),(
ψ−1

)∗ (
ϕ−1dϕ

)
= df =

(
ψ−1

)∗
α

and so ϕ−1dϕ = α.

We are ready to prove our second main theorem:

Theorem 3.2.9. Let Z be a k-torus for k ∈ N0, (M, g, J, ω) be a compact
connected almost Kähler manifold of real dimension 2n > 4 and π : P →
M be a Z-principal bundle. Then, eitherM is empty, or there exists a
manifold structure onM which turnsM into an abelian Lie group.

Proof. By Theorem 3.2.3, ifM is non empty, then it is in bijection with
H1(M, z)/KZ . Let us show that it admits an abelian Lie group structure.

Z is isomorphic to (S1)k for some k ∈ N. Thanks to Proposition 1.3.1
and Lemma 3.2.6, it is enough to show that H1(M,Lie(S1) ' R)/KS1

admits a structure of abelian Lie group. M is compact so H1(M,R) is a
finite vector space thanks to Lemma 1.1.1 and in particular an abelian
Lie group for the trivial differentiable structure on finite dimensional
vector spaces.

Thanks to Remark 3.2.5, KS1 is an abstract abelian group. By
Theorems 1.3.2 and 1.3.3, there exists a manifold structure on

H1(M,Lie(S1))/KS1

which turns it into a Lie group if KS1 is closed in H1(M,Lie(S1)). So it
is enough to prove that KS1 is closed in H1(M,Lie(S1)).
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Let {[βn]}n∈N be a sequence in KS1 which converges to [β] ∈
H1(M,Lie(S1)). Let us show that [β] ∈ KS1 . By Proposition 3.2.7,
it is enough to show that ∫

γ
β ∈ i2πZ

for every γ closed piecewise smooth curve segment on M . We fix any
such γ. The same proposition says that∫

γ
βn ∈ i2πZ

for every n ∈ N. By Proposition 1.2.3, the map∫
γ

: H1(M,Lie(S1))→ R : [α] 7→
∫
γ
α

is linear, so continuous. So {∫
γ
βn

}
n∈N

is a sequence in i2πZ ⊂ Lie(S1) which converges to
∫
γ β.

As i2πZ is discrete, there exists N ∈ N such that, for each n ≥ N ,∫
γ βn =

∫
γ β. In particular,

∫
γ β ∈ i2πZ. The theorem is proved.

We end this section with some examples of moduli spaces of self-dual
connections.

Example 3.2.10. (i) Example 3.1.2 item (i) gives a self-dual connec-
tion on the T k-principal bundle Hsbrgn(K)→ T 2kn for K = R,C
or H, k := dimRK and n ∈ N such that 2nk > 4.
M is then non empty. As T k is compact and abelian and T 2kn is
a compact connected Kähler manifold of real dimension 2nk > 4,
Theorem 3.2.3 asserts that

M' H1(M,Lie(T k))/KTk .

Moreover T k is a torus so Theorem 3.2.9 says thatM is an abelian
Lie group.
We will show that

M'
(
R2kn/Z2kn

)k
' T 2k2n.
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As T k ' S1 × ...× S1 (k-times),

M ' H1(T 2kn, Lie(T k))/KTk

= H1(T 2kn, Lie(S1))/KS1 × ...
×H1(T 2kn, Lie(S1))/KS1 (k-times),

by Lemma 3.2.6. So it is enough to show that

H1(T 2kn, Lie(S1))/KS1 ' R2kn/Z2kn. (22)

Using the isomorphism T 2kn ' S1 × ...× S1 (2kn-times), for j ∈
{1, ..., 2kn} we can consider the local map

θj : T 2kn ' S1 × ...× S1 → Lie(S1) : (ei2πθ1 , ..., ei2πθn) 7→ iθj .

