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Introduction

§1. State of the art

In 1954, Chen N. Yang and Robert L. Mills published their ground-
breaking paper Conservation of Isotopic Spin and Isotopic Gauge Invari-
ance [YM54] in the Physical Review that would revolutionize the Physics.
Generalizing the well-known Gauge Theory for Electromagnetism, they
built a Gauge Theory for the strong interaction of Elementary Particles.
In this context, the Gauge group is SU(2) instead of U(1). In fact, they
even discovered that this theory can be generalized with any arbitrary
compact Lie group as Gauge group.

G. 't Hooft has summarized this idea in the preface of ['HO5| published
50 years later:

Gauge Theory has [...] grown into a pivotal concept in the
Theory of Elementary Particles, and it is expected to play
an equally essential role in even more basic theoretical con-
structions that are speculated upon today, with the aim of
providing an all-embracing picture of the universal Laws of
Physics. (["HO05, Preface])

One of the main ideas of C.N. Yang and R.L. Mills was to examine
invariants under local, instead of global, symmetries of the strong inter-
action in Elementary Particle Physics. Mathematical objects that model
local symmetries are the principal bundles with the Gauge groups as Lie
groups.

Another main idea of C.N. Yang and R.L. Mills was to add a quadratic
term, a commutator, to the field strength to get a Gauge invariant field
strength. This commutator is in fact hidden in Electromagnetic Gauge
Theory because of the commutativity of the Gauge group. C.N. Yang
has expressed this idea in ['HO5):

It was only in 1953-1954 when Bob Mills and I revisited
the problem and tried adding quadratic terms to the field
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strength F),,, that an elegant theory emerged. For Mills and
me it was many years later that we realized the quadratic
terms were in fact natural from the mathematical viewpoint.
(PHO5|, Chapter 1))

He means that a field strength with its added commutator corresponds
mathematically to the curvature of a connection on the principal bundle.

If the reader would like to learn more about the physical viewpoint of
Yang-Mills theory, a must would be their initial article [YM54]. Moreover,
among all the books and articles covering this subject, we point out 50
years of Yang-Mills Theory edited by G. 't Hooft in 2005 ['HO5]. In our
text, we are looking at some mathematical viewpoints.

Let P be a principal bundle with compact Lie group G over a compact
Riemannian manifold M. Let us denote by E44 the associated vector
bundle corresponding to the adjoint representation of G (definition
in Subsection [1.5.1)). The curvature F' of a connection 1-form « on P
(Definitions and can be seen as an element of A%(M)QI'*(E4q)
(Definition . The Yang-Mills functional is defined on the set of
connection 1-forms on P by

YM(a) = [ |PPe, (1

where the norm on A?(M) ® I'™°(E4,) is defined with respect to the
Riemannian metric and a given Adg-invariant scalar product on g :=
Lie(G) (which exists because G is compact) and e is a given volume form
on M.

The Euler-Lagrange equation of the Yang-Mills action is

D*F =0 (2)

for D : A*(P) ® g — A**!(P) ® g the exterior covariant differentiation
(IKN63, Section II.5]) and D* its adjoint.

A curvature F' of a connection 1-form « on P which is a solution
of this Euler-Lagrange equation is called a Yang-Mills field. In general,
searching Yang-Mills fields is not easy.

With respect to the Hodge-star operator * (definition in Section ,

D*=—xDx.
So the curvature F' of a connection 1-form « is a Yang-Mills field if and

only if
D+« F =0.
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If M is 4-dimensional, it is easy to characterize some Yang-Mills
fields. To build them, let us remark that **> = 1 on A%(M) so A*(M)
splits into two parts: the eigenspace of eigenvalue 1, written A% (M), and
the eigenspace of eigenvalue —1, written A% (M). Elements of A2 (M)
(respectively A2 (M)) are called self-dual 2-forms (respectively anti-self-
dual 2-forms) (Definition [2.1.1]).

A connection 1-form is called (anti-)self-dual if the 2-form part
of its curvature is (anti-)self-dual. The curvature F' of any self-dual
or anti-self-dual connection 1-form is automatically a Yang-Mills field
because the Bianchi identity says that DF = 0. Moreover, self-dual
connections minimize the Yang-mills functional (see [Tau82, Section 1]
and |GP87, Section 1]).

An (anti-)self dual connection is mapped to an (anti-)self-dual connec-
tion by the (global) Gauge group (i.e. the group of vertical automorphisms
of the principal bundle). Hence mathematicians and physicists are in-
terested in the space of (anti-)self-dual connections on P modulo Gauge
equivalence. It is called the moduli space of (anti-)self-dual connections
on P and denoted by M.

Topological and differential structures of this moduli space have been
important studies for both mathematicians and physicists during the
seventies and eighties. Famous scientists have worked on this project. We
can for example list A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S.
Tyupkin in 1975 [BPST75], M.F. Atiyah, N.J. Hitchin, V.G. Drinfel'd
and Y.I Manin in 1978 [AHDM78|, M.F. Atiyah, N.J. Hitchin and I.M.
Singer in 1978 [AHS7§|, T.H. Parker in 1982 [Par82], C.H. Taubes in
1982 [Tau82|, MLF. Atiyah and R. Bott in 1983 [AB83], S.K. Donaldson
in 1983 [Don83|, M. Itoh in 1983 [Ito83], D.S. Freed and K.K. Uhlenbeck
1984 [FU84]...

But physicists and mathematicians are interested in the search of
Yang-Mills fields in every dimension. Hence they have been quickly
interested in the search of possible generalized definitions of (anti-)self-
dual connections and moduli spaces in any dimension. It was first of all
initiated by the physicists E. Corrigan, C. Devchand, D. Fairlie and J.
Nuyts in 1983 [CDEFN83| and then by the mathematicians S.K. Donaldson
and R.P. Thomas in 1998 [DT9§|. In particular, they have worked on
spaces of dimension greater than 4. Papers about Yang-Mills theory,
(anti-)self-duality and moduli spaces in dimension greater than four have
emerged in subsequent years: G. Tian in 2000 [Tia00], S.K. Donaldson
and E. Segal in 2011 [DS11], A. Haydys in 2012 |[Hay12|, Y. Tanaka in
2012 |Tanl2|, S. Wang in 2015 [Wanl5|, V. Muiioz and C.S. Shahbazi in
2017 [MS17]...
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In particular, they have found different suitable ways to extend
the notion of (anti-)self-duality in higher dimension. One of those is
particularly interesting for us: if 2 is a closed (n — 4)-form on M (where
dim(M) = n), we can say that a 2-form p is (anti-)self-dual if

= tu A Q.

This definition of (anti-)self-duality is used, among others, by G. Tian
in [Tia00]. As in the four dimensional case, curvatures of (anti-)self-
dual connections are automatically Yang-Mills fields. Indeed, if « is
(anti-)self-dual, then

DxF = £D(FAQ)
— +((DF)AQ+F AdQ)
=0

because € is closed and thanks to the Bianchi identity. Moreover, if
the norm of € is less than 1, anti-self-dual connections minimize the
Yang-Mills functional. This fact is claimed in [Tia00, Section 1].

§2. Our contribution

We present in this text the author’s contribution in this framework.
We are working in a context which provides the form 2 for free: almost
Kéhler manifolds (Definition [2.2.3)). If (M, g, J,w) is an almost Kéhler
manifold of real dimension 2n, then

is a closed (2n —4)-form. Hence, we can consider the following definition:
a 2-form p on M is (anti-)self-dual (Definition [2.2.4)) if

w\(n—2)

(n—1)1"

*p = L£p A

Lemma [2.1.8|shows that taking % as closed (2n — 4)-form would
be consistent too. We will give a word about our choice of normalization
in the conclusion. Moreover, the same lemma proves that there is no
anti-self-dual 2-form for our choice of definition. So we are interested in

self-dual 2-forms for the (2n — 4)-form %
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The definitions of self-dual connections, Gauge group and moduli
space of self-dual connections are naturally adapted (Definitions
13.1.3| and [3.1.5]). As explain above, curvatures of such self-dual con-
nections are Yang-Mills fields. However, we do not know if self-dual
connections minimize the Yang-Mills functional. The goal of our work is
to identify suitable hypotheses under which we are able to characterize
the moduli space of self-dual connections for our choice of definition and
to build a Lie group structure on it.

First of all, with proper hypotheses, we characterize the moduli space
M of self-dual connections. The more restrictive hypothesis asks that
the Gauge group is abelian. If the Gauge group is abelian, we write it
Z instead of G to avoid confusions. Moreover, M has to be compact,
connected and of real dimension 2n > 4. If 7: P — M is a Z-principal
bundle, we prove that either M is empty, or M is in bijection with

H'(M,3)/K?,

where H'(M,3) is the de Rham cohomology of M valued in 3 := Lie(Z2)
and K7 := {[p~'dg]|p € C*(M, Z)} (Theorem [3.2.3).

Secondly, if we add a connectedness hypothesis on the Gauge group
and if M is non empty, then we prove that there exists a manifold
structure on M which turns it into an abelian Lie group (Theorem
3.2.9)).

For now, physicists are of course mainly interested in non-abelian
Gauge group. We hope that our theorems will be generalized in the
future. We will give a word about it in the conclusion.

Here is the outline of the thesis. In order to prove both theorems,
we remind in Chapter 1 well known notions of algebraic topology and
differential geometry. It deals among others with de Rham cohomology,
symplectic vector spaces and manifolds, line integrals, Lie groups, the
path lifting property, fiber bundles and symmetric spaces. It is not a
complete text about discussed subjects. It simply gives definitions and
theorems needed for the understanding of what follows thereafter. Each
topic is given with suitable references where the reader can find more
details.

Chapter 2 deals with the generalized definition of self-duality of 2-
forms for spaces of dimension greater than 4. The first section is devoted
to the case of a vector space and the second one to the case of a manifold.

The first section begins with some recalls about the Hodge-star
operator and the notion of (anti-)self-duality in dimension 4 (Definition
. Then we give the chosen definition of self-duality for spaces of
dimension greater than 4. Vector spaces suitable for our generalized



12 INTRODUCTION

definition are the Kahler vector spaces (Definition [2.1.2)). On those
spaces, we consider the following definition (Definition [2.1.3]):

Definition A. Let (V,w, J, g) be a Kihler vector space of real dimension
2n > 4 endowed with the orientation given by the canonical volume form
of the underlying symplectic vector space (V,w) (see Section [1.1]). A
2-form p on V' is called generalized self-dual (or simply self-dual) if

w/\(n—2)
T —
H=H (n—1)!
Eventually, and it is where it gets interesting, we prove a characteri-
zation of the space of self-dual 2-forms (Proposition [2.2.5)):

Proposition B. Let (V,w, J,g) be a Kahler vector space of real dimen-
ston 2n > 4 endowed with the orientation given by the canonical volume
form of the underlying symplectic vector space (V,w) (see Section .
Then a 2-form p on 'V is self-dual if and only if there exists ¢ € R such
that p = cw.

This proposition holds only if the dimension of V' is strictly greater
than 4. It is a beautiful result, easy to use in the following.

The proof is based on Lemma The latter asserts that there
exists an orthonormal Darboux basis on each Kéhler vector space (i.e.
an orthonormal basis for the metric which is also a Darboux basis for
the symplectic form). With respect to an orthonormal Darboux basis,
we compute explicitly the Hodge star operator and determine a useful
decomposition of A2(V*) (Lemmas [2.1.7 and [2.1.8) which eventually
allows to prove the characterization.

The structure of the second section is a carbon copy of the structure
of the first one, extended to the case of almost Kédhler manifolds. The
definition of the self-duality is clear (Definition [2.2.4)):

Definition C. Let (M,g,J,w) be an almost Kihler manifold of real
dimension 2n > 4 endowed with the orientation given by the canonical
volume form of the underlying symplectic manifold (M,w) (see Section
. A 2-form p on M is called generalized self-dual (or simply self-dual )
if
wN(n=2)
= pA (n—1)I

The characterization of the self-dual 2-forms comes directly from the
vector space case (Theorem [2.1.9)).
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Theorem D. Let (M,g,J,w) be an almost Kihler manifold of real
dimension 2n > 4 endowed with the orientation given by the canonical
volume form of the underlying symplectic manifold (M,w) (see Section
. Then a 2-form p is self-dual if and only if there exists c € C*°(M,R)
such that

U= cw.

In Chapter 3, we study the moduli space of self-dual connections.
This chapter is split into two sections. While the first one gives general
definitions of self-dual connection, Gauge group and moduli space, the
second one looks at moduli space of self-dual connections in a particular
context: the case of an abelian Gauge group. it Z in stead of G.

To define what is a self-dual connection, by abuse, we can say that
its curvature has to be a self-dual 2-form on M. As explained above, the
curvature of a connection can be seen as an element of A?2(M)QT>®(E 4).
Precisely, a connection is called self-dual if the 2-form part of its curvature
is self-dual. In the beginning of Section we give this definition
(Definition and two examples (Example [3.1.2)): the first one is
constructed from the Heisenberg group, the second one is constructed on
some Hermitian symmetric spaces.

