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Abstract

An outstanding result of modern cosmology is that a significant fraction of the Universe
is made of Dark Matter. However, the nature of such component is still unknown, apart
its gravitational interaction with ordinary baryonic matter. A favored candidate for Dark
Matter is the axion: a new pseudoscalar particle introduced by Peccei and Quinn to solve
the so-called CP problem of the strong interactions. The theory, together with experi-
mental bounds, predicts that axions have small couplings to Standard Model particles. In
particular the couplings with photons and fermions can be exploited to search for axions.

The QUAX experiment explores the possibility to study the interaction of the dark
matter axions comprising the galactic halo with the spin of electrons. In fact, due to
the motion of the Solar System through the galactic halo, the Earth is effectively moving
through the cold dark matter cloud surrounding the Galaxy and an observer on Earth
would see such axions as a wind. In particular, the effect of the axion wind on a magnetized
material can be described as an effective oscillating rf field with frequency determined by
axion mass. Thus, a possible detector for the axion wind can be a magnetized sample
placed inside a microwave cavity, both cooled down at ultra-cryogenic temperatures.

Type-II superconductors are employed as the materials the microwave cavities are
made of, with the goal of maintaining high quality factors1 (∼ 106) even in the presence
of applied magnetic fields, necessary to the axion detection. Niobium, Niobium-Titanium
and Magnesium Diboride cavities have been studied.

After briefly reviewing axion physics and their detection techniques, this thesis work is
dedicated to the characterization of the aforementioned cavities. This is done by studying
how their quality factor changes when an increasing value of a static magnetic field is ap-
plied at fixed temperature (T = 4.2 K), and the quality factor dependence on temperature
with fixed values of magnetic field. Niobium was mostly used to improve the experimen-
tal set-up, since its properties are already well known due to its many applications. An
unprecedented result was obtained with the Niobium-Titanium cavity, concerning the pos-
sibility to improve the sensitivity in the axion search through the axion-photon coupling.
This could have resonance in other experiments searching for axions involving microwave
cavities. For the Magnesium Diboride cavity a very first test was performed. This is the
first bulk cavity made of this material to be studied for these purposes.

The quality factor values of the cavities were obtained performing a fit procedure to the
data of the S11 (reflection coefficient) and S21 (transmission coefficient) cavity parameters,
quantities often used in radio-frequency measurements.

1A quality factor is defined as the electromagnetic energy stored in the cavity divided by the energy
dissipated by its conducting walls in one period.
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Introduction

From astrophysical and cosmological observations made from the last century, there is
now evidence that only 5% of the Universe constituents is explained by ordinary matter.
Another 20% is originated by the Dark Matter (DM) and the rest is accounted by Dark
Energy (DE), responsible for the acceleration of the expansion of the Universe itself. Dark
Matter is thought to be non-baryonic unrevealed matter, whose existence is proved because
it can interact gravitationally with ordinary matter (the effects can be seen at galactic
scales and in clusters of galaxies), but DM has not been detected so far with searches of
electromagnetic signals, because it does not undergo electromagnetic interactions. Two
scenarios can occur, the Hot Dark Matter and the Cold Dark Matter scenarios, Hot and
Cold meaning that the DM particles are relativistic or not, respectively. Large scale
structure observations suggest that the Cold Dark Matter (CDM) model is more reliable.

The CDM model finds contact points with the Standard Model (SM) of particle physics
if one tries to answer the question what is dark matter made of? In the context of theories
of new physics beyond the Standard Model many new particles arise, and some of these
are good candidates to solve the DM problem. Supersymmetry (SUSY) predicts particles
that can be included in the category of WIMPs (Weakly Interacting Massive Particles) [1],
while in the low energy frontier new light bosons appear when global symmetries are spon-
taneously broken, like the approximate symmetries of QCD discussed in this work. In the
latter case, the particles arising from symmetry breakings are called WISPs, Weakly Inter-
acting Subelectronvolt Particles. Among these there are axions and Axion-Like Particles
(ALPs). QCD axions are at the moment the best-motivated candidates of DM [1], and
since an evidence of supersymmetries is missing in the high energy landscape, increasingly
resources are being invested in the search for WISPs, in particular ALPs.

QCD axions are introduced to solve the strong CP problem. The QCD lagrangian

1



Introduction

admits an additional term that violates the CP symmetry, but this violation is not seen
in strong interactions. The value of the parameter responsible for this violation, θ, is
constrained to be . 10−10 from experiments [2] while it is expected to be of order 1
from the theory, because it is a sum of two independent parameters coming from two
independent physics sectors: QCD and electroweak theory. Peccei and Quinn proposed [3,
4] in 1977 the existence of an additional scalar field, defined in such a way that its potential,
with a null minimum, incorporates the θ parameter. In the subsequent months Weinberg
and Wilczek interpreted this field as a new spin 0 particle, the axion, that couples very
weakly to SM particles and is abundantly produced in the Universe: characteristics that
make the axion a good candidate of dark matter. These particles are named after a laundry
detergent, since axions have the capability to "clean up" the strong CP problem [5].

Axions can undergo interactions with photons and fermions. Both coupling constants
and mass are inversely proportional to a free parameter of the theory, fa, that represents
the energy scale at which the Peccei-Quinn U(1) symmetry is broken, so neither the cou-
plings nor the mass can be a priori specified. They have to be determined experimentally.
Since in principle they can take any value, the design of an experiment to detect axions is
difficult, as it can only test small ranges of axion masses (see "Haloscopes" in the exclusion
plot 1.8). Anyway there are some astrophysical and laboratory bounds that restrict the
possible values of fa and ma (hence of the couplings too), making the detection more
feasible.

In 1983 Sikivie [6] proposed two detection techniques, both relying on axion-photons
coupling2; the two detectors are called elioscope and haloscope. In both cases an external
static magnetic field is applied in a certain volume to stimulate the conversion of the axion
into a photon. The elioscope exploits as a source the axion flux coming from the Sun, and
photons produced are collected in a sort of telescope structure in which the magnetic field
is applied. The haloscope is designed to detect axions from the galactic halo, with the
hypothesis that all or part of the DM is made up of axions, and photons are collected in
resonant microwave cavities.

In this thesis the QUAX experiment is described, whose acronym stands for ‘QUest for
AXions’. The experiment is funded by INFN, is situated at LNF (Laboratori Nazionali di
Frascati) and LNL (Laboratori Nazionali di Legnaro) and is in its R&D phase. QUAX uses
resonant cavities as haloscopes and with the application of a static magnetic field can test
the axion-photon coupling. QUAX, though, introduces also some novelty in the landscape
of haloscopes, as it can also investigate the axion-electron coupling if a magnetized medium
is put inside the cavity, in which case the Electron Spin Resonance (ESR) is exploited.
Since the power emitted in photons after an interaction is very small, QUAX is studying

2The interaction of axions with photons is not the usual one. An electron can change its energy by
absorbing or emitting a photon, while an axion that "hits" a photon disappears, and a new photon is
produced.
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cavities built with type-II superconducting materials to reach high quality factors in the
presence of an applied magnetic field, cooled down to cryogenic temperatures. This also
allows to avoid noise due to thermal photons coming from the cavity walls.

During my thesis I contributed to the characterization of some of the resonant cavities
available at LNF, joining the team working in the COLD laboratory (CryOgenic Labora-
tory for Detectors).

The thesis is structured as follows. In the first chapter I present the motivations that
led to the introduction of axions, along with a summary of the present detection techniques
and experiments dedicated to ALPs research. In the second chapter the QUAX experiment
is described. Then the technical tools needed to study resonant cavities are listed, and
the laboratory set-up is described. The third chapter is dedicated to the measurements
made with different cavities and to their data analysis. In the conclusion there is a short
overview of the work done in this thesis and the results obtained are outlined, with some
remarks on the future of the QUAX experiment.

3



CHAPTER 1

The physics case

1.1 Strong CP problem and axions

The formulation of a new scalar field in the Standard Model, the axion field, starts from
the observation that in the chiral limit the quarks present some approximate symmetries,
among which there is an axial symmetry U(1)A. This brings to predict a wrong mass for
the η′ meson. This problem is automatically resolved if one takes a glance to the nontrivial
QCD vacuum structure, but in doing so a new problem arises: in the QCD Lagrangian
a term, with a parameter θ as a coefficient, that violates CP in strong interactions (thus
the name strong in the title) is introduced. This would cause an Electric Dipole Moment
(EDM) for the neutron, that is not observed [2]. As a solution a new axial symmetry
in the SM is proposed, the PQ symmetry U(1)PQ (PQ from Peccei and Quinn), which
promotes the parameter θ to a dynamical field. A nice introduction and insight to the
axion formulation is given in [7].

1.1.1 QCD symmetries

Let us first define what is intended for axial and vector symmetries. For simplicity I will
only consider phase transformations.

Taken a quark field q(x) (but this is true for any fermion field Ψ(x)) it can be written
in the chiral representation1 as a sum of left- and right-handed fields, q = (qL, qR)

T or
1This refers to the representation of the γ Dirac matrices.
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Chapter 1. The physics case 1.1. Strong CP problem and axions

q = (qL + qR), obtained from the application of the chiral projection operators PL ad PR:

qL = PL q =
1− γ5

2
q qR = PR q =

1 + γ5
2

q. (1.1)

I also write the QCD gauge-invariant Lagrangian density that will be useful for further
discussions. For one quark flavor it is [8]:

LQCD = qLiγ
µDµqL + qRiγ

µDµqR − qLmqR − qRmqL − 1

4
Ga

µνG
µν
a , (1.2)

with Dµ the covariant derivative, m the mass of the quark and Gµν
a the gluon field strength

tensor:
Gµν

a = ∂µAν
a − ∂νAµ

a + gsfabcA
µ
bA

ν
c , (1.3)

where Aµ
a is the gluon vector field, a, b, c = 1, . . . , 8 are indexes for the gauge fields, fabc

the structure constants of SU(3)c (the sum over b and c is implicit), and gs the coupling
constant of strong interactions.

A global vector U(1)V transformation is a phase transformation that rotates the left-
and right-handed fields in the same sense:

qL −→ e−iα qL qR −→ e−iα qR, (1.4)

while a global axial U(1)A transformation causes the fields to rotate in the opposite sense:

qL −→ e−iα qL qR −→ eiα qR. (1.5)

For the conjugate fields qL and qR the sign of the exponents has to be changed. Note
that these transformations repeat identically for any quark flavor. The field rotations of
eq. (1.5) are equivalent to the following rotation of the Dirac field:

q −→ eiαγ5 q, (1.6)

because in the chiral representation γ5 = diag(−1,−1, 1, 1), and then γ5ΨL,R = ∓ΨL,R.
In the context of the SM, all elementary particle fields are invariant under SU(3)c ×

SU(2)W × U(1)Y transformations, where the c, W and Y subscripts respectively stand
for color, weak isospin and hypercharge. The quark fields exhibit additional symmetries
concerning also their flavors, if the chiral limit is supposed. Let’s consider only u and d

quarks; in the chiral limit their masses can be thought to be zero, mu, md ≈ 0. This is a
reasonable assumption, since the actual masses are much smaller than ΛQCD ≈ 200MeV,
being mu ' 2.2MeV and md ' 4.7MeV [9]. In the chiral limit the symmetries that arise
are only approximate, and they would be exact if u and d masses were actually zero.
The new global symmetries are SU(2)V , U(1)V , SU(2)A and U(1)A, or equivalently QCD

5



Chapter 1. The physics case 1.1. Strong CP problem and axions

acquires a global SU(2)V × SU(2)A × U(1)V × U(1)A symmetry. To show why they are
symmetries it suffices only to look at the mass term in the Lagrangian (1.2):

−mq q = −m (qLqR + qRqL). (1.7)

This term is invariant under vector transformations (1.4), so U(1)V is an exact symmetry
in any case (and it implies baryon number conservation [10]), but is clearly not invariant
under axial transformations (1.5). But if the quark mass m→ 0, there is no term mixing
left- and right-handed fields in L , and also the axial transformation becomes a symmetry.

An SU(2) transformation is just a little more complicated and involves a doublet of
fields, therefore considering as an example a doublet of u and d quarks it writes [11]:(

u

d

)
−→ e−iεkσk/2

(
u

d

)
, (1.8)

where k = 1, 2, 3, εk are parameters and σk the three generators of SU(2) group transfor-
mations (Pauli matrices). Note that unlike U(1) phase rotations, the SU(2) transforma-
tions mix the quark flavors. In this case it is clear that SU(2)V transformations maintain
mass terms of the form (1.7) invariant, but it is indeed necessary to keep the quark masses
to zero to make SU(2)V a symmetry, because u and d are part of a doublet and therefore
they must have the same quantum numbers, including mass. This symmetry is known as
the nuclear isospin symmetry, and as a consequence it predicts the existence in the hadron
spectrum of couples of baryons with approximately the same mass and the same strong
interactions. The simplest example of such a doublet is made up of the well known proton
and neutron. It is important to remark that the symmetry is only approximate, due to
the different masses of the u and d quarks.

The presence of an SU(2)A symmetry would predict a doublet of hadrons with same
quantum numbers and with quite the same mass as the proton-neutron doublet, but with
opposite parity [8], which is not seen to exist. Therefore SU(2)A has to be somehow broken,
and the simplest and elegant way to do it is spontaneous symmetry breaking (SSB). In
this case we’re not relying on the Higgs mechanism, that introduces an additional scalar
field to the Lagrangian, but rather it is assumed that dynamically scalar quark condensates
form. These are qq combinations of fundamental quarks with non-zero vacuum expectation
values:

〈0| qq |0〉 6= 0. (1.9)

Therefore both axial SU(2)A and U(1)A symmetries are spontaneously broken. Therefore
as a consequence of the Goldstone theorem [11], four massless bosons are expected, three
from the broken generators of SU(2)A and one from U(1)A. In the hadron spectrum there
exist a triplet of particles with odd parity: the pion triplet, π0 and π±. Their masses are
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Chapter 1. The physics case 1.1. Strong CP problem and axions

not much smaller with respect to ΛQCD (mπ0 ' 135MeV, mπ± ' 140MeV), but they are
the lightest mesons and their masses go to zero as mu, md → 0. They can be thought
of as the Goldstone bosons (in this case called pseudo-Goldstone bosons) of the broken
SU(2)A symmetry.

In this simple 2-flavor model the pseudo-Goldstone boson associated with U(1)A break-
down would be the pseudoscalar η meson, if the s quark didn’t exist. It would have a
mass smaller than it actually is, if it were only made of uu and dd quark combinations.
The η meson has, on the contrary, a mass of about mη ' 548MeV as the combination ss

also contributes.
In the next section the 3-flavor model will be briefly discussed, at the origin of the

U(1)A issue.

1.1.2 U(1)A problem

The 3-flavor case for the QCD approximate symmetries is obtained by considering also
the s quark, with null mass ms ≈ 0. This is an even more rough approximation than
before, since the measured s quark mass is ms ' 95MeV. Now QCD possesses a global
SU(3)V × SU(3)A × U(1)V × U(1)A symmetry. The U(1)V symmetry implies, again, the
baryon number conservation, while SU(3)V symmetry predicts, as an example, triplets
with particles degenerate in mass, like the Σ triplet. Then, by breaking the axial sym-
metries, eight pseudo-Goldstone bosons from SU(3)A and one from U(1)A are expected.
In the hadron spectrum, in fact, there exist some candidates: the pseudoscalar singlet η′

meson and the pseudoscalar octet comprising the three pions, the kaons (K+, K−, K0,
K

0) and the η meson. The pions are the aforementioned bosons of the SU(2)A broken
symmetry (remember that SU(2) is a subgroup of SU(3) in group theory), and the other
mesons have still masses small enough to play the role of pseudo-Goldstone bosons. Now,
the η′ meson, the would-be ninth pseudo-Goldstone boson, has mass mη′ ' 958MeV,
much higher compared to ΛQCD. So a ninth boson associated to the U(1)A breaking
seems not to exist. Nevertheless, Weinberg [12] pointed out that in this 3-flavor model the
pseudo-Goldstone boson associated to the U(1)A broken symmetry should have a mass:

mη′ <
√
3mπ ≈ 240MeV, (1.10)

a value that is quite far from the observed one. The so called U(1)A problem resides in
this discrepancy: why the observed η′ meson is so heavy?

Solution to the U(1)A problem

From the discussions that follow, the solution at this problem can be summarized with a
very simple statement: the expected pseudo-Goldstone boson doesn’t exist because there

7



Chapter 1. The physics case 1.1. Strong CP problem and axions

is no U(1)A symmetry at all! Though, this simplicity hides quite difficult and intriguing
physics arguments, as chiral anomalies and the nontrivial topology of the QCD vacuum.
Moreover, the solution to this issue causes the strong CP problem to arise. In what comes
I will only refer to the highlights, following the guidelines of Refs. [8, 13, 7].

As a starting point one can recall the Noether’s theorem, stating that each symmetry of
a Lagrangian (density) has associated to it a conserved current (density) Jµ, in formulas:

∂µJ
µ = 0.

As a consequence there is a conserved quantity, i.e. a time-independent quantity, that is
the spatial integral of the time component J0 of the current:

Q =

∫
d3xJ0 = const.

A conserved current is obtained as a combination of the fields involved in the transfor-
mation and their derivatives. The axial current associated with a U(1)A transformation
(see (1.6), now with Ψ instead of q) is:

Jµ
5 = Ψγµγ5Ψ. (1.11)

The name axial also means that a quantity is odd with respect to a parity operation, and
this is clear from the above equation.

At this point the chiral anomaly plays an important role. A symmetry of a Lagrangian
in the classical field theory is said to be anomalous when it is violated in its quantum
formulation. It is worth noting that anomalies are not renormalizable, so if they appear
in gauge theories (and indeed they do) it is important that they cancel with each other. I
won’t talk about renormalizability here, as I would run out of the scope of this thesis, but
let me say that anomalies do have observable effects: a striking example is the dominant
contribution of anomalies to the π0 → γγ decay through the triangle diagram (Fig. 1.1).

Returning to the axial current of eq. (1.11), it can be seen that for a theory with a
fermion interacting with gauge bosons of the type:

L = Ψ(iγµ∂µ −m)Ψ + interactions + gauge fields, (1.12)

a U(1)A transformation of the fermion fields has an associated axial current Jµ
5 that

satisfies:
∂µJ

µ
5 = 2imΨγ5Ψ. (1.13)

Then U(1)A is an approximate symmetry only if we put m = 0, that is true in the chiral
limit, as seen in Sec. 1.1.1 for the u and d quarks. To see the effects of the chiral anomaly

8
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γµγ5

γν

γλ

Aµ
5

Aν
a

Aλ
a

Figure 1.1: The anomalous one-loop diagram of an axial current that couples to two gauge bosons.

on Jµ
5 , the presence of the axial symmetry can be simulated by adding to the Lagrangian a

vector axial boson Aµ
5 having interactions with the fermion, the interaction being −g′Jµ

5A5µ

in analogy with the electromagnetic interaction. At the quantum level of the field theory,
this Lagrangian leads to a transition from the axial boson to two gauge bosons through
a one-loop diagram, Figure 1.1. Performing the regularization of the amplitude of the
diagram, this causes the Ward identity to be no longer satisfied (see chapter 5 of [14]).
The analogous of the Ward identity in the position space is the expression of the four-
divergence of the current, ∂µJµ

5 , that acquires an additional term. Referring to strong
interactions, i.e. considering quarks as fermions and gluons as gauge bosons, in the limit
m→ 0 this term is [8, 10]:

∂µJ
µ
5 = −Nf

g2s
32π2

εµνρσ Tr
(
GµνGρσ

)
≡ −Nf

g2s
16π2

Tr
(
GµνG̃

µν
)
. (1.14)

Nf is the number of quark flavors that one includes in the theory, εµνρσ the Levi-Civita
antisymmetric tensor2 and Gµν is defined as:

Gµν = λaG
µν
a , (1.15)

where λa are the generators of SU(3)c group, a = 1, . . . , 8 is again an index for the gauge
fields, and the gluon field strength tensor Gµν

a has been defined in eq. (1.3). In eq. (1.14)
the trace is defined as:

Tr
(
GµνG̃µν

)
= Tr

(
λaG

µν
a λbG̃

b
µν

)
=

1

2
Gµν

a G̃a
µν , (1.16)

and G̃ is defined as the dual tensor of G:

G̃µν =
1

2
εµνρσGρσ.

From eq. (1.14), since ∂µJµ
5 6= 0, it is evident that the axial current is actually not

conserved, because of the effect of the chiral anomaly. Therefore U(1)A symmetry is
2Here it is assumed the convention ε0123 = +1.
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Chapter 1. The physics case 1.1. Strong CP problem and axions

automatically broken (it is not even an approximate symmetry at all). This implies that a
pseudo-Goldstone boson associated to U(1)A is no longer needed in the hadron spectrum
and the arguments of Weinberg on the η′ mass become irrelevant. It seems that the U(1)A

problem is resolved by only invoking the chiral anomaly, but this is not the whole story.
In fact, inserting eqs. (1.15) and (1.3) in eq. (1.14), the right hand side of the latter turns
out to be a total derivative:

∂µJ
µ
5 = −Nf

g2s
32π2

∂µK
µ

Kµ = εµνρσAa
ν

[
Ga

ρσ − gs
3
fabcAb

ρA
c
σ

]
.

(1.17)

Thus a new Ĵµ
5 current can be defined:

∂µĴ
µ
5 ≡ ∂µ

(
Jµ
5 +Nf

g2s
32π2

Kµ

)
= 0, (1.18)

and Ĵµ
5 is a conserved quantity. As a consequence of the Noether’s theorem there should

be a global symmetry, so the U(1)A problem strikes back.
From eq. (1.14) it is also seen that an extra term adds to the Lagrangian [15]:

δL = α∂µJ
µ
5 = −αNf

g2s
16π2

Tr
(
GµνG̃

µν
)
, (1.19)

where α is the parameter of the U(1)A transformation (eq. (1.6)). Now, in quantum field
theory the Lagrangian action S =

∫
L d4x is left unchanged, and hence there are no

physical consequences, if the Lagrangian variation δL is either zero or equal to a four-
divergence. This seems to be the case, being δL ∼ ∂µK

µ, so in a first instance one can
think of discarding the α-term in the Lagrangian because it has no observable effects.
However this can be done only if the surface integral of Kµ can be neglected, and this is
true with the usual hypothesis that the fields are null at spatial infinity. And here comes
the turning point: the gauge fields Aµ

a of QCD appearing in Kµ do not all tend to zero
simultaneously at infinity, therefore the surface integral of Kµ does not cancel and this has
physical relevance. To understand how the U(1)A problem is resolved and what physical
consequence is involved, I treat just the tip of the iceberg of the QCD vacuum structure.
More details can be found in Refs. [10, 8] and therein references.