The corresponding 1-form dθj on T 2kn is a well-defined and

{[dθj ]}j∈{1,...,2kn}

is a basis of H1(T 2kn, Lie(S1)).
To prove Isomorphism (22), we will prove that

2kn∑
j=1

cj [dθj ] ∈ KS1

if and only if cj ∈ Z for every j ∈ {1, ..., 2kn}. By Proposition
3.2.7, it is equivalent to prove that∫

γ

2kn∑
j=1

cjdθj ∈ i2πZ

for all γ closed piecewise smooth curve segment on T 2kn if and only
if cj ∈ Z for all j ∈ {1, ..., 2kn} .
Let us fix γ : [a, b]→ T 2kn a closed piecewise smooth curve segment
on T 2kn and let us consider the covering

R2kn → T 2kn : (θ1, ...θ2kn) 7→ (eiθ1 , ..., eiθ2kn).

Then there exists γ̃ = (γ̃1, ..., γ̃2kn) : [a, b]→ R2kn a closed piecewise
smooth curve segment on R such that

(eiγ̃1(t), ..., eiγ̃2kn(t)) = γ(t).
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We can see that if γ is smooth on some subinterval [c, d] in [a, b],
then for every j ∈ {1, ..., 2kn},(

γ|[c,d]

)∗
dθj = i (γ̃j)′ dt.

Then for every j ∈ {1, ..., 2kn}, by the fundamental theorem,∫
γ
dθj = i(γ̃j(b)− γ̃j(a)) ∈ i2πZ

because γ(a) = γ(b).
If more details about this computation are needed, we refer to the
first part of the proof of Proposition 3.2.7 where we made the same
kind of computation with all the details.
It shows first of all that if cj ∈ Z for every j ∈ {1, ..., 2kn}, then

∫
γ

2kn∑
j=1

cjdθj ∈ i2πZ

for every γ closed piecewise smooth curve segment.
For the opposite implication, for j0 ∈ {1, ..., 2kn} fixed, let us
consider the smooth curve

γj0 : [0, 2π]→ T 2kn ' (S1)2kn : t 7→ (0, ..., 0, eit, 0, ..., 0)

where eit stands in the jth0 coordinate. Then, for every j ∈
{1, ..., 2kn}, we can choose γ̃j(t) = δjj0t for every t ∈ [0, 2π] where
δjj0 is the Kronecker delta.
By Equation (23),

∫
γj0

2kn∑
j=1

cjdθj =
2kn∑
j=1

cj

∫
γj0

dθj

=
2kn∑
j=1

cji(γ̃j(2π)− γ̃j(0))

=
2kn∑
j=1

cji(δjj02π − δjj00)

= cj0i2π.

If
∫
γj0

∑2kn
j=1 cjdθj ∈ i2πZ, then cj0 ∈ Z.
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Hence ∫
γ

2kn∑
j=1

cjdθj ∈ i2πZ

for every γ closed piecewise smooth curve segment on T 2kn if and
only if cj ∈ Z for all j ∈ {1, ..., 2kn}.
As claimed, we can conclude that

M' T 2k2n.

(ii) The second example of Examples 3.1.2 gives self-dual connections
on some Hermitian symmetric spaces of real dimension strictly
greater than 4 (those with underlying Lie group G simple and
isotropy group Z of dimension 1). Hence, in this case,M is non
empty. If moreover the Hermitian symmetric space is compact,
thenM' H1(M, z)/KZ by Theorem 3.2.3. Moreover, if Z = S1,
M is an abelian Lie group by Theorem 3.2.9.

(iii) For n > 2, CPn is a connected and simply connected compact Kähler
manifold of real dimension 2n strictly greater than 4. Theorem
3.2.3 asserts that the moduli space of self-dual connections on a
Z-principal bundle over CPn, for Z an abelian compact Lie group,
is either empty or a singleton.
In fact, it asserts that for every connected and simply connected
compact almost Kähler manifold of real dimension strictly greater
than 4, the moduli space of self-dual connections on a Z-principal
bundle, for Z an abelian compact Lie group, is either empty or a
singleton.