The second part of Section is devoted to the definition of the
moduli space of self-dual connections (Definition [3.1.5). For this, we
recall what a Gauge transformation is (Definition and we show
that self-duality is preserved by those transformations (Proposition |3.1.4)).
Moreover, we prove that the Gauge group is isomorphic to C*(P, G)¢ -
the group of G-equivariant functions where G acts on itself by conjugation
(with group structure induced by the group structure of G).

If the Gauge group is abelian, some simplifications appear. The
first part of Section [3.2] explains these simplifications. E g4 is the trivial
bundle so the curvature of a connection can be seen as a 2-form valued in
3 := Lie(Z). In the same way, the difference of two connections can be
seen as an element of A'(M) ®T'*°(E4q), hence as a 1-form on M valued
in 3. The curvature of a connection is its differential plus a bracket term.
So in the abelian case, it is simply the differential of the connection.
Eventually, the Gauge group is isomorphic to C*°(M, Z) because the
conjugation on Z is trivial.

In the second part of Section we prove the following theorem

(Theorem |3.2.3)):

Theorem E. Let Z be an abelian compact Lie group, (M, g, J,w) be a
compact connected almost Kdahler manifold of real dimension 2n > 4 and
m: P — M be a Z-principal bundle. Then, either the moduli space of
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self-dual connections M is empty, or M is in bijection with
H'(M,3)/K?,
where K% := {[p~'dg||p € C*(M, Z)}.

If M is non empty, there exists a self-dual connection ag. For every
other self-dual connection «, o — g can be seen as a 1-form on M valued
in 3. Lemma [3.2.1| proves that the map

M — HY(M,3)/K5" : [a] — [a — ag)

is well-defined, injective and surjective.

The end of Section [3.2] gives an interesting structure on the moduli
space of self-dual connections, if one more hypothesis holds: the connect-
edness of the Gauge group (i.e. the Gauge group is a k-torus for k € Np).
It gives the following theorem (Theorem :

Theorem F. Let Z be a k-torus for k € Ny, (M, g,J,w) be a compact
connected almost Kdahler manifold of real dimension 2n > 4 and 7w : P —
M be a Z-principal bundle. Then, either M is empty, or there exists a
manifold structure on M which turns M into an abelian Lie group.

H'(M,3) is a real finite dimensional vector space so, in particular, a
Lie group. By Section we have simply to prove that K 5" is closed in
H'(M,3). Lemma gives a characterization of K' which allows to
prove it easily. Eventually, we give some examples of moduli spaces of
self-dual connections (Example [3.2.10)).

A last chapter concludes our work and presents open questions. In
our definition of self-duality in dimension greater than 4, we chose ﬁ
as coefficient. We could have chosen ﬁ instead. Moreover, hypothesis
that we used are restrictive (in particular, the fact that the Gauge group
has to be abelian). The main open questions are: what would happen

1

for the coefficient =) and in a more general context ?

In the Appendix, the reader will find some words about the Loos and
the Grassmann connections. Before the beginning of our work about
moduli space of self-dual connections, we looked at the equality of these
two well-known definitions of connections. Although it is not linked to
moduli spaces, it seems to us that it is a nice result, so we decided to
include it as an appendix.

Results of this text are joint work with Pierre Bieliavsky, Giovanni
Landi and Chiara Pagani.



Notations

The following notations will be commonly used throughout this text:

2n: the dimension of the symplectic spaces,
e: omission of the factor e,

Ad: the adjoint representation of G on g,
«: a connection 1-form,

az — ay: see Definition

a9 — aq: see Section

F': the curvature of a connection 1-form «,
F: see Definition

F': see Section

x: the Hodge-star operator,
BT, for 7 € R: see Lemma [2.1.8
Cy : G — G the conjugation by g € G, for G a Lie group,

C>®(P,V)%: the vector space of smooth G-equivariant functions,
where G is a Lie group acting on a vector space V' on the left and
P is the total space of a G-principal bundle,

d: the exterior differentiation of forms,

E 44: the vector bundle associated to a G-principal bundle for the
adjoint representation,

>. the flat operator, i.e. on (V,w) a symplectic vector space,
>V — V* is defined by v’ = w(v,.) for every v € V,
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g: an inner product on a vector space or a Riemannian metric on
a manifold,

G: a Lie group in general ; the transvection group in the symmetric
space framework,

g, (respectively ¢ and 3): the Lie algebra Lie(G) (respectively
Lie(K) and Lie(Z)) of the Lie group G (respectively K and Z),

g = tPp: the decomposition of g with respect to o in the symmetric
space framework,

I'*>°(E): the vector space of smooth sections of a vector bundle E,

T,P = @Qp ®© Gp: the decomposition of T, P in horizontal and
vertical vectors, where P is the total space of a principal bundle
endowed with a connection 1-form,

h :T,P — Qp: the projection on the horizontal part of T}, P, where
P is the total space of a principal bundle endowed with a connection
1-form,

H¥(M,V): the de Rham cohomology of k-forms on a manifold M
valued in a real finite vector space V/,

J: a complex structure,
K: the isotropy group in the symmetric space framework,

KZ .= {[@~tdg]|p € C°(M, Z)}, where M is a manifold and Z a
Lie group,

A¥(V): the vector space of skew-symmetric k-forms on a real finite
vector space V,

A*(V): the graded algebra of skew-symmetric forms on a real finite
vector space V,

AF(M): the vector space of k-differential forms on a manifold M,
A*(M): the graded algebra of differential forms on a manifold M,

A2 (M): the vector space of self-dual 2-forms on an oriented 4-
dimensional Riemannian manifold M,

A2 (M): the vector space of anti-self-dual 2-forms on an oriented
4-dimensional Riemannian manifold M,



17

M: the moduli space of self-dual connections,
VE&: the Grassmann connection,

w: a symplectic form,

P: the total space of a principal bundle,

©: a smooth section on an associated vector bundle or a Gauge
transformation on a principal bundle,

¢ or (p)”": the equivariant function corresponding to a smooth
section ¢ on an associated vector bundle,

: the equivariant function corresponding to a Gauge transforma-
tion ¢ on a principal bundle or the lifting of the path @ o~ in the
proof of Proposition [3.2.

©: the smooth function corresponding to a Gauge transformation
¢ on a principal bundle if the Gauge group is abelian (see Section

B2,

f*p: the pullback of the form p by the (piecewise) smooth map f,
Ry: right product by g € G on a Lie group G,
s: a local smooth section of a principal bundle,

o: the natural automorphism of the transvection group in the
symmetric space framework,

Tk: the k-torus for k € Ny,

V*: the vector space dual to a vector space V,
A: the wedge product on forms,

X*: a fundamental vector field,

YM: the Yang-Mills functional,

Z: an abelian compact Lie group,

3(£): the center of the Lie algebra ¢.






Chapter 1

Useful mathematical background

The first chapter recalls some mathematical background useful for
the understanding of this text. In Section 1, we deal with differential
geometry. We begin by fixing the notion of manifold which is not
universal. Then we recall basic facts about the de Rham cohomology
and symplectic vector spaces and manifolds.

In Section 2, we recall the notion of line integral and its basic prop-
erties. Line integral is used in the proof of Proposition This
proposition characterizes a subgroup, that we denote by K and which
is fundamental in the understanding of the moduli space of self-dual
connections in our context (Theorems and .

In Section 3, we give the definitions of Lie groups and Lie subgroups
and three proposition and theorems about it. These properties are central
in the proof of Theorem which states that the moduli space of
self-dual connections in our context is an abelian Lie group.

Section 4 is a short section about algebraic topology. It recalls the
path lifting property useful for the proof of Proposition [3.2.7] too.

Section 5 is the longest and probably the most important section of
this first chapter. It deals with fiber bundles which are the mathematical
foundations of the Yang-Mills theory. It is divided into two subsections.
The first one recalls some definitions. First of all, it defines the notions
of principal bundles and connections and curvatures on principal bundles.
These notions are of fundamental importance for the definition of the
moduli space of self-dual connections (Definition . Secondly, it
recalls the notion of associated vector bundle. It is useful directly in
the second subsection where we prove a technical proposition about
connections and curvatures. This proposition allows us to consider
Definition [I.5.10, which will be used in Chapter [3]

Eventually, Section 6 recalls some definitions and basic facts about
symmetric spaces. Symmetric spaces give examples of applications of
our theorems in Chapter

This first chapter is certainly not an exhaustive text about those
basic notions. It has two goals: first of all fixing the main definitions and
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notations that we use and secondly pointing out definitions and theorems
which are central for the understanding of our text. In each section, we
give references for more details about these subjects.

1.1. Basic notions of differential geometry

The notion of manifold is not universal in differential geometry. Hence,
we begin by fixing our definition of manifold. Then we recall what is the
de Rham cohomology. Eventually, we give some words about symplectic
vector spaces and symplectic manifolds. For more details about basic
differential geometry, we refer to [KN63|, [Hel62] and [War83].

In our text, a smooth n-manifold (or simply a n-manifold or a mani-
fold) is an Hausdorff second countable space with a differentiable structure
of class C* of dimension n. Let us remark that this notion of manifold
is quite different in [KN63| and [Hel62] because they do not ask second
countability.

We denote by A¥(V) the vector space of skew-symmetric k-forms on
a vector space V and

A*(V) i= Upen A (V)

the graded algebra of skew-symmetric forms on V. In the same way,
we denote by A¥(M) the vector space of k-differential forms (or simply
k-forms) on a manifold M and

A*(M) = UkeNAk(M)

the graded algebra of forms on M. The wedge product A is defined on
forms on vector spaces and on manifolds as follows ([KN63, Section 1.1}):
for k € Ng and p1, ..., i k 1-forms on V' (respectively M) and X7y, ..., Xj
k vectors of V' (respectively vector fields on M), py A... Ay is the k-form
defined by

1
A A (X, Xg) = %! det (ﬂi(Xj)hgi,jgk-

Exterior differentiation on forms on M can be characterized by
(IKN63, Section I.1]):

o d: A¥(M) — AFTY(M) is an R-linear mapping,

o if f € C®(M), df is the total differential of f,
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e for y € A¥(M) and v € AY(M),

dpAv)=duAv+ (=1)FuAdy,

e d>=0,
for every k,l € N.

In particular, we point out the following ([KN63, Section 1.3]): for «

a 1-form on M and X,Y vector fields on M,
1
da(X,Y) = 5 (X(a(Y)) = Y (a(X)) ~ a([X,Y))).

Some authors drop the factor % in their definition of the wedge
product. It influences the definition of the exterior differential too.

As d? =0, (DrenAF (M), d) forms a differential complex and we can
consider the related cohomology, called the de Rham cohomology,

H*(M,R) = > H*(M,R)
keN

where
H*(M,R) = Ker(d) N A*(M)/Im(d) N A*(M).

Elements of Ker(d) N A¥(M) are called closed forms of degree k and
elements of Im(d) N A¥(M) exact forms of degree k ([BT82, Section I1.1]).
In the compact case, we have the following:

Lemma 1.1.1. |[BT82, Theorem 5.1 and Proposition 5.3.1] If M is a
compact manifold, its de Rham cohomology is finite dimensional.

More details about forms, wedge product and differentiation can be
found in [KNG63].

Let us now turn to symplectic vector spaces and manifolds. A real
vector space V endowed with a 2-form w is called a symplectic vector
space if w is skew-symmetric and non-degenerate. Such vector space has
to be of even dimension. A symplectic vector space of dimension 2n
admits a natural orientation given by its canonical volume form

1
Q= —wA .. Aw (n-times).
n!

With respect to a Darbouz basis (i.e. a basis {e;, fj}1<i j<n such that
w=>,& NAn; for & = e'z? and 7; 1= fib),

Q=G AmANLAMRN .. AN A
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(M,w) is called a symplectic manifold if M is a real manifold and
w a non-degenerate closed 2-form on M. As in the symplectic vector
space case, a symplectic manifold has even dimension. Moreover, a
symplectic manifold of dimension 2n admits a natural orientation given
by its canonical volume form

1
Q:= —wA ... Aw (n-times).
n!

In the compact case, we have the following;:

Lemma 1.1.2. [Walll, Proposition 1.1.3(ii)] If (M,w) is a compact
symplectic manifold, then w is a non exact form.

1.2. Line integrals

In Proposition[3:2.7|appears a line integral. It allows us to characterize
a subgroup, denoted by K*° 1, which appears in the understanding of the
moduli space of self-dual connections in our context (Theorems and
3.2.9).

This notion of line integral is explained in details in [Lee03] in Chapter
11. Here, we recall this definition, first of all for 1-forms defined on R
and secondly for 1-forms defined on a manifold. Eventually, we give some
useful properties of it.

First of all, let us define the line integral of a 1-form defined on an
interval of R.

Definition 1.2.1. Let [a,b] Clec,d[ be intervals of R and 8 be a 1-form
on le,d]. If t denotes the standard coordinate in R, B can be written

B = f(t)dt

for f:lc,d[— R a smooth function. The line integral of 8 along [a,b] is

defined by
b
/M]ﬁ::/a F(t)dt.