Under the action of a gauge unitary transformation U , the gauge fields Aµ
a transform

as follows (in a gauge where the time-like components are zero, A0
a = 0):

Ai −→ UAiU−1 +
i

gs
U∇iU−1, (1.20)

where Ai ≡ λa
2 A

i
a. A vacuum configuration is defined by Ai = 0, but there are other

10



Chapter 1. The physics case 1.1. Strong CP problem and axions

infinite equivalent vacuum configurations corresponding to the gauge transformations of
Ai, that are (Ai)′ = i

gs
U∇iU−1. It turns out that it is not possible to smoothly transform

each vacuum configuration into another (i.e. to reach each vacuum with infinitesimal
transformations starting from the identity). This implies that the vacua are separated by
energy barriers. Each vacuum is then classified by an integer number n, called winding
number, associated to a specific operator Un. The vacua are then indicated by |n〉. For
each n a different expression of the fields Ai exists. For instance, the solution with n = 1

is called instanton, while n = 0 corresponds to Ai = 0 and U0 = 1.
Restoring all the components of Aµ, the winding number has the expression [10]:

n =
1

24π2

∫
dSµ εµνρσ Tr

[
(U∂ν U−1)(U∂ρ U−1)(U∂σ U−1)

]
, (1.21)

with dSµ the surface element in 4-D euclidean space. ’t Hooft realized that this is exactly
the space-time integral of the first line of eq. (1.17):

n =
g2s

32π2

∫
d4xTr

(
GµνG̃

µν
)
. (1.22)

What’s interesting is the possibility of quantum tunnelling between different vacua with
different winding numbers. The amplitude of the transition from |n1〉 to |n2〉 is not negli-
gible, so it is preferable to define a true vacuum that possibly remains fixed. The operator
Uk also acts as a "tunnelling" operator:

Uk |n〉 = |n+ k〉 ,

and we want the true vacuum to be invariant under this operation. A superposition of all
the vacua satisfies this request and is the so called θ-vacuum, defined as:

|θ〉 =
∑
n

e−inθ |n〉 . (1.23)

If now the transition probability from a θ vacuum to a θ′ vacuum is evaluated, it is found
to be [10]:

Mθ→θ′ ∼ δ(θ′ − θ)e−(S−inθ). (1.24)

The Dirac function confirms that there is no transition between different values of this
vacuum, as requested from its definition, but in the exponent the action S is summed to a
term including the winding number. Therefore the amplitude can also be calculated from
an effective action:

Seff = S − inθ = S +
g2s

32π2
θQCD

∫
d4xTr

(
GµνG̃

µν
)
.

11



Chapter 1. The physics case 1.1. Strong CP problem and axions

The last equality follows from eq. (1.22), the Wick rotation has been used to pass from
a euclidean to a Minkowski space and θ has been renamed to θQCD. Finally we can say
that the Lagrangian acquires, for the same reason, an additional term Lθ given by:

Lθ =
g2s

32π2
θQCD Tr

(
GµνG̃

µν
)
. (1.25)

This Lagrangian is still Lorentz- and gauge-invariant, but due to the presence of εµνρσ it
violates parity and time reversal. Hence, because of the CPT theorem, it also violates CP
symmetry. We will see in the next section that CP is not indeed violated in the strong
sector, and this leads to the strong CP problem.

To conclude this section I remark that the U(1)A problem is untied. In fact the axial
current Jµ

5 is not conserved, since the surface term
∫

dσµKµ is non-vanishing (eq. (1.17)),
because of the complicated structure of the QCD vacuum. The current Ĵµ

5 is conserved
(see eq. (1.18)), but it cannot be associated to a symmetry in the theory because it is
not gauge-invariant. In fact, the charge Q̂5 =

∫
d3xĴ0

5 , under a gauge transformation U1,
transforms as [13]:

U1Q̂5 U−1
1 = Q̂5 +Nf , (1.26)

for n 6= 0. Then U(1)A is not a symmetry of QCD, neither exact nor approximate, since
no gauge-invariant conserved current is associated with it.

1.1.3 Strong CP problem

So far quarks and gluons in the QCD sector only have been considered. But quarks also
undergo, of course, electroweak interactions. Here we will see that another source of CP
violation coming from the electroweak sector is present.

To understand how a θ-term can arise from electroweak interactions, it is worth noting
what is the variation of θQCD under an axial transformation. For Nf flavors of massless
quarks the U(1)A is anomalous, and the Lagrangian acquires a further term as in eq. (1.19),
that adds to the θ-term of the Lagrangian (1.25), causing θQCD to shift:

θQCD −→ θQCD − 2Nfα. (1.27)

This means that if quark masses are zero and if only θQCD contributed to CP violation,
by a suitable choice of the parameter α, we could make θQCD = 0.

After the electroweak spontaneous symmetry breaking through the Higgs mechanism,
the mass term for the quarks is:

Lmass = −uiLMu
ijujR − diLM

d
ijdjR + h.c. ,

where u (d) denotes the vector of the up-quark (down-quark) generation in the basis in

12



Chapter 1. The physics case 1.1. Strong CP problem and axions

which it is an eigenstate of the electroweak interactions, and Mu, Md the mass matrices
in this basis. The latter are not diagonal or hermitian, but can be diagonalized through
unitary matrices U and W such that:

U †
uM

uWu = mu, U †
dM

dWd = md,

with mu,d diagonal and real matrices. This can be achieved transforming the quark vectors
with an internal transformation:

(uL)i −→ (uL)j

(
U †
u

)
ji

(uR)i −→ (Wu)ij (uR)j ,

and the same for the d-quark generation. In this regard, we can say that a particular
transformation that diagonalize Mu and Md exists and the matrices U and W can be
absorbed by the quark fields. The transformations are a combination of vector U(1)V and
axial U(1)A rotations, with parameter α that can be chosen as [13]:

θEW ≡ α =
1

2Nf
arg
[
det
(
MuMd

)]
.

But U(1)A is anomalous and hence the Lagrangian must present another term as (1.25).
As a result the parameter θQCD is changed by θEW when a U(1)A transformation is applied
to diagonalize the quark mass matrices (see eq. (1.27)):

θ ≡ θQCD − θEW = θQCD − arg
[
det
(
MuMd

)]
. (1.28)

Finally, the Lagrangian that has physical observable effects is the one including the θ-term:

LCP viol. = LQCD +
g2s

32π2
θTr

(
GµνG̃

µν
)
. (1.29)

This is, though, an additional contribution to the CP violation in the SM, since it is known
that from the electroweak sector another violating source is present: the phase δCKM of the
CKM matrix, responsible for the kaon and B oscillations. This is not equivalent to θEW ,
and we may not confuse between them. In fact the CKM matrix is necessary to rotate
the fields from the mass basis to the basis in which the quarks undergo weak interactions
with the right observed coupling constants.

Neutron EDM

The strong CP problem itself comes when one accounts for the predictions that a CP -violating
term produces, one of which is the existence of an Electric Dipole Moment (EDM) for
hadrons. Among all the hadrons, the most striking example is the neutron. Due to the
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Chapter 1. The physics case 1.1. Strong CP problem and axions

additional term in the Lagrangian the neutron should possess an EDM proportional to
θ: 3

dn ' e · θ mumd

f2π(mu +md)

(
0.9

4π2
ln

Λ

mπ

)
' 2.4 · 10−16 θ e cm, (1.30)

where e is the electric charge of the electron, fπ = 93MeV the pion decay constant, mu, md

the up quark and down quark masses respectively, and Λ a constant of order the neutron
mass mn. Natural units ~ = c = 1 are used, so 1 eV ≈ 1µm−1. But the neutron EDM
has been measured with high accuracy and up to now it seems to be zero. From the most
recent experiment on neutron EDM [2] we can assert that the upper limit is:

dn . 1.6 · 10−26 e cm, (1.31)

then giving an estimation of the upper limit that can be put on θ:

|θ| . 0.67 · 10−10. (1.32)

This is an embarrassingly small value, considering that the contributions to θ come from
two independent sectors (strong and electroweak), and then it is expected that at least
one contribution is of O(1). The strong CP problem can then be stated as: why θ is so
small?. That is, apparently there are no reasons for θQCD and θEW to tune exactly to
zero when they are summed.

1.1.4 Axions as a solution to the CP problem

The most referenced solutions to this problem are essentially three:

• the presence of a massless quark;

• a spontaneous CP violation;

• the Peccei-Quinn mechanism.

The first relies on the possibility that a quark, for example the u quark, is massless, in
which case the θ parameter would be irrelevant, because as in eq. (1.30) the electric dipole
would vanish. More generally, in this case the θEW term wouldn’t be present, and the
axial symmetry would be broken only by the chiral anomaly, so θQCD could be gauged
away by a phase rotation. Though this possibility is clearly ruled out by experiment, since
there is no evidence of massless quarks. The second solution postulates the existence in
the Standard Model of a more general CP symmetry, that would be spontaneously broken,
allowing for CP violation. However this is not the favored solution, because experimental
data is in excellent agreement with a CP violation due to the CKM matrix of the Standard

3I report the value given in [16], but one of the first calculations were made by Baluni [17].
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Model [15]. This is an explicit symmetry breaking. In the third solution, discussed below,
an additional U(1)A symmetry is assumed in the theory and this leads to the presence of
an additional pseudo-Goldstone boson: the axion. From now on I will only refer to the
Peccei-Quinn solution to the strong CP problem.

Peccei-Quinn mechanism

The solution was proposed by R. Peccei and H. Quinn in two papers in 1977 [3, 4]. They
suggested to introduce a further exact axial global U(1) symmetry, now called U(1)PQ

symmetry, at the classical Lagrangian by adding a scalar field. The key argument is that
if it is spontaneously broken and has a chiral anomaly, there is an additional GµνG̃

µν

term in the Lagrangian that can absorb the θ term. Then in 1978 Weinberg [18] and
Wilczek [19] realized that adding a scalar field, that causes the spontaneous breaking of
the U(1)PQ symmetry, generates a new Goldstone boson: the axion.

To show the mechanism it suffices to consider only one quark flavor4 and a new scalar
complex field σ; then the model can be extended to include other flavors. Since a mass
term for the quark is not invariant under U(1) rotations (see eq. (1.7)), we must begin
from a Lagrangian with a massless quark and Yukawa couplings with the scalar field:

LYuk = −y(qLσqR + qRσ
∗qL), (1.33)

the σ field having a Lagrangian:

Lσ =
1

2
∂µσ∂

µσ∗ − V (|σ|) = 1

2
∂µσ∂

µσ∗ − µ2|σ|2 − λ

4
|σ|4, (1.34)

and suppose that the potential has a minimum at |σ| = fa. Applying an axial U(1)

transformation to the quarks they rotate as in (1.5), qL → e−iαqL and qR → eiαqR. Then,
for the Lagrangian to be invariant under this rotations, it is required that σ changes as
σ → e−2iασ. If the scalar field satisfies that condition, U(1)PQ is an exact global symmetry
of the Lagrangian. This symmetry has now to be spontaneously broken in order to generate
the quark mass. Writing σ as an expansion around the minimum:

σ(x) = (ρ(x) + fa) e
ia(x)/fa , (1.35)

with ρ(x) and a(x) two real fields, the Lagrangian acquires a quark mass term proportional
to fa, kinetic terms for the fields ρ and a, self-interactions and interactions between ρ, a
and the quark. The ρ field plays the role of the Higgs boson in the EWSSB, while the
axion a(x) is supposed to be the massless Goldstone boson associated to the breakdown

4The quark is always charged under SU(3)c, and so it has interactions with vector gauge fields repre-
senting the gluons.
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of a global U(1) symmetry, as noted by Weinberg and Wilczek. But after the symmetry
breaking U(1)PQ presents, as usual, a chiral anomaly and this causes the Lagrangian to
acquire another CP -violating term proportional to the parameter α of the transformation
(similar to eq. (1.29)). We note now from equation (1.35) that when σ is rotated by an
angle α, the field a undergoes the transformation:

a −→ a+ αfa. (1.36)

Then the parameter α in the violating term can be substituted with a
fa

, and the final
Lagrangian takes the form [13]:

Leff = Lq + Lρ +
1

2
∂µa∂

µa+ Lint [∂
µ(a/fa); q] +

αs

8π
θGb

µνG̃
µν
b +

αs

8π

a

fa
Gb

µνG̃
µν
b . (1.37)

Here Lint contains the derivative interactions of the axion with the matter field q (the
quark), αs ≡ g2s

4π and the expression 1
2G

b
µνG̃

µν
b has been used in place of Tr(GµνG̃

µν). The
last contribution to this Lagrangian must be seen as a potential Veff for the axion, because
it is neither a kinetic term nor a usual mass term. This has two consequences: it solves
the strong CP problem and it gives a mass to the axion, that now has to be referred to
as a pseudo-Goldstone boson.

It solves the strong CP problem, because it can absorb the θ term in a redefinition of
the potential or equivalently of the axion field. In fact, including the θ term in the potential
and imposing that it has a minimum when calculated in the vacuum,

〈
∂Veff
∂a

〉
= 0, it can

be shown [4] that this condition implies:

〈a〉 = −θfa, (1.38)

and it can be said that the axion field a is the dynamical version of the θ angle. The
Lagrangian (1.37) can be rewritten in terms of a physical axion field with null vacuum
expectation value, defined as:

aphys = a− 〈a〉 . (1.39)

The second effect of the potential is giving the axion a mass. In fact this term in the
Lagrangian is an explicit breaking of U(1)PQ symmetry, and this can be imagined as a tilt
of the wine-bottle-shaped potential V (|σ|) along a certain direction. As a consequence,
after the symmetry breaking the axion rolls towards the new tilted minimum and oscillates
around that, acquiring a mass. This can be calculated from the potential as:

m2
a =

〈
∂2Veff

∂a2

〉
〈a〉=−θfa

. (1.40)

The effective Lagrangian can now be rewritten after the above considerations; adding
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the mass term, this is:

Leff = Lq + Lρ +
1

2
∂µaphys∂

µaphys −
1

2
m2

aa
2
phys+

+ Lint [∂
µ(aphys/fa); q] +

αs

8π

aphys
fa

Gb
µνG̃

µν
b ,

(1.41)

where now the term Lagg ∼ aphysG
b
µνG̃

µν
b represents an interaction between the axion

and the gluons. The strong CP problem can be considered solved, because when axion
excitations are not present, aphys is zero and the classical potential is minimized at zero.
When excitations are present, aphys 6= 0 and a CP violation is still present. However
when observable quantities depending on aphys, as the neutron EDM, are considered over
a long time interval, they average to zero and the CP violation is not seen. The CASPEr
experiment, indeed, tries to detect just the time-varying nEDM resulting from the axion-
neutron interaction [20].

Now that the simple model has been developed it must be extended to the whole
SM; different models arise, depending on how the U(1)PQ symmetry is added to the SM
Lagrangian. Below I will only cite the PQWW, the KSVZ and the DFSZ models. In the
following I will refer to aphys simply as a, redefining a ≡ aphys.

PQWW model

In the framework of the minimal SM all the fermions acquire a mass thanks to the coupling
with the Higgs doublet Φ. When all quark flavors are included in the PQ mechanism
the σ field cannot simply be identified with the Higgs doublet. In fact, in the Higgs
model the down-type quarks couple to Φ in the Yukawa Lagrangian, while up-type quarks
couple to Φ̃ = iσ2Φ

∗, that does not transform in the same way as Φ does under U(1)PQ

transformations, condition necessary to make the Lagrangian U(1)PQ invariant. Peccei
and Quinn thus thought of a non-minimal model in which there are two Higgs doublets, Φ1

and Φ2, having transformations that preserve U(1)PQ invariance. The Yukawa couplings
can be written as:

LYuk = Γu
ijQLiΦ1uRj + Γd

ijQLiΦ2dRj + Γl
ijLLiΦ2lRj + h.c. , (1.42)

where here LL and lR represent a lepton doublet and a lepton singlet. Calling v1 and v2

the minima of the potentials for Φ1 and Φ2 respectively, and fa =
√
v21 + v22, the vacuum

values of the doublets are [13]:

Φ1 =
v1√
2

(
1

0

)
eixa/fa , Φ2 =

v2√
2

(
0

1

)
eia/xfa ,
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with x = v2/v1. The Lagrangian now possesses the requested U(1)PQ symmetry, if Φ1,
Φ2 and the right-handed fields undergo the transformations:

Φ1 −→ eiαxΦ1

Φ2 −→ eiα/xΦ2

uR −→ e−iαxuR

dR −→ e−iα/xdR.

The left-handed fields are taken fixed, and for the leptons the same transformations hold.
The axion mass has been calculated with effective Lagrangian techniques [13]. In this

calculations mixing terms with neutral pions and η mesons arise, and these are responsible
for generating the mass term of the axion. These mixings also allow the axion to have
interactions with two photons, that can be exploited to design an experimental approach
to the axion detection, as discussed in Sec. 1.2. Note that fa is a free parameter of the
theory, and in the PQWW model it is assumed to be equal to v, the energy scale of
electroweak interactions: fa =

√
v21 + v22 ≡ v ' 246GeV. With this value, the mass and

the couplings are:
ma =

mπ0fπ
v

√
mumd

(mu +md)
' 24 keV, (1.43)

Laγγ = Kaγγ
αem
4π

a

fa
FµνF̃

µν , (1.44)

with Kaγγ = Ng (x+ 1/x) mu
mu+md

and Ng the number of fermion generations, αem = e2

4π

the fine structure constant of QED in natural units, Fµν the electromagnetic field strength
tensor. Evidently both the mass and all the couplings are model-dependent, including the
axion-gluon-gluon coupling of eq. (1.41) that takes an extra factor ξ = Ng (x+ 1/x) in
this model:

Lagg = ξ
αs

8π

a

fa
GµνG̃

µν . (1.45)

The PQWW model, however, has been ruled out by experiment. In fact the predicted
branching ratio of the decay K+ → (π++a) has been excluded by the measured branching
ratio of the process K+ → (π+ + nothing) [21]. Evidences of this type brought to think
that it is more likely that theories in which fa � v are more reliable, and since the axion
mass and the coupling constants are inversely proportional to fa this leads to theories with
light axions very weakly coupled to SM particles. These are called invisible axion models.

Invisible axion models

The two major models of invisible axions are the KSVZ model, from Kim [22] and Shifman,
Vainshtein, Zakharov [23] and the DFSZ model, due to Zhitnitsky [24] and Dine, Fischler,
Srednicki [25]. In the KSVZ model only a complex scalar field σ and a single heavy quark
are added to the SM, with the energy breaking scale fa � v. The quark is extremely
massive because it acquires a mass MQ ∝ fa. The axion appears in the phase of the σ
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field, and its mass has the same form as in the PQWW model, but rescaled with the new
fa value:

ma =

(
v

fa

)
mPQWW

a . (1.46)

Both the new quark and the scalar field are SU(2)W × U(1)Y scalars, and all the SM
particles are U(1)PQ scalars, so the axion has not interactions with leptons.

The DFSZ model is an extension of the PQWW one. Here, besides the Higgs doublets
Φ1 and Φ2, also a complex scalar field σ is added. As in the PQWW model, all quarks
and leptons possess PQ charges, and σ is an SU(2)W ×U(1)Y scalar. The axion mass has
the same expression as in eq. (1.46), remembering that now5 fa = 〈σ〉. In both models,
though, the couplings are different from the PQWW case, because Kaγγ and ξ are model-
dependent.

There are many other details concerning the axion derivation and its dynamics, and
here I’ve only given an idea of the physics beyond it. The goal was to justify the search
for axions with theoretically motivated arguments, and to introduce some useful concepts
as a starting point for the experimental search. Also, there are many other exotic models
that predict axions with different masses and couplings, that I haven’t treated and that
are summarized, for example, in Refs. [1, 26].

5Actually in the DFSZ model fa is rescaled to f̃a = fa/2Ng.
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1.2 Searching for axions

In the first section we saw that one way to solve the strong CP problem is introducing
a new particle (and possibly other Higgs fields) in the SM, the axion, which is a natural
extension of the theory. From the properties that a Goldstone boson of an axial U(1) sym-
metry must possess, we saw that the axion is a massive pseudoscalar boson electrically
neutral. After motivating theoretically the introduction of the axion, in this section I will
introduce some basics of the experimental search. I will focus on the detection techniques
and will describe which bounds can be put on axion mass and couplings from astrophysical
and cosmological observations.

One needs to first illustrate the axion-photon-photon coupling and the Primakoff effect,
because the latter is the main process that allows axion production in stars and its de-
tection. For convenience I report here the expression (1.44) of the axion coupling to two
photons:

Laγγ = Kaγγ
αem
4π

a

fa
FµνF̃

µν ,

and remember that Kaγγ is a dimensionless model-dependent parameter. The interaction
can be rewritten more compactly defining the coupling constant gaγγ :

Laγγ =
1

4
gaγγaFµνF̃

µν , (1.47)

gaγγ =
αem
π

Kaγγ

fa
. (1.48)

Now gaγγ has dimensions GeV−1 but is still model-dependent. It is important to note that
gaγγ is inversely proportional to the scale constant fa. Furthermore, the electromagnetic
interaction can also be written in terms of the electric and magnetic fields, the components
of the Fµν tensor:

Laγγ =
1

4
gaγγaFµνF̃

µν = −gaγγa ~E · ~B. (1.49)

The equality is explicitly derived in appendix A of Ref. [7]. This expression becomes useful
when dealing with the axion conversion into photons in a detector, such as a microwave
cavity.

Eq. (1.49) has exactly the same form as the Primakoff process [27], that was first
introduced to account for the π0 production through a two-photon interaction (in that
case the field a is substituted by the π0 field). The decay of π0 into two photons is called
inverse Primakoff process. Now, in the framework of the Standard Model and with the
QFT formalism, we know that this decay can happen through a triangle diagram with a
virtual fermion in the loop, shown in Fig. 1.2, and it is valid for any pseudoscalar meson
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qπ0

γ

γ

Figure 1.2: Decay of neutral pion into two photons through a quark loop. This is analogous to the
triangle diagram 1.1 that gives the chiral anomaly with QCD.

decaying into two photons. This diagram is of the same form as the one in Fig. 1.1, and
indeed the major contribution to the neutral pion decay comes from the chiral anomaly
with QED6. Therefore the axion is subject to the same interaction, because it inherits the
electromagnetic interactions from the mixing with the pion and η meson. When axions are
produced by two photons, this is called Primakoff effect, as in the case of π0 production.
The two diagrams representing these processes are drawn in Fig. 1.3. In this case the loops
receive contributions from both chiral anomaly with QED and with QCD. Although axions

a

γ

γ

(a)

γ

γ

a

(b)

Figure 1.3: (a) Axion decay into two photons via inverse Primakoff effect. (b) Axion production via
Primakoff effect in vacuum.

can also have interactions with matter fields, the electromagnetic interactions through
Primakoff processes are extremely important in experimental searches for axions. They
provide both a detection technique and a production mechanism. The Primakoff effect
of Fig. 1.3b could be responsible for an axion flux from stars, since in their cores many
photons are produced via nuclear fusions. As we will see in section 1.2.2, axion fluxes from
stars can be used to obtain bounds on the gaγγ coupling. On the contrary, the inverse
Primakoff effect of Fig. 1.3a is the paradigm of axion detection. This can be exploited
substituting a real outgoing photon with an external static magnetic field, that provides
virtual photons but is treated as a classical electromagnetic field. This situation is depicted
in Fig. 1.4. However, if ingoing axion line and outgoing photon line are exchanged in the
diagram of Fig. 1.4, this could account for a production mechanism in some regions of the
universe where high magnetic fields are achieved, such as pulsar magnetospheres or AGNs.

6The reason why I didn’t say this before is that QED has not a complicated vacuum structure, so
the surface integral of a total derivative ∂µK

µ appearing in the Noether’s current conservation equation
is really zero, thus the term doesn’t contribute to the action S and can be neglected in the Lagrangian.
Nonetheless, it has observable effects.
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Figure 1.4: The conversion of an axion into a photon stimulated by an external static magnetic field.
Taken from [7].