Conclusion and open questions

The notion of self-duality of 2-forms is natural on spaces of dimension
4. The second chapter of this text generalizes this definition on Kähler
vector spaces and on almost Kähler manifolds of real dimension strictly
greater than 4: a 2-form µ is called generalized self-dual if

∗µ = µ ∧ ω
∧(n−2)

(n− 1)!

where ω is the underlying symplectic form and 2n is the real dimension
of the space.

We proved the following (Theorem 2.2.5):

Theorem. Let (M, g, J, ω) be an almost Kähler manifold of real dimen-
sion 2n > 4 endowed with the orientation given by the canonical volume
form of the underlying symplectic manifold (M,ω) (see Section 1.1).
Then a 2-form µ is self-dual if and only if there exists c ∈ C∞(M,R) such
that

µ = cω.

In the first section of Chapter 3, we extended the definitions of
self-dual connections, Gauge transformations and moduli space of self-
dual connections from oriented Riemannian manifolds of real dimension
4 to almost Kähler manifolds of real dimension greater than 4 using
Chapter 2. We identified the moduli space of self-dual connections on
principal bundles over compact connected almost Kähler manifolds of
real dimension strictly greater that 4 with abelian compact Gauge groups.
Moreover, adding a connectedness hypothesis on the Gauge group, we
showed that the moduli space of self-dual connections is an abelian Lie
group.

Two natural questions appear directly. First of all, why did we choose
the coefficient 1

(n−1)! in the definition of self-duality ? This choice seams
smart. Indeed, this definition of self-duality is consistent with the one in
dimension 4. Moreover, if the manifold is compact, self-dual connections
corresponding to this definition of self-dual 2-forms provide critical points
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of the Yang-Mills functional, as in the 4-dimensional case. But it is not
the only smart coefficient: 1

(n−2)! is suitable too.
Lemma 2.1.8 tells us that the space of self-dual 2-forms for the

coefficient 1
(n−2)! is of real dimension n(n− 1) and the space of anti-self-

dual 2-forms for this coefficient is of real dimension (n+1)(n−1). Clearly,
the situation would be more difficult with this coefficient. Nevertheless,
it is certainly interesting to study the moduli space of (anti-)self-dual
connections for the coefficient 1

(n−2)! too.

Secondly, what happens in the non-abelian case ? Again the problem
is more complicated. Indeed, four simplifications appear in the abelian
case that are no more valid in general (see Section 3.2). Nevertheless, the
rest of the text stays right. In particular, Theorem 2.2.5 holds in general.
It would be interesting to consider this theorem as starting point for a
study of the moduli space of self-dual connections in the non-abelian
case.

To conclude, the definition of self-duality that we consider and the
hypothesis requested by our work are quite strict. An important open
question is trying to extend this result in a more general context !

Nevertheless, with this suitable definition and this suitable hypothesis,
we present a nice theory: we identified the moduli space of self-dual
connections and we showed that it admits a structure of abelian Lie
group.



Appendix

The Loos and the Grassmann connections
On the one hand, there exists a unique connection on the tangent

bundle of a connected symmetric space which is sx-invariant for every
x ∈ M . This connection is called the Loos connection. For useful
informations about symmetric spaces and Loos connections, see Section
1.6. For details about it, we refer to [Loo69].

On the other hand, on each projective A-module of finite type E (for
A = C∞(M,R), the algebra of smooth functions on a given manifold M),
we can define a natural connection called the Grassmann connection.
It is constructed in the following way: E is finitely generated so there
exists N ∈ N and a surjective module morphism µ : AN → E , where
AN = RN ⊗ A. Moreover, E is projective so there exists a module
morphism λ : E → AN such that µ◦λ = IdE . For ϕ ∈ E , λ(ϕ) is a vector
composed of N elements of A. We can take the differential of all these
functions. We will denote this expression by d(λ(ϕ)). For X ∈ Γ∞(TM),
d(λ(ϕ))(X) is again an element of AN . We can compose this with µ.
It gives back an element of E . It is the definition of the Grassmann
connection. We can resume this with the following expression:

∇GXϕ = µ (d (λϕ) (X)) .