Secondly, let us look at the corresponding definition for a 1-form on
a smooth manifold. This line integral is defined along what is called a
piecewise smooth curve segment. We explain what it is and then give
the definition of line integral in this context.
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A piecewise smooth curve segment on a smooth manifold M is a
continuous curve 7 : [a,b] — M with the property that there exists a
finite subdivision a = ag < a1 < ... < a = b of [a, b] such that, for each
7 €1{0,..;k — 1}, Va;.a,,4) I8 smooth (i.e. it has a smooth extension to
an open set containing [a;, a;41]).

Definition 1.2.2. Let us suppose that M is a smooth manifold and 8 a
1-form on M. If v : [a,b] — M is a piecewise smooth curve segment with
underlying decomposition a = ag < a1 < ... < ar = b, the line integral of
B along v is defined by

k-1

/YIB a Z /[%"%'H} T

§=0
Eventually, we state the following proposition, which is proved in

[Lee03]:

Proposition 1.2.3 (|Lee03|, Proposition 11.34 and Proposition 11.37).
Let M be a smooth manifold. If v : [a,b] — M is a piecewise smooth
curve segment and 51 and Bo are 1-forms on M, then

(i) for any ci,c2 € R,

/Y(Clﬁl + c2/32) 261/751+62/V52,

(ii) for c €]a, b, if we denote v1 := Y|4, and v2 := 7|(cp), then

[yﬁlzfylﬂl‘i‘ 7251-

(iti) [,-1 81 = — [, B1, where vt is the path «y covered in the reverse
side.

1.3. Lie groups

Lie groups are fundamental in Yang-Mills theory. Indeed, one of the
ideas of C.N. Yang and R.L Mills was to take a general compact Lie
group as Gauge group, instead of U(1) or SU(2). General theory about
Lie groups and Lie algebras is developed in details in a lot of books. We
refer for example to [War83|. The goal of this section is quite different.
It points out properties about Lie groups and Lie subgroups useful in
the proof that the moduli space of self-dual connections in our context is
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a Lie group (Theorem [3.2.9)). We still begin by giving the definition of
Lie groups and Lie subgroups.

A Lie group is a manifold with a group structure such that the maps
GxG—G:(g,h)— ghand G — G : g+ g~! are smooth maps. K is
a Lie subgroup of a Lie group G if K is a Lie group, a submanifold of
G and an abstract subgroup. We denote by g (respectively &, 3) the Lie
algebra of a Lie group G (respectively K, 7).

The following proposition and theorems about Lie groups are essential
in Chapter 3:

Proposition 1.3.1. [War83, Section 3.3] The product G x H of two
Lie groups is itself a Lie group with the product manifold structure
and the direct product group structure ; that is, for every (gi,h1) and

(92,h2) € G x H, (g1,h1).(92, h2) := (9192, h1h2).

Theorem 1.3.2. [War83, Section 3.42] Let G be a Lie group, and let
K be a closed abstract subgroup of G. Then K has a unique manifold
structure which makes K into a Lie subgroup of G.

Theorem 1.3.3. [War83, Section 3.64] Let G be a Lie group and let K
be a closed normal subgroup of G. Then the homogeneous manifold G /K
with its natural group structure is a Lie group.

1.4. Path lifting property

We need simply to recall one notion of algebraic topology: the path
lifiting property [Hat02, Section 1.3]. As already mention above, it will
be useful in the proof of the characterization of K* ' (Proposition ,
a subgroup appearing in the identification of the moduli space of self-dual
connections in our context (Theorem .

If p: M — Misa covering space (i.e. there exists an open cover
{U;} of M such that for each i, p~1(U;) is a disjoint union of open sets
of M which are all homeomorphic to U;), then for each continuous path
f: I — M (I is an interval of R containing a) and each zj € M such
that p(#) = f(a) € M, there exists a unique path f : I — M such that
fla) =2pand po f = f.

1.5. Fiber bundles

The notion of fiber bundle is central in Yang-Mills theory. The most
important fiber bundles used in our text are the principal bundles. We
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will recall this definition and the notions of connections, curvatures and
associated vector bundles. Moreover, we will give some of their properties.
Definitions and more details about fiber bundles can be found for example
in [KN63].

This section is divided into two subsections. The first one recalls some
definitions and basic properties about principal bundles, connections,
curvatures and associated vector bundles. The second one identifies the
difference of two connections on a principal bundle and the curvature
of a connection on a principal bundle with forms on the based manifold.
These properties are fundamental for the identification of the moduli
space of self-dual connections in our context (Theorem [3.2.3)).

1.5.1. Definitions and basic facts

In this subsection, first of all, we define the notion of principal bundle.
Secondly, we define the notion of connection on a principal bundle, the
underlying notions of horizontal lifts and horizontal sections and the
notion of curvature of a connection. Eventually, we turn to the definition
of associated vector bundles. This last point will be useful directly in
the following subsection.

Let us begin with the notion of principal bundle.

Definition 1.5.1. [KN63, Section 1.5] Let M be a manifold and G a
Lie group. A principal bundle over M with group G (or a G-principal
bundle) consists of a manifold P and an action of G on P satisfying the
following conditions:

(i) G acts freely on P on the right: (p,g) € P x G+ pg = Ryp € P;

(ii) M is the quotient space of P by the equivalence relation induced by
G, M = P/G, and the canonical projection w: P — M is smooth;

(iii) P is locally trivial, that is, every point x of M has a neighborhood U
such that 7= (U) is isomorphic with U x G in the sense that there is
a diffeomorphism 1 : =1 (U) — U x G such that 1 (p) = (7(p), ¢(p))
where @ is a mapping of 7~ Y(U) into G satisfying ¢(pg) = (¢(p)g)
forallp e 7= Y(U) and g € G.

Now, we can define the notion of connections on a principal bundle
and the underlying notions of horizontal lifts and horizontal sections.

Definition 1.5.2. [KN63|, Section II.1] A connection on a G-principal
bundle P — M 1is a 1-form « on P valued in the Lie algebra g such that



26 CHAPTER 1. USEFUL MATHEMATICAL BACKGROUND

(i) for every X € g and every p € P, ap(X,) = X, for X* the funda-

mental vector field corresponding to X, i.e. X7 1= %‘Opexp(tX),

(ii) for every g € G, Ry = Adg-1av.

On a G-principal bundle P — M endowed with a connection 1-form
a, a vector v € T),P is said to be horizontal if a,(v) = 0. The subspace
of horizontal vectors at p is denoted by @,. If G, denotes the subspace
of vectors tangent to the fiber at p (i.e. vectors v € T,P such that
TV = 0), we have a decomposition of T}, P for each p € P:

T,P =G, ® Q,.

We denote by h : T,P — @, the projection on the horizontal part at
p € P.

For every X € I'°(T'M), there exists a unique horizontal vector field
on P which projects on X. It is called the horizontal lift of X and it is
denoted by X € I'™°(T'P). A local section s of P in a neighborhood of
a point x € M is called horizontal at x if its differential ds, at x maps
Ty M to Q) [Mor07, Definition 5.6]. The following proposition about
horizontal sections is proved in [Mor07]:

Proposition 1.5.3. [Mor07, Lemma 5.7] Let P — M be a G-principal
bundle on a manifold M endowed with a connection 1-form. Then for
every x € M and p € P such that w(p) = x, there exist local sections of
P horizontal at x.

We can turn to the notion of curvature of a connection 1-form.

Definition 1.5.4. [KN63, Section IL.5] On a G-principal bundle P — M,
we can define the curvature F' of a connection 1-form « as follows:

F := (da)(h(.),h(.)). (3)

In this text, we denote by F' (respectively Fy, F, F») the curvature
of a connection 1-form « (respectively ag, a1, a2).

Before ending this subsection, let us deal with the notion of associated
vector bundle. For G a Lie group and M a manifold, we consider a G-
principal bundle 7 : P — M and a representation p of G on an R-vector
space V of dimension k. We define an equivalence relation on P x V' by
(p,v) ~ (pg, p(g~1)v) for every g € G,p € P,v € V and obtain a vector
bundle

Eyi= P x V]~ M [(p,v)] = m(p).

called associated vector bundle. We denote by C®(P, V)Y the vector
space of G-equivariant functions from P to V, i.e. the vector space of
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smooth functions f : P — V such that f(pg) = p(g~')f(p) for every
p € P and g € G, where the vector space structure comes naturally from
the vector space structure of V. There exists an isomorphism between
the vector space of smooth sections on E, and C*>(P, V)& given by
o(m(p)) = [(p, ¢(p)] for each p € P, for ¢ a smooth section on E, and ¢
the corresponding G-equivariant function. In our text, we denote always
by ¢ or (¢)” the G-equivariant function corresponding to a smooth
section (.

More details about connections and curvatures can be found in
[KN63|.

1.5.2. Useful properties

In this subsection, we write the difference of two connection 1-forms
and the curvature of a connection 1-form on a principal bundle as forms
on the based manifold valued in a given vector bundle. First of all, we
give some lemmas. They will drive us to the proof of Proposition [I.5.9]
which asserts that these forms are well-defined.

The proofs of the following lemmas can be found in [KN63, Sec-
tion IL.5].

Lemma 1.5.5. On a G-principal bundle P — M, the curvature F of a
connection 1-form « can be computed as

F(X,Y) = do(X,Y) + %[a(X), a(Y)]

for X and'Y smooth vector fields on P.

Lemma 1.5.6. On a G-principal bundle P — M, the curvature F of a
connection 1-form « can be computed as

F(X,Y) = —%a([X, ¥])

for X and Y horizontal smooth vector fields on P.
Moreover, we need two other lemmas that we will prove here.

Lemma 1.5.7. Let P — M be a G-principal bundle endowed with a
connection 1-form o. Then for every g € G, Ry« and h commute.

Proof. The lemma follows from this remark: for every p € P, v € T,,P
and g € G,

(i) mRgev = v, then v is vertical if and only if Rg,v is vertical,
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(ii) a(Rg«v) = Adj-1a(v) then v is horizontal if and only if Rg.v is
horizontal.

Lemma 1.5.8. Let P — M be a G-principal bundle endowed with a
connection 1-form «. Then

F(Rgsv, Rgsw) = Ady— F(v, w)

for every v and w € T,P and g € G.

Proof. Let X and Y be two vector fields such that X
Then using Equation and Lemmas [1.5.6|and |1.5.7

So

Proposition 1.5.9. Let 7 : P — M be a G-principal bundle. Then

(i) if a1 and ag are connection 1-forms on P and X € I'°(T'M), the
function

F(RgeX, Rg.Y)

F (W(RgX), h(RysY))

_%a ([Rguh(X), Rguh(Y)])
_%a (Rg«[n(X), h(Y)])
Ady (—;a([h(X), h(Y)]))
Ady1 F(X,Y)

F(Rgsv, Rgsw) = Ady—1 F (v, w).

The following proposition will allow the Definition [1.5.10

fX P — g:p— (042 — al)(S*Xﬂ.(p)),

where s : U C M — P is a local section defined on U > w(p) such
that s(m(p)) = p, is independent of the choice of s and equivariant
(i.e. fx(pg) = Adg_1fx(p) for everyp e P and g € G),

p = v and Y, = w.
we see that



1.5. FIBER BUNDLES 29

(ii) if a is a connection 1-form on P and X, Y € I'*°(T'M), the function
gx\y : P — g:p— F(S*Xw(p)v S*Yw(p))v

where s : U C M — P is a local section defined on U > w(p) such
that s(m(p)) = p, is independent of the choice of s and equivariant

(i.e. gx,y(pg) = Adg—1(gxy(p)) for everyp € P and g € G).

Proof. (i) First of all, let us show that fx is independent of the choice
of local section.

If s : U C M — P is another local section of P such that
s'(m(p)) = p , then there exists a smooth function

g:UNU =G
such that §'(y) = s(y).g(y) for all y € U N U’ and g(7(p)) = 1.

Hence, if we consider v : I C R — M such that v(0) = 7(p) and
d
&), 70 = Xy,

LXa = | SO0
= 4l 006

= s(Xag) + (dg(er(p)));

and using the definition of a connection 1-form, we find
(a2 — a1)(s, Xr(p)
- (aQ - 041) (3*(X7r(p)) + (dg(Xﬂ'(p))) >

P
= (a2 - al)(S*Xw(p))’
This shows that fx is well-defined.
Now, let us show that fx is equivariant.

For every g € G, s’ := s.g is a local section of P such that
s'(7(pg)) = pg. Then, for v: I C R — M such that v(0) = m(pg)

and %‘O’Y(t) = Xw(pg)a

SLXW(pg) = -
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Using the definition of a connection 1-form, we find
fx(pg) = (a2— O‘l)(‘S;Xw(pg))
= (OQ - al)(Rg*S*Xﬂ(pg))
= Adgfl (042 — Oél)(S*Xﬂ.(p))
= Adg*1 fX (p)
(ii) First of all, let us show that gx y is independent of the choice of

local section.

If s : U C M — P is another local section of P such that
s'(m(p)) = p , then there exists a smooth function

g:UNU =G

such that s'(y) = s(y).g(y) for all y € UNU’ and g(7(p)) = 1.