1.2.1 Axion parameter space

In the models described in Sec. 1.1.4, essentially the only free parameter encountered for
the axion is fa, the energy scale of the PQ transition. Then, model-dependent parameters
can be defined as a function of fa, the most important ones being the mass ma and the
axion-photon coupling gaγγ . Taking eq. (1.43), we can write more generally:

ma =
mπ0fπ
fa

√
mumd

(mu +md)
. (1.50)

Although its value depends on the assumption made on fa by the model, the form of
eq. (1.50) is model-independent. Recalling the definition of the coupling constant gaγγ :

gaγγ =
αem
π

Kaγγ

fa
,

we see that for these "QCD axion" models both gaγγ and ma are inversely proportional to
fa, therefore gaγγ ∝ ma. The parameter space for the electromagnetic interaction is the
(gaγγ vs.ma) plane. This is shown in Fig. 1.5. The yellow band is called model band and
it accounts for QCD axion models, such as KSVZ and DFSZ models (treated in Sec. 1.1.4),
where gaγγ is proportional to ma. To understand why it is a band, let’s write the mass in
the following form:

ma =
mπ0fπ
fa

√
z

1 + z
, (1.51)

where z = mu/md is the light quark mass ratio. From [9], its central value is z = 0.48, but
it can take any value in the interval 0.40 < z < 0.55, resulting in a range of possible values
for the mass. Moreover, gaγγ depends on the values that Kaγγ can take. In section 1.1.4
the expression of Kaγγ was given for the PQWW model, but more generally for invisible
axion models it can be written in the form [28]:

Kaγγ =
1

2

(
E

N
− 2

3

4 + z

1 + z

)
, (1.52)

22



Chapter 1. The physics case 1.2. Searching for axions

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

A
x
io

n
 C

o
u

p
lin

g
 |
G

A
γ
γ
 |
 (

G
e

V
-1

)

Axion Mass mA (eV)

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

LSW
(OSQAR)

Helioscopes (CAST)

Haloscopes
(ADMX and others)

T
e
le

s
c
o
p
e
s

Horizontal Branch Stars

KSVZ

DFSZ

VMB
(PVLAS)

SN 1987A

HESS

Fermi

Sun

Figure 1.5: Parameter space (gaγγ vs.ma), with exclusion plots by some experiments and astrophysical
bounds. In yellow the model band is shown, with KSVZ and DFSZ models marked,
haloscope experiments are shown in green, while the blue and orange areas are, respectively,
the bounds from helioscopes and LSW experiments. Downloaded from http://pdg.lbl.
gov, Ref. [9].

where E and N are, respectively, the electromagnetic and color anomaly coefficients, in
analogy with the ξ coefficient introduced in eq. (1.45). For instance, E 6= 0 when the
theory possesses at least one quark charged under both U(1)PQ and U(1)EM , so that it
can have an axion-quark vertex and a quark-photon vertex, necessary to the diagrams of
Fig. 1.3 to exist. For the KSVZ model the new quark does not possess U(1)EM charge,
therefore E = 0.

For a fixed value of z, there will be different straight lines in the plot, corresponding
to different models that have distinct values of the ratio E/N . In Fig. 1.5 two lines are
reported: the one for KSVZ model, for which E/N = 0, and the one for DFSZ model, that
has E/N = 8/3. However the ratio E/N is not exactly known, and this allows to define
a band of values for gaγγ as a function of the mass ma, the yellow region in the plot.

The region below the model band in the parameter space accounts for other QCD axion
models [29], while all the other regions account for Axion-like Particles (ALPs). These
are pseudo-Goldstone bosons of any other theory where some symmetry is broken, but the
breakdown is not due to chiral anomaly. Here the coupling constant gaγγ is not necessarily
proportional to the mass, because in principle these two quantities are independent of each
other. So, should an experiment not be sensitive to QCD axions, it can still put limits on
ALPs parameters.

Finally, we can say that this is an exclusion plot. In fact the coloured regions (except
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the yellow one) represent the limits put on axion parameters by various experiments.
LSW, helioscopes and haloscopes all refer to different detection techniques, described in
Sec. 1.2.5. There are also bounds from astrophysical observations (Sun, SN1987A etc.),
some of which are discussed in the next section.

1.2.2 Astrophysical bounds

Constraints on axion (or more generally ALPs) mass and couplings are obtained from
astrophysical observations. In fact, assuming that axions exist, they could be produced
in astrophysical objects and affect their evolution. The production mechanisms mainly
relies on the Primakoff effect: considering a star, axions can be generated in their core if
a photon interacts with the Coulomb field of the plasma, γ + Ze → Ze + a. Then since
axions are expected to interact very weakly with SM particles, they can escape the core
and then the surface, providing a non-standard energy loss mechanism for stars. If the
data from measurements on stellar evolution match the predicted rate of standard energy
loss, a stringent bound on the axion coupling can be extracted. If the Primakoff effect is
assumed, the bound is put on gaγγ . There are also other processes for axion production,
like the nucleon bremsstrahlung N+N → N+N+a and electron bremsstrahlung e+e→
e+e+a. The former is a typical ALP production process in neutron stars and Supernovae.
Processes involving matter can constrain the couplings gaee and gaNN .

Let us now introduce the form of the interaction between axions and fermions. From
eq. (1.41) we saw that it must be a derivative coupling; it can be written as follows (I refer
to [1] for notation convenience, but a derivation is given in [30]):

Laff =
∂µa

2fa

∑
f

Caff

(
Ψfγ

µγ5Ψf

)
, (1.53)

where Ψf is a fermion Dirac field and Caff are model-dependent dimensionless coupling
constants. The interaction can be equivalently written as an effective, CP-conserving,
Lagrangian term:

Laff = −i gaff a
(
Ψfγ5Ψf

)
, (1.54)

having defined the (yet dimensionless) coupling constant gaff as:

gaff ≡
Caff mf

fa
, (1.55)

with mf the mass of the fermion entering the interaction.

In the following I summarize some of the astrophysical bounds. All the values and
arguments in this section are taken from [9], [1] and [26]; for more details on the data
used for constraints see references therein. The most obvious star that can be exploited
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to constrain axion parameters is our Sun. Due to the Primakoff effect, axions can be
produced in the core and emitted as a flux, whose luminosity La is proportional to g2aγγ
and the Sun luminosity L� [9]. From observations of solar luminosity, neutrino solar
flux and helioseismology it turns out that La . 0.1L�, giving the constraint of |gaγγ | .
4.1 · 10−10 GeV−1. This is reported in Fig. 1.5 as the horizontal line called "Sun". One
can also attempt to directly measure the solar axion flux; this is discussed in Sec 1.2.5.

A more restrictive bound comes from the study of the Horizontal Branch (HB) of the
colour-magnitude diagram of Globular Clusters (GC). Globular Clusters contain many
stars with the same age, so their different stage of evolution is due to their masses. The
HB stage corresponds to the helium-burning phase; if axions undergo Primakoff effect, they
take away energy and as a result the duration of the HB phase is shortened. Comparing
the number count of HB stars with the number count of Red Giant Branch (RGB) stars,
yields the upper bound |gaγγ | . 6.6 · 10−11 GeV−1 (at 95% CL). This can be converted
into limits for fa and the mass if a value of E/N is fixed. For KSVZ axions (E/N = 0)
they are fa & 3.4 ·107 GeV and ma . 0.2 eV. The limit on |gaγγ | is represented in Fig. 1.5
with the name "Horizontal Branch Stars".

More important is the observation of the SN1987A Supernova [9]. The duration of the
neutrino burst measured on Earth would have been much shorter if axions interacted quite
efficiently with nucleons through nucleon bremsstrahlung N + N → N + N + a. In this
case the coupling with nucleons is constrained; assuming that the coupling to neutrons
gann is zero, it is found that the axion-proton coupling is |gapp| . 6 · 10−10, while fa and
the mass are limited to fa & 4 · 108 GeV and ma . 16 meV. Additionally, SN1987A also
allows to bound the axion-photon coupling if the mass is very small; in fact axions could
be produced in the core via Primakoff effect, and then could reconvert into photons in the
intergalactic magnetic field. The lack of a γ-ray peak in correspondence with the neutrino
pulse permits to constrain |gaγγ | . 5.3 ·10−12 GeV−1 for masses ma . 4.4 ·10−10 eV. This
bound is shown in Fig. 1.5 as "SN1987A".

Concerning the coupling to electrons, the processes that contribute to an energy loss
in stars are ABC processes, namely axio-recombination (e + Z → (Z, e) + a), axio-
bremsstrahlung due to electrons (e+e→ e+e+a) and Compton scattering (e+γ → e+a).
This processes only rise in DFSZ models. The excessive period decrease of pulsating Wight
Dwarfs (WDs) can be thought of as a hint for a non-standard energy loss mechanism, and
in addition to the study of GC stars it can be given the limit |gaee| . 2.6 · 10−13 (at 95%
CL). With order of magnitude arguments from eq. (1.55), being Caff of O(1), this bound
is translated in fa & 1010 GeV and ma . meV.

To conclude with observational bounds I also want to cite, without any detail, an
example of cosmological constraint, exploiting the CMB data. Photons of the CMB could
produce axions if they interact with intergalactic magnetic fields or with electric fields
present in the intracluster plasma, via Primakoff processes. This would lead to distortions
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in the CMB spectrum.
Finally, in the hypothesis that axions contitute Cold Dark Matter (CDM) (explored

in the next section), one of the requests that they must satisfy is to be stable particles,
i.e. they should have a decay time greater that the age of the universe. The axion decay
is the same as for the neutral pion, through two photons. It can be shown that axions
become stable in the universe time-scale if (in the KSVZ model) the mass is ma . 20 eV.

1.2.3 Axion cosmology

In order to justify the presence of Cold Dark Matter, one needs to find a mechanism for
its production in a certain early cosmological era. In this regard, axions can account for
a part or the entirety of CDM thanks to the PQ mechanism, called the misalignment
mechanism when considered as a cosmological process, and is not a thermal production
mechanism. Remarkably, when imposing that the observed Dark Matter density do not
exceed the observed value, an upper limit on fa (and thus a lower limit on ma) is obtained.

The equation that describes the dynamics of a scalar field in an expanding universe
is [31]:

ä+ 3H(t)ȧ+m2
a(t)a = 0, (1.56)

where the axion field a has been considered as the scalar field of interest and H(t) is the
Hubble parameter. If H and ma were constant, this would be simply the equation of a
damped harmonic oscillator. The field dynamics depend on the value of ma(t) with respect
to H(t) [31, 7]. When H(t) � ma(t) the mass term can be neglected and the solution
consists of a constant, homogeneous field ai. Note that this initial value corresponds to
a value θi (ai = −θifa from eq. (1.38)) of the vacuum expectation value of the axion
potential. θi can be a random value in the interval [−π, π] and is taken when the U(1)PQ

symmetry spontaneously breaks at an energy (or temperature) scale much greater than
quark confinement, T ∼ fa � ΛQCD, when the axion is still massless. Then, there exists a
time t∗ for which H(t∗) = ma(t

∗) and can be considered as the time when the axion field
starts its damped oscillations. For H(t) � ma(t) the amplitude is slowly decaying and
the oscillations are almost sinusoidal. Actually, these oscillations can start only when the
axion acquires a mass. This happens at a temperature scale T ∼ ΛQCD, when the QCD
color anomaly becomes effective and the U(1)PQ symmetry is also explicitly broken, with
the axion potential suffering from a tilt.

According to Ref. [31], the solution to eq. (1.56) in the H(t) � ma(t) regime is of the
form a(t) ' A(t) cos (ma(t) t), where the amplitude A(t) depends on (ma(t)R(t))−3/2, R(t)

being the universe scale factor of the Friedmann-Robertson-Walker metric. Defining the
average energy density among the universe as %a ' 1

2m
2
aA2, it follows that this quantity has

a dependence %a ∝ R(t)−3 as the universe expands, and this is typical of non-relativistic
fluids. This is a general result for scalar fields satisfying eq. (1.56) and produced by
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a cosmological non-thermal process. Therefore, we can say that axions produced by the
misalignment mechanism are candidates of Cold Dark Matter, because they behave exactly
as non-relativistic matter during the expansion of the universe.

Actually, the initial value of the axion field ai depends on the moment of the misalign-
ment mechanism, i.e. the time at which the U(1)PQ symmetry is spontaneously broken.
If it happens before or during the inflationary era we talk of pre-inflation scenario. The
misalignment angle θi is unique, since before inflation it is required that all regions of
the universe be causally connected. Moreover, the axion field is even more homogeneous
after inflation. If, on the other hand, symmetry breaking occurs after inflation we talk of
post-inflation scenario. In this case all the causally disconnected regions of the universe
after inflation, called patches, could take independently different θi values, and this leads
to domain wall problems [1]. The drawback of different θi values can however be solved
if one assumes that many patches exist, so that a unique mediated value of the angle can
be considered with negligible uncertainty [1]:

〈
θ2i
〉
=
π2

3
. (1.57)

Now the normalized energy density Ωa = %a/%c, where %c = 3H2
0/(8πG) is the critical

density of the universe (H0 the Hubble constant today and G the gravitational constant),
can be expressed in dependence of fa or ma. Since it depends also on the value of θi, it is
"scenario-dependent". Ref. [9] reports for the pre-inflation scenario the expression:

Ωah
2 ≈ 0.12

(
fa

9 · 1011GeV

)7/6

F θ2i ≈ 0.12

(
6µeV

ma

)7/6

F θ2i , (1.58)

where here h = 100 km s−1Mpc−1 and H0 is expressed in units of h. F is a factor
accounting for anharmonicities in the axion potential [9]. The equation shows that Ωa

increase as the mass ma decrease. Thus the axions cannot be too invisible, namely their
mass cannot be too small, because the axion energy density must satisfy the observational
constraint that the Dark Matter density is [32] ΩDMh

2 ' 0.12. This, indeed, can be turned
into the condition Ωah

2 . 0.12, thus yielding a lower bound to the mass:

ma & few · 10−6 eV. (1.59)

This was obtained assuming Fθ2i ∼ O(1). With lower mass values, axions would alone
exceed the observed DM density, leading to an "overclosure" of the universe. Correspond-
ingly, an upper bound on fa is implied:

fa . 1012 GeV. (1.60)
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In conclusion, putting together the astrophysical bounds of Sec. 1.2.2 and the argu-
ments of this section, we can take the axion mass to lie approximately in the range:

ma ∈ (10−6 ÷ 10−3) eV. (1.61)

However, lower mass values are still viable if one drops the assumption that θi ∼ O(1)

and considers small θi values, but this sounds like an arbitrary assumption. Ranges of ma

and fa obtained with θi � 1 are called the anthropic axion window (more details can be
found in [1, 7] and references therein).

1.2.4 Properties of galactic DM axions

The arguments in this section are useful to the understanding of the haloscope concept of
Sec. 1.2.5.

To describe the DM halo in our galaxy we would need to specify the density distribution
ρ(r) (that also determines the mass distribution) and the energy (or velocity) distribution.
However, for the scopes of a detector localized on Earth it suffices to know the value of the
local DM density and the mean velocity and its dispersion. It is customary to assume that
the axion density equals the DM local dendity, ρa = ρdm

7. From several measurements [33]
the local DM density is estimated to lie in the range (0.2 . ρdm . 0.56) GeV cm−3,
and papers focused on axion searches usually refer to a value of ρdm = 0.45 GeV cm−3

[34]. For what concerns the velocity distribution, it is assumed that the galactic halo
has virialized, meaning that it reached an equilibrium condition in which the kinetic
and potential energies are related by the virial theorem. In this hypothesis the velocity
distribution is approximately Maxwellian and can be parametrized as [35]:

f(v) d3v = na

( ma

2πT

)3/2
exp

(
−mav

2/2T
)

d3v, (1.62)

where T is the "halo temperature" and na the number density of axions:

na =
ρa
ma

' 4.5 · 1012
(
10−4 eV

ma

)
cm−3. (1.63)

From the distribution the second moment can be calculated:
〈
v2
〉
=
∫
v2f(v)d3v. The rms

velocity of the halo, often called dispersion, is defined as v ≡
〈
v2
〉1/2, and from Ref. [35]

it is estimated to be v ' 270 km/s. In natural units we can take it to be v ∼ 10−3. These
quantities are expressed at the center of the galaxy, but Earth moves with respect to it
with velocity vE . As a consequence the Earth is moving inside the DM halo and on a
laboratory on its surface the effective axion "wind" velocity is va = v−vE . vE is the sum of

7To avoid confusion, I underline that the symbol %a was used in the previous section for the average
axion density, while here ρa indicates the local halo axion density.
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the velocity of the Solar System in the galaxy (230 km/s) plus the Earth’s orbital velocity
about the Sun (29.8 km/s) plus its rotational velocity (0.46 km/s). Thus we can neglect
the last two contributions. The axion wind velocity still follows a Maxwellian distribution,
but with different parameters. Turner [35] reports the value va ' 305 km/s, thus still of
order ∼ 10−3. The above considerations indicate that DM particles constituting the halo
are non-relativistic.

For this reason we can say that the energy of an axion is its mass energy, Ea ' ma.
In fact the halo energy dispersion about the central line is simply:

Ea = ma +
1

2
mav

2
a ' ma

[
1 +O(10−6)

]
, (1.64)

Then the axion linewidth is very narrow, and is defined as:

dEa

Ea

=
mav

2
a/2

ma
' 5.2 · 10−7, (1.65)

and the inverse of the linewidth, that is the ratio of the energy to the energy spread, is
called figure of merit or sometimes quality factor, of the galactic halo axion:

Qa =
ma

mav2a/2
' 1.9 · 106. (1.66)

This is a useful quantity that characterize the kinetic properties of a generic CDM galactic
halo, independently of the axion mass.

Other two interesting properties are the coherence length and coherence time. To
begin, consider the De Broglie wavelength of an axion, that in natural units and using the
classical expression for the momentum is:

λa =
2π

mava
' 6.9

(
200µeV

ma

)
m. (1.67)

This is of order some meters, so it allows the axion field to be treated as uniform in a
region of space where an experiment is located8. The coherence length is related to λa

through O(1) factors, but is not unusual to consider directly λa as the coherence length.
Qualitatively the coherence length is the region of space in which the axion field can be
considered spatially constant, because due to the extremely broad oscillations two points
in this volume always have approximately the same phase. The coherence time, instead,
is defined as:

τa ' 2π

ma
Qa. (1.68)

and is the order of magnitude of the time after which two points within the coherence
8In our case the microwave cavities have diameters of order some cm.
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length will dephase, because the axion field is not perfectly monochromatic but possesses
a frequency spectrum, albeit narrow. Anticipating the concepts of the next sections, we
can think of the interaction between the axion field and a resonant cavity as a pair of
coupled oscillators. The axion field triggers the resonance of the cavity only for a time
∼ τa, after which the two oscillators decouple.

1.2.5 Detection techniques

In Fig. 1.5, along with some astrophysical bounds, we saw exclusion plots of the main
categories of experiments dedicated to the search for axions. These are: Light-Shining-
Through-Walls (LSW) experiments, helioscopes and haloscopes, to which this sections is
dedicated. There are many other detection schemes, but here I focus on the most exploited
ones. Ref. [1] is a complete and recent review on axion detection techniques, summarizing
the most recent results in this research field.

A common point to the three detection techniques is that they make use of the axion-
to-photons interaction. Before describing the experiments it is worth noting that such a
coupling modifies the Maxwell’s equations and the propagation of a free axion. Taking
the Lagrangian:

L =
1

2
(∂µa)

2 − 1

2
m2

aa
2 − 1

4
FµνF

µν +
1

4
gaγγaFµνF̃

µν ,

with Fµν = ∂µAν − ∂νAµ, Aµ the photon vector field, and using the Euler-Lagrange
equations for Aµ and a one obtains in the absence of electromagnetic charges [7]:

∇ ·E = gaγγB ·∇a

∇ ·B = 0

∇ ∧E+ ∂tB = 0

∇ ∧B− ∂tE = gaγγ(E ∧∇a−B∂ta),

(1.69)

(
�+m2

a

)
a = −gaγγE ·B. (1.70)

Then in eq. (1.69) the axion field is regarded as a source of electromagnetic fields, and
vice versa in eq. (1.70), where the solution gives the axion field in terms of an electric and
a magnetic field. The experiments here described exploit both interactions.

LSW experiments

Light-Shining-Through-Walls experiments are conceptually very simple to understand,
since they use Primakoff process to produce an ALP and then inverse Primakoff process
to reconvert them in a photon. The scheme of this process is given in Fig. 1.6. A photon
beam is injected in an optical cavity, in presence of a static magnetic field that provides
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Figure 1.6: Sketch of an LSW experiment. Source: ALPS experiment website, https://alps.desy.
de/.

a virtual photon. If an ALP is produced, it can pass the opaque wall without interacting
with it and reach the second cavity. Here another magnetic field is applied to stimulate
the conversion of the ALP into a standard photon. Usually, lasers with optical frequencies
are used, but microwave LSW experiments also exist. The probability of the transition
γ → a→ γ is [26]:

P (γ → a→ γ) = 16
(gaγγBω cos θ)4

m8
a

sin2
(
l1m

2
a

4ω

)
sin2

(
l2m

2
a

4ω

)
, (1.71)

where θ is the angle between the laser polarization and the magnetic field, ω the laser
frequency, B the static magnetic field and l1, l2 the lengths of the production and recon-
version regions, respectively. Then this type of experiment is sensitive to different mass
values if the ratios li/ω are tuned opportunely. The probability can be enhanced if optical
resonant cavities (Fabry-Perot) are employed in the production and regeneration regions.

Two experiments are currently using LSW techniques, ALPS (Any Light Particle
Search) at DESY and OSQAR at CERN. They use dipole accelerator magnets: ALPS-I
employed HERA magnets providing a 5 T field and OSQAR employs CERN magnets giv-
ing 8 T. Only ALPS-I made use of resonant cavities in both regions, and thanks to that it
reached a sensitivity of about 5 ·10−8 GeV−1 on gaγγ for masses below meV, while OSQAR
reaches gaγγ ∼ 3.5 · 10−8 GeV−1. Although these values are much smaller than that from
astrophysical sources, the ALPS-II upgrade could reach comparable sensitivities, namely
gaγγ ∼ 2 · 10−11 GeV−1. ALPS-II will use magnets in a longer region and will exploit
single photon detectors.

The next two classes of experiments are actually the first detection techniques to be
proposed for the direct detection of the so-called invisible axions, described in Sec. 1.1.4.
The techniques were proposed by Sikivie in 1983 [6], and further elaborated in 1985 by
Sikivie [36] and Krauss, Moody, Wilczek, Morris [37], after the models with fa = 246 GeV

(the electroweak scale) were ruled out by experiment.
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Figure 1.7: A sketch of a microwave cavity in which an axion-photon conversion occurs. Taken
from [1].