We refer to [Lan97] for details about it.

The Serre-Swan theorem (which can be extended to a priori non-
compact connected smooth manifolds: see [Nes03]) asserts that, for M
a connected smooth manifold and A := C∞(M,R), an A-module E is
projective of finite type if and only if it is the space of smooth sections of a
vector bundle E overM (see [Swa62]). So it is possible to define naturally
a Grassmann connection on the tangent bundle of each manifold.

Now, let (M, s) be a connected symmetric space. Serre-Swan theorem
drives us to a natural question: Is it possible to define a Grassmann
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connection equal to the Loos connection ? i.e. a Grassmann connection
sx-invariant for every x ∈M ?

The answer is Yes. This text is devoted to the construction of suitable
λ and µ and the proof that the underlying Grassmann connection is
sx-invariant for every x ∈M .

To construct λ and µ, it is easier to see TM from a different point of
view: as a vector bundle associated to the natural K-principal bundle
G → G/K ' M defined in Section 1.6, where G is the transvection
group of M and K the isotropy group at a fixed point o ∈M .

We will write AdpK the representation of K which provides this
associated vector bundle. It is defined as

AdpK : K → Gl(p) : k 7→ Adk|p

for Ad the usual adjoint representation of G. It is well-defined because
Adk(p) ⊆ p for every k ∈ K.

The isomorphism of vector bundle is given by

Ψ : EAdpK → TM : [(g,X)] 7→ X∗g := d

dt

∣∣∣∣
0
gexp(tX)K.

For x = g0K, let us recall that sxgK = g0σ(g−1
0 g)K for every gK ∈M .

An action of sx on Γ∞(EAdpK ) for every x = g0K ∈ M is naturally
defined: for every ϕ ∈ Γ∞(EAdpK ) and y = gK ∈M ,

(sx.ϕ)(y) = Ψ−1 (sx∗Ψ(ϕ))y
= Ψ−1sx∗ (Ψ(ϕ))s−1

x (y)

= Ψ−1sx∗
d

dt

∣∣∣∣
0
g0σ(g−1

0 g) exp(tϕ̂(g0σ(g−1
0 g)))

= Ψ−1 d

dt

∣∣∣∣
0
sx
(
g0σ(g−1

0 g) exp(tϕ̂(g0σ(g−1
0 g)))

)
= Ψ−1 d

dt

∣∣∣∣
0

(
gσ(exp(tϕ̂(g0σ(g−1

0 g))))
)

= Ψ−1 d

dt

∣∣∣∣
0

(
g exp(tσ∗ϕ̂(g0σ(g−1

0 g)))
)

= Ψ−1 d

dt

∣∣∣∣
0

(
g exp(−tϕ̂(g0σ(g−1

0 g)))
)

= [(g,−ϕ̂(g0σ(g−1
0 g)))].

Hence
(sx.ϕ)ˆ(g) = −ϕ̂(g0σ(g−1

0 g))
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for every g ∈ G.
For every x ∈M , the natural notion of sx-invariance on connections

on TM transposes on connections on EAdpK as follows: a connection ∇
on EAdpK is sx-invariant if and only if

(sx.∇) = ∇

where
(sx.∇)X ϕ = sx.

(
∇s−1

x∗X
s−1
x .ϕ

)
.

To construct a sx-invariant Grassmann connection for every x ∈M ,
we have to choose suitable λ : EAdpK → A

N and µ : AN → EAdpK
such

that µ ◦ λ = Id for some N ∈ N.
Let us take N = dim(G). By abuse, we identify a vector of g with

an element of RN using a fixed basis of g. We define µ : AN → EAdpK
byµ

 f1
...
fN


 ˆ(g) := πp

Adg−1

 f1(gK)
...

fN (gK)




and λ : EAdpK → A
N by

λϕ(gK) := Adg(ϕ̂(g)).