Hence, with the same kind of computation as in item (i), we show
that
*

Xy = 5a(Xa) + (d9(Xai))

and

*

$Yap) = 5:(Yag)) + (dg(Yﬂp)))p
and using Equation , we find

F(5\:Xn(p), Y (p)
$x(Xrp)) + (dg(Xw(p))); 8« (Vo)) + (dg(Yw(p))>*)

( P
= P (b (5 0ta) + (d9Xer). ).

p

= F

This shows that gx y is well-defined.
Now, let us show that gx y is equivariant.

For every g € G, s’ := s.g is a local section of P such that
s'(m(pg)) = pg.
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With the same kind of computation as in item (i),
5. Xn(pg) = RgeseXn(p)-

and
S;Yﬂ.(

Rg* Sx Yﬂ.(

pg) p)*

Then, using Lemma, we find

9xy(pg) = F(5.Xr(pg) 5 Yr(pg))
= F(Rgus:Xn(p), Rgx8:Yr(p))
Ady ' F (5. Xx(p), 8+ Yr(p))
= Adg-1(9x,y(p))-

O]

We are now ready to write the difference of two connection 1-forms
and the curvature of a connection 1-form on a principal bundle P — M
as forms on M valued in a given vector bundle. This fact is claimed in
[AHS78| Sections 2 and 6].

Definition 1.5.10. Let # : P — M be a G—pm’nc/zﬂzl/bundle. For
a, a1, connection 1-forms on P, let us consider ag — a € Al(M) ®

['*°(E4q), defined by
(O@fjal(X)) Ti=fx

for all X e T°(TM), and F € A2(M) @ T>°(E q), defined by
(FX.Y)) "= gxy

for all X, Y € I'°(TM).

Thanks to Proposition aQ/:/oq and F are well-defined.

1.6. Symmetric spaces

Symmetric spaces give examples of applications of our theorems
of Chapter We present here the main definition and basic facts
about symmetric spaces. After the definition, we show that a connected
symmetric space can be seen as a homogeneous space. Then, we look at
a decomposition of the Lie algebra of its transvection group (the group
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of compositions of even numbers of symmetries). Eventually, we present
a natural principal bundle and a natural connection 1-form defined on it.
For more details, we refer to |[Loo69].

First of all, let us give the definition of symmetric spaces.

Definition 1.6.1. [Loo69, Chapter II] A symmetric space is a manifold
M with a smooth multiplication p: M x M — M, written as p(z,y) =
sz, and with the following properties: for every x,y € M,

(i) szx = x,
(ii) s2 = Id,
(111) $35ySz = Ssuys

(iv) x is an isolated fixed point of s., i.e. there exists a neighbourhood
U of x such that syz = z implies z = x for all z € U.

Secondly, let us show that a connected symmetric space can be seen
as a homogeneous manifold. A group G is canonically attached to a
symmetric space: the transvection group. The elements of this group are
the compositions of even numbers of symmetries

G :=<syosylz,ye M >.

If M is connected, then G is a finite dimensional Lie group acting
transitively on M (see e.g. Proposition 1.4.9 of [Vogll]).

For the rest of the section, we suppose that M is connected and we
fix a point o in M. The subgroup

K :={g € Glg.0o =0}

is a closed subgroup of G (see e.g. [War83, Section 3.61]). It is called
the isotropy group at o.

In Theorem 3.58 of [War83|, F.K. Warner proves that G/K admits
a unique manifold structure such that the projection 7 : G — G/K is
smooth and there exist local smooth sections of G/K in G, (i.e. for every
gK € G/K, there exists an open set U of G/K containing gK and a
smooth map s : U — G such that 7o s = id). F.K. Warner proves in the
Theorem 3.62 of [War83] that the map

G/K - M :gK w— g.o

is a diffeomorphism for this natural manifold structure.
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Thirdly, we define a natural automorphism of G which allows a
decomposition of its Lie algebra. Let us consider the automorphism

0:G— G: g S$5gS,-

We remark that then sy g gK = gga(go_lg)K for every goK,gK € M ~
G/K. 0% = Idg implies 02, = I dg. So the only possible eigenvalues of
ose are 1 and —1. As G§ C K C G where G? := {g € G|o(g) = g} and

g is its identity component, € is the space of eigenvectors of eigenvalue
1. Let us write p the space of eigenvectors of eigenvalue —1. Then there
exists a canonical decomposition of g:

g=tdp.

Eventually, we observe that there exist a natural principal bundle
and a natural connection 1-form on each connected symmetric space.
Thanks to the foregoing, it is easy to verify that the projection

G— G/K

defines naturally a K-principal bundle.
A natural connection 1-form can be defined on it:

a:TG —t: Xy pre(Lg-1,(Xy)).

It is called the Loos connection.

To understand the link between the more famous Loos connection
on the tangent space of a symmetric space (the only one which is s,-
invariant for every x € M) and this Loos connection 1-form, we refer to
the Appendix.






Chapter 2

From self-duality of 2-forms in

dimension four to a generalized
definition

This text is devoted to the research of critical points of the Yang-
Mills functional (see Equation (1)) in the introduction). In dimension
4, (anti-)self-dual connections provide such critical points. The notion
of (anti-)self-dual connections comes directly from the natural notion of
(anti-)self-dual 2-forms. Since in dimension 4, the Hodge-star operator
maps a 2-form to a 2-form, a 2-form p is called (anti-)self-dual simply if
#p = £ (Definition [2.1.1)).

To find critical points of the Yang-Mills action on compact manifolds
of dimension greater than 4, we would like to consider a notion of self-
duality of connections, so of 2-forms, on these spaces. In this chapter,
we define and study a generalized notion of self-duality of 2-forms. The
first section works on some vector spaces and the second one on some
manifolds.

Our definition makes sense on Kéhler vector spaces (respectively
almost Kéhler manifolds). We denote by 2n the real dimension of the
space and w the underlying symplectic form. Since on 2n-dimensional
oriented inner product spaces and on 2n-dimensional oriented Riemannian
manifolds the Hodge-star operator * maps a 2-form to a (2n — 2)-form,
we say that a 2-form p is self-dual if (Definition

w/\(nf2)
This definition is a particular case of the well-known generalized
definition presented among others in [Tia00, Lemma 1.2.1 and Remark 1].

The first section of this chapter recalls first of all the notion of Hodge-
star operator and of (anti-)self-duality on vector spaces of dimension
4. Secondly, it generalizes the definition of self-duality for dimension
greater than 4 on the case of vector spaces. The ﬁ—f&ctor chosen in
the definition leads to a characterization of the space of self-dual 2-forms
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if 2n > 4 (Proposition : a 2-form p is self-dual if and only if there
exists ¢ € R such that p = cw. We will understand in the following why
this proposition is not valid in dimension 4. The end of the first section is
a sequence of technical lemmas which give the proof of this proposition.

This proof is based on four lemmas. The fundamental one is Lemma
2.1.6l The latter states that there exists an orthonormal Darboux basis
(i.e. an orthonormal basis for the metric which is also a Darboux basis for
the symplectic form) on each Kéhler vector space. Lemma computes
explicitly the Hodge-star operator of 2-forms written with respect to an
orthonormal Darboux basis. Lemma gives a decomposition of A%(M)
which takes the role of the decomposition A?(M) = A2 (M) & A% (M) in
dimension 4. The proof of Proposition [2.1.9| comes directly from this last
lemma.

The structure of the second section is a carbon copy of the structure
of the first one, in the manifold’s case. The characterization in this case
comes directly from the vector space case: a 2-form p is self-dual if and
only if there exists ¢ € C*°(M,R) such that p = cw (Proposition [2.2.F).

2.1. On vector spaces

First, we recall the definition of the Hodge-star operator on an
oriented inner product space and the definition of self-duality and anti-
self-duality on their natural framework: real 4-dimensional oriented inner
product spaces. Secondly, we define the notion of Kéhler vector spaces
and explain in details how we generalize the self-duality on such spaces
of dimension > 4. Thirdly, four lemmas drive us to the main proposition
of this section. It determines the space of generalized self-dual 2-forms
on Kéahler vector spaces, for real dimension 2n > 4.

First of all, let us recall the definition of the Hodge-star operator and
the notion of (anti-)self-duality in dimension 4. We consider (V,g) an
inner product space of dimension n, i.e. an R-vector space of dimension
n endowed with ¢ a positive definite symmetric bilinear form (inner
product). It gives naturally an inner product on V* that we can extend
to an inner product on A¥V* for every k € {1,...,n} by

glar Ao ANag, Bi A ... A Br) == det (g(aivﬁj))i,je{l,...n}

for every ai A ... Aoy and Bi A ... A B € AFV*. By abuse of notation we
write all these inner products g.

We fix an orientation on V' choosing a preferred n-form e € A"V*. It
allows us to give the definition of the Hodge-star operator * on A*V for
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ke{l,..,n} by
w0 ARV S AVTRVE L e s

where xp is the only (n — k)-form such that

AN#p = g(A, p)e (4)
for every A € AFV*.
* respects the important following property:

2= ()0, )

The proof that the Hodge-star operator is well defined and the proof of
Equation (for general signature of g) can be found in |[Dra99).
If we restrict to a vector space of dimension 4,

x: A2V o A2V

So there exists a natural notion of (anti-)self-duality on 4-dimensional
vector spaces:

Definition 2.1.1. Let (V, g) be an oriented inner product space of real
dimension 4. A 2-form u is called self-dual if

L= [i

and anti-self-dual if
KL = —[L.

Now, we extend the definition of self-duality on vector spaces of
dimension greater than 4. The way that we choose to extend this
definition makes sense on Kéahler vector spaces. We recall what is a
Kaéhler vector space. Then we give the extended definition.

Definition 2.1.2. [Boa09, Section 4] A Kéhler vector space of real
dimension n (V,w, J,g) is an inner product space (V,g) of dimension n
endowed with

e w a symplectic form on V, i.e. a skew-symmetric and non-
degenerate bilinear form,

e J:V =V a complex structure, i.e. an R-linear endomorphism
such that J> = —Idy,

such that
w(v, Jw) = g(v,w)

for each v,w e V.
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Definition 2.1.3. Let (V,w, J, g) be a Kahler vector space of real dimen-
ston 2n > 4 endowed with the orientation given by the canonical volume
form of the underlying symplectic vector space (V,w) (see Section .
A 2-form p on V is called generalized self-dual (or simply self-dual) if

B wNn—2)
RN )

This definition is a particular case of the definition used in [Tia00
Lemma 1.2.1 and Remark 1].

Remark 2.1.4. We will see in Lemma that there does not exist
what we would like to call anti-self-dual 2-form, i.e. 2-form p such that

wN\n—2)

It is why we consider only self-dual 2-forms in the following.

To characterize the space of self-dual 2-forms on Kéhler vector spaces,
we need four technical lemmas. The first one deals with the J-invariance
of g in a Kéhler vector space.

Lemma 2.1.5. Let (V,w, J, g) be a Kihler vector space. Then g(Jv, Jw) =
g(v,w) for every v,w € V.

Proof.
g(Ju, Jw) = w(Jv,—w) (6)
= w(w,Jv) (7)
= g(w,v) (8)
= g(v,w) (9)

The second lemma shows that there exists a basis on each Kéhler
vector space which is orthonormal for the inner product and Darboux
for the symplectic form.

Lemma 2.1.6. Let (V,w, J, g) be a Kdhler vector space of real dimension
2n. Then there exists {e;, fj}1<ij<n @ basis of V such that

(1) {ei, fjti<ij<n is an orthonormal basis for g,
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(7t) {es, fi}i<ij<n s a Darbouz basis for w, i.e.

n
W=y &N,
=1

for & = e? and n; == fib, where > means the flat operator for w.
Such a basis is called an orthonormal Darboux basis in our text.

Proof. Let us write Ey := V and iterate the following for 1 < i < n:
We choose e; a normalized vector of F;_1 and denote f; := Je; and
FE; = E1~L_<1ei’fi> (the vector subspace of E;_; orthogonal to < e;, f; >).
By induction, we can easily see that for every ¢ € {1,...,n}, E; is
stable under J thanks to Lemma Lemma also tells us that f;
is normalized and orthogonal to e;.
At the end of the iteration, as w(v, Jw) = g(v, w) for every v,w € V,
{ei, fi}1<ij<n is an orthonormal Darboux basis of V. O

The following lemma computes the Hodge-star operator of 2-forms
written with respect to an orthonormal Darboux basis.

Lemma 2.1.7. Let (V,w, J, g) be a Kihler vector space of real dimension
2n > 4. Let us consider an orthonormal Darboux basis {e;, f;}1<ij<n
and write & = e? and n; := fib for every i € {1,...,n}. We consider the
orientation of V' given by the canonical volume form of the underlying
symplectic vector space (V,w) (see Section[1.1]). Then

(i) fori<je{l,..,n},

A(n—2)
* (& N Ej) :_771'/\77]'/\@7
(it) fori<je{l,..,n},
A(n—2)
* (i Amj) = —&/\fj/\h,
(iii) fori#je€{l,..,n},
A(n—2)
* (& A mj) :ni/\fj/\hv

(iv) the vectors = (§; An;) for 1 < i < n are linearly independent,
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(v) for everyie {1,...,n},

w/\(n—2)

&AM N :*ng/\nk-
(n—2)! e

Proof. The proofs are similar for the items (i)-(iii). We remark that the
left and the right hand sides of the equalities are equal to

) = AN AELATA e NEGATA e NEGAT A oo A A,y
(i) =& AEGAELAI A ANENDA o NEGATA oo N AT,
(i) M AEGAELANA e NEAT A e NEGATA oo Ay AT

where @ stands for omission.