Conventional haloscopes

Haloscopes are intended to detect axions constituting the galactic DM halo (Sec. 1.2.4),
hence the name halo-scopes, in the hypothesis that all or part of the measured DM density
is explained by axions. The detection technique relies on the inverse Primakoff process
a+ γ∗ → γ, where the virtual photon is provided by a static magnetic field. In this case
the emitted photon is collected in a microwave cavity and then the signal is read by some
electronics (Fig. 1.7). The resonant frequency of the cavity has to be matched to the
photon energy, in which case it can excite a cavity mode. The photon energy is equal
to the axion energy, νres = Ea, because when a magnetic field is static, it is considered
as constituted by many virtual photons, so when a single photon interacts the energy
transfer is negligible. In turn, because the axion is non-relativistic as seen in Sec. 1.2.4,
its energy is equal to its rest mass, Ea ' ma; then we can safely state that the photon
frequency must equal the axion mass: νres ' ma

9. For this reason a microwave cavity must
have the possibility to vary somehow its resonant frequency, to scan over a range of axion
masses as wide as possible. In Chap. 2 I will describe in some more detail the properties
of microwave cavities. However it is important to mention two things at this point. First,
if ẑ is the axis direction of the cavity and the external magnetic field is applied along ẑ,
the only cavity modes that can be excited by an axion conversion are TMnm0, transverse
magnetic modes, for which the electric field has component along the ẑ axis [36]. This is
a consequence of the form of the interaction seen in eq. (1.49). Secondly, to scan higher
mass values, larger frequencies are needed. This implies smaller cavity volumes, since νres

is inversely proportional to the geometric parameters of the cavity (Sec. 2.3).
ADMX (Axion Dark Matter eXperiment) has become the paradigm of axion searches

with haloscopes. The experiment has been built in 1995 and is still running and improving
its performances. [1, 38] ADMX employs a NbTi superconducting magnet up to 8 T, with
a bore of 60 cm × 110 cm. The copper microwave cavity has a volume of about 200 L

9More precisely we should talk of pulsation ωres, because it was used the notation ~ = 1.

32



Chapter 1. The physics case 1.2. Searching for axions

Figure 1.8: Another version of the (gaγγ vs.ma) plane, showing the major categories of axion searches.
Semi-transparent regions correspond to future experiments. Source: [1].

and can reach a quality factor10 of Q ∼ 105. The entire volume is brought to cryogenic
temperatures, of order T ∼ K, to reduce the thermal noise. Inside the cavity there are
two movable rods that allow to tune the resonant frequency approximately in the range
(0.46÷2) GHz, that corresponds to the mass range (1.9÷8.26) µeV. With its measurements
ADMX managed to reach the sensitivity to the KSVZ axions in the gaγγ exclusion plot
in the mass range (1.9 ÷ 3.65) µeV [1, 38]. This result is reported in Fig. 1.8 (that is
an alternative version of Fig. 1.5) as the green area that goes down to the KSVZ line,
where a sensitivity of gaγγ ∼ 10−15 GeV−1 is achieved. Recently [39] ADMX improved its
sensitivity and managed to exclude also a slice of the DFSZ axion model parameter space,
reaching values of about gaγγ ∼ 3·10−16 GeV−1 for the mass range (2.67 . ma . 2.8) µeV.

In the future the ADMX collaboration will scan higher frequencies, ∼ 2 GHz corre-
sponding to about 8 µeV, and plans to reach up to 10 GHz. In the landscape of lower
frequencies the KLASH (KLoe magnet for Axion Search) experiment [40] has been pro-
posed; the project plans to employ the KLOE magnet of 0.6 T for a copper cavity of
about 35 m3, going down to 57 MHz (ma ∼ 0.2 µeV) with predicted sensitivity of about
gaγγ ∼ 6 · 10−17 GeV−1. More generically, improvements and upgrades are planned for

10The quality factor is defined in Sec. 2.2.1. Qualitatively it is the ratio between the energy stored in
the cavity and the power dissipated by it.
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Figure 1.9: Conceptual scheme of an helioscope pointing the Sun, in which an intense magnetic field
is applied. Taken from [1].

all the components of a haloscope. These include ultra-high magnetic fields, low noise
receivers trying to surpass the quantum limit, cavities made of superconducting materials
to achieve higher Qs, and new cavity designs. CAPP (Center for Axion and Precision
Physics) in South Korea is active in all these technological challenges within its R&D
program [1].

Helioscopes

Helioscopes exploit essentially the same mechanism as LSW experiments, but in this case
the source of axions is our Sun. The production process is again the Primakoff effect
γ + γ∗ → a, schematically shown in Fig. 1.4, but in this case the role of an external field
is played by the Coulomb field of the plasma. The photon regeneration takes place in a
lab, as in the LSW scheme; intense static magnetic fields are applied for the conversion
within a movable structure similar to telescopes, pointed towards the Sun. A scheme of
this set-up can be seen in Fig. 1.9. Sikivie pointed out [6, 36] that the magnetic field has
to be applied in an orthogonal direction with respect to the axion flux, in which case the
direction of the generated photon polarization vector is parallel to B0. This is necessary
to have an electromagnetic interaction with the axion, as its form (eq. (1.49)) suggests.

The temperatures in the core of the Sun are around the ∼keV, so axions with energies
in the keV range are produced herein. Subsequently, in the lab, keV axions convert into
x-ray photons, and for this reason modern helioscopes are equipped with x-ray focusing
optics and x-ray detectors. The differential flux of ALPs at Earth in the 1-11 keV range,
due only to the Primakoff process, is [1]:

dΦa

dE = 6.02 · 1010
(

gaγγ

10−10GeV−1

)2

E2.481e−E/1.205 1

cm2 s keV
, (1.72)

with E the ALP energy in keV. The peak is at about 3 keV. Thanks to the large number
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of photons inside the Sun a high flux of ALPs is expected. However the small coupling
gaγγ ensures that the flux is not too high, or the Sun would loose energy too fast with
significant impact on its evolution.

The reference helioscope experiment still running is CAST (CERN Axion Solar Tele-
scope), that put the most severe constraints among helioscopes until now. [41] It employs
a powerful dipole magnet designed by INFN for LHC, up to 9 T over a length of 9.3 m,
and the structure is able to track the Sun for some hours. It is also equipped with x-ray
optics to focus the photons on the detector. CAST took data in various phases, and the
last one gives an upper limit on gaγγ comparable to astrophysical bounds. This is [1]
|gaγγ | . 0.66 · 10−10 GeV (95% CL) for masses ma . 0.02 eV, and is also reported in
Fig. 1.8 as "Helioscopes". Remarkably, for higher masses (ma & 0.1 eV) CAST data al-
lowed to reach and exclude part of the QCD axions model band, including part of the
KSVZ parameter space.

The improvements that have been planned for CAST will converge in a new project,
IAXO (International AXion Observatory). To achieve a better sensitivity and signal-
to-noise ratio the performances of the magnet have to be improved. These include the
strength of the magnetic field, the length over which it is applied and the cross sectional
aperture area of the coils. Together with the magnet, also improvements in x-ray optics
and detectors are necessary. The sensitivity on gaγγ expected for IAXO is more than
one order of magnitude better than CAST’s one, and is drawn in Fig. 1.8 as the "IAXO"
semi-transparent area.

In the next chapter I will present the QUAX experiment, that will be part of the
category of haloscope experiments. Along with the already treated concepts, further
details will be provided, like the signal power that can be extracted in a microwave cavity
due to an axion interaction.
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CHAPTER 2

QUAX R&D at LNF

2.1 The QUAX experiment

QUAX is an experiment aiming at detecting galactic halo axions assuming that they
constitute a dominant component of DM, therefore it can be included in the category of
haloscopes. As conventional haloscopes, it employs microwave cavities, magnets, cryogenic
systems etc. QUAX can operate in two ways: one is exactly the conventional haloscope
set-up, alike ADMX, but the novelty of this experiment is the second way of operation.
This consists in the employment of magnetized media to exploit the coupling of the axion
to the electron spin, as first proposed by Krauss et al. [37] in 1985. They stressed that
aligned electron spins are catalysts of the axion-photon conversion, and having a spin
density of ns ∼ 1023 cm−3 would be equivalent to applying a 270 T magnetic field in
a conventional haloscope. This idea was resumed by Barbieri et al. [42] in the QUAX
proposal. This type of experiments are therefore sensitive to the coupling gaee, but only to
DFSZ models, since KSVZ axions don’t couple with leptons. In Ref. [42] it was proposed
to operate at a frequency of 48 GHz (ma ∼ 200 µeV), but for practical and economical
reasons the parameters of the QUAX R&D were scaled-down to 14 GHz (∼ 58 µeV) [43].

This research activity is divided between LNF (Laboratori Nazionali di Frascati), where
the main focus is on the study of new superconducting microwave cavities, and LNL
(Laboratori Nazionali di Legnaro), where magnetized media are already employed. At
LNL a preliminary test of the apparatus has already been carried out, yielding an upper
limit on the coupling of DFSZ axions to electrons of gaee < 4.9 · 10−10 (at 95% CL) for a
mass ma = 58 µeV (∼ 14 GHz) [43].
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2.1.1 Coupling to electrons and detection technique

The derivation of the coupling to electron spins starts from the interaction of the axion to
electrons, given by the Lagrangian of eq. (1.54):

Laee = −i gaee a
(
Ψγ5Ψ

)
,

where now Ψ(x) is an electron spinor and gaee is a dimensionless coupling constant. In-
cluding also the Lagrangian for the free electron1 Ψ(i~γµ∂µ − mec)Ψ, the equation of
motion of an electron in presence of the axion field in the non-relativistic limit is [42]:

i~ ∂tϕ =

[
− ~2

2m
∇2 − gaee~

2m
σ ·∇a

]
ϕ, (2.1)

where ϕ is a two component field, m the electron mass and σ the vector of the Pauli
matrices. The last term on the r.h.s. of the equation has the form of an interaction
between the spin magnetic moment and a magnetic field (as in the Zeeman effect in
atomic physics), since it can be rewritten as:

− gaee~
2m

σ ·∇a = −2
e~
2m

σ ·
(gaee

2e

)
∇a ≡ −2µBσ ·Ba, (2.2)

µB = (e~)/(2m) is the Bohr magneton, and an effective oscillating magnetic field has been
defined: Ba ≡ (gaee/2e)∇a. Then the electron spins see the axion wind as an external
oscillating field that will change their magnetization.

The properties of the Ba field can be obtained by the axion field. After the arguments
of Sec. 1.2.4, the axion field can be written as a plane wave, approximately monochro-
matic [42]:

a(x, t) ' a0 cos

(
p0ct− pa · x

~

)
, (2.3)

with pa ' mava the classical momentum, cp0 =
√
m2

ac
4 + |pa|2c2 ≈ mac

2 + |pa|2/2ma,
and a0 =

√
(na~3)/(mac) the field amplitude. na is the number density of axions (1.63),

but in the QUAX experiment ρDM = 0.3GeV cm−3 is assumed for the DM halo density,
so na becomes na ' 3 · 1012

(
10−4 eV/ma

)
cm−3. Taking the gradient of the axion field

yields the expression of the effective magnetic field:

Ba =
gaee
2e

(
na~
mac

)1/2

pa sin

(
p0ct− pa · x

~

)
. (2.4)

In the framework of the DFSZ model, assuming a coupling constant of gaee ' 3·10−11 (ma/(1 eV))

and putting the magnetic material in x = 0, the field mean amplitude and the frequency
1In this section the factors ~ and c are restored.
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Figure 2.1: The energy splitting of an atom with unpaired spin in the presence of an external magnetic
field. Downloaded from https://www.wikipedia.org/.

of Ba take the following values [42]:

Ba = 2 · 10−22

(
ma

200µeV

)
T,

νa = 48

(
ma

200µeV

)
GHz.

(2.5)

ESR technique. The detection technique exploits the Electron Spin Resonance (ESR),
that is a spectroscopic technique used to study electronic properties of atoms with un-
paired spins. When a single electron is subject to an external static magnetic field B0,
the magnetic moment of the electron aligns with it and two states are accessible, those
corresponding to the two spin projections along the field direction. Consider a magnetic
field directed along the ẑ direction; the magnetic energy for a single electron can be written
as U = −µ ·B0, where µ = gs

(−e)~
2m

s
~ is the spin magnetic moment and s the spin oper-

ator (ga = 2 the electron giromagnetic factor). After the alignment the energy becomes
U = −µzB0 = gsB0µBms, with ms = ±1/2 the spin projection along the ẑ direction.
The lower level occurs for ms = −1/2, as shown in Fig. 2.1. The two levels differ by the
amount ∆U = U+ − U− = gsB0µB, that assuming gs = 2 is exactly h times the Larmor
frequency νL:

∆U = gsB0µB = hνL,

νL =
e

2πm
B0.

(2.6)

Usually, in atomic physics, the electron changes its energy by absorbing or emitting a
photon having the Larmor frequency. In this case one hopes to have a transition caused
by an axion interaction, thus the energy difference of the two levels must be equal to the
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axion energy, i.e. its mass energy, Ea ' mac
2. Therefore imposing that:

∆U = hνL = mac
2,

we see that the static magnetic field B0 has to be properly tuned, depending on what is
the value of the axion mass to search for:

B0 = mac
2m

~e
' 1.7

(
ma

200µeV

)
T. (2.7)

Then if the system initially stands in the lower state and is excited by an energy transfer
due to an axion, it subsequently will re-emit the energy as radiation. It is for this reason
that also the resonant frequency of the microwave cavity has to be tuned to the axion
mass.

2.1.2 Signal power

The phenomenon can also be treated from a different point of view: the effects caused
by the oscillating Ba field on the total magnetization of the sample. From this point of
view it is also straightforward to calculate the signal power that can be extracted from
the cavity after an axion interaction.

The dynamics of the magnetization M of a magnetic material are described by the
Bloch equations including also dissipations and radiation dumping [42]:

dMx

dt =
e

m
(M ∧B)x −

Mx

τ2
− MxMz

M0τr
dMy

dt =
e

m
(M ∧B)y −

My

τ2
− MyMz

M0τr

dMz

dt =
e

m
(M ∧B)z −

M0 −Mz

τ1
−
M2

x +M2
y

M0τr
,

(2.8)

where M is the sum of the magnetic moments of all the electrons per unit volume, M0

the static magnetization along the ẑ axis only due to the B0 field, B is an external
magnetic field, and the τs account for the natural relaxation of the spins. τ1 and τ2 are the
longitudinal (or spin-lattice) and transverse (or spin-spin) relaxation times, respectively,
while τr is the radiation damping time due to the reaction of the material to its own
radiation.

In this case the B field is just the Ba(t) effective field induced by the axion wind. We
may think that without the presence of Ba(t) the medium possesses a magnetization M0

parallel to the B0 field. The axion wind causes this magnetization to change, because
it acquires transverse components. This results in a precession of the spins about the
B0 direction with a Larmor frequency, and the solution of eq.s (2.8) is a time dependent
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magnetization of the form [42]:

Ma(t) =
e

m
µBBansτmin cosωat, (2.9)

where Ba and ωa are given in eq. (2.5), ns is the spin density, and τmin is the minimum
time that drives the relaxation process:

τmin = min (τ∇a, τ2, τr). (2.10)

Here τ∇a is the coherence time associated to the gradient of the axion field, τ∇a ' 0.68 τa,
and τ1 is not considered because it is usually greater than τ2. It is the magnetization
Ma(t) that excites the microwave cavity, being the source of the magnetic field inside it2.
A microwave cavity is also necessary to inhibit the radiation damping. In fact, in the cavity
only specific resonant modes can be excited (see Sec. 2.3), so its phase space is limited. It
follows that the radiation damping time is equal to the cavity decay time τc (this is defined
in eq. (2.81) of Sec. 2.4). Moreover, with a high spin number, hybridization between
electron spins and the cavity electromagnetic field can occur, and can be qualitatively
thought as the coupling between two harmonic oscillators. The resonance curve splits into
two peaks in this case. Calling kc = 1/τc and k2 = 1/τ2 the linewidth of, respectively, the
cavity and the ferromagnetic resonances, the total linewidth of a single hybridized mode
is [42]:

kh =
1

2
(kc + k2).

Then the characteristic time of the hybridized mode is τh = 1/kh, and the minimum
relaxation time appearing in eq. (2.9) becomes τmin = min (τ∇a, τh), so that radiation
damping is no longer effective.

Now the average power transferred from the axion wind to the sample is Pin = B · dM
dt ,

that in this case becomes:

Pin = Ba
dMa

dt Vs =
e

m
µBnsωaB

2
aVsτmin, (2.11)

where Vs is the volume of the magnetic material. From conservation principles, this must
be the sum of the power P0 dissipated by the cavity walls and the power Psig extracted
from a photon receiver coupled to the cavity: Pin = P0 + Psig. Introducing the coupling
coefficient κ as the ratio κ ≡ Psig/P0, the signal power that can be read by the receiver
after an axion interaction and subsequent photon emission is:

Psig =
κ

1 + κ
Pin. (2.12)

2This derives from Maxwell’s equations in the presence of a magnetization vector and in absence of
current densities, as in the case of a permanent magnet that generates a magnetic field thanks to its
residual magnetization Mr.
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The coupling coefficient will be also defined in the next paragraph and in eq. (2.48) of
Sec. 2.2.1 in terms of quality factors. A receiver is said to be critically coupled when κ = 1,
and in this case the power signal is finally:

Psig =
Pin
2

= 3.8 · 10−26

(
ma

200µeV

)3( Vs
100 cm3

)
·
(

ns
2 · 1028/m3

)(
τmin
2µs

)
W. (2.13)

It is clear that this power is very tiny, so QUAX should possibly have the chance to use a
single microwave photon counter to suitably detect such a signal.

Signal power for an empty cavity

As discussed earlier, QUAX could also operate in the ADMX configuration, i.e. with an
external magnetic field applied in an empty cavity. The signal power in this case depends
on different parameters. After an axion-photon conversion the power Pin transferred to the
cavity must be dissipated in the cavity walls and in the receiver coupled to the microwave
device, Pin = P0+Psig. As before, Psig is only a fraction of Pin, precisely Psig = Pin κ/(1+κ).
In this case we can express Pin as:

Pin = ωres
U

QL
, (2.14)

where ωres is the resonant pulsation, U is the electromagnetic energy stored in the cavity
and QL a loaded quality factor. A quality factor is the ratio between the stored energy and
the power losses in a cavity, and is well defined in Sec. 2.2.1. There it is shown (eq. (2.28))
that 1/QL = 1/Q0+1/Qr, where Q0 is the unloaded quality factor and takes into account
the resistive losses of the cavity walls, while Qr takes into account the additional losses
introduced by the external receiver. Therefore from the general expression of Psig (2.12)
and eq. (2.14) we can express the power that will be read by the receiver as:

Psig =
ωresU

QL

κ

1 + κ
. (2.15)

Now U is the energy due to an axion-to-photon conversion in the cavity. I quote the results
given in Refs. [36, 37] and readapted in [7]. In natural units the energy is:

U = g2aγγ
ρa
m2

a

B2
0VcCnmlQ

2
L, (2.16)

thus the final expression for the signal power from an axion-to-photon conversion is:

Psig(aγ → γ) = ωres
κ

1 + κ
g2aγγ

ρa
m2

a

B2
0VcCnmlQL. (2.17)
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Here Vc is the cavity volume and ρa the DM axion energy density. The coefficient Cnml is
the form factor of the TMnml resonant modes of the cavity and is defined as:

Cnml =
|
∫
ẑ · e∗nml(x)d

3x|2

Vc
∫
ε|enml(x)|2d3x

. (2.18)

A resonant mode is a particular field configuration in the cavity, see Sec. 2.3 for their
description. The subscripts n,m, l are integer numbers that characterize each field con-
figuration, and enml(x) is the spatial dependence of the electric field of the cavity mode.
ε is the electric permittivity. The form factor Cnml indicates what resonant mode can be
excited by the axion in an empty cavity. Since enml(x) is projected in the ẑ direction, only
TMnml modes can be excited, because they present a non-zero component of the electric
field along ẑ (see Sec. 2.3). Actually, only TM0m0 modes can be excited by the axions,
because electric field configurations for n > 0 and l 6= 0 give contributions that cancel out
in the integral. Moreover Cnml is < 1 and falls off rapidly with increasing mode number.
Physically, this factor provides a quantitative feeling of the overlap between the electric
field of the excited cavity mode and the external field B0.

All these quantities are obtained making some assumptions: a) the dimensions of the
cavity are much smaller than the coherence length (1.67) of the axion field, so that it
can be considered homogeneous over the whole cavity; b) the external magnetic field is
directed along the ẑ direction, B0 = B0ẑ; c) it is assumed that QL < Qa, where Qa is the
axion figure of merit (1.66), but if this hypothesis doesn’t hold QL must be substituted
with min(QL, Qa) in the expressions of the energy U and the power Psig.

It is worth noticing the dependence of Psig (2.17) on the model-dependent parameters
and experimental quantities. The coupling gaγγ appears with a squared power, and this
is very limiting to the power magnitude of the signal. ρa and Qa actually depend on the
nature of the galactic halo and are fixed by observations. The dependence on the mass is
only ∼ 1/ma, in fact the resonant frequency has to be tuned to the axion mass, so that
ωres ' ma, removing a power of ma from the denominator of eq. (2.17). The volume Vc
is strictly related to the mass range that one chooses to investigate, since the resonant
frequency of the cavity is determined by its dimensions. The two parameters that can
be increased to achieve higher powers are the magnitude of the magnetic field B0 and
the cavity quality factor QL (along with the coupling coefficient κ). For this reason the
quantity Q0B

2
0 has been studied for one of the cavities taken into account, and the result

is reported in Sec. 3.2.2. In any case, there would be no advantage having a quality factor
& 106, because in that case Qa would dominate the signal power.

To conclude this section I quote here the signal power of the ADMX experiment [38],
for comparison with the power emitted by a magnetic sample (2.13). Taking into account
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again the constants ~ and c, this is:

PADMX = 0.345 · 10−21

(
V

500L

)(
B0

7T

)2(Kaγγ

0.36

)2

×
(

ρa

1/2 · 10−24 g/cm3

)(
ma

2π (GHz)

)(
min(QL, Qa)

105

)
W,

(2.19)

where the TM010 mode (Cnml = 0.69) has been considered and Kaγγ is given in eq. (1.52).
This expression of the power shows that also in this case it is a very small quantity, so an
appropriate choice of the photon receiver is necessary.

Thus far, talking about haloscopes and in general axion detectors, I mentioned the use
of magnetic fields, resonant cavities, superconductors and cryogenics. Then this chapter
is dedicated to putting together all these topics to describe the current QUAX R&D
activity. These are concepts of radio-frequency and superconductivity, given in Sec. 2.2,
and electromagnetic properties of microwave cavities treated with a field theory approach
(Sec. 2.3). The current experimental set-up at LNF is also described, see Sec. 2.5. The
main purposes of the QUAX R&D and of this thesis work are summarized in Sec. 2.4.

2.2 Tools to study resonant cavities

2.2.1 Radiofrequency concepts

As described in Appendix A, a resonant cavity is made of conducting walls and can be seen
as a waveguide short-circuited at both ends. Moreover, the working frequencies of QUAX
are in the microwave range (order 10 GHz), so in what follows some radio-frequency con-
cepts are introduced, primarily the scattering matrix, enabling the description of cavities
from a circuit point of view. In this subsection the theory is readapted from the complete
and exhaustive textbook of Ref. [44]. This is a rather technical subsection, so if the reader
wants to skip it, here I summarize the highlights: eq. (2.26) is the definition of the quality
factor, eq. (2.28) defines the loaded quality factor; eq.s (2.47) and (2.48) contain the def-
inition of the coupling coefficients κ, eq. (2.49) is the relation between κ and the loaded
and unloaded quality factors. Finally eq. (2.54) and eq. (2.57) are, respectively, the S11
and S21 expressions. These are the measured parameters that were fitted to extract the
quality factors of the cavities, as described in Sec. 3.1.2.