Hence,

(µ ◦ λ(ϕ))ˆ(g) = πp
(
Adg−1Adg(ϕ̂(g))

)
= ϕ̂(g)

so µ ◦ λ = Id.
The Grassmann connection is then defined as follows: for all ϕ ∈

EAdpK
, Y ∈ Γ∞(TM), g ∈ G and X ∈ p such that X∗gK = YgK , then

(∇GY ϕ)ˆ(g) = µ (d (λϕ) (Y )) ˆ(g)
= prpAdg−1d(λϕ)(YgK)
= prpAdg−1d(λϕ)(X∗gK)

= prpAdg−1
d

dt

∣∣∣∣
0

(λϕ)(g exp tX.K)

= prpAdg−1
d

dt

∣∣∣∣
0
Adg exp tX ϕ̂(g exp tX)

= prp
d

dt

∣∣∣∣
0
Adexp tX ϕ̂(g exp tX)

= prp([X, ϕ̂(g)] + dϕ̂(Lg∗X))
= dϕ̂(Lg∗X)



78 APPENDIX

because [p, p] ⊆ k and dϕ̂ : TG→ p.

It remains to show that this connection is sx-invariant for every
x ∈M . For this, let us remark that if Y ∈ Γ∞(TM), g ∈ G, X ∈ p such
that X∗gK = YgK and x = g0K ∈M , then(

s−1
x∗ Y

)
g0σ(g−1

0 g)K
=

(
s−1
x∗ Y

)
s−1
x (gK)

= s−1
x∗ (Y )gK

= d

dt

∣∣∣∣
0
g0σ(g−1

0 g exp tX).K

= d

dt

∣∣∣∣
0
g0σ(g−1

0 g) exp(−tX).K

= (−X)∗
g0σ(g−1

0 g)K .

Hence for every Y ∈ Γ∞(TM), g ∈ G, X ∈ p such that X∗gK = YgK
and x = g0K ∈M ,

((
sx.∇G

)
Y
ϕ
)

ˆ(g)

=
(
sx.
(
∇G
s−1
x∗ Y

(s−1
x .ϕ)

))
ˆ(g)

= −
(
∇G
s−1
x∗ Y

(s−1
x .ϕ)

)
ˆ(g0σ(g−1

0 g))

= −d(s−1
x .ϕ)ˆ

(
Lg0σ(g−1

0 g)∗(−X)
)

= d

dt

∣∣∣∣
0
ϕ̂
(
g0σ(g−1

0 g0σ(g−1
0 g) exp(−tX))

)
= d

dt

∣∣∣∣
0
ϕ̂ (gσ(exp−tX))

= d

dt

∣∣∣∣
0
ϕ̂ (g exp tX)

= dϕ̂(Lg∗X))
= (∇GY ϕ)ˆ(g).

Hence ∇G is sx-invariant for every x ∈ M and equal to the Loos
connection.

Remark. If X ∈ p, the vector field Lg∗X on G is horizontal with
respect to the Loos connection 1-form defined in Section 1.6. The explicit
expression for the Grassmann connection

(∇GY ϕ)ˆ(g) = dϕ̂(Lg∗X)
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(for every Y ∈ Γ∞(TM), ϕ ∈ Γ∞(EAdpK ), g ∈ G and X ∈ p such
that X∗gK = YgK) tells us that the Grassmann connection, so the Loos
connection, is the associated connection on the associated vector bundle
EAdpK

of the Loos connection 1-form. It explains the link between both
definitions of Loos connection.