For the left hand side, it is simply verification of the Equation (4)).
For the right hand side, it is long but straightforward combinatorial
computations.

For i € {1,...,n}, we can check that

S (EAN) =G AN ANGATA oo Ay A
Then clearly, the vectors
* (& A i)

for 1 < i < n are linearly independent.
Moreover, a combinatorial computation shows that

wN(n—2) . .
E A A (n 9) =Y OAMACAGATN NG A, (10)
Tk
So
w/\(n—?)
& Ami A = %> & Ak (11)
(n—2)! iz

The last lemma provides a decomposition of A2V * if 2n > 4.

Lemma 2.1.8. Let (V,w, J, g) be a Kdhler vector space of real dimension
2n > 4. We consider the orientation of V' given by the canonical volume
form of the underlying symplectic vector space (V,w) (see Section .
Let us denote

BT — {,u e AQV*‘ L= 7_'U’/\w/\(n—Z)}
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for each T € R.
Then,

1 —1 1
A2V* = B2 @ B2 @ Bn—101

Moreover, with respect to an orthonormal Darbouz basis {e;, f;}1<ij<n,

1
B2 = @i (&GN —mi Anj & Amj +mi NEj)

B0=2' = @i (GAEG+niAn, &N —ni NE) D (12)
@izt (E1 AL — & A i) (13)
and

BT = <zn:§z /\77z‘> = (w)
=1

where & 1= e? and n; = ff for every i € {1,...,n}.
Proof. Lemma [2.1.7) (i), (ii) and (iii) implies that

1
Dicj (§i N —mi Ay, & Anj+mi ANEj) © B2
and 1
Dicj (G AN +mi Ang & Anj —ni N&G) © BO=2
It remains to work on the vector subspace
Dief1,...n} (& A i) -
Let us fix o, ..., a, € R and suppose that
n
> & Ami€ BT
i=1
Thanks to Lemma [2.1.7] (v),

Zaz (G Am) = %> & An (14)

i=1
=T z”: & Ay Aw (2 (15)

i=1
= Tzaz”_2'*Z§kA77k (16)

k#i
= ZZT(”—Q)!%‘*(&/\’%)- (17)
k=1 ik
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By Lemma (iv),

ap = ZT(TL - 2)lay. (19)
itk

Let us denote T' := 7(n — 2)!. Equation means that the vector
(aq, ..., ) is a solution of the homogeneous system

L =T .. =T =T\,
-T 1 .. -T -T !
. |=0
T -7 .. -T 1) \™
which is equivalent to the system
1 -T .. =T -T
0 1-72 .. -T-T% -T-12| (™ o
0 -T-T72 .. - T—-T2 1-7% ) \"™

To solve this system, let us decompose the problem into two cases:

T=-1(Ge 7= (n%é),) and T # —1. In the first case, the system is
equivalent to the system

x|+ ... +x, =0.
This shows that

=1
Diz1 (&1 A — & Ami) € BT,

In the second case, the system is equivalent to the systems

1 —-T .. —-T —T
0 1-7 .. -7 -1 | ™
.| =0,
0 -7 .. —-T 1-1) \*™
1 -T —-T .. -T —T
o 1 0 .. 0 -1 1
o 0 1 .. 0 -1 =0
0 -T —-T .. —T 1-T

and eventually



2.1. ON VECTOR SPACES 43

1 -T -T =T =T

0 1 0 0o -1 T

0 0 1 0 -1 .. =0
-1 0 o .. 0 1

Then (ayq, ..., ap) is a solution of the systems

1 —Taxo—...—Tx,=0
Tl =T = ... =Tn
and
1-T(n—-1))x1=0
] =9 = ... —=Tnp.
So if T # ﬁ (ie. T # ﬁ), the unique solution is (0, ...,0).
Otherwise, the solutions are

{(ay ..., )| € R}.

In particular, this shows that

n 1
<Z§z‘/\m> C Bt

i=1
The lemma follows by counting dimensions. O

To finish this section, we determine the set of self-dual 2-forms on a
Kéhler vector space of real dimension 2n > 4 with the orientation given

by the canonical volume form of the underlying symplectic vector space
(see Section [1.1]).

Proposition 2.1.9. Let (V,w,J,g) be a Kdhler vector space of real
dimension 2n > 4 endowed with the orientation given by the canonical
volume form of the underlying symplectic vector space (V,w) (see Section
. Then a 2-form p on 'V is self-dual if and only if there exists c € R
such that p = cw.

Proof. The proof is clear thanks to Lemma [2.1.§ 0

Before ending this section, let us insist on an important fact: our work
is only valid on vector spaces of real dimension strictly greater than 4.
Indeed, the decomposition of A?V* of the Lemma is no more valid in
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dimension 4 because in this case, n = 2 and hence (n—1)! = (n—2)! = 1.
In fact, in dimension 4,

AV*=B'ae BL

So this text is not a generalization but a complement of the job made
for dimension 4.

2.2. On manifolds

The structure of this section is a carbon copy of the structure of
the previous one but it treats the notion of self-duality of 2-forms on
manifolds instead of self-duality of 2-forms on vector spaces. First of
all we explain how the definitions of the Hodge-star operator and of
(anti-)self-duality in dimension 4 of the previous section are adapted on
oriented Riemannian manifolds. Secondly, we recall the notion of almost
Ké&hler manifolds. Manifolds on which, thirdly, we define our generalized
notion of self-duality. We end this section with one of the most important
theorem of our text which characterizes the space of self-dual 2-forms on
almost Kéalher manifolds of real dimension strictly greater than 4.

The Hodge-star operator on an oriented Riemannian manifold is
simply the Hodge-star operator of the previous section at each point of
the manifold.

Definition 2.2.1. [AHS78, Section 1] On (M, g) an oriented Rieman-
nian manifold of dimension n, the Hodge-star operator * : A¥(M) —
A""E(M) is defined for every x € M by

(k)2 = *(a)

where *(uz) is the Hodge-star operator of p, on the oriented inner product
space (TyM, gs).

The natural definition of (anti-)self-duality on a manifold of real
dimension 4 is clear.

Definition 2.2.2. |[AHS78, Section 1] On (M, g) an oriented Rieman-
nian manifold of dimension 4, a 2-form p is called self-dual if

(L= [i

and anti-self-dual if
k= —[L.
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To extend this definition to real dimension greater than 4, we copy
the previous section. Manifolds corresponding to Kéhler vector spaces
are the almost Kéhler manifolds. Let us recall this definition and give
the extended definition of self-duality.

Definition 2.2.3. An almost Kéhler manifold (M, g, J,w) is a Rieman-
nian manifold (M, g) with

e an almost complex structure J, i.e. J € T°(End(TM)) such that
J? = —idra,

e a symplectic 2-form w, i.e. a closed nondegenerate 2-form

such that
w(,J)=g(,.).

Definition 2.2.4. Let (M, g, J,w) be an almost Kihler manifold of real
dimension 2n > 4 endowed with the orientation given by the canonical
volume form of the underlying symplectic manifold (M,w) (see Section
[1.1). A 2-form p on M is called generalized self-dual (or simply self-dual)
if
wNn—2)
RN T

The following theorem comes from Proposition It will be funda-
mental for the identification of the moduli space of self-dual connections
in our context in Chapter

Theorem 2.2.5. Let (M, g, J,w) be an almost Kdhler manifold of real
dimension 2n > 4 endowed with the orientation given by the canonical
volume form of the underlying symplectic manifold (M,w). Then a 2-form
w is self-dual if and only if there exists ¢ € C*°(M,R) such that

0= cw.

Proof. By Proposition if p is self-dual, there exists a function
c¢: M — R such that p = cw. If we look at this equality with respect to
a Darboux basis {dg;, dpi}lgi,jsn, we see that p is written locally

cz dg; N dp;.

1 is smooth so the function ¢ has to be locally smooth, so globally. The
opposite implication is clear. ]






Chapter 3

Generalized moduli space of self-dual

connections

The generalized definition of self-duality of 2-forms of previous chapter
provides a natural definition of self-duality of connections. As in real
dimension 4, self-dual connections on manifolds of real dimension greater
than 4 are critical points of the Yang-Mills functional. Moreover the
set of self-dual connections on these spaces is stable under the action of
the Gauge group. The space of self-dual connections modulo the Gauge
group is called the moduli space of self-dual connections. It is interesting
for both mathematicians and physicists. This chapter is devoted to its
study. It is split into two sections.

The first one gives definitions of self-dual connections, Gauge group
and moduli space of self-dual connections. Moreover, it gives two exam-
ples of self-dual connections (Examples . One is constructed on a
torus bundle over a torus, thanks to the Heisenberg group. The other
one is constructed on the natural principal bundle over an Hermitian
symmetric space with proper properties.

The second section deals with the study of moduli space of self-dual
connections if the Gauge group is abelian. To avoid confusion, if the
Gauge group is abelian, we denote it by Z instead of G. In this case,
four things simplify:

e the curvature of a connection can be seen as a 2-form on M valued
in 3 := Lie(Z),

e the difference of two connection 1-forms can be seen as a 1-form
on M valued in 3,

e the curvature of a connection « is simply da,
e the Gauge group is isomorphic to C*(M, Z).

This section is split into four parts. The first one explains these
simplifications. The second one identifies the moduli space of self-dual
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connections M when the based manifold is compact connected of real
dimension 2n > 4. It asserts that M is either empty, or in bijection with
H'Y(M,3)/K?, where K7 is a subgroup of H'(M,3). For this proof, in
the non-empty case, we define a natural map from M to H'(M,3)/KZ.
The proof that this map is well-defined, injective and surjective comes
directly from Lemma [3.2.1

The third part of this section gives a structure on the moduli space
of self-dual connections (if it is non empty) if one hypothesis is added:
the Gauge group has to be connected. We prove that there exists an
abelian Lie group structure on M. Section tells us that the only
difficult thing to prove is that K" is closed in H(M, Lie(SY)). It is
quite easily proved thanks to the characterization of K S formulated
with a line integral (Proposition [3.2.7]).

The fourth part of this section studies some examples of moduli space
of self-dual connections (Examples [3.2.10)).

3.1. Definition

In this section, we define the notion of moduli space of self-dual
connections. First of all, we define the self-duality of connections and
present some examples of self-dual connections. Secondly, we define
the notion of Gauge transformations. Thirdly, we show that a Gauge
transformation preserves the self-duality and eventually we give the
definition of moduli space of self-dual connections.

We generalize the definition of self-duality of connection of [AHST7S,
Section 2] to even dimension greater than four using Chapter 2.

Definition 3.1.1. Let G be a compact Lie group, (M,g,J,w) be an
almost Kdhler manifold of real dimension 2n > 4 and P — M be a
G-principal bundle. A connection 1-form o on P is called self-dual if F

(defined in Definition is a self-dual 2-form on M.

By "F is self-dual" we mean the following: if F' = >_j Hj ® s for
p; € A2(M) and s; € I'°°(E44), each ; has to be a self-dual 2-form on
M for the generalized Definition It is independent of the choice
of the representative Y-, yuj ® s; in A*(M) @ T°°(E4q) because the self-
duality of 2-forms is stable under the product by a smooth function on
M.

Now, let us look at two examples of self-dual connection 1-forms.

Example 3.1.2. (i) Our first example of self-dual connection will be
constructed on a torus bundle over a torus. R.S. Palais and T.E.
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Stewart explain in [PS61| that bundles of this form has compact 2-
step nilmanifold as total spaceﬂ. An easy example of 2-step nilpotent
compact Lie group s

1 a c
G := 0 I, blla,beK" ceKy,,
0 0 1

the Heisenberg group, for K = R,C or H (the real, complex or
quaternion numbers). If we denote by T the subgroup of G of
matrices with coefficients in Z = 7 (respectively Z & iZ or Z &
iZ.® j7 ® kZ) then

Hsbrg"(K) := G/T

s a compact 2-step nilmanifold.

Let us denote by T* ~ K/Z the k-torus for k := dimg(K) and let
us consider the well-defined free right action of T* on Hsbrg™(K):

Hsbrg™(K) x T* — Hsbrg™(K)

1 a c 1 a c+z
0 I, bl||,[z]|—~1|]0 I, b
0 0 1 0 0 1
1 a c
7 Hsbrg™(K) = T2 |10 I, b|| — [(a1,b1,...,an,bp)]
0 0 1

endowed with this T*-right action defines a T*-principal bundle
structure on Hsbrg™(K). We will construct a connection 1-form
ag on it, if 2kn > 4.
For X, € T,(Hsbrg"(K)), let us consider v : I C R — G
such that [y(0)] = u and L|o[y(t)] = Xu. We write 4(t) =
1 a(t) et)
0 I, b(t)| € G and define
0 0

—_

ag : T (Hsbrg™(K)) — Lie(T*) ~ K : X,, — ¢/(0) — a’(0).b(0).