Parallel RLC parameters

Here the results and parameters for a parallel RLC circuit will be briefly summarized,
since the cavity under inspection will be parametrized as a parallel RLC circuit, that
behaves as a resonator. Lumped-element circuit theory is assumed, and the calculations
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(a) (b)

Figure 2.2: (a): a parallel RLC circuit without losses. (b): the frequency dependence of the input
impedance |Zin| of a parallel RLC circuit; the value of |Zin| corresponding to half power
delivered to the circuit is also reported. Taken from [44].

are made in phasor notation.
One can start writing the input impedance of a parallel RLC circuit, shown in Fig. 2.2a,

that is:

Zin =

(
1

R
+

1

jωL
+ jωC

)−1

. (2.20)

In circuit theory, using the phasor notation, the complex time-averaged power delivered
to the resonator can be written as:

Pin =
1

2
Zin|I|2 =

1

2
|V |2 1

Z∗
in

=
1

2
Zin

|V |2

|Zin|2
. (2.21)

Using the following expressions for, respectively, the real power dissipated in the circuit,
the electric and magnetic energies stored in the resonator:

Ploss =
1

2

|V |2

R
We =

1

4
|V |2C Wm =

1

4
|V |2 1

ω2L
, (2.22)

equation (2.21) becomes:
Pin = Ploss + 2jω(Wm −We), (2.23)

and then the impedance:

Zin =
2Pin
|I|2

=
Ploss + 2jω(Wm −We)

1
2 |I|2

. (2.24)

The phenomenon of resonance occurs when the electric and magnetic stored energies are
equal, Wm = We, and correspondingly the impedance, Zin = R, reaches its maximum for
the parallel RLC (Fig. 2.2b). The resonant frequency3 is found by equating the expressions

3It is customary to call the pulsation and the frequency with the same name, but they still hold their
own identity.
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for We and Wm, and is:
ω0 =

1√
LC

. (2.25)

The quality factor is defined as the ratio of the energy stored in the cavity and the power
dissipated by it:

Q = ω
Wm +We

en./sec , (2.26)

and for the parallel RLC circuit, evaluating it at resonance, it is:

Q = ω0
2Wm

Ploss
= ω0RC =

R

ω0L
. (2.27)

The Q of a resonator quantifies its losses, that can be conductor, dielectric or radiation
losses and are represented by R. It also quantifies the width of the resonance curve of
a resonator in its power spectrum. Expressions in (2.26) and (2.27) are referred to as
unloaded quality factor, Q0, representing the intrinsic Q factor of a resonator, evaluated
when it is isolated. However, in order to feed and measure the response of a resonator,
one needs to couple it to other circuit elements. This effectively lowers the quality factor,
because external elements introduce additional losses. The new system is characterized
then by a loaded quality factor, QL, that is a combination of the unloaded and external
quality factors. Since powers are additive quantities, so are the inverse of the quality
factors, and the loaded Q can be expressed as:

1

QL
=

1

Q0
+

1

Qext
. (2.28)

With the definition of the unloaded quality factor and resonant frequency, the input
impedance of eq. (2.20) can be rewritten in the following way:

Zin =
jωRL

R− ω2RLC + jωL
=

R

1 + jQ0δ
, (2.29)

where δ is defined by:
δ =

ω

ω0
− ω0

ω
. (2.30)

Equation (2.27) is valid for the unloaded quality factor of an ideal parallel RLC circuit.
In real applications resonators are more complicated objects, like cavities in the case
of this work. The theoretical unloaded quality factor of a cavity of any shape is then
calculated considering it as a conductor with losses, so Qc = 2ω0We/Pc. Pc is the real
power dissipated on the wall surfaces of the conductor. Ultimately, in vacuum, the quality
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factor becomes in this case [44]:
Q0 ≡ Qc =

G

Rs
, (2.31)

where G is a factor depending only on the geometry of the conductor and the properties
of the material that may fills it (µ, ε), while Rs is the surface resistivity, defined as:

Rs =

√
ωµρ

2
≡ ρ

δs
, (2.32)

where here ρ is the electric (bulk) resistivity and δs the skin depth. The surface resistivity
is frequency-dependent, and is the resistivity encountered by a current flowing only on the
surface of a conductor.

Scattering Matrix

Networks in radio-frequency regime cannot be treated with lumped-element circuit theory,
since the wavelengths of electromagnetic signals are comparable in size with circuit ele-
ments themselves, causing a given branch to have not unique voltage and current values at
every point. Therefore, a distributed-element theory has to be adopted. Here all electrical
and magnetic quantities are expressed in phasor form and are complex quantities. The
time dependence can be added simply multiplying by ejωt.

The complete characterization of a generic N-port network would require the solution
of Maxwell’s equations, giving the expression of the fields at any point. However, usually
one only needs voltage, current, power flow at some port, so only terminal quantities are
of interest. Techniques based on concepts of circuit theory are then developed, leading to
different ways to characterize a network. In the following I adopt the formalism said of
the scattering matrix.

Taking into account an arbitrary lossless waveguide, equivalent voltages and currents
can be defined, according to the discussion in Section 4.1 of [44]. Considering z as the
direction of propagation, they are:

V (z) = V +
0 e

−jβz + V −
0 e

jβz, (2.33a)

I(z) = I+0 e
−jβz − I−0 e

jβz, (2.33b)

where V ±
0 and I±0 are arbitrary complex amplitudes of the incident and reflected waves

respectively, β = 2π
λ is the propagation constant (or wave number) and the characteristic

impedance Z0 of the line is defined as:

V +
0

I+0
=
V −
0

I−0
≡ Z0. (2.34)

In Figure 2.3 a generic N-port network is shown, where any kind of transmission line
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Figure 2.3: Generic N-port network. Forward waves (entering the network) are labeled with their
voltages and currents, V +

i , I
+
i , while backward waves (outgoing from the network) are

labeled with V −
i , I

−
i . The tn are phase reference planes. Source: [44].

or waveguide can converge in a port. In the picture tn indicates a phase reference plane,
meaning that the coordinate of the direction of propagation of the n-th line is zero at that
plane: zn = 0. Thus V +

n is the voltage amplitude of an incident wave in the n-th port
entering the network, V −

n the amplitude of the outgoing wave, and the same applies to
I±n . At the plane tn the total voltage and currents are then:

Vn(zn = 0) = V +
n + V −

n , (2.35a)

In(zn = 0) = I+n − I−n . (2.35b)

The scattering matrix relates the amplitudes of the incident waves with the ones of the
reflected waves from the ports. The basic idea is that the voltage outgoing from the n-th
port is due to a fraction of the incident wave into the same port and a fraction of the
incident waves entering the network from all the other ports: V −

n = SnnV
+
n + Sn1V

+
1 +

Sn2V
+
2 +. . . . The voltage values are referred to the {t1, t2, . . . , tN} phase reference planes.

In matrix form: [
V −
]
=
[
S
] [
V +
]
, (2.36a)

V −
1

V −
2
...
V −
N

 =


S11 S12 . . . S1N

S21 S22 . . . S2N
...

... . . . ...
SN1 SN2 . . . SNN



V +
1

V +
2
...
V +
N

 . (2.36b)
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Figure 2.4: Sketch of the shifted t′n planes. Source: [44].

An element of the scattering matrix Sij is defined as

Sij =
V −
i

V +
j

∣∣∣∣
V +
k =0, k 6=j

, (2.37)

and can be determined by driving port j with an amplitude V +
j and measuring an am-

plitude V −
i at port i, when all other k ports are matched4, so there are neither incoming

V +
k nor reflected V −

k waves from that ports. Therefore elements Sii can be obtained as
reflection coefficients at port i, with the constraint that all other ports are matched, and
elements Sij can be calculated as transmission coefficients from port j to port i with the
constraint that all other ports are matched.

A useful concept that will be used later is that of the change of the reference planes tn,
where voltages and currents are defined or measured. Referring to Fig. 2.4, in positions
z1, . . . , zn = 0 the values of Vn and In are defined as in eq. (2.35), and call the scattering
matrix of the network [S] in this case. If, now, one moves the terminal planes at z1 =

l1, . . . , zn = ln along the line, the scattering matrix will become [S′]. Propagating from
tn to t′n the waves acquire a phase factor, so the voltages become:

V ′
n
+(zn = ln) = V +

n e
jβnln , (2.38a)

V ′
n
−(zn = ln) = V −

n e
−jβnln , (2.38b)

4A transmission line is said to be matched when ended with a load impedance equal to its characteristic
impedance, so that the reflection coefficient is zero.
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or in matrix form:

[V ′±] = [V ±]


e±jβ1l1 0

e±jβ2l2

. . .
0 e±jβN lN

 . (2.39)

The scattering matrices are defined in the two configurations as:

[V −] = [S][V +], (2.40a)

[V ′−] = [S′][V ′+], (2.40b)

thus substituting eq. (2.39) in eq. (2.40a) the following result can be obtained, with some
algebra:

[V ′−] = [e−jβnln ][S][e−jβnln ][V ′+], (2.41)

where the new [S′] matrix can be recognized:

[S′] =


e−jβ1l1 0

e−jβ2l2

. . .
0 e−jβN lN

 [S]


e−jβ1l1 0

e−jβ2l2

. . .
0 e−jβN lN

 . (2.42)

Scattering matrix of a resonant cavity

In our set-up we have a resonant RF cavity connected to a VNA5 (see Sec. 2.5) that
provides and measures the power delivered to and from the cavity. Two antennas are
coupled with the cavity, so our device is a 2-port network, and has a scattering matrix of
the form:

[S] =

[
S11 S12

S21 S22

]
, (2.43)

with S12 = S21 because the device is reciprocal, meaning that it does not contain anisotropic
or active materials that could give a different response if inspected from different direc-
tions. The calculation of all the scattering parameters follows.

To construct a simple model that makes use of circuit laws, assumptions and param-
eterizations are necessary; therefore the cavity will be parametrized as a parallel RLC
circuit, because the walls are short-circuited for construction. Here the resistance R ac-
counts for conductor losses due to the metallic walls, the inductance L and the capacity C
are dynamic quantities that account for the energy stored in the cavity. The coupling of the
antennas can be schematized as two ideal transformers. Fig. 2.5a shows the parametrized

5Agilent E5071C, frequency range: 300 kHz− 20 GHz.
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circuit; this is the particular case in which the device is excited from port 1, where an
ideal generator has been placed, and the impedances Z0 account for lossless transmission
lines feeding the cavity. To calculate the scattering parameters the circuit can be further
simplified. Hereafter this is done from the generator point of view. For a generic ideal
transformer of primary N1 windings and secondary N2 windings, the following relations
between voltages and currents of its primary and secondary circuits are valid:

v1
v2

=
N1

N2
,

i1
i2

= −N2

N1
. (2.44)

In our case, as in Fig. 2.5a, if the ratio of the windings between the cavity and the second
antenna is set to n2 : 1, port 2 can be thought as an impedance in parallel to the cavity.
In fact, calling Vcav the voltage of the parallel RLC and V2, I2 the voltage and current at
port 2, from eq. (2.44) we have:

Vcav =
n2
1
V2 = n2(−Z0I2) = n2Z0Icav

n2
1

≡ Z2Icav, (2.45)

with Z2 = n22Z0 the impedance seen by the cavity looking towards port 2. The equivalent
circuit is displayed in Fig. 2.5b. With the same argument the impedance seen by the
generator looking towards port 1 is 1

n2
1

times the parallel of Zcav and Z2:

Z1 ≡
1

n21
Zcav//Z2 =

1

n21

(
n22Z0 · R

1+jQ0δ

n22Z0 +
R

1+jQ0δ

)
, (2.46)

where use of eq. (2.20) for Zcav has been made. The resulting equivalent circuit is shown
in Fig. 2.5c.

Before evaluating the impedance Z1 it is convenient to incorporate the arbitrary con-
stants n1 and n2 in observable quantities. These are the coupling coefficients κ1 and κ2,
that give quantitatively the fraction of energy communicated to the cavity, and are de-
fined as the ratio of the power dissipated in the external circuitry and the power dissipated
inside the cavity:

κ1 ≡
P1

Pcav
, κ2 ≡

P2

Pcav
. (2.47)

(Note that, in general, if one defines an external quality factor with the power dissipated
by external circuitry Qext = ω0Ucav/Pext, whit Ucav the energy stored in the cavity, the
definition of eq. (2.47) for a coupling κ is equivalent to:

κ ≡ Q0

Qext
. (2.48)

Referring to eq. (2.28) for the loaded quality factor and using the definition (2.48), the
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V +

Z0

I1

port1

V1 R L C V2

Z0

I2

port2

1 : n1 n2 : 1

(a) Equivalent circuit of the cavity, assumed as a parallel RLC, and the exitation of the antennas, schema-
tized as transformers.

V +

Z0

port1

V1 Zcav Z2

1 : n1

(b) Equivalent circuit with second port seen as an impedance Z2.

V +

Z0

Z1

(c) Equivalent circuit as seen by the gen-
erator.

Figure 2.5: Equivalent circuits of the system formed by resonant cavity and antennas.

former becomes now:
QL =

Q0

1 + κ
. (2.49)

This will be useful in the subsequent sections.
Returning to the couplings κ1 and κ2, Fig. 2.6 helps to evaluate them. The picture

shows the equivalent circuit as seen from the cavity. From this point of view Z ′
1 and Z ′

2,
the impedances seen by the cavity towards port 1 and port 2 respectively, are:

Z ′
1 = n21Z0

Z ′
2 = n22Z0,

(2.50)

and since they are both in parallel with Zcav, the voltage at their edges is equal to Vcav.
P1 and P2 of eq. (2.47) are the powers dissipated on the impedances Z ′

1 and Z ′
2, while

the power dissipated by the cavity is real and only due to the resistance R (that is the
real part of Zcav). From circuit theories, time averaged powers can be calculated as
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Z ′
1 Z ′

2Zcav

Vcav

Figure 2.6: Equivalent circuit as seen from the cavity, for the evaluation of κ1 and κ2.

P = 1
2Z|I|

2 = 1
2
|V |2
Z∗ , thus for our equivalent circuit they are:

P1 =
1

2

|Vcav|2

n21Z0
, P2 =

1

2

|Vcav|2

n22Z0
, Pcav =

1

2

|Vcav|2

R
. (2.51)

Therefore, the coupling coefficients are:

κ1 =
P1

Pcav
=

R

n21Z0
, κ2 =

P2

Pcav
=

R

n22Z0
. (2.52)

Equation (2.46) is thus rewritten as:

Z1 =
Zcav//n

2
2Z0

n21
= Z0κ1

(
1
κ2

· 1
1+jQ0δ

1
κ2

+ 1
1+jQ0δ

)
=

Z0κ1
1 + κ2 + jQ0δ

. (2.53)

The S11 parameter can now be obtained. The contributions to the voltage at port 1,
V1, come from an incident wave V +

1 and a reflected wave V −
1 , so V1 = V +

1 + V −
1 , and the

coordinate z1 is set to zero at port 1. From its definition, S11 is the reflection coefficient Γ
at port 1, if one considers Z0 as a lossless transmission line terminated on a load Z1 (see
Fig. 2.5c).

S11 =
V −
1

V +
1

∣∣∣∣
V +
2 =0

= Γ(z1 = 0) =
Z1 − Z0

Z1 + Z0
=

Z0κ1
1+κ2+jQ0δ

− Z0

Z0κ1
1+κ2+jQ0δ

+ Z0

=

=
κ1 − (1 + κ2 + jQ0δ)

κ1 + 1 + κ2 + jQ0δ
.

(2.54)

Note that Z0 appearing in Z1 is the impedance of the second transmission line, while Z0

present in the definition of Γ(z1 = 0) is the impedance of the first transmission line. In
general they can be different, but here they are assumed equal and this is a reasonable
assumption, since the two coaxial cables that feed the cavity are equal in length, material
and geometry.

It is now straightforward to compute S21. It is defined as

S21 =
V −
2

V +
1

∣∣∣∣
V +
2 =0

,
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so, again, port 2 must be adapted to have V +
2 = 0. Then the total voltage V2 reduces to

V2 = V −
2 , setting the coordinate z2 = 0 at port 2. V2 is derived from transformer laws,

seeing the circuit of Fig. 2.5a from port 2 towards the generator. The relation between
the cavity voltage and the voltage at port 1 is Vcav = n1V1, and the relation between the
voltage at port 2 and Vcav is V2 = Vcav

n2
, and putting them together:

V2 =
Vcav
n2

=
n1
n2
V1. (2.55)

As before, V1 = V +
1 + V −

1 = V +
1 (1 + Γ), where Γ =

V −
1

V +
1

= S11, because we know that
V +
2 = 0; therefore V2 is now determined:

V2 = V −
2 =

n1
n2
V +
1 (1 + Γ). (2.56)

Equation (2.56) then gives the parameter S21:

S21 =
V −
2

V +
1

∣∣∣∣
V +
2 =0

=
n1
n2

(1 + Γ) =
n1
n2

(1 + S11) =

=

√
κ2
κ1

[
1 +

κ1 − (1 + κ2 + jQ0δ)

κ1 + (1 + κ2 + jQ0δ)

]
=

2
√
κ1κ2

1 + κ1 + κ2 + jQ0δ
.

(2.57)

Thanks to the symmetry of the configuration, S22 is easily found by swapping the roles
of κ1 and κ2 in the expression of S11:

S22 =
κ2 − (1 + κ1 + jQ0δ)

1 + κ1 + κ2 + jQ0δ
. (2.58)

Finally, as discussed before S12 = S21, being our device a reciprocal network.
These are ideal values obtained from assumptions and simplifications. In the experi-

mental set-up (see Sec. 2.5) the power feeding the cavity is provided by the VNA. This
power is first delivered by two cables to the antennas, and then they feed the cavity.
The procedure of calibration for the two cables has been executed, so that the Analyzer
measures voltages and currents at the beginning of the two antennas, and these positions
are now the actual port 1 and 2. A shift of the reference planes has to be performed.
Referring to Fig. 2.4 and equation (2.42) and assuming the antennas to be equal in length
and composition, so that l1 = l2 ≡ l and β1 = β2 ≡ β, the new [S′] scattering matrix can
be computed as:

[S′] =

[
e−jβl 0

0 e−jβl

][
S11 S12

S21 S22

][
e−jβl 0

0 e−jβl

]
=

=

[
e−2jβl 0

0 e−2jβl

][
S11 S12

S21 S22

]
.

(2.59)
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The new elements are:

S′
11 = e−2jβl S11

S′
12 = S′

21 = e−2jβl S12 .
(2.60)

The shift consists in the acquisition of a phase factor, then it only affects the real and
imaginary parts of the scattering parameters, while the modulus remains unchanged. The
modulus of the S11 and S21 scattering parameters are plotted in Fig. 3.1. |S11| has a
minimum at the resonant frequency, because energy is stored inside the cavity and, ideally,
no power is reflected back by port 1. For the same reason |S21| has a maximum at the
resonant frequency.

2.2.2 Elements of superconductivity

Here I give an introduction to the concepts of superconductivity, giving a rather qual-
itative description and introducing only the fundamental equations useful to our goals.
A particular attention is given to the behaviour of superconductors in applied magnetic
fields, since in both the QUAX operation modes external static magnetic fields are present
(Sec. 2.1).

Superconductivity was first introduced by K. Onnes in 1911 as a new state of mat-
ter, while studying the resistivity of metals at low temperatures. He saw that below 4 K

pure mercury presents zero electrical resistance. This observations allow to introduce two
features of superconductivity: phenomenologically superconductors present zero electric
resistance, or perfect conductivity; the onset of superconductivity occurs at a critical tem-
perature Tc, below which the material enters the superconducting phase. A consequence
of the perfect conductivity is that superconductors can hold electric currents without any
loss for a ideally infinite time. A characteristic that distinguishes superconductors from
perfect conductors is the Meissner effect. Suppose to cool a superconductor and a per-
fect conductor with a null external magnetic field B = 0, and then turn the magnetic
field on when the temperature has reached T < Tc. This process is called Zero-Field
Cooling (ZFC) and is depicted in Fig 2.7. Both the materials exclude the magnetic field
lines from their interior (B = 0), behaving as perfect diamagnets with magnetization
M = −4π/H.6 On the contrary, if the two materials are cooled while a magnetic field
B 6= 0 is applied (Field Cooling (FC) process), when the temperature reaches T < Tc

the perfect conductor admits field lines in its interior, while the superconductor expels
the magnetic field. This is the Meissner effect, and the superconductor can be considered
always as a perfect diamagnet.

6Properly B is an external magnetic field, while H = B − 4πM is the magnetic field in the medium.
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Figure 2.7: A schematic view of the Zero-Filled Cooling and Field-Cooling processes for both a super-
conductor and a perfect normal conductor. Here the applied magnetic field is called Ha,
while in the text it is referred to as B. Adapted from [45].

London equations. London equations describe in an easy way the electrodynamic be-
haviour of superconductors, and allow to explain the Meissner effect. They are [46]:

E = Λ
∂Js

∂t
, (2.61a)

B = −cΛ∇ ∧ Js, (2.61b)

and
Λ =

4πλ2

c2
=

me

nsce2
. (2.62)

E and B represent the external electric and magnetic fields, while Js the supercurrent
flowing in the superconductor in the presence of these fields. nsc is the number density
of superconducting electrons, Λ is a phenomenological parameter, and λ is known as the
London depth or penetration depth, for reasons that will be clear soon. Combining now the
Maxwell’s equations with the superconducting current Js and the London equations (2.61),
we find for the electrical and magnetic fields:

∇2E =
E

λ2
, ∇2B =

B

λ2
. (2.63)

The solution of these equations is a decaying exponential; as an example the x component
of a magnetic field from the exterior of the superconductor surface to the interior is B(x) =

B(0)e−x/λ, where B(0) is the field value at the surface. This shows that the superconductor
is screened from external magnetic fields, and this explains the Meissner effect described
before for static magnetic fields. The only region where B is allowed is within a size
∼ λ from the surface (typically ∼ 50 nm), where B decays exponentially; thus the name
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penetration depth. The penetration depth has a temperature dependence, that empirically
is [46]:

λ(T ) ≈ λ(0)

[
1−

(
T

Tc

)4
]−1/2

.

Critical fields and currents. Superconductors can’t screen magnetic fields of any
magnitude, there exists a limit value called thermodynamic critical field Bc. If magnetic
fields B > Bc are applied, the superconductor transits to the normal state. This is due
to minimum energy arguments, i.e. the critical field is related to the difference of the
Gibbs free energies of the normal and superconducting state, and when B > Bc the free
energy is minimized by the normal state. Corresponding to the critical field is the concept
of the critical current density Jc, the maximum value of a current that does not spoil
superconductivity. It can be understood by thinking of an applied supercurrent flowing
in a superconductor. This will generate an induced magnetic field; if the current density
is such that Bind. reaches Bc, this will cause the transition.

The dependence of the critical field on temperature is [46]:

Bc(T ) ≈ Bc(0)

[
1−

(
T

Tc

)2
]
.

The thermodynamic critical field and the critical temperature are intrinsic properties of the
material, and are thermodynamically connected: not only Bc varies with the temperature,
but also Tc decreases if a magnetic field is applied to the superconductor.