Index

Almost Kähler manifold, 40
Anti-self-duality

of 2-forms
in dimension 4, 33, 40

Associated vector bundle, 24

Canonical volume form, 19
Connection, 23
Covering space, 22
Curvature, 24

Darboux basis, 19
de Rham cohomology, 19

Fundamental vector field, 23

Gauge
group, 9, 11, 49
transformation, 49

Grassmann connection, 69

Heisenberg group, 45
Hodge-star operator

on manifolds, 40
on vector spaces, 32

Horizontal
lift, 23
section, 23
vector, 23

Isotropy group, 28

Kähler vector space, 33
Killing form, 48

Lie
group, 21
subgroup, 22

Line integral
of 1-form on a manifold, 21
of 1-form on an interval of R,

20
Loos connection, 29, 47, 48, 69

Manifold, 18
Moduli space of (anti-)self-dual con-

nections, 11
Moduli space of self-dual connec-

tions, 51

Orthonormal Darboux basis, 34

Path lifting property, 22
Piecewise smooth curve segment, 20

Self-duality
of 2-forms
generalized, 34, 41
in dimension 4, 33, 40

of connections
generalized, 44

Serre-Swan theorem, 69
Symmetric space, 27, 69

Hermitian, 47
Symplectic

manifold, 19
vector space, 19

Transvection group, 28

Yang-Mills
field, 10
functional, 10





References

[AB83] Michael F. Atiyah and Raoul Bott, The Yang-Mills equations over Rie-
mann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983),
no. 1505, 523–615.

[AHDM78] Michael F. Atiyah, Nigel J. Hitchin, Vladimir G. Drinfel′d, and Yurii I.
Manin, Construction of instantons, Phys. Lett. A 65 (1978), no. 3, 185–
187.

[AHS78] Michael F. Atiyah, Nigel J. Hitchin, and Isadore M. Singer, Self-duality
in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser.
A 362 (1978), no. 1711, 425–461.

[Bie98] Pierre Bieliavsky, Semisimple symplectic symmetric spaces, Geom. Dedi-
cata 73 (1998), no. 3, 245–273.

[Boa09] Philip Boalch, Lecture notes: Noncompact complex symplectic and hyper-
kähler manifolds, Ecole normale supérieure et CNRS, 2009.

[BPST75] Alexander A. Belavin, Alexander M. Polyakov, Albert S. Schwartz, and
Yu. S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations,
Phys. Lett. B 59 (1975), no. 1, 85–87.

[BT82] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology,
Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin,
1982.

[CDFN83] Edward Corrigan, Chandrashekar Devchand, David B. Fairlie, and Jean
Nuyts, First-order equations for gauge fields in spaces of dimension greater
than four, Nuclear Phys. B 214 (1983), no. 3, 452–464.

[Don83] Simon K. Donaldson, An application of gauge theory to four-dimensional
topology, J. Differential Geom. 18 (1983), no. 2, 279–315.

[Dra99] Tevian Dray, Lecture notes: The hodge dual operator, Oregon State Uni-
versity, 1999.

[DS11] Simon Donaldson and Ed Segal, Gauge theory in higher dimensions,
II, Surveys in differential geometry. Volume XVI. Geometry of special
holonomy and related topics, 2011, pp. 1–41.

[DT98] Simon K. Donaldson and Richard P. Thomas, Gauge theory in higher
dimensions, The geometric universe (Oxford, 1996), 1998, pp. 31–47.

[FU84] Daniel S. Freed and Karen K. Uhlenbeck, Instantons and four-manifolds,
Mathematical Sciences Research Institute Publications, vol. 1, Springer-
Verlag, New York, 1984.

[GP87] David Groisser and Thomas H. Parker, The Riemannian geometry of the
Yang-Mills moduli space, Comm. Math. Phys. 112 (1987), no. 4, 663–689.

[Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge,
2002.



84 REFERENCES

[Hay12] Andriy Haydys, Gauge theory, calibrated geometry and harmonic spinors,
J. Lond. Math. Soc. (2) 86 (2012), no. 2, 482–498.

[Hel62] Sigurdur Helgason, Differential geometry and symmetric spaces, Pure and
Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.

[Ito83] Mitsuhiro Itoh, On the moduli space of anti-self-dual Yang-Mills connec-
tions on Kähler surfaces, Publ. Res. Inst. Math. Sci. 19 (1983), no. 1,
15–32.

[KN63] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential
geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons,
New York-London, 1963.