'Roughly speaking, a compact 2-step nilmanifold is a quotient space N/H where
N is a 2-step nilpotent compact Lie group and H a closed subgroup of N (we refer to
[Wil82] for precise definitions and details about nilmanifolds).
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It’s easy to show that ag is independent of the chosen curve vy in
G. Moreover, it is a connection 1-form. Indeed,

1 a ¢
e IfT € Lie(TF) andu= ||0 I, b|| € Hsbrg"(K),
0 0 1
d 1 a c
T, = 7 0 I, b||[exptT]
O1\0 0 1
k
= - 0 I, b
o \o o 1
So ao(T})=T.
1 a c\]
o If[1]€T" and X, € T (Hsbrg"(K)) foru= |0 I, b|],
0 0 1/]
let us denote by vy : I CR — G a curve in G such that [y(0)] =
1 a(t) c(t)
u and Lo[y(t)] = X, and let us writey(t) = | 0 I, b(t)
0 O 1
Then
RFT]QO(XU) = O (R[T]*Xu)
d (1 a(t) @)
O\ 0 1
d (1 a(t) ct)+7
O[\0 0 1
= (0) —d'(0).b(0)
= a(Xy)
= Ad _ja(Xy)

There exists a natural structure of Kihler manifold on T?*™. So we
can try to show that ag s self-dual with respect to the underlying

metric and symplectic form.

Let us denote

11
I]R::

[ - ] 11[+} 11{
——, = | | respective =|—-c,z|+i|—2, =
22 P yic 22 22
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(i)

I ._]_1 1[+}_1 1{+-}_1 1{“{}_1 1{
O Ty g | T T g T T 292/

For every [(a,b)] := [(a1,b1, ..., an, bp)] € T?", let us consider the
open subset of T2F"

Ulap) = { (a1 + 21,014+ Y1,y G + T, by +yn) ]| 2,y € (IK)"}
and the local section s : Uj(qp)) — Hsbrg"(K) defined by

S ([(al + xhbl + Y1, + xnabn +yn>]>

1 a+x 0
= 0 I, b4y
0 0 1

for every [(a1 + 21,01 + Y1, vy G + T, by + yn)] € Ul(a,p)-

Hence
n

s*ag = — Z(b’ + y;)dx;
i=1
and
n
s*Fy = s*dag = Zda:i A dy; = w,
i=1
where w denotes the symplectic structure on T2,

If 2nk > 4, Theorem |2.2.5] asserts that aq is a self-dual connection
1-form on Hsbrg™(K).

The second example is constructed on some kind of Hermitian sym-
metric spaces. The symmetric structure gives canonical principal
bundle and connection: the K -principal bundle G — G/K and its
Loos connection defined in Section[I.6. Naturally, we wonder if the
Loos connection is self-dual. In general, the answer is no. But we
will show that with restrictive hypotheses, the Loos connection is
still self-dual. We refer to [KN96, Section X1.9] for the definition of
Hermitian symmetric spaces and details about it and to the Section
for basic facts about symmetric spaces.

Let (M, g, J,w) be an Hermitian symmetric space. M is in par-
ticular a connected symmetric space so we can consider the corre-
sponding K-principal bundle G — G /K and its Loos connection as
in Section[1.6. If G is simple, K a 1-dimensional Lie subgroup of
G and M of real dimension strictly greater than 4, then the Loos
connection ag on G — G/K is self-dual.
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Indeed, w is compatible with the symmetric structure so s;-invariant
for every x € M. In particular, w is G-invariant.

So (m*w) is t-invariant, i.e.

6’p><p

(m*w) adxY,Z) = — (7t*w) (Y,adx Z)

€|p><p( 6|P><P

for every Y, Z € p and X € ¢.

G is simple, so by |Bie98, Theorem 2.1], there exists Z € 3(¢) such
that

(W*w)e‘pxp =-B(Z,[,])

for B the Killing form on g. K is 1-dimensional, hence 3(£) = ¢
and {Z} forms a basis of €

A wvector field is horizontal with respect to aq if and only if it is a
left-invariant vector field on G corresponding to a vector in p.

By Lemma for every X,Y € p,

F(X, %) = —fao((X.7]y)

—_—~—

= —ja(X.¥],)

= (X, V)

162, [x.Y])Z
2zl

1, Z

s o\ Z

IR P/

because w*w is G-invariant.

If we denote by Q)4 the horizontal part of T4G with respect to ay,

on Qg X Qq, ,

(Fo)g = (T"w)y @ W

As both expressions are equal to 0 on Gy x Gy, Ggx Qg4 and Qg x Gy
(for G4 the vertical part of T4G),

Fy= (m'w) @ — 2
21|

on TG.
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For every g € G, every s : U C M — G local section such that
m(g) € U and s(w(g)) = g and every X,Y € (T M),

(FO(X,Y)) “(9) = 9xy(9)
= Fo(5:Xz(g), 5:Yn(g))
. A
= (7 w)(s*Xn(g),S*Yﬂ(g))W

Z
= @Xnto) Yelo)) 3772

Hence Theorem asserts that aq is self-dual.

Let us remark that the conditions to have a self-dual Loos connection
are restrictive. We have not found an explicit example of Hermitian
symmetric space which respects these hypotheses. Nevertheless,
we wrote this theoretical example in our text because we built our
general theory from this Hermitian symmetric case.

The definitions of Gauge group and moduli space come directly from
the 4-dimensional case. Let us begin with the definition of the Gauge

group.

Definition 3.1.3. For G a compact Lie group, let P — M be a G-
principal bundle over a manifold M. A Gauge transformation is a
vertical isomorphism of the principal bundle, i.e. a diffeomorphism
@ : P — P such that for everyp € P and g € G,

m(¢(p)) = 7(p)

and
©(pg) = ¢(p)g.

We denote by G the set of Gauge transformations. It forms a group
for the composition law. It is called the Gauge group of P.

Let us denote by C>°(P, G)% the group of G-equivariant functions for
the action of G on itself by conjugation Cy : G — G : ¢’ + gg'g™ !, i.e.
the group of smooth functions ¢ : P — G such that ¢(pg) = Cy,-14(p),
where the group laws come naturally from the group laws of G. Then
there exists a isomorphism between G and C* (P, G)% given by

¢(p) = pp(p)

for ¢ € G and ¢ the corresponding G-equivariant function. The local
triviality of P proves that it is indeed a bijection. In our text, we denote
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always by ¢ the G-equivariant function corresponding to the Gauge
transformation .

The following proposition shows that the set of self-dual connection
1-forms is stable by the action of the Gauge group. It is fundamental for
the definition of the moduli space.

Proposition 3.1.4. For G a compact Lie group and (M,g,J,w) an
almost Kdhler manifold of real dimension 2n > 4, let m : P — M be
a G-principal bundle endowed with a connection 1-form « and ¢ be a
Gauge transformation. Then

(i) ¢*a is a connection 1-form,
(ii) « is self-dual if and only if p*« is self-dual.

Proof. (i) ¢*a is a 1-form on P valued in g. We have to check the
Definition The first point is clear if we remark that, for
Xegandp e P,

. d
X, = —| p(pexp(tX)) =

atl, ¢(p) exp(tX) = X7,

dt

Let us compute the second point. For every X, € T,P and v : I C
R — P such that v(0) = p and %‘O'y(t) = X, and for every g € G,

RZ‘P*Q(Xp) = a(peRgXp)
= a( G| #tr00)

= (5] eto)
= Adg-10(p:Xp)
= Adj1p"a(Xp).

(ii) First of all, we remark that, by Proposition the curvature of
prais

dgo+ sletal), ()] = o' F

Let us look at ©*F of Definition [1.5.10, For X,Y e I'®°(TM),
pe Pands:U C M — P alocal section defined on U such that
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m(p) € U and s(w(p)) = p,

(¢ F(X.Y)) (1) = ¢ F(5:Xn(p), 5:Ya(p)
= F(pussXn(, 254 Ya(p))
= F((¢08):Xn(, (90 9):Yn(p)
= (F(X,Y))"(¢p))

because pos : U C M — P is a local section of P such that
pos(m(p)) = ¢(p).
Soif F = >_j Hj @ sj, then gﬁ' =21 ® s}o where

o~

Y _
55 =5j0.

Hence ¢*« is self-dual if and only if « is self-dual.
O]

Proposition says that we can define an equivalence relation on
the set of self-dual connection 1-forms on P with respect to the Gauge
group:

o~ a

for every ¢ € G.

We can generalize the well known notion of moduli space of self-
dual connections to almost Kédhler manifolds of real dimension greater
than four. The classical definition can be found for example in [AHS78|
Section 6].

Definition 3.1.5. For G a compact Lie group and (M, g, J,w) an almost
Kaihler manifold of real dimension 2n > 4, let m: P — M be a G-principal
bundle. The moduli space of self-dual connections on P is the set of
self-dual connections on P modulo the equivalence relation given by G,
the Gauge group on P.

We denote by M the moduli space of self-dual connections on P.

3.2. For abelian Gauge groups

In this section we identify the moduli space of self-dual connections
on a compact connected almost Kéhler manifold of real dimension strictly
greater than four if the Gauge group is abelian. If we consider an abelian
Lie group, we write it Z instead of G as usual.
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The fact that Z is abelian simplifies most of what we did until now.
In this section, first of all, we present all these simplifications. It will
lead us to two theorems which characterize the moduli space of self-dual
connections in this context. Both of them are presented with some
propositions and lemmas. We end this section by some examples of
applications of these theorems.

The Lie group is abelian so E44 is isomorphic to the trivial bundle
M ® 3 and T'°(FE 44) ~ C>*(M,3). By Definition the difference of
two connection 1-forms oy and as defines a element og?zvl e A' (M) ®
['*°(E4q). So if the Lie group is abelian, it defines naturally a global
element ag — a1 € AY(M,3). Locally

ag —ag =" (e —aq)

for some s : U C M — P local section of P.
In the same way, the curvature F' of a connection 1-form « defines
naturally a global element F € A%(M,3) which is locally

F:=sF

for some s : U C M — P local section of P.
If we denote

F=) nj®Y; €A (M) =A(M)@;,
j

« is self-dual if and only if the p;’s are self-dual 2-forms on M for every
J

We remark moreover that F' = da because the Lie algebra j is
abelian. Eventually let us remark that C*°(P,Z)? is isomorphic to
C*>®(M, Z) because the action of Z on itself by conjugation is trivial.
So G ~ C>®(M, Z). For ¢ € G, we write p the corresponding smooth
function from M to Z. We have

o(p) =p(@om(p))

for every p € P.

The following lemma will give us directly the proof of our first theorem,
which characterizes M.

Lemma 3.2.1. For Z an abelian compact Lie group and (M, g, J,w) a
compact connected almost Kihler manifold of real dimension 2n > 4, let
m: P — M be a Z-principal bundle. Then
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(i) if an and oy are self-dual connections on P, ag — aq is a closed
1-form on M wvalued in 3,

(ii) if g, v and B are connection 1-forms on P, then there exists ¢ € G
such that B = ¢*a if and only if there exists € C*°(M,Z) such
that f —ap = o — o + P 1dg,

(iii) if o is a closed 1-form on M wvalued in 3 and « a self-dual connection
1-form on P, then "¢ + « is a self-dual connection 1-form on P.

Remark 3.2.2. By %~ 'dp we mean, for X, € T,M and~y: 1 CR — M
such that v(0) = = and ¥(0) = X,

d

= —| @) 70hW) €5

0

7 ldp(X,) -

Proof. (i) Let us denote F; := >, Mjl- ® le and Fy := > H? ® Yj2
where ,ué € A%2(M) and YjZ €jfori=1,2. a; and ag are self-dual
so by definition pf are self-dual 2-forms on M for ¢ = 1,2 and for
every j. By Theorem m there exist cé- € C*(M,R) such that
pj = ciw. Then

flzz:cjlw@le:w@Yl
J

for Y1 := >, C}le € C>*(M,3) and in the same way
Fg =w® y?

for Y2 :=3; c?YjZ € C™(M,3).

For some s: U C M — P local section of P,

we (Y2 -Y1 h-F
s*(Fy — Fy)
s*(dag — day)
ds*(ag — o)

= dOQ — a1

and so globally

we (Y2 =YY =day — . (20)
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Hence, to finish the proof, it is enough to show that Y2 — Y1 = 0.
First of all, let us show that Y and Y? are constants. For i = 1
and 2,

dF; = d*a; = 0.

Then for s : U C M — P some local section of P,
dF; = ds*F; = s*dF; = 0.
But o
dF; =dw®Y; +w®dY; =w®dY;
so Y; is constant on M because M is connected.

Now, we can show that Y2 — Y = 0. We consider {Xkkeqr,..0p @
basis of 3 and we denote

!
V2Vt =3 fiX;
k=1
for fi € R and

l

a2—041=ZTk:®Xk
k=1

for 7, € AL(M,R).
Then for every k € {1,...,1}, frw = drg. If fr > 0 or fr < O,

w = d}—:. So w is an exact symplectic form which contradicts the
compactness of M, thanks to Lemma [1.1.2

So fr =0 for every k € {1,...,1} and Y2 — Y'! = 0. Hence ag — o
is a closed 1-form on M by Equation .