BCS theory. A microscopic explanation of the phenomenon of superconductivity is
given by the BCS theory (after Bardeen, Cooper and Schrieffer, 1957) [46]. Here an at-
tractive force between pairs of electrons is supposed, due to an electron-lattice interaction.
Qualitatively speaking, an electron interacts with the lattice and deforms it; this modifies
the potential generated by the positive ion of the lattice, and a second electron sees this
deformation as an attractive force. The binding of such two electrons is called a Cooper
pair. The Cooper pairs behave like bosons, with the consequence that the ground state of
a superconductor is lowered with respect to the Fermi energy level of a normal material.
An energy gap across the Fermi level is created, that divides the state occupied by the
Cooper pair from an excited state. This energy gap, at temperature T = 0, is equal to
2∆(0) = 3.52 kBTc, with kB the Boltzmann constant. Its temperature dependence is:

∆(T ) ≈ 1.76∆(0)

(
1− T

Tc

)1/2

.
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The superconducting state can exist if the Cooper pairs form and overlap their wavefunc-
tions. Cooper pairs can form if the distance between electrons in the interaction is such
that the second electron is affected by the lattice deformation generated by the passage
of the first. A coherence length ξ is then introduced, that is the size within which Cooper
pairs can form. From an uncertainty principle argument it is estimated to be [46]:

ξ ' a
~vF
kBTc

, (2.64)

where vF is the Fermi velocity and a is a parameter of O(1) to be determined experimen-
tally for each material.

Ginzburg-Landau theory The Ginzburg-Landau (GL) theory [46] was actually pro-
posed in 1950, before the BCS theory. It was the first phenomenological theory describing
superconductivity with a quantum mechanical approach. They assumed that a material is
composed by a normal density of electrons and a superconducting one. The superconduct-
ing electrons are described by an order parameter ψ, that is a pseudo-wavefunction and is
related to the density of superconducting electrons as nsc = |ψ(x)|2. More physically, ψ
can be thought of as the wavefunction of the center-of-mass motion of the Cooper pairs,
that have mass and charge twice that of electrons. The theory introduced a GL coherence
length ξ, that is the distance over which ψ can vary without increasing the free energy.
Later, Abrikosov showed that the ratio between the London penetration depth λ and the
coherence length ξ defines the distinction between type-I and type-II superconductors (see
the next paragraph for their description). If λ/ξ < 1/

√
2 the superconductor is type-I, if

λ/ξ > 1/
√
2 is type-II. From the GL theory the London equations naturally follow.

As just mentioned, there exist two types of superconductors, referred to as type-I and
type-II, that present some differences. Since now, only the type-I superconductors were
described.

Type-II superconductors. These were introduced by Abrikosov in 1957, because they
presented discrepancies with the theories developed for type-I superconductors. The first
important difference is the behaviour in the presence of an applied magnetic field. The
response of type-II superconductors to magnetic fields can be divided in three regimes,
separated by two critical field values, Bc1 and Bc2. From 0 to Bc1 the behaviour is
equal to that of a type-I superconductor, except that Bc1 is not the thermodynamic
critical field that drive their transition. The superconductor shows perfect diamagnetism
(Meissner effect), with external magnetic fields totally excluded or expelled. Above Bc2 the
superconductor undergoes the transition to the normal state. Instead, from Bc1 to Bc2 the
superconductor enters a mixed state characterized by an imperfect Meissner effect, because
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Figure 2.8: Sketch of a section of type-II superconductor with an applied field (here named Ha and
along the y direction) in the range Hc1 < Ha < Hc2. Fluxons penetrate in the normal
cores, in red, having a size ∼ ξ, while the yellow area marks the region of extension of the
magnetic field, of size ∼ λ. Taken from [45].

some magnetic lines are allowed to penetrate in the bulk. These flux lines penetrate in
cylinder-shaped regions, with the internal core in the normal state. These structures,
schematically shown in Fig. 2.8, are often called vortices, because the magnetic field lines
generate currents flowing in loops at the surface of the cylinders. It is found that the
magnetic field lines can enter the superconductor only in flux quanta, called fluxons or
fluxoids, having a value of [46, 45]:

Φ0 =
hc

2e
' 2.0678 · 10−15 Tm2. (2.65)

The extension of the normal core region is of order the coherence length ξ, while the
magnetic field that penetrates in these structures has an exponential decay from the center
to the walls of the cylinders, and extends for a size of order the penetration depth λ.
Since in type-II superconductors λ > ξ, it follows that they undergo mutual repulsive
electromagnetic interactions, because the current around a core interacts with the magnetic
field coming from a neighbouring core. Each fluxon is then affected by a Lorentz force
given by [46]:

fL = Js ∧
Φ0

c
, (2.66)

where Js is the supercurrent density locally generated by all the other fluxons. Φ0 has
magnitude Φ0 and the same direction as the applied field. Fluxons, however, reach an equi-
librium arranging in (usually) triangular arrays, called Abrikosov lattices, with a lattice
length of d ≈

√
Φ0/B, where B is an applied magnetic field.

Pinning, flux flow and losses in type-II superconductors

The concepts described in this paragraph, all discussed in Ref. [46], will be important in
the understanding of the dependence of the quality factor Q of the cavity on the applied
magnetic field in Sec. 3.2.
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Pinning and flux flow. Consider an undefected type-II superconductor in the mixed
state, obtained applying a magnetic field (but the same argument works with an applied
current). The drawback of such a pure material is that it easily dissipates energy, as
explained in a while. The Lorentz force is responsible for the movement of the fluxons,
and the Lorentz force density can be written as:

F L = Js ∧
B

c
, (2.67)

This is a generalization of eq. (2.66), where the field B is expressed in terms of the
flux quantum: B = nΦ0 (n is the number of fluxons per unit area). The supercurrent
density Js now accounts for both the contribution due to neighbouring fluxons and the
contribution of an external applied current. This force will induce an electric field parallel
to Js:

E = B ∧ v

c
, (2.68)

where here v is the velocity of fluxons, now in motion. The presence of an electric field
generates a voltage, and this leads to power dissipation. The electrons present in the
normal cores moving with velocity v suffer from Joule effect; the produced heat could also
cause the transition of the superconductor.

This dissipation is, however, avoided if there exists some mechanism that makes the
Lorentz force ineffective. This is the pinning, consisting in the presence of impurities,
defects and/or dislocations in the material. The presence of these defects is seen as a
potential well by the normal cores, that locally minimize the free energy, so if the potential
is strong enough to prevent the action of the Lorentz force the fluxons remain "pinned"
in their positions. However, if the applied currents or magnetic fields are strong enough,
there will be a flux creep, that causes the hopping of the vortices from one pinning site
to another. And if the pinning is weak with respect to the Lorentz force, the continuous
hopping of the vortices results in a rather steady motion of the latter. This regime is known
as flux flow and then the material presents a resistivity ρf even greater than the normal
resistivity ρn. The resistivity ρf , responsible for the losses in a superconducting material,
can be found with various models. Before discussing them in the next paragraphs, note
that in both pure type-I and type-II superconductors there is no magnetic hysteresis,
meaning that when the external magnetic field is turned off, the magnetization becomes
null again, M = 0. On the contrary, in defected type-II superconductors, where pinning
is effective, flux lines remain trapped in the bulk resulting in a non-null magnetization
even if the external field is turned off.

Bardeen-Stephen model. Phenomenologically the dissipation due to flux flow can be
thought introducing a viscosity η of the medium, and assuming that the vortices reach a
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velocity vL. The viscous force is then −ηvL, and the power dissipated by a single fluxon is
−F visc. ·vL = ηv2

L. Combining this viscous force with eq.s (2.66) and (2.68), the expression
of the resistivity ρf in this simple model is:

ρf =
E

J
=
BΦ0

ηc2
. (2.69)

The problem reduces to finding the viscosity η. In the simple model of Bardeen-Stephen [46]
its approximate expression is:

η ≈ (Φ0Bc2)/(ρnc
2), (2.70)

and then the flux flow resistivity takes a rather intuitive form:

ρf
ρn

=
B

Bc2
. (2.71)

ρf can be greater than ρn because Bc2 is a temperature-dependent parameter, and for
T → Tc it becomes small, so that ρf increases fast. Now, taking the definition of the
surface resistance Rs = ρ/δs (eq. (2.32)), using the expression of the flux flow resistivity
it is:

Rs ≈
ρn
λ

B

Bc2
, (2.72)

where the penetration depth has been used in place of the skin depth. Remembering that
Q ∼ 1/Rs, we see that increasing a magnetic field applied on a superconducting RF cavity,
its quality factor decreases (in this model) linearly.

Gittleman-Rosenblum model. In the Bardeen-Stephen model a regime of flux flow
is assumed. Gittleman and Rosenblum [47, 48] developed a model for the motion of flux
tubes subject to driving currents, assuming a particular form for the pinning potential.
The equation of motion of fluxons can be solved with various approximations, depending
on the experimental conditions that apply in the specific cases, and the resistivity ρf can
be estimated.

They assume the following conditions: the superconductor is in a mixed state, with
Bc1 � B � Bc2; the temperature is well below Tc; the fluxons lattice is rigid, meaning
that all flux tubes move approximately rigidly together, and the interaction between flux-
ons is negligible; the driving current is orthogonal to the applied magnetic field. They
call "pinning potential" the increase of pinning energy due to fluxons displacements, and
extends on the whole flux tubes lattice. The potential is assumed to be periodic in the
lattice constant d, and in one dimension it takes the form [47, 48]:

V (x) = A

(
1− cos

(
2πx

d

))
, (2.73)
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with A a constant. The lattice constant can be found by the relation B = nΦ0, where n
is the number of fluxons per unit surface and then, in a rigid lattice, is simply n = 1/d2.
It follows that d = (Φ0/B)1/2. When the lattice moves for the presence of a current (and
then a Lorentz force), each vortex is subject to the force:

Fpin = −∂V (x)

∂x
= −A2π

d
sin

(
2πx

d

)
. (2.74)

The equation of motion of a flux tube in this model can then be written as [48]:

mẍ+ ηẋ+A
2π

d
sin

(
2πx

d

)
=
JΦ0

c
, (2.75)

where x represents the fluxon displacement, m is an effective mass of a flux tube, ηẋ
is the term accounting for dissipation and η is taken from the Bardeen-Stephen model
(eq. (2.70)), the third term on the l.h.s is the pinning force, and on the r.h.s. there is
the magnitude of the Lorentz force of eq. (2.66). If one solves this equation for ẋ, from
equation (2.68) the induced electric field can be calculated, and then ρf = E/J is obtained.
In our case, the current density J of eq. (2.75) is a high frequency current density, JRF ,
because we are dealing with radio-frequency signals.

The equation of motion (2.75) can be solved making approximations, some of these
are reviewed in Ref.s [48, 49, 50]. For example, if the mass term and the x-dependent
term are neglected, in Ref. [49] a dependence of Rs ∝ B is found for small fields, while for
fields close to Bc2 they find the relation Rs ∝

√
B. Gittleman and Rosenblum note that

for frequencies higher than the depinning frequency the pinning force is no more effective,
and the superconductor enters the flux flow regime even if it has pinning centers. This can
be understood thinking of a classical oscillator: when it is driven with a frequency much
higher than its characteristic constant, it will not give a response to the external stimulus.
In this case the x-dependent term of eq. (2.75) (the pinning force) is neglected.

However, we have seen that Rs always depends on a power of B, and this inevitably
causes losses in a superconducting material, and in particular in our case the quality factors
of resonant cavities result lowered.

2.3 Resonant cavities

Microwave resonant cavities can be considered as volumes enclosed by conducting surfaces,
in which electromagnetic fields can be excited. Therefore they can also be seen as a section
of a waveguide, short-circuited at both ends by two conducting plates. The different
electric and magnetic field configurations that can be excited in a resonant cavity are
called resonant modes. Three types of resonant modes exist. Transverse electric modes
(TE), characterized by a field configuration with null longitudinal component of the electric
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field, Ez = 0, but Hz 6= 0. Transverse magnetic modes (TM) possess null longitudinal
magnetic field component, Hz = 0, but Ez 6= 0. TEM modes are, indeed, characterized
by only transverse field components and no longitudinal ones, Ez = Hz = 0. The most
simple example of TEM modes are plane waves. In a cylindrical resonant cavity only TE
and TM modes can be excited. In appendix A the derivation of these resonant modes in
a cylindrical resonant cavity is summarized.

Resonant modes in a cavity are characterized by a resonant frequency. The resonant
frequencies of TE and TM modes of a cylindrical cavity with radius a and length d are[44]:

fTE
nml =

1

2π
√
µε

√(
p′nm
a

)2

+

(
lπ

d

)2

, fTM
nml =

1

2π
√
µε

√(pnm
a

)2
+

(
lπ

d

)2

, (2.76)

where µ and ε are, respectively, the magnetic permeability and electric permittivity of a
dielectric that may fill the cavity, n m and l are integer numbers. pnm are the m-th roots
of the n-th Bessel functions of the first kind, Jn(pnm) = 0, and p′nm are the roots of their
derivatives, J ′

n(p
′
nm) = 0. From eq. (2.76) we see that the resonant frequencies vary with

the inverse of the geometric dimensions, and this explains the fact that smaller cavity
volumes are needed to probe higher axion masses, that correspond to higher frequencies.

Note that no solutions are possible for frequencies different from the resonant frequen-
cies, meaning that an infinite but discrete number of electromagnetic modes can exist in
a resonant cavity. They are denoted by TEnml and TMnml. The index n represents the
number of variations that the fields perform in the φ direction from 0 to 2π, the m index
indicates the field variations along the ρ direction from 0 to a, and l represents the varia-
tions along z from 0 to d. Eq.s (A.19) and (A.21) in appendix A contain the expressions
for TEnml and TMnml modes. These have the form of standing waves. In particular they
depend on cosnφ and sinnφ terms, that represent independent field solutions. It follows
that both the cosine-dependent and sine-dependent modes can be excited in a resonant
cavity, thus yielding at the presence of degenerate modes, i.e. with the same resonant
frequency.

Not all the infinite modes can be excited as standing waves in a resonant cavity. This
derives from the solution of propagating modes in a waveguide: there exists a cutoff
frequency fcnm below which the propagation constant becomes pure imaginary and the
waveguide modes are evanescent, meaning that the electromagnetic fields decay exponen-
tially to zero with the distance (see eq. (A.9) and comments below). Correspondingly, in
a resonant cavity only modes with f > fcnm are excited as standing waves. The cutoff
frequencies for TE and TM modes are:

fTE
cnm

=
p′nm

2πa
√
µε
, fTM

cnm
=

pnm
2πa

√
µε
. (2.77)

62



Chapter 2. QUAX R&D at LNF 2.3. Resonant cavities

(a) (b)

Figure 2.9: A simulation of the fields of TM010 mode. Field lines of electric (left) and magnetic (right)
fields are drawn. The pictures are obtained with the ANSYS-HFSS software. Provided by
Ing. Simone Tocci.

This fact has been exploited for the design of Niobium-Titanium cavities (Sec. 3.2.2).
The two modes taken into account in this work are TM010 and TM110, and their field

configurations are shown in Fig.s 2.9 and 2.10 respectively. For clarity, the pictures show
only half of the cavity. Red arrows correspond to regions where the field is more intense. In
both modes l = 0 and this corresponds to the fact that the electric field has no variations
along the z axis. The difference between the electric field of the two modes resides in the
n index: in TM010 there is no variation in the φ coordinate, the field is maximum at ρ = 0

and falls off until it reaches a null value at ρ = a; in TM110 the electric field varies with
the φ coordinate and forms two lobes with opposite directions. The resonant frequency of
all TMnm0 modes doesn’t depend on the length d and scales linearly with the radius a, so
that it becomes:

fnm0 =
c

2π
√
µrεr

pnm
a
. (2.78)

TM010 is the mode configuration utilized in the search for axions through the axion-
photon interaction with conventional haloscopes, like in the ADMX experiment (Sec. 1.2.5).
Remembering the interaction term of eq. (1.49), the coupling is proportional to E · B,
where E is the electric field of the excited resonant mode and B = ẑB0 is the external
static magnetic field. The interaction can then be maximized by the field lines of TM010

of Fig. 2.9a, where E is parallel to the z axis and maximum at ρ = a. Correspondingly
the form factor Cnml, defined by eq. (2.18), is maximum for this mode thus optimizing the
signal power for the axion-photon conversion of eq. (2.17) with respect to other resonant
modes.
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(a) (b)

Figure 2.10: A simulation of the fields of TM110 mode. Field lines of electric (left) and magnetic
(right) fields are drawn. The pictures are obtained with the ANSYS-HFSS software.
Provided by Ing. Simone Tocci.

TM110, on the contrary, can be exploited for the detection of axions through their
coupling with the electron spin, as in the QUAX experiment, described in Sec. 2.1.1.
There we saw that the magnetization of the sample induced by the axion wind is the
source of the magnetic field in the cavity. The two loops that the magnetic field lines of
TM110 of Fig 2.10b form have transverse components, and this allows to couple with the
spin precession, that acquires a transverse component after the interaction. Furthermore,
the magnetic field magnitude is maximum at the center of the cavity, where the magnetized
samples are placed. Note also that the two opposite directions of the electric field of TM110

cause a cancellation in the numerator of Cnml of eq. (2.18). This is the reason why TMnm0

modes, with n 6= 0, cannot be exploited for the axion-to-photon conversion in an empty
cavity.

2.4 Goals of QUAX R&D and this thesis work

In the first chapter a particular attention was devoted to two axion detection techniques,
here briefly summarized. Firstly it was proposed by Sikivie [6] that axions could be
detected exploiting the axion-photon coupling. Axions can be converted into photons
in the presence of a static magnetic field, and the emitted photons are collected in a
microwave cavity. The power that can be read by a detector coupled to the microwave
cavity is:

Psig(aγ → γ) = ωres
κ

1 + κ
g2aγγ

ρa
m2

a

B2
0VcCnmlQL. (2.79)

64



Chapter 2. QUAX R&D at LNF 2.4. Goals of QUAX R&D and this thesis work

Subsequently, Krauss et al [37] proposed to exploit the interaction between axions and
electrons to detect the former. If a magnetized medium is put in a resonant cavity, when
the axion couples to the spin of electrons the total magnetization is changed, and this
excites a resonant mode. The power available after this interaction is:

Psig =
κ

1 + κ

e

m
µBnsωaB

2
aVsτmin. (2.80)

The QUAX R&D is mainly directed at increasing these signal powers, that are small
quantities and constitute a remarkable experimental challenge. One tries to enhance the
emitted powers working on the experimental quantities that enter their expressions. The
signal power for an axion-photon interaction (eq. (2.79)) depends on the quantity QLB

2
0 ,

while the power for an axion-electron interaction (eq. (2.80)) depends on τmin, which
contains the spin-spin relaxation time τ2 and the cavity decay time τc defined as:

τc ≡
Q0

ωres
' 70µs

(
Q0

106

)(
14GHz

ωres

)
, (2.81)

and is the time after which 1/e of the energy stored in the cavity is dissipated (the energy
decays exponentially with time).

Therefore the main purposes of the QUAX R&D are:

• to find a microwave cavity with high enough quality factor (∼ 106);

• to find a magnetized material with relaxation time as large as possible;

• to develop a single photon counter for suitable detection of the signal;

• secondly, to ensure a high uniformity of the external magnetic field.

This thesis work concentrates on the first topic. To achieve high quality factors, microwave
cavities made of superconducting materials are employed. Due to the presence of an
external magnetic field (in the first case to stimulate the axion conversion into a photon,
in the second case to polarize the medium) type-II superconductors are involved, because
they possess higher critical fields Bc2 with respect to thermodynamic critical fields Bc of
type-I superconductors (see Sec. 2.2.2 for the definition of the critical fields). During the
period of the present work four superconducting cavities were characterized: a Niobium
cavity, two Niobium-Titanium cavities and a Magnesium Diboride one. Among these, it
was found that the most suitable resonant cavity that can be employed in the QUAX
experiment is the Niobium-Titanium one, showing higher quality factors in the presence
of B0 with respect to the other cavities. To characterize the cavities, the unloaded quality
factors were obtained with a fit procedure, presented in this work. These measurements
are described in Sec. 3.2.
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(a) (b)

Figure 2.11: (a): Picture of a Niobium cavity. The copper coverings on the upper and lower edges of
the cylinder contain the two Niobium lids and are employed to tighten the latter to the
cylindrical walls. On the top there are two coaxial cables, outgoing from SMA connectors,
that contain the antennas connected to the VNA (not shown). (b): The heater in contact
with the external Nb cavity wall is visible.

On the other hand, the study of magnetic materials with high spin density ns and
large relaxation times is carried out at LNL. Currently YIG and GaYIG are being used,
with a relaxation time of about τ2 ' 0.11 µs [43].

2.5 Experimental set-up

This section is dedicated to the set-up of all the instrumentation that serves to the char-
acterization of superconducting resonant cavities studied in the QUAX R&D phase at the
National Laboratories of Frascati (LNF).

Cavities and cryogenic insert. For the scopes of the study the cavities under in-
spection are empty, so their relative permittivity εr and permeability µr are taken to be
εr = µr = 1. The cavities must be fed with some source of power to test them, so they are
coupled to two antennas entering their volume. The Fig. 2.11 shows a cavity of Niobium as
an example. The two cables outgoing from two SMA connectors are coaxial cables, about
1 meter long, that contain antennas coupled to the cavity. The antennas are connected
to the Vector Network Analyzer. The superconducting state is reached with low tempera-
tures, so the cavity has to be inserted in a cryostat. It is therefore mechanically attached
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(a) (b)

Figure 2.12: (a): Cryogenic insert, with the cavity assembled at its edge. (b): Micrometers at the
end of the cryogenic insert. They allow to finely tune the quote of the antennas in the
cavity, with a resolution of 10 µm. The copper cables are the antennas coming from the
cavity.

to a cryogenic insert, shown in Fig. 2.12a. The antennas pass through the insert, and at
its end there are two micrometers (Fig. 2.12b) to finely tune the position of the antennas
inside the cavity. The resolution is 10 µm. The cavity is also isolated from the outside
thanks to an aluminum container (not shown in figure). The reason will be explained in
the paragraph dedicated to the cryostat at page 68.

All the measured cavities have roughly the same dimensions, that are 26,1 mm of di-
ameter and 50 mm of height. Correspondingly they have approximately the same resonant
frequency.

The cavity is provided with a heater (Fig. 2.11b) and a temperature sensor (Cernox),
while the pressure of the cryogenic insert is monitored by a pressure sensor.

Vector Network Analyzer. In our set-up the Vector Network Analyzer (VNA) (shown
in Fig. 2.13), model Agilent E5071C, is the main instrument for radio-frequency measure-
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Figure 2.13: The Vector Network Analyzer (VNA) connected to the antennas through low attenuation
cables.

ments. It sends electromagnetic signals at microwave frequencies towards the cavity from
one port and reads them back from a second port. Its range of frequencies covered goes
from 300 kHz to 20 GHz. The most important quantities measured by the VNA are of
course the frequency dependences of the real and imaginary parts of the scattering pa-
rameters of a network. An important feature, used for the characterization of the cavities,
is the automatic calculation of the loaded quality factor of a resonance curve through the
3-dB method (described in Sec. 3.1.1).

From the ports of VNA two low attenuation cables come out (the black thick cables
in Fig. 2.13). They are connected to the antennas housed in the cryogenic insert through
SMA connectors. As discussed at the end of Sec. 2.2.1, a calibration procedure has been
carried out for these cables, so the reference planes t1 and t2 of Fig. 2.3 are placed at the
beginning of the antennas for our two-port measurements.

Cryostat. A cryostat is an instrument designed to cool the temperature of objects using
cryogenic liquids, as liquid nitrogen or liquid helium. It is possible to control its tempera-
ture, increasing, decreasing or maintaining it constant. Our cryostat is shown in Fig. 2.14.
Schematically it is a cylindrical container made of multiple concentric volumes7, each one
having a different function; this schematization is drawn in Fig. 2.15, showing also the
dimensions of the external case (clearly not in scale). We want to bring the temperature
down to about 4 K in the region where the cavity lies, starting from a room temperature.