[KN96] , Foundations of differential geometry. Vol. II, Wiley Classics
Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1969
original, A Wiley-Interscience Publication.

[Lan97] Giovanni Landi, An introduction to noncommutative spaces and their
geometries, Lecture Notes in Physics. New Series m: Monographs, vol. 51,
Springer-Verlag, Berlin, 1997.

[Lee03] John M. Lee, Introduction to smooth manifolds, Graduate Texts in Math-
ematics, vol. 218, Springer-Verlag, New York, 2003.

[Loo69] Ottmar Loos, Symmetric spaces. I: General theory, W. A. Benjamin, Inc.,
New York-Amsterdam, 1969.

[Mor07] Andrei Moroianu, Lectures on Kähler geometry, London Mathematical
Society Student Texts, vol. 69, Cambridge University Press, Cambridge,
2007.

[MS17] Vicente Muñoz and Carlos S. Shahbazi, Orientability of the moduli space
of Spin(7)-instantons, ArXiv e-prints (July 2017).

[Nes03] Jet Nestruev, Smooth manifolds and observables, Graduate Texts in Math-
ematics, vol. 220, Springer-Verlag, New York, 2003. Joint work of A. M.
Astashov, A. B. Bocharov, S. V. Duzhin, A. B. Sossinsky, A. M. Vino-
gradov and M. M. Vinogradov, Translated from the 2000 Russian edition
by Sossinsky, I. S. Krasil′schik and Duzhin.

[Par82] Thomas H. Parker, Gauge theories on four-dimensional Riemannian man-
ifolds, Comm. Math. Phys. 85 (1982), no. 4, 563–602.

[PS61] Richard S. Palais and Thomas E. Stewart, Torus bundles over a torus,
Proc. Amer. Math. Soc. 12 (1961), 26–29.

[Swa62] Richard G. Swan, Vector bundles and projective modules, Trans. Amer.
Math. Soc. 105 (1962), 264–277.

[Tan12] Yuuji Tanaka, A construction of Spin(7)-instantons, Ann. Global Anal.
Geom. 42 (2012), no. 4, 495–521.

[Tau82] Clifford Henry Taubes, Self-dual Yang-Mills connections on non-self-dual
4-manifolds, J. Differential Geom. 17 (1982), no. 1, 139–170.

[’H05] Gerardus ’t Hooft (ed.), 50 years of Yang-Mills theory, World Scientific
Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

[Tia00] Gang Tian, Gauge theory and calibrated geometry. I, Ann. of Math. (2)
151 (2000), no. 1, 193–268.

[Vog11] Yannick Voglaire, Quantization of solvable symplectic symmetric spaces,
Ph.D. Thesis, 2011.



REFERENCES 85

[Wal11] Stefan Waldmann, Lecture notes: Symplectic geometry and poisson geom-
etry, Katholieke Universiteit Leuven, 2011.

[Wan15] Shuguang Wang, A higher dimensional foliated Donaldson theory, I, Asian
J. Math. 19 (2015), no. 3, 527–554.

[War83] Frank W. Warner, Foundations of differentiable manifolds and Lie groups,
Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin,
1983. Corrected reprint of the 1971 edition.

[Wil82] Edward N. Wilson, Isometry groups on homogeneous nilmanifolds, Geom.
Dedicata 12 (1982), no. 3, 337–346.

[YM54] Chen N. Yang and Robert L. Mills, Conservation of isotopic spin and
isotopic gauge invariance, Physical Rev. (1) 96 (1954), 191–195.


	Introduction
	State of the art
	Our contribution

	Notations
	Useful mathematical background
	Basic notions of differential geometry
	Line integrals
	Lie groups
	Path lifting property
	Fiber bundles
	Definitions and basic facts
	Useful properties

	Symmetric spaces

	From self-duality of 2-forms in dimension four to a generalized definition
	On vector spaces
	On manifolds


	Generalized moduli space of self-dual connections
	Definition
	For abelian Gauge groups

	Conclusion and open questions
	Appendix