For every X, € T,M and «y: I CR — M such that v(0) = z and
%’07@) = X, and for every s : U C M — P local section such
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that «x € U, we remark that for every ¢ € G,

gp*oz(s*Xx) = a((,p*s*(Xx))
- (d w@wa»0

- a(:s<<»wow@wu»0
— o] sowrom)
B O‘<Rso <5+ Xa +(¢1d“’(XI));<s<x)>)

= Adgpy-r1a(s.Xy) + 7 dp(Xy)
= a(s.X,)+ 7 1dp(Xy).

So for every s : U C M — P local section,

s'(p'a—a) =7 'dp. (21)
If there exists ¢ € G such that § = ¢*a, then by Equation ,
B—a=pldp

for @ the smooth function from M to Z corresponding to .

Conversely, if there exists @ € C*°(M, Z) such that
B—a=7 "dp,
then for every s : U C M — P local section,
s (8 —a) =7 ldgp,

i.e. thanks to Equation (21)), s*3 = s*a + @ 'dp = s*¢*a for ¢
the Gauge transformation corresponding to @.

To show that § = ¢*«a, we will show that they have the same
horizontal vectors. For every p € P, we can apply Proposition
with respect to 5 at 7(p). So we can find an horizontal local
section s at m(p) such that s(w(p)) = p. If X,, € T),P is horizontal
with respect to 3, s,m.X, = X, because there exists a unique
horizontal lift of 7.X, at p.
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Then

1l
w
* *
€ @
* ~—
e =
P
R
&

Hence X, is horizontal with respect to ¢*«a too. In the same way,
an horizontal vector for ¢*« is horizontal for 5. So 8 and p*« are
the same connection forms.

(iii) Clearly 7*o + o € A(P) ® 3. Moreover, it is a connection 1-form.
Indeed, for every X € 3 and every p € P,

(' +a) (X,) = 7"0(X,)+a(X,)
— 04X
= X

and for every z € Z and X, € TP,

R (m"0 +a)(Xp) = (moR:)0(Xp) + R (X))
= mo(X,) + Ad,—10(X)p)
= Ad,-1 (10 + o) (X,)

because Ad,-1 = Id,. Finally, d(n*0+a) = m*do+da = 0+F = F
so m*0 + « and « have the same curvature and 7*o + « is self-dual.
O

We can now present our theorem which characterizes M:

Theorem 3.2.3. Let Z be an abelian compact Lie group, (M, g, J,w) be
a compact connected almost Kahler manifold of real dimension 2n > 4
and w: P — M be a Z-principal bundle. Then, either the moduli space
of self-dual connections M is empty, or M is in bijection with

H'(M,3)/ K7,
where K% := {[p~'dg||p € C*®*(M, Z)}.

Remark 3.2.4. If M is non empty, then it depends only on M and Z.
It is independent of the total space of the principal bundle. To identify
M, the knowledge of this total space is useful simply to construct a first
self-dual conmection 1-form and so to show that M is non empty.
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Before going to the proof of this theorem, let us remark that the
expression H'(M,3)/K# makes sense:

Remark 3.2.5. H'(M,3) is an R-vector space so, in particular, an
abelian group. We will show that K% is a well-defined subgroup of
HY(M,3). For this, we prove:

(i) for every @ € C>*(M, Z), p~'dp is a closed 1-form,
(ii) for every 1, %3 € C°(M, Z), ¢, 'dp, + Py 'dp, € K2,

(ii) if 7 1dp ~ o in HY(M,3), then there exists ¢ € C°°(M, Z) such
that @_10@ = q.

Hence, (i) and (i) prove that K% is a well-defined subset of H'(M,3)
and (i) proves that it is a subgroup.

(i) Using the fact that Z is abelian, we see that for every $ €

(M, 2),
vz +3 e = d(77'P)
= d(1)
= 0
S0
dp™! = —p~%dp
and

d(77'dp) = d(7 ') ndp+7 'd
= —p dpAdp
= 0.

(ii) For X, € TyM and v : I C R — M such that v(0) = = and
4(0) = X, using the fact that Z is abelian, we find

(@1.52) ' d (71.7,) (Xa)

_ % (F1R) T (@) @) (1)
= 2] (@) B ). Bala) " 2H0(0)
0
d

= | @@) " B (1). @) 72(1(0))
0

+ % (P1(2)) ™ P1(3(0)). (Po() ™' 22(7 (1)
0

= 71 'dei(X.) + P2 'dpa(Xa).
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(iii) If o and 2 'd@ are equivalent in H'(M,3), then there exists f €
C>®(M,3) such that o = @ tdp + df. For X, € T,M and v :1I C
R — M such that v(0) = = and ¥(0) = X,

(exp of)_1 d(expof) (X,)
((expof) (z))™" (expof) (v(1)

0

dt
G| () - 1@)

Hence o = 3 1dg + (expof) *d(expof). So, thanks to (ii), a =
(Pexpof)~'d(@expof).

We can now prove the Theorem [3.2.3]

Proof. If M = (), there is nothing to prove. So let us fix g a self-dual
connection 1-form on P.
We consider the map

(o] e M — [a—ag) € HY(M,3)/KZ%.

Thanks to Lemma items (i) and (ii), this map is well-defined
and injective. Eventually, by Lemma item (iii), every [o] €
HY(M,3)/K? is the image of [r*0 + ag] € M so the map is surjec-
tive. O

The next part of this section is devoted to the proof of the fact that
H'(M,3)/K? admits a differentiable structure which turns it into an
abelian Lie group if we add one hypothesis: the Gauge group has to be
connected (so a k-torus for k¥ € Ny). For this, we need one lemma and
one proposition.

Lemma 3.2.6. Let M be a compact manifold and Zy and Zs abelian
compact Lie groups. Then

HY(M, Lie(Zy x Z3))/K%>*%2 ~ HY (M, 3,)/ K% x H (M, 3,)/K?*.
Proof. Clearly,

HY(M, Lie(Zy x Z3)) ~ H' (M, 3,) ® H'(M,3.)

because Lie(Zy X Zs) ~ 3, D 3,.
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Moreover, for every @ = (p1,92) € C°(M, Z1 X Z3),
[~ dp] = [pr~dip] + [p2~ 'dipa] € H' (M, 3,) © H'(M, 32)
so the isomorphism descends to a well-defined isomorphism to the quotient
spaces [
Theorem 4.22 of |Lee03| inspired us the next proposition.

Proposition 3.2.7. Let M be a connected n-manifold and o a 1-form
on M wvalued in Lie(S'). Then o € K5 if and only if

/a €217
~

for every v closed piecewise smooth curve segment on M.

Remark 3.2.8. The line integral is defined on 1-forms wvalued in R
while « in this proposition is a 1-form valued in Lie(S'). The integral
is defined thanks to the identification Lie(S') ~ R which consists in
dropping the i in Lie(S') ~ iR.

Proof. First of all, let us show that if o € KSI, then

/a €27
~

for every -y closed piecewise smooth curve segment on M.

We fix v : [a,b] C R — M a closed piecewise smooth curve segment
on M and we decompose [a,b] in a = a9 < ... < a = b such that
Vl(aj,a;1) is smooth for every j € {0, ...,k — 1}.

We can denote o = @~ 1dp for g € C>°(M, S'). We consider the map

Boy:lab — S
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By the lifting property (see Section applied to the covering space
R — S': 6+ e, there exists a continuous map ¢ : [a, b] — R such that

") =3 (y(t))

for every t € [a, b].

First, let us show that ¢ is a piecewise smooth curve segment on
[a,b] for the same decomposition of [a,b]. For each ty € [a,b], let us
consider U C S* an open set containing (7(tp)) on which we can define
a smooth log : U — Lie(S'). There exists [ € Z such that, for every ¢ in
the connected component of (¢ o)~ !(U) containing o,

log(e"? M) = i3(t) + 12
because ¢ is continuous. So ¢ = —I27 + %log op oy on an open set

containing %.
Secondly, let us remark that

P = (1(a) = P(1(0)) = P

so ¢(b) — ¢(a) € 27Z.
Now, we will look at [, % 'dp. By definition,

/ 1d90 Z / ’7|[a]-,aj+1}) ¢_1d¢'
laj,aj+1]

For every j € {0,...,k — 1} and for every g € [a;,aj4+1],

(Miayayt)” (77'47) <88t>

d
= = @(v(to))) " B (v(to + 1))
0
_ AL ietto+n)-g(t0))
dt|,
= 3 $Ogo(to+t)
= i@ (to).

So )
(7’[%‘7%‘4-1]) (ﬁfldﬁ) =i@'dt.

By the fundamental theorem, we can compute f7 7 ldg:
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k—1

/ olde = 3 / (Viayayn)) @'
v [aj,a;+1]

=0

Now, let us show the reverse side of the proposition, i.e. let us suppose
that

/a € 12nZ
y

for every v closed piecewise smooth curve segment on M and let us show
that [a] € K5
We fix 2y € M and consider the function

@:M—>Sl:xr—>ef7a,

where 7 is a piecewise smooth curve segment from zg to x. We will show
that % is well-defined, smooth and that ~'dg = a.

First of all, let us remark that for every =,y € M and every y; and
Y2 piecewise smooth curve segments on M from x to y, by Proposition

/a—/a:/ o € 12772
71 Y2 T#ry "

for # the concatenation law on paths. So © is well-defined.
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To prove last points, we will work on (U C M,? : U — R") a
coordinate chart of M such that ¢(U) is an open ball of R™ centered at
0. We need to consider the following function:

f:i/J(U)—>Lie(Sl):a»—>/7(1/z !

where v is a piecewise smooth curve segment from 0 to a in ¥(U). By
Poincaré lemma, (zp_l)* a is exact on ¢ (U). By the Theorem 4.22 of
[Lee03] and its proof, f is independent of ~, smooth and (w_l)* a=df.

Now, let us fix vy a piecewise smooth curve segment from xy and
¥~1(0). For every a € ¥(U), let us denote by o, : [0,1] — ¥(U) the
piecewise smooth curve segment defined by o,(t) := ta. By Proposition
1.2.3] we observe that

?(v(e) = (”O ot )
N I 10%
e foy (5 tom)
oo f( )*a
_ efvoaef(a)_

It shows first of all that @ o +)~! is smooth. So % is smooth and we can
consider 7 1dp.
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Moreover, for every a € ¥(U) and i € {1,...,n},

() @), ()

= 2] (B @) B @+ (0,.,0,4,0,...,0)))
dtﬂ(gaw @) 2 @+ (0, .0.£,0, ..

_d o S0 o1 @ oLy @ o F (@t (0,.0,2.0....0))

dt |,
_ | ((0(0,0,0,..0)~ ()

dt |,

d
= — 0,..,0,,0, .., 0
dtof(a+(7 )Y Y Y ))

- dfa(a

where in (0, ...,0,t,0,...,0), t is in the i*" place.
Then on (U),

(v) (7 dg) =ar = ()

and so 7 1dp = a. O

We are ready to prove our second main theorem:

Theorem 3.2.9. Let Z be a k-torus for k € Ny, (M, g, J,w) be a compact
connected almost Kihler manifold of real dimension 2n >4 and m: P —
M be a Z-principal bundle. Then, either M is empty, or there exists a
manifold structure on M which turns M into an abelian Lie group.

Proof. By Theorem [3.2.3] if M is non empty, then it is in bijection with
HY(M,3)/K?. Let us show that it admits an abelian Lie group structure.

7 is isomorphic to (S')* for some k € N. Thanks to Proposition
and Lemma it is enough to show that H'(M, Lie(S') ~ R)/K~
admits a structure of abelian Lie group. M is compact so H'(M,R) is a
finite vector space thanks to Lemma and in particular an abelian
Lie group for the trivial differentiable structure on finite dimensional
vector spaces.

Thanks to Remark KS" is an abstract abelian group. By
Theorems [1.3.2] and there exists a manifold structure on

HY(M, Lie(SY))/ K"

which turns it into a Lie group if K5 is closed in H'(M, Lie(S")). So it
is enough to prove that K" is closed in H'(M, Lie(S*)).
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Let {[Bn]}nen be a sequence in K5 which converges to [8] €
HY(M, Lie(SY)). Let us show that [3] € K5'. By Proposition
it is enough to show that

/ 8 € ionZ

v

for every ~ closed piecewise smooth curve segment on M. We fix any
such v. The same proposition says that

/,Bn € 2w
.
for every n € N. By Proposition the map
/ L HY(M, Lie(SY) = R : [a] — / a
y ¥

is linear, so continuous. So

U

is a sequence in i27Z C Lie(S') which converges to I, B.
As i27Z is discrete, there exists N € N such that, for each n > N,
fA/ Bn = f7 S. In particular, f7 B € i2n7Z. The theorem is proved.
]

We end this section with some examples of moduli spaces of self-dual
connections.

Example 3.2.10. (i) Ezample[3.1.9item (i) gives a self-dual connec-
tion on the T*-principal bundle Hsbrg"(K) — T2 for K = R,C
or H, k :=dimgr K and n € N such that 2nk > 4.