7Actually the structure is more complicated, but for the scopes of this chapter it is sufficient to describe
it as a series of concentric cylinders.
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Figure 2.14: The black cylindrical container is the cryostat. Also shown are a vacuum pump (the red
one at the left of the cryostat) and the VNA (above the cryostat).

This would be impossible if the only shielding between the room environment and the
volume at 4 K were the metallic external surface of the cryostat. Indeed, various stages
comprising thermal isolation realized by vacuum volumes and liquid nitrogen (LN2) reser-
voirs are realized. The heat transfer in this systems is mainly due to thermal conduction
of the walls of the cryostat, convection of gases and radiation. To reduce conduction and
convection, in the outer volume of the cryostat vacuum is realized. A pressure of about
(10−5÷10−6) mbar is reached when the system is at cryogenic temperatures. Heat transfer
by radiation is due to the blackbody emission of the walls. The power emitted by a perfect
blackbody follows the Stefan-Boltzmann law:

P (T ) = σsAT
4,

with A the emission surface area and σs = 5.67 · 10−8 Wm−2K−4 the Stefan-Boltzmann
constant. Thus, considering two parallel plates at temperatures T1 and T2 with the same
area and emissivities different from zero, the power transfer per unit area is [51]:

P1→2 ≈ σs
(
T 4
1 − T 4

2

)
. (2.82)

For this reason after the first vacuum hollow there is a liquid nitrogen reservoir at a
temperature of TLN2 ' 77 K, depicted with magenta lines in Fig. 2.15, so that the inner
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Figure 2.15: Simple concept of the concentric volumes in the cryostat. Also shown the cryogenic
insert that connects the cavity and the antennas (in red dotted lines) to the external
environment.

volume is thermally decoupled from the room temperature. After the LN2 chamber,
another vacuum hollow is present. Subsequently a 4He container is found (the green area
in Fig. 2.15). This reservoir is cooled down to TLHe = 4.2 K that is the boiling temperature
of helium under the pressure at sea level (1 bar). Here, immersed in the liquid helium
bath, the superconducting solenoidal magnet is located (shown in red with black crosses in
the figure), which produces the magnetic field inside the cryostat. The last hollow consists
of the experimental volume, in which the test objects are placed, in this case the cryogenic
insert with the cavity. The volume is cooled down to TLHe = 4.2 K thanks to a needle
valve together with a pumping system. The needle valve extracts liquid helium from the
previous container and takes it in the experimental volume. The cavity is enclosed in
an aluminum container, because the helium that evaporates in this last hollow causes the
resonant frequency to shift towards lower values. In fact εr (the relative permittivity) grows
if the helium density is increased, and correspondingly the resonant frequency changes as
fres = f0/

√
εr, where f0 is the resonant frequency in vacuum. Moreover, the helium that

evaporates causes the cavity to vibrate, introducing noise in the measurements. However,
the Al container is filled with some helium gas (∼ 100 mbar) to ensure a heat exchange
between the experimental volume and the cavity.

The experimental volume is provided with a pressure sensor, while the magnet housing
has four temperature sensors at different altitudes to monitor the liquid helium level. A
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Figure 2.16: Sketch of magnet power supply with a superconducting switch. Taken from [51].

heater in contact with the external cavity walls (Fig. 2.11b) is used to change the increasing
rate of the cavity temperature.

Magnet. The magnet providing the magnetic field in the experimental volume is a su-
perconducting one. This is a solenoid made of NbTi wires shielded by a copper matrix, that
has the safely function of dissipating the heat developed in case of quenching. Quenching
consists of a sudden transition from superconducting to normal state in all the supercon-
ductor, and since generally the wires sustain high currents, the amount of power generated
in the transition would cause evaporation of the LHe bath. The magnet’s maximum field
magnitude is 8 T, the bore diameter is 77 mm and the homogeneity degree is 1 part in
103 over a 10 cm diameter sphere about the magnetic center.

The magnet is energized by a power supply through a superconducting switch, schemat-
ically shown in Fig. 2.16. The winded lines represent the magnet wires; they are short-
circuited by the switch, that is a superconducting filament of NbTi (called "persistent
current switch" in the picture). At the edges of the switch also the normal metal cables
are connected, and they carry the energizing current from the power supply. When the
heater is on, the filament is in a normal state and current flows from the cables to the
superconducting wires. When the desired current value (or equivalently a magnetic field
value) is reached, the heater is switched off and the filament transitions to the super-
conducting state, thanks to the cryogenic bath surrounding it, short-circuiting the wires.
From now on the current can flow in the magnet without additional power supply.

Pre-cooling operations. Each volume of the cryostat is connected to the outside with
some valve. Before any operation with the cryostat, they are all pumped with cryogenic
pumps. The vacuum hollows are connected to the same pump and a pressure of about
(10−3÷10−4) mbar is reached (lower values are attained when cooling at cryogenic temper-
atures, because of the cryopumping). All the other volumes are firstly pumped at about
1 mbar, then a flushing process with helium gas is performed. Flushing operations are
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necessary to eject the air that may be present in the cryostat. About 80% of air consists
of nitrogen, and the solidification temperature of N2 is about 63 K. Thus, when liquid
helium is inserted, if nitrogen is present it undergoes an unwanted solidification. This can
cause the needle valve to get stuck.

The flushing procedure is as follows. After pumping, helium gas is introduced in the
magnet housing (that subsequently will host liquid helium) and then it is again pumped
away. The operation is iterated two or three times. Afterwards, this volume is filled
again with gas helium and a small overpressure is realized. Then, opening the needle
valve, helium is transferred from the magnet hollow to the experimental volume, and
consequently it is pumped away. Also these steps are repeated two or three times.

After that, the cooling procedure can start: firstly the cryostat is filled with liquid
nitrogen, and when a temperature of ∼ 100 K is reached liquid helium is inserted. This
reduces the initial helium consumption; in fact helium has a small latent heat and if it got
in contact with surfaces at room temperature it would quickly evaporate.

All the instrumentation is controlled via the software LabVIEW. In Figures 2.17 and
2.18 the main functions of the control panel are shown. In the panel of Fig 2.17a the
features that allow to change some parameters of the VNA, like the frequency range
and the central frequency of the spectrum, are reported along with an indicator of the
loaded quality factor determined by the 3-dB method (Sec. 3.1.1). The controls shown
in Fig. 2.17b allow the storage of the S11(ω), S21(ω) and S22(ω) data. Figure 2.18 shows
the panels that control the thermodynamic parameters: temperature and pressure. The
temperature sensor is positioned on the external surface of the cavity wall. The first
pressure value refers to the pressure measured in the experimental volume, where the
cryogenic insert is stored, while the second value refers to the pressure inside the aluminum
container for the cavity.
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(a)

(b)

Figure 2.17: (a): Part of the panel control that allows to set some of the VNA parameters, such as
the center frequency of the sweep, its range and the power injected in the cavity. Also
shown the QL value measured with the 3-dB method. (b): These features allow to select
the curves to store and their visualization format, like linear units or decibels.

(a) (b)

Figure 2.18: (a): Temperature controls. The values shown are the temperature measurement in kelvins
and the resistance value, in ohms, of the carbon resistor. (b): Pressure controls. The
first value is the pressure of the experimental volume, the second value is the pressure in
the Al container.
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CHAPTER 3

Characterization of the resonant cavities

In this final chapter the measurements of the microwave superconducting cavities available
at LNF during the period of this work are described, and the results obtained are presented.
In Sec. 3.1 the methods to determine the quality factors are discussed. In particular the
3-dB method is used by the VNA to measure QL values, while a modified Lorentzian fit
was employed in this work to characterize the unloaded quality factors. In Sec. 3.2 the
measurements performed are reviewed and commented.

3.1 Q determination

The loaded quality factor QL of a resonator is easily found by measuring the bandwidth of
a resonance curve. Nevertheless, looking at eq. (2.49) QL = Q0/(1 + κ), where now with
two ports κ is κ1+κ2, we see that QL is a function of the couplings to the external circuit.
Thus the determination of the unloaded Q0 is needed to fully characterize a resonant
cavity.

There are many techniques to measure the QL and Q0 quality factors and resonant
frequencies [52, 53, 54]. Nowadays the measurements are digital and automatically made
by network analyzers or made using data collected by them. The techniques employed
in this work are the 3-dB method used by the VNA for the determination of QL and a
modified Lorentzian fit to extract the Q0 values.
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3.1.1 QL measurements through the 3-dB method

The 3-dB method, treated in more detail in Appendix B, relies on the measurement of the
bandwidth of the resonance curve S21(ω) at a particular value. The loaded quality factor
of a resonator is determined by:

QL =
1

BW
≡ ω0

ω2 − ω1
, (3.1)

where BW is a fractional bandwidth. The frequencies ω1 and ω2 in its expression are the
frequencies at which |S21(ω)|2 = (1/2)|S21(ω0)|2. The difference between the |S21(ω)|2 and
|S21(ω0)|2 values in decibels is 3 dB (see eq. (B.8)). Thus it suffices to find the maximum
of the |S21|2 curve (occurring at ω0) and measure the frequencies ω1 and ω2, for which
the curve has a value 3 dB lower than |S21(ω0)|2, to determine the loaded quality factor
(eq. (3.1)). This determination of QL is automatically performed by our Vector Network
Analyzer. As explained in the next subsection, these QL values can only be used together
with a Lorentzian fit to extract the Q0 factors, since the VNA fails to measure QL when
the two antennas interfere.

Note that one could extract the Q0 values by only performing a fit of the S11 and S21
functions, but this would require to store S11 and S21 data for all the magnetic field values1

and analyze them. This is a time-expensive procedure. Then, we proceed as follows:

• We take some points as reference values (see the star black points in Fig. 3.6) and
store offline the S11 and S21 data for these points.

• We perform the fit procedure (see the next subsection) to extract the Q0 values for
the reference points.

• We convert all the measured QL points in Q0 values through a linear interpolation
between the reference points.

This scheme is again motivated and expanded in the next subsection.

3.1.2 Q0 determination through a fit procedure

As anticipated at the beginning of this chapter, the unloaded quality factor Q0 is necessary
to fully characterize a resonant cavity. The standard measurements of Q0 [55, 53] rely
on, separately, reflection-type methods, in which S11 is measured, or transmission-type
measurements. In the latter, S21 is determined in the condition that the coefficients κ1
and κ2 are equal, so that using eq. (B.6) at resonance and defining κ ≡ κ1 = κ2, it
becomes:

S21(ω0) =
2κ

1 + 2κ
,

1We are interested in Q0(B) dependences, see Fig. 3.6 for an example.
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and determining κ by the inverse yields:

κ =
S21(ω0)

2 (1− S21(ω0))

Using now eq. (2.49), the unloaded quality factor can be calculated knowing QL and
S21(ω0):

Q0 =
QL

1− S21(ω0)
. (3.2)

Often cited in the literature is also the Lorentzian fit procedure [52, 56] to determine the
quality factor and the resonant frequency. The acquired frequency and S21 data are fitted
with an ideal Lorentzian curve. In fact, taking the expression of the complex transmission
coefficient (eq. (2.57)) and calculating its magnitude as |S21(ω)| =

√
Re2(S21) + Im2(S21),

gives:
|S21(ω)| =

S21(ω0)√
1 +Q2

Lδ
2
. (3.3)

The trend of this curve is shown in Fig. 3.1b.
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Figure 3.1: (a): the ideal reflection coefficient. (b): the ideal Lorentzian resonance curve. Both
quantities are plotted in arbitrary units, and the parameters are S21(ω0) = 1, QL = 700,
ω0 = 14 and κ = 0.1.

Note that from eq. (3.2) a Q0 value could be determined measuring QL with the 3-dB
method of subsec. 3.1.1 and S21(ω0), but this requires κ1 = κ2. In our case the coupling
coefficients κi are neither equal nor under control. In fact the antennas are very close to
each other, within a distance of about 1 cm, and this causes a cross-talk between them
(they exchange energy with each other). Then eq. (3.2) is no longer reliable. Moreover,
when the cross-talk is present, the VNA measures wrong values of QL: this is due to the
fact that the cross-talk causes a distortion of the S21 curve, introducing an asymmetry as
shown in Fig. 3.2b, but the instrument assumes a symmetric curve to make its calculations.
The distortion of the cross-coupling between antennas to the S21 shape also causes the
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Figure 3.2: (a): a shot of the VNA screen, showing the frequency sweep. There is a resonant mode
at the central frequency, with its right tail distorted by the cross-talk and a close resonant
mode to the right. The y axis is in dB units. (b): an example of the S21 asymmetry for a
NbTi cavity mode at about ν0 ≈ 14.46 GHz, at a temperature of T = 4.2 K.

ideal Lorentzian fit to fail.
For these reasons we determine the quality factor executing a combined fit of |S11(ω)|

and |S21(ω)|, using a customized Lorentzian model for the S21(ω) curve. For only some2

of the QL values measured by the VNA we store offline the data of the corresponding S11
and S21 scattering parameters. The fit is executed to obtain a Q0 value for these points.
Subsequently, a linear interpolation function is used to convert all the measured QL values
in unloaded quality factors. This method has been first tested with the Niobium cavity
(Sec. 3.2.1), and Fig. 3.7 shows the points where the fit was executed as black squares.
Between each couple of QL fitted values there are all the other measured QLs, and these
are converted in Q0 values thanks to the interpolation function shown as a grey line.

The S11 and S21 data stored offline consist in the values of frequency ν, real part
Re(Sij) and imaginary part Im(Sij) of all the sampled points of the curves. The default
sampling of the instrument consists of 1001 points for any choice of the frequency range,
so that the resolution of a frequency sweep is ∆ν = (νmax − νmin)/1001.

Fitting function. In Ref. [56] the importance of a fitting strategy with non-idealities
(e.g. adding asymmetries to the S21 curve) is emphasized. The authors stress that the
best-behaving fitting approach for their data is the one that considers an ideal Lorentzian
curve with the addition of a cross-coupling term due to the ports. In our case both the
cross-coupling and the presence of spurious modes are taken into account, because they

2As shown in Fig. 3.6a the fitted points are taken at different magnetic field values. The star points
are approximately equally separated, and they cover the whole range of magnetic field values.
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are both present (see Fig. 3.2a). Two additional modes are considered, one called S
(1)
21

with resonant frequency ν1 < ν0, where ν0 pertains the mode of interest, and one called
S
(2)
21 with ν2 > ν0. They parametrize the skewness of the main curve with their tails.

Since they parametrize two modes, S(1)
21 and S

(2)
21 are written as Lorentzian curves alike

S
(0)
21 of eq. (2.57). The most general form of these quantities is obtained by adding a phase

to each one and considering the factor e−2jβl due to a phase shift of the waves travelling
through the antennas (see eq. (2.59) and its derivation). However, e−2jβl can be dropped
since it is a common phase to each term, irrelevant when considering the modulus, and
it was found that it suffices to consider only one relative phase between the resonances.
Thus the total S21 curve has been written as:

STOT
21 = S

(0)
21 e

jθ + S
(1)
21 + S

(2)
21 .

Note that to take into account the cross-talk of the antennas, it would be sufficient to
add a complex number to the ideal Lorentzian curve. Thus in this case the extra terms
S
(1)
21 and S(2)

21 written as Lorentzian functions parametrize both the cross-coupling and the
spurious modes. Taking equation (B.6) and redefining it adding the ejθ factor, the S(0)

21 of
the mode of interest is:

S
(0)
21 =

S
(0)
21 (ν0)

1 + jQLδ
ejθ =

2
√
κ1κ2

1 + κ1 + κ2 + jQ0δ
ejθ,

where now κ1, κ2, Q0 and ν0 (present in the definition of δ, see eq. (2.30)), as well as θ,
are parameters to be determined by the fit. After rationalization, the real and imaginary
parts of S(0)

21 are:

Re(S
(0)
21 ) =

S21(ν0)

1 +Q2
Lδ

2
cos θ − S21(ν0)QLδ

1 +Q2
Lδ

2
sin θ, (3.4a)

Im(S
(0)
21 ) = − S21(ν0)

1 +Q2
Lδ

2
sin θ − S21(ν0)QLδ

1 +Q2
Lδ

2
cos θ. (3.4b)

The expression of the other modes is simply:

S
(k)
21 = Re(S

(k)
21 ) + j Im(S

(k)
21 ) =

A(k)

1 +
(
Q

(k)
L δ(k)

)2 − j
A(k)Q

(k)
L δ(k)

1 +
(
Q

(k)
L δ(k)

)2 ,
with k = 1, 2. Here A(k) (real), Q(k)

L and νk (present in δ(k)) are the maximum values of
the resonances, the loaded quality factors and the resonant frequencies, respectively, of
the spurious modes. The real and imaginary parts of the total S21 can be taken to be the

78



Chapter 3. Characterization of the resonant cavities 3.1. Q determination

sum of the three functions defined above:

Re(STOT
21 ) =

∑
k

Re(S
(k)
21 ) Im(STOT

21 ) =
∑
k

Im(S
(k)
21 ), (3.5)

and then the modulus:

|STOT
21 | = α21

√
Re2(STOT

21 ) + Im2(STOT
21 ), (3.6)

where α21 is a real constant parameter accounting for the cables attenuation, typical of
transmission lines. This is the function used to fit the S21 data.

On the contrary, for the scattering parameter S11 only the contribution of the mode
of interest, S(0)

11 , is considered. This is a good approximation for high Q values, since
correspondingly the bandwidths are very narrow. The function has some discrepancies
with data when lower Q fits are executed, because the power spectrum is modulated by
a sinusoidal function due to spurious reflections in the cables (see Fig. 3.8b). Taking
eq. (2.54), the real and imaginary parts are:

Re(S
(0)
11 ) =

κ21 − (1 + κ2)
2 −Q2

0δ
2

(1 + κ1 + κ2)2 +Q2
0δ

2
, (3.7a)

Im(S
(0)
11 ) =

−2κ1Q0δ

(1 + κ1 + κ2)2 +Q2
0δ

2
, (3.7b)

and then the modulus:

|S(0)
11 | = α11

√
Re2(S

(0)
11 ) + Im2(S

(0)
11 ), (3.8)

where α11 is the real and constant attenuation parameter for this function. This is the
function used to fit the S11 data.

Finally, the ROOT software routine for fitting unidimensional histograms has been
used to perform the combined fit of the S11 and S21 shapes. Their data are put beside in
a single histogram, as shown in Fig. 3.3. To do this, the frequency values of the S21 curve
have been shifted as follows:

f = ν + (νmax − νmin),

where ν are the frequencies acquired by the VNA and (νmax − νmin) is the range selected
with the instrument. With this definition, the fitting function has been built as follows:

FF =

|S(0)
11 (ν)| if νmin ≤ ν < νmax,

|STOT
21 (ν)| if νmax ≤ f < (2νmax − νmin).

(3.9)

This is the function that parametrizes the data to extract the unloaded quality factor, and
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Figure 3.3: Example of a fit executed on the NbTi cavity mode TM010, with resonant frequency
ν0 ' 9.114 GHz at T = 4.2 K. The S21 data (the peak on the right) are put beside the
S11 data with a frequency shift. The blue line represents the data taken from the VNA,
while the red line is the fitting function.

has a total of 13 free parameters: κ1, κ2, Q0, Q(1)
L , Q(2)

L , ν0, ν1, ν2, A(1), A(2), α11, α21

and θ.
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Table 3.1: The table reports the values of critical temperatures and critical magnetic fields of the
superconducting materials involved in these measurements. All the critical temperatures
are taken by the measured data with no applied magnetic field, B = 0 T. The critical
fields Bc1 and Bc2 of Nb are estimated by our data, while the value of Bc2 of NbTi is a
theoretical value at T = 0 K taken from [57] (Bc1 is very small). The estimate of Bc1 for
MgB2 is taken from [58], while Bc2 is estimated at 4 K from the work of Ref. [59].

Nb NbTi MgB2

type bulk film bulk
Tc [K] ' 9 ≈ 7.8 ≈ 38
Bc1 [T] ≈ 0.22 0.025÷ 0.048
Bc2 [T] 0.5÷ 0.6 13 ≈ 15

3.2 Measurements

Four cavities have been studied during the period of this thesis work: a Niobium (Nb)
cavity, two Niobium-Titanium (NbTi) cavities and a very first test of a Magnesium Di-
boride (MgB2) one was performed. Niobium is an element, NbTi is an alloy and MgB2

is an ionic compound. They all are type-II superconductors (see Sec. 2.2.2), and their
main properties are summarized in Tab. 3.1. Since in both the QUAX operation modes
(one testing gaγγ and the other testing gaee, see Sec. 2.1) a static magnetic field has to be
applied, we are interested in the unloaded quality factor Q0 dependence on the external
magnetic field B. This gives informations about the superconducting properties of the
cavities, such as the resistivity and the type of flux pinning. In fact Q0 is directly related
to the surface resistivity (eq. (2.31)) and then to RF losses. The Q0(B) dependence also
allows to deduce some results concerning the sensitivity for the axion detection. The trend
of the loaded quality factor QL with temperature is also studied. These measurements and
the interpretation of the results are given in this section. The Niobium-Titanium cavity
is, among the studied cavities, the most suitable for the scopes of the QUAX experiment.
Here the notions of superconductivity given in Sec. 2.2.2 are used, as the Meissner state,
fluxons, flux flow regime, flux flow resistivity and losses, etc.

Measurement procedures

Before starting with the analysis of the cavities, here a summary of the measurement
procedures is given.

(a) The resonant cavity is assembled to the cryogenic insert (Fig. 2.12a). The latter is
inserted in the cryostat (Fig. 2.14) at room temperature.

(b) The flushing process with helium gas is performed to clean the cryostat. Subsequently,
it is cooled with liquid nitrogen, and when temperature reaches ≈ 100 K the cryostat
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is filled with liquid helium. T = 4.2 K is reached.

(c) Q dependence on B at T = 4.2 K: the magnetic field is increased since Bc2 is exceeded,
while the VNA acquires the QL values. Then B is brought again to zero. During this
measurement the waveforms of S11 and S21 are stored offline.

(d) Q dependence on T : a magnetic field value is chosen and kept fixed. The heater
(Fig. 2.11b) is used to warm the cavity since Tc is exceeded, while the VNA acquires
QL data. Then the cavity is cooled again, with the same applied field value.

(e) Data analysis is performed to extract Q0 values with the fit of the S11 and S21 wave-
forms.

3.2.1 Niobium resonant cavity

The Niobium cavity was the first superconducting cavity that has been tested, and was
mainly used to improve the experimental set-up and to test the fit procedure. As discussed
below, the Nb cavity cannot be used in the QUAX experiment, because it has a too small
critical field Bc2 (see Sec. 2.2.2 for the definition of the critical field).

In a first measurement the Nb cylinder was closed with copper lids, that allowed to
make an aperture to house a Hall probe, with which the magnetic field inside the cavity was
directly measured. At this time the cavity was not isolated with the aluminum container3.
The magnetic field values inside the cavity were taken with a Hall probe and are plotted in
Fig. 3.4. Both Zero-Field Cooling (ZFC) type and Field-Cooling (FC) type measurements
were performed, but in a slightly different way as described in Sec. 2.2.2.

• The ZFC data are obtained, as illustrated in Sec. 2.2.2, by cooling the sample at
the desired temperature, T = 4.2 K in our case, with no applied magnetic field.
Once reached this working temperature, the magnetic field is turned on, and is
increased until Bapp > Bc2(at 4.2K) is reached. This field value causes the material
to transition to the normal state.