M is then non empty. As TF is compact and abelian and T?F" is
a compact connected Kdahler manifold of real dimension 2nk > 4,
Theorem [3.2.3 asserts that

M ~ HY(M, Lie(T*)) /K"

Moreover T* is a torus so Theorem says that M is an abelian
Lie group.

We will show that

M ~ (R?" /Z%")k ~ T2n,
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As Tk ~ SV x ... x SV (k-times),

M =~ HNT*" Lie(TF))/K™"
HY(T?" Lie(S"))/ K5 x ...
><H1(T2]m,Lie(Sl))/KS1 (k-times),
by Lemma[3.2.6 So it is enough to show that

HY(T?", Lie(SY))/ K5 ~ R?" 72k, (22)

Using the isomorphism T?F" ~ S x .. x S (2kn-times), for j €
{1,...,2kn} we can consider the local map

0 : T2 ~ SV x ... x ST — Lie(S") : (2, ..., e2™) s i0);.

T2k:n

The corresponding 1-form df; on 1s a well-defined and

{[d9;1} jeqr,... 2nm)

is a basis of H*(T?", Lie(S1)).
To prove Isomorphism , we will prove that

2kn

Z Cj [dej] € KSl
j=1

if and only if ¢; € Z for every j € {1,...,2kn}. By Proposition
it is equivalent to prove that

2kn

/ > c;db; € i2nZ
V=1

T2kn

for all v closed piecewise smooth curve segment on if and only

if c; €Z for all j € {1,...,2kn} .

Let us fix vy : [a,b] — T?*" a closed piecewise smooth curve segment
on T and let us consider the covering

R 5 T2 (01, 001n) =5 (€71 ..., €%2m).

Then there exists 5 = (31, ..., Yorn) : [a, b] — R?**™ 4 closed piecewise
smooth curve segment on R such that

(ei’h(t)7 s ei’mkn(t)) = 7(t).
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We can see that if v is smooth on some subinterval [c,d] in [a,b],
then for every j € {1,...,2kn},

(7|[c,d1)* do; =i (%;) dt.

Then for every j € {1,...,2kn}, by the fundamental theorem,
[0 = iG0) —350)) € i2nz
v

because y(a) = ~y(b).

If more details about this computation are needed, we refer to the
first part of the proof of Proposition [53.2.7] where we made the same
kind of computation with all the details.

It shows first of all that if ¢c; € Z for every j € {1, ...,2kn}, then

2kn

/ > c;db; € i2nZ
Y j=1

for every ~v closed piecewise smooth curve segment.

For the opposite implication, for jo € {1,...,2kn} fized, let us
consider the smooth curve

Yjo 1 [0,27] = T?F" ~ (12" . ¢ (0,...,0,€%,0, ..., 0)

where e stands in the jéh coordinate. Then, for every j €

{1,...,2kn}, we can choose 3j(t) = 0;;,t for every t € [0, 2] where
djjo 15 the Kronecker delta.

By Equation (23),

2kn 2kn

/ ZdeQj = ZCj/ dej
Vi j=1

jo j=1 Yo
2kn

= Y ¢i(%(2m) —5;(0))
j=1

2kn
= chi(djj()Z’T — 5jj00)
7=1

= ¢ji2m.

If f’on ?i’} c;df; € 277, then c;, € Z.
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(i)

(ii)

Hence
2kn

/ > cdb; € i2nZ

=1
for every ~ closed piecewise smooth curve segment on T?*™ if and
only if ¢; € Z for all j € {1,...,2kn}.

As claimed, we can conclude that

M ~ T2k2n.

The second example of Examples gives self-dual connections
on some Hermitian symmetric spaces of real dimension strictly
greater than 4 (those with underlying Lie group G simple and
isotropy group Z of dimension 1). Hence, in this case, M is non
empty. If moreover the Hermitian symmetric space is compact,
then M ~ HY(M,3)/K? by Theorem @ Moreover, if Z = S,
M is an abelian Lie group by Theorem[3.2.9

Forn > 2, CP" is a connected and simply connected compact Kihler
manifold of real dimension 2n strictly greater than 4. Theorem
asserts that the moduli space of self-dual connections on a
Z-principal bundle over CP™, for Z an abelian compact Lie group,
is either empty or a singleton.

In fact, it asserts that for every connected and simply connected
compact almost Kahler manifold of real dimension strictly greater
than 4, the moduli space of self-dual connections on a Z-principal
bundle, for Z an abelian compact Lie group, is either empty or a
singleton.






Conclusion and open questions

The notion of self-duality of 2-forms is natural on spaces of dimension
4. The second chapter of this text generalizes this definition on Kéhler
vector spaces and on almost Kéhler manifolds of real dimension strictly
greater than 4: a 2-form g is called generalized self-dual if

wNn=2)
O pe—
p=H (n—1)!
where w is the underlying symplectic form and 2n is the real dimension
of the space.
We proved the following (Theorem [2.2.5)):

Theorem. Let (M, g, J,w) be an almost Kahler manifold of real dimen-
ston 2n > 4 endowed with the orientation given by the canonical volume
form of the underlying symplectic manifold (M,w) (see Section )
Then a 2-form p is self-dual if and only if there exists ¢ € C*°(M,R) such
that

= cw.

In the first section of Chapter 3, we extended the definitions of
self-dual connections, Gauge transformations and moduli space of self-
dual connections from oriented Riemannian manifolds of real dimension
4 to almost Kéhler manifolds of real dimension greater than 4 using
Chapter 2. We identified the moduli space of self-dual connections on
principal bundles over compact connected almost Kéahler manifolds of
real dimension strictly greater that 4 with abelian compact Gauge groups.
Moreover, adding a connectedness hypothesis on the Gauge group, we
showed that the moduli space of self-dual connections is an abelian Lie

group.

Two natural questions appear directly. First of all, why did we choose
the coefficient ﬁ in the definition of self-duality ? This choice seams
smart. Indeed, this definition of self-duality is consistent with the one in
dimension 4. Moreover, if the manifold is compact, self-dual connections

corresponding to this definition of self-dual 2-forms provide critical points
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of the Yang-Mills functional, as in the 4-dimensional case. But it is not
the only smart coefficient: n%Q), is suitable too.

Lemma [2.1.§) tells us that the space of self-dual 2-forms for the
coefficient ﬁ is of real dimension n(n — 1) and the space of anti-self-
dual 2-forms for this coefficient is of real dimension (n+1)(n—1). Clearly,
the situation would be more difficult with this coefficient. Nevertheless,
it is certainly interesting to study the moduli space of (anti-)self-dual

1

connections for the coeflicient (=i too.

Secondly, what happens in the non-abelian case 7 Again the problem
is more complicated. Indeed, four simplifications appear in the abelian
case that are no more valid in general (see Section . Nevertheless, the
rest of the text stays right. In particular, Theorem holds in general.
It would be interesting to consider this theorem as starting point for a
study of the moduli space of self-dual connections in the non-abelian
case.

To conclude, the definition of self-duality that we consider and the
hypothesis requested by our work are quite strict. An important open
question is trying to extend this result in a more general context !

Nevertheless, with this suitable definition and this suitable hypothesis,
we present a nice theory: we identified the moduli space of self-dual
connections and we showed that it admits a structure of abelian Lie

group.



Appendix

The Loos and the Grassmann connections

On the one hand, there exists a unique connection on the tangent
bundle of a connected symmetric space which is s;-invariant for every
x € M. This connection is called the Loos connection. For useful
informations about symmetric spaces and Loos connections, see Section
For details about it, we refer to |[Loo69].

On the other hand, on each projective A-module of finite type & (for
A = C>®(M,R), the algebra of smooth functions on a given manifold M),
we can define a natural connection called the Grassmann connection.
It is constructed in the following way: £ is finitely generated so there
exists N € N and a surjective module morphism p : AN — £, where
AN = RN @ A. Moreover, £ is projective so there exists a module
morphism A : & — AN such that o\ = Idg. For ¢ € £, A(¢) is a vector
composed of N elements of A. We can take the differential of all these
functions. We will denote this expression by d(A(¢)). For X € I'*(T'M),
d(A\())(X) is again an element of AY. We can compose this with p.
It gives back an element of £. It is the definition of the Grassmann
connection. We can resume this with the following expression:

VS =n(d(Ap) (X))
We refer to [Lan97] for details about it.

The Serre-Swan theorem (which can be extended to a priori non-
compact connected smooth manifolds: see [Nes03]) asserts that, for M
a connected smooth manifold and A := C*(M,R), an A-module £ is
projective of finite type if and only if it is the space of smooth sections of a
vector bundle E over M (see [Swa62]). So it is possible to define naturally
a Grassmann connection on the tangent bundle of each manifold.

Now, let (M, s) be a connected symmetric space. Serre-Swan theorem
drives us to a natural question: Is it possible to define a Grassmann
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connection equal to the Loos connection ? i.e. a Grassmann connection
Sg-invariant for every x € M 7

The answer is Yes. This text is devoted to the construction of suitable
A and g and the proof that the underlying Grassmann connection is
sg-invariant for every x € M.

To construct A and p, it is easier to see T'M from a different point of
view: as a vector bundle associated to the natural K-principal bundle
G — G/K ~ M defined in Section where G is the transvection
group of M and K the isotropy group at a fixed point o € M.

We will write Ad‘}{ the representation of K which provides this
associated vector bundle. It is defined as

Ad’}( : K — GU(p) : k — Adgly

for Ad the usual adjoint representation of G. It is well-defined because
Adg(p) C p for every k € K.
The isomorphism of vector bundle is given by

d
U By —TM :[(g,X)] = X7 == —

tX)K.
7 Ogewp( )

For x = go K, let us recall that s;gK = goa(gglg)K for every gK € M.
An action of s, on I‘OO(EAd;;{) for every x = goK € M is naturally

defined: for every ¢ € FOO(EAd;;() and y =gK € M,

(r@)y) = ¥ V()
= U0 (U(9))4 1y

_ d _ . _
= Uls,, dt‘ogoff(go 'g) exp(t@(g00(g5'9)))

- % 52 (900(95 " 9) exp(t(900 (95 ')
0

= ¢! % ) (ga(exp(w 900(95 g )

- g1 jt (gexp(ta*w 900 (909 )

N % . (gexp( to(goo 90 )

= [(g,—¢(g00(g5 ' 9)))]-

Hence
(s2-)"(9) = —P(900 (95 '9))



7

for every g € G.

For every x € M, the natural notion of s -invariance on connections
on T'M transposes on connections on F AP, 33 follows: a connection V
on AdP, is sp-invariant if and only if

($,.V)=V

where
(52.V) x @ = Sp. (ngjxsgl.c@ .

To construct a s, -invariant Grassmann connection for every x € M,
we have to choose suitable A : EAd;;{ — AN and p: AN — EAd;;{ such
that o A = Id for some N € N.

Let us take N = dim(G). By abuse, we identify a vector of g with
an element of RY using a fixed basis of g. We define pu: AN — E AdP. by

f1 fi(gK)
“(g) = mp | Adg

N In(gK)
. N
and)\.EAd';(—LA by

I

Ap(gK) = Adg(¢(9))-

Hence,

(1o N@) (9) = mp (Ady-1Ady((9)))
= &(9)
so po\=Id.

The Grassmann connection is then defined as follows: for all ¢ €
EAd‘;{v Y €eI'*°(T'M), g € G and X € p such that X7, = Yy, then

(V) (9) = n(d(e)(Y)) (9)
= prpAdg_ld()\cp)(YgK)
= prAdg—ld(ASO)( ;K)

d
= prpAd, il (Ap)(gexptX.K)

d .
= pT‘pAdg—l dt} Adgexthsp(geXth)
0
d
- P

= prp([X, @(9)] + dp(Lg« X))
= dp(Lg.X)

Adexpix p(gexptX)
0
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because [p,p] C ¢ and dp : TG — p.

It remains to show that this connection is sy -invariant for every
x € M. For this, let us remark that if Y € I'**(T'M), g € G, X € p such
that X7 = Yyi and © = goK € M, then

(S;*1Y> sz ' (gK)

= S;*l (Y)gK

(s;*ly) goo(gy '9) K

d _
d‘ 900 (9 1gexth).K
tlo

|
dt |

(7X)gorf(g§19)K )

900 (95 9) exp(—tX).K

Hence for every Y € I'°(T'M), g € G, X € p such that X, = Yk
and x = goK € M,

= (53" 0)" (Lot (=)
= | @ (900(g5"900(g5 ' 9) exp(—1X)))
0

= = Oé(ga(exp —tX))

d
= 2| tX
dtow(geXp )

= dp(LgX))
= (V¥9) (9)-

Hence V& is s,-invariant for every € M and equal to the Loos
connection.

Remark. If X € p, the vector field Ly X on G is horizontal with
respect to the Loos connection 1-form defined in Section|1.0. The explicit
expression for the Grassmann connection

(V¥9)"(9) = dp(Lg: X)
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(for every Y € I'™(TM), ¢ € I’OO(EAd;;{), g € Gand X € p such
that Xgy = Yy ) tells us that the Grassmann connection, so the Loos
connection, is the associated connection on the associated vector bundle
EAd‘}{ of the Loos connection 1-form. It explains the link between both
definitions of Loos connection.
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