• At this point the sample is not re-heated (and this is the difference with the procedure
of Sec. 2.2.2), and the magnetic field is brought back to zero at fixed temperature
(always 4.2 K), giving the FC-type measurement.

On the basis of what was just explained, a graph showing ZFC and FC data (as Fig. 3.4)
has to be read starting from the ZFC data at Bapp = 0 T. Then magnetic field values
must be followed until the maximum applied field is reached. From this point the FC data
must be taken into account, following decreasing Bapp fields until 0 T (still on the FC
curve).

3See the paragraph "Cryostat" at page 68 for a discussion on why this was introduced.
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Figure 3.4: Measurement of the trapped magnetic field in the Nb cavity versus the applied magnetic
field at temperature T ' 4 K. The measurement was performed with the Hall probe. ZFC
data is in red and FC data is in blue. The value of the field at which flux flow starts is
also indicated.

In Fig. 3.4 ZFC data is in red and FC data is in blue; the Hall probe measures magnetic
field values, so the ZFC curve indicates that applied magnetic fields Bapp . 0.2 T are com-
pletely excluded from the superconductor, corresponding to the Meissner state, where B
inside the cavity is zero (see Sec. 2.2.2). For higher values, in the range 0.2 T . B . 0.28 T

flux quanta (paragraph "Type-II superconductors" in Sec. 2.2.2) start to penetrate the ma-
terial. Above B ≈ 0.285 T the sample enters the flux flow regime (pag 58 of Sec. 2.2.2),
where the flux tubes move and the hysteretic behaviour of the magnetization is not present.
This value of magnetic field can be extracted thanks to the deviation of the FC curve (blue
data) with respect to the ZFC curve. In fact, when the magnetic field is turned off, the FC
data show that there is trapped field inside the cavity, because flux lines are not perfectly
expelled. This behaviour is due to the presence of flux pinning (see page 58 of Sec. 2.2.2).

A second measurement was realized with the cavity closed with Nb lids, one of which
had two apertures allowing the antennas to enter the cavity volume. The antennas were
not movable, and the aluminum container to isolate the cavity was not yet present. In
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Figure 3.5: Loaded quality factor of the TM110 of the Nb cavity at T ' 4 K. In red the ZFC data
and in blue the FC data. Also shown the value of magnetic field at which flux flow starts.

this case a different quantity was measured: the loaded quality factor QL dependence on
the external field B, varying from 0 T to 0.6 T (at temperature T ' 4.1 K). Both ZFC
type and FC type measurements were performed, shown in Fig. 3.5. In the ZFC curve the
quality factor maintains a constant value until about B ≈ 0.22 T, since the magnetic field
is excluded (Meissner state). Then it falls off rapidly because the superconductor starts
to enter its mixed state, and then undergoes flux flow. The reason of the quality factor
decrease resides in the fact that the flux tubes penetrating the superconductor have a
normal core, that dissipate energy. In a flux flow regime the fluxons move, and this results
in the presence of a resistivity ρf (as described in Sec. 2.2.2, eq. (2.71)). Furthermore, as
can be seen from the plot, the QL values of the FC curve (blue data) do not reach the
same values as the ZFC curve, at fields B . 0.285 T. As before, this is an indication
of the presence of trapped magnetic field (or a magnetization different from zero) in the
superconductor, and this hysteretic behaviour is due to the pinning. So, when turning
the magnetic field off, flux lines are not completely expelled, but some are trapped inside.
Thus the remained normal cores continue to dissipate energy.

It must be noted that the fixed position of the antennas doesn’t allow to tune the
coupling coefficients κ1 and κ2, and this reflects on the low measured values of QL at
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Figure 3.6: (a): the plot shows the trend of Q0 in the range 0 T ≤ B ≤ 0.5 T for the TM110 mode
of the Nb cavity (resonant frequency ν0 = 13.994 GHz), at temperature T = 4.2 K. (b):
a detail of the ZFC and FC curves for B > 0.17 T; at about B ' 0.28 T the FC curve
deviates from the ZFC curve, indicating the presence of trapped magnetic field in the bulk
of the cavity.

small B fields for the ZFC curve with respect to the expected ones, of about a million.
Furthermore, the absence of the aluminum container lets the helium vapours enter the
cavity, and this causes the resonant frequency to shift and to strongly vary with temper-
ature fluctuations (paragraph "Cryostat" at page 68).

The last and ultimate set-up, instead, includes the possibility to finely tune the depth
of the antennas inside the cavity thanks to the micrometers, as described at page 66, and
the aluminum container is used. The latter is filled with some helium gas (∼ 100 mbar)
to ensure a thermal contact between the liquid helium in the experimental volume and
the cavity, without appreciably changing its resonant frequency. The Nb cavity employed
has been shown in Fig. 2.11. In this configuration the application of the fitting function
of eq. (3.9) was tested for the first time. Fig. 3.6a shows the Q0 values extracted from
the fit procedure for both the ZFC curve (blue data) and FC curve (red data). Data are
relative to the TM110 mode (see Sec. 2.3 for a description of the modes), with resonant
frequency ν0 = 13.994 GHz at T = 4.2 K. We see that in this case the cavity mode
reaches Q0 ' 1.8 · 106 for magnetic fields B . 0.24 T, corresponding to QL ' 1.5 · 106 (see
Fig. 3.7), thanks to the possibility to have a small coupling between the cavity and the
power source, tuning the antennas.
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Figure 3.7: The correspondence between QL values and interpolated Q0 values for the Nb cavity. The
black squares are the fitted data and the line represents the interpolation function. The
error bars are not present, see the discussion in the text.

The star black points in Fig. 3.6a represent the actual points for which the fit to achieve
the unloaded quality factor was performed. Then, a linear interpolation function of the
ROOT software was used to obtain all the other Q0 values between the fitted points,
from the QL data acquired by the VNA. In Fig. 3.7 the correspondence between Q0 and
QL values is shown for the ZFC data of the TM110 mode, along with the interpolation
curve that allows to associate a Q0 value for each QL. No uncertainties are associated
to the experimental points on the (Q0 vs QL) figure. The uncertainty on the single QL

measurement should come from the VNA. However, as stated in Sec. 3.1.2, the instrument
fails in the case of two, closely placed, interfering antennas. Thus the couplings κ1 and
κ2 are not under control. Neither the Q0 uncertainties are present in the figure, but
have been added in the (Q0 vs B) plots. See the next subsection (page 88) for their
evaluation. From this Q0 uncertainty analysis it is also seen that κ1 and κ2 are affected
by large uncertainties, even 100%. However they don’t limit the Q0 determination, since
Q0 values are affected by uncertainties up to 10%. Note that knowing the uncertainties
on Q0 and κ1 and κ2 from the fit analysis, the uncertainty on the measured QL values
can be propagated (see eq. (2.49)). Having an uncertainty on directly measured QL values
can be useful for future cavity characterizations. Moreover, lower uncertainties on Q0 and
mostly on κ1 and κ2 (and thus on QL) could be achieved improving the sensitivity of the
fit function to the data. In particular non-idealities can be added to the S11 curve, such
as a frequency-dependent slope and a skewness.

The trend of Q0 in dependence on B is the same as in the previous measurement
(Fig. 3.5). The cavity remains in a Meissner state until B ' 0.22 T, then enters the
mixed state and, at about 0.28 T, flux flow begins. From the detail of Fig. 3.6b it is
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evident the deviation of the FC curve from ZFC curve, at B ' 0.285 T. In the region
0.24 T < B < 0.275 T this Nb cavity shows a flux pinning independent of the applied
field. This is probably due to a different loss mechanism dominating in this region.

From the detail of Fig. 3.6b we also see that the data approaching B = 0.5 T is almost
flat, and this indicates that the superconductor is almost in the normal state. Although
the critical magnetic field Bc2 cannot be determined by these data, we stress without the
claim of being precise that Bc2 of this Nb cavity is situated between 0.5 T and 0.6 T.
Instead, the critical magnetic field Bc1 can be taken to be approximately Bc1 ≈ 0.22 T,
the field value after which the Meissner state seems to end.

Note that, from an applicative point of view, a strong pinning in a superconductor
prevents it from dissipating energy inhibiting the flux flow, and this implies that quality
factors are maintained high even with applied magnetic fields. Although the Q0 values of
the FC curve for B . 0.24 T are much smaller than ZFC values, this Nb cavity seems
not to have a strong pinning, because flux flow begins soon after the transition from the
Meissner to the mixed state. In any case, a Nb cavity is not suitable for the QUAX
detection technique exploiting magnetized media. From eq. (2.7) we see that the search
for an axion with mass ma ' 58 µeV would require a magnetizing field B ' 0.5 T, that
is very close to the critical field Bc2 of this Niobium cavity. Working with magnetic fields
B < 0.5 T would also limit the axion-photon coupling and the signal power associated
with it, that depends quadratically on B (eq. (2.79)).
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Uncertainties of the Q0 determination

In this paragraph the procedure to assign an uncertainty to the Q0 extracted values is
described. From Fig. 3.6a it is seen that the ZFC curve can be divided into three regimes,
as described above, and the Q0 values in these regions have different error bars. This
is justified by the fact that for high Q0 values (∼ 106) the bandwidth is very narrow,
and then the S11 curve is only slightly affected by a slope due to frequency-dependent
attenuation or by cross-coupling between antennas. It follows that the fit is more accurate
in this region. On the contrary, for lower Q0 values (. 105) the S11 curve is more affected
by the aforementioned distortions, and it deviates from the ideal shape shown in Fig. 3.1a.
Figure 3.8 shows the comparison of the cases just described. On the other hand, the S21
data are always well fitted, thanks to the more elaborate fit function employed for S21 (see
Sec. 3.1.2).
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Figure 3.8: (a): S11 curve for B = 0.22 T with the fitting function (in red); the quality factor here
is Q0 ' 1.47 · 106. The plateau of the curve assumes the same values before and after
the resonance. (b): S11 curve for B = 0.5 T and fitting function; Q0 ' 5.93 · 104. The
plateau is distorted by the sinusoidal modulation due to spurious reflections in the cables.

The Q0 error bars are assigned by taking the waveforms (Fig. 3.8) of the fitted points
of each region (the star black points in Fig. 3.6) and repeating the fit procedure varying
the frequency range of the S11 fit for each point. The Q0 values obtained are mediated,
and a percentage error is assigned as:

σQ =
δQ

Q0

=
Qmax −Qmin

2Q0

, (3.10)

where δQ is the semi-difference of the Q0 values obtained by repeating the fit, and Q0 is
the mean of that values. After this analysis, the uncertainties given for the ZFC data in
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Figure 3.9: Temperature dependence of the loaded quality factor of TM110 mode of Niobium, from
T = 4.3 K to T = 10 K, with B = 0 T. The transition from superconducting to normal
state occurs at Tc ' 9 K. The errors on the temperature are negligible, while the error
bars of QL are not present, see the discussion in the text.

the three regions are:

• σQ = 1% in the range 0 T ≤ B ≤ 0.22 T;

• σQ = 8% in the range 0.22 T < B ≤ 0.25 T, where the transition occurs;

• σQ = 8% in the range 0.25 T < B ≤ 0.5 T.

The uncertainties assigned at FC data for B < 0.24, where the trapped field is present,
are the same as for B > 0.25 (8%).

The fit procedure described in Sec. 3.1.2, however, can be further improved by parametriz-
ing the S11 curve with non-idealities. These can be, for example, a slope and a skewness
that add to the ideal S11 shape.

Temperature dependence. The temperature dependence of the loaded quality factors
of the samples was also studied. For the Niobium cavity this dependence at B = 0 T is
plotted in Fig. 3.9: QL decreases quite linearly as the temperature increases and then a
plateau is reached. The temperature value at which this occurs can be taken as the critical
temperature, denoting the transition from the superconducting to the normal state. Fig 3.9
is taken for the TM110 studied mode with B = 0 T, and the critical temperature is found
to be about Tc ' 9 K, while the plateau has a value of QL ≈ 30000. However, since B
and T are two thermodynamically coupled quantities for superconductors, if a magnetic
field is applied the critical temperature results lowered.
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The plot also points out the importance of keeping the temperature constant during
an experiment involving magnetic fields applied to superconducting microwave cavities,
because superconducting losses are strongly dependent on temperature. Finally, the tem-
perature dependence of QL for Niobium suggests that, at least with B = 0 T, going to
lower temperatures (e.g. hundreds of mK) could improve the quality factor.

3.2.2 Niobium-Titanium resonant cavities

We have seen that a Niobium cavity can’t be used for the QUAX goals, since it has
a small critical magnetic field Bc2 compared to the magnetic field necessary to polarize
a magnetic sample (B ' 0.5 T to search for a mass ma = 58 µeV). Thus we need a
superconductor with higher Bc2. Niobium-Titanium meets this constraint (see Tab. 3.1),
which makes it a good candidate to be used for QUAX cavities. Furthermore, the resistive
losses decrease with Bc2, because the surface resistance is proportional to the resistivity,
Rs ∝ ρ, and in the Bardeen-Stephen model (Sec. 2.2.2) the resistivity in the flux flow
regime is ρf = ρnB/Bc2. Two types of NbTi cavities were studied: a simple Niobium-
Titanium cavity and a Niobium-Titanium cavity contaminated with nitrogen, NbTiNx<1

(x < 1 indicates a non stoichiometric ratio).

Manufacturing of NbTi cavities. Both the Niobium-Titanium Nitride cavity and
the Niobium-Titanium cavity were manufactured in the same way4. The superconducting
film has been deposited on two copper semi-cells, constituting the two halves of the cavity,
with a sputtering technique. The thickness of the film is about (3÷ 4) µm. The semi-cells
are shown in the picture of Fig. 3.10, where the NbTi film is recognized by the silvery
color region. From the figure the unusual shape of the cavity is also evident . This was
not designed as a simple cylinder. The substrate on which the NbTi film is deposited
has a cylindrical form, but the edges of the cylinder are ended with conic-shaped regions.
From a field point of view, the absence of two lids that close the cylinder doesn’t affect the
electromagnetic cavity modes. In fact, in the conic region the radius decreases continuously
and correspondingly the cutoff frequency of both TE and TM modes becomes higher (from
eq. 2.77 fc depends on the inverse of the radius). Here, then, the modes become evanescent
and cannot propagate, and this is equivalent to have metallic lids at the edges of the
cylinder-shaped region. The absence of the lids also allows to reduce resistive losses, thus
increasing the quality factor with respect to a cavity closed with conducting lids at both
edges. The antennas enter the cavity from two bores made in one of the conic regions.

Actually the main volume is not perfectly cylindrical, but has two diametrically oppo-
site convexities with the function of splitting the frequency of degenerate resonant modes,
allowing to separately resolve them. In fact the convexities spoil the cylindrical symme-

4These cavities were manufactured at LNL.
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Figure 3.10: The two NbTi semi-cells that constitute the two halves of the cavity. The silvery color
indicates the presence of a NbTi film, sputtered only on the cylindrical volume. The
substrate on which the NbTi is sputtered is made of copper.

try that makes two modes degenerate. One of the convexities is depicted in the cavity
simulations of Fig. 3.14.

Niobium-Titanium cavity

Three resonant modes were taken into account for the NbTi cavity: a TM010 mode, that
thanks to its field configuration is useful to the detection of axions via the Primakoff
effect (see Sec. 2.3), and two TM110 useful to the QUAX detection technique exploiting
magnetized media. The TM110 resonant modes are not degenerate, but indeed they have
different resonant frequencies because of the presence of the convexities. In the following
the results for these modes are presented.

TM010 mode. This mode was found at frequency ν0 = 9.114 GHz. The same analysis
was carried out as for the Niobium cavity. The Q0 dependence on the applied field B

is shown in Fig. 3.11. The highest Q0 value obtained is about 1.2 · 106 and the smallest
value, at B = 5 T, is about 2.67 · 105. This curve is quite different from that for Niobium,
because we cannot see the Meissner regime and the point where fluxons start to penetrate,
but rather the Niobium-Titanium presents immediately a decaying trend. This is because
NbTi has a very small critical field Bc1, that cannot be determined with our precision
grade, and the sample is in a flux flow regime already with small magnetic fields applied
to it. Performing the FC measurements, it is found that trapped magnetic field is present
below a magnetic field of about B . 0.7 T, and at B = 0 T FC and ZFC curves don’t
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Figure 3.11: Unloaded quality factor of the TM010 mode of NbTi with resonant frequency ν0 =
9.114 GHz, at T = 4.2 K. The magnetic field is varied in the range 0 T ≤ B ≤ 5 T.
Blue data correspond to ZFC measurements, while the FC points are plotted in red.

show great differences. This could indicate that this material has not a strong pinning,
because the magnetic field can be expelled through the cuts that divide the two half-cells
of the cavity.

To assign the uncertainties on Q0, the (Q0 vs B) plot was divided in three regions, one
between 0 T ≤ B ≤ 0.4 T, where the curve has a high slope, one between 0.4 T < B ≤ 3 T

and the last one between 3 T < B ≤ 5 T. The uncertainties are:

• σQ = 2% in the range 0 T ≤ B ≤ 0.4 T;

• σQ = 4% in the range 0.4 T < B ≤ 3 T;

• σQ = 5% in the range 3 T < B ≤ 5 T.

The measured values of Q0 for NbTi are interesting if compared with the quality factor
of copper, that is the most common material employed in the manufacturing of resonant
cavities. A copper cavity was available at the beginning of the QUAX R&D, but only
the TM110 mode at ν0 ' 14 GHz was measured. From simulations with ANSIS-HFSS the
unloaded quality factor of the copper cavity at ν0 ' 9 GHz is found to be Q0 ' 80 000.
It follows that the ratios of the NbTi quality factor on the copper quality factor for the
TM010 mode are, at B = 0 T and B = 5 T, respectively:

Q0(NbTi)
Q0(Cu)

∣∣∣∣
0T

' 14.7,
Q0(NbTi)
Q0(Cu)

∣∣∣∣
5T

' 3.34. (3.11)
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Figure 3.12: The plot shows the Q0B
2 quantity in dependence on B for the TM010 mode of NbTi

at ν0 = 9.114 GHz (blue data) and copper at ν0 ' 9 GHz (red data). This quantity
enters the expression of the power emitted in photons after an axion-photon interaction.
In the NbTi data the error bars are covered by the markers. They are simply evaluated
by the uncertainty propagation, having assigned σB = 0.001 T, that is the magnetic field
resolution.

Now, the power emitted in photons after the interaction of axions with the static magnetic
field in a conventional haloscope (eq. 2.17) is proportional to:

Psig ∝ α(axions)B2Q0 , (3.12)

where α(axions) contains all the model-dependent axion parameters. B and Q0 are pa-
rameters of the experiment, so the quantity B2Q0 can be governed, and the signal power
can be enhanced choosing the right material for a resonant cavity. Fig. 3.12 shows the
quantity Q0B

2 for Niobium-Titanium (blue points) and copper (red points). The ratio of
this quantity for NbTi and copper at B = 5 T is equal to their quality factor ratios:

B2Q0(NbTi)
B2Q0(Cu)

∣∣∣∣
5 T

' 3.34. (3.13)

This is an unprecedented result and it follows that the sensitivity of a conventional axion
haloscope involving NbTi resonant cavities can be enhanced by a factor of 3.34 with
respect to a copper cavity. Moreover, this result is also significant from a technological
and economical point of view, because it implies that working with NbTi at B = 5 T

is equivalent to work with a copper cavity at B = 9 T, where the same Q0B
2 value is
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Figure 3.13: Unloaded quality factor of the TM110 mode of NbTi with resonant frequency ν0 =
14.266 GHz, at T = 4.2 K. The magnetic field is varied in the range 0 T ≤ B ≤ 5 T.
Blue data correspond to ZFC measurements, while the FC points are plotted in red.

reached. This follows if we equate the two quantities:

Q0(NbTi)B2
NbTi

∣∣
5T

= Q0(Cu)B2
Cu
∣∣
xT

⇒ BCu = (5T)

√
Q0(NbTi)

∣∣
5 T

Q0(Cu) ' 9 T,

(3.14)

where the constant value of Q0(Cu) = 80 000 was used.

TM110 mode. The first TM110 resonant mode of the NbTi cavity is found at ν0 =

14.266 GHz, and its field configuration is depicted in Fig 2.10. The electric field is concen-
trated in two lobes with opposite directions. It has been found that this mode is subject
to a significant reduction of the Q0 values, with respect to the expected ones of order
O(106) for small magnetic fields. From Fig. 3.13 we see that both ZFC and FC Q0 data
vary within the values 9.7 · 104 and 9.0 · 104. The same data analysis was repeated as for
the previous TM010 mode, and the same uncertainty was assigned to all the data:

• σQ = 4% in the range 0 T ≤ B ≤ 5 T;

The simulations of the current density of this mode help to understand the low quality
factor measured, or high losses. Fig. 3.14 shows a comparison of the current density in the
TM010 (Fig. 3.14a) mode and in the TM110 mode (Fig. 3.14b). For the TM010 mode we

94



Chapter 3. Characterization of the resonant cavities 3.2. Measurements

(a) (b)

Figure 3.14: (a): The simulation shows the current density flowing on the cavity walls for the TM010

mode. For simplicity only half a cavity is shown. The actual side where the cavity is cut
(see Fig. 3.10) is indicated here by the plane passing through the convexity. The current
indicated by red arrows is more intense. The currents flow parallel to the cavity axis and
are not interrupted by the cavity cut. (b): This simulation shows the current density of
the TM110 mode at ν0 = 14.266 GHz. Here the currents form two loops (one showed
here and one on the other side), and they close in the conic regions, where they flow
perpendicular to the cut plane. They are thus interrupted, causing additional RF losses.

see that the currents flow parallel to the cavity axis, and so they cannot be interrupted by
the cavity cut (represented by the plane parallel to the cavity axis and passing through
the convexity). For the TM110 mode the currents form two loops (only one is showed in
the picture), and they close in the conic copper regions, where they flow perpendicular to
the cut plane. They are therefore interrupted, and this causes a significant reduction of
the quality factor.

Reversed TM110 mode. This is the second TM110 mode appearing in the cavity, at
a frequency ν0 = 14.464 GHz. In a cylindrical resonant cavity there exists a certain
number of degenerate TMnml modes for each n index. They are degenerate because they
correspond to rotated field configurations with the same resonant frequency. This follows
from the solution of the TM modes in the cavity, given in eq. (A.21). The cosnφ and sinnφ

terms, on which the fields depend, are independent solutions, thus can be both excited
yielding to degenerate modes. In this case, with n = 1, two degenerate modes would exist
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Figure 3.15: Section of the NbTi cavity showing the electric field lines of TM110 modes. On the left
the electric field of TM110 mode at ν0 = 14.266 GHz is shown, while on the right there
is the 90◦ rotated electric field of TM110 at ν0 = 14.464 GHz. The two lobes can be
recognized from the color code: red arrows indicate more intense fields.

if the cavity section were perfectly circular. The two convexities break the cylindrical
symmetry and shift the frequency of one of the degenerate modes at ν0 = 14.464 GHz.
Fig. 3.15 shows a simulation of the two TM110 modes for this geometry. It can be seen
that the orientations of the electric field lobes are 90◦ rotated with respect to each other.

The Q0 variation with an applied magnetic field B is reported in Fig. 3.16a. The
maximum value obtained is Q0 ' 1.5 ·106 and the minimum (at B = 5 T) is Q0 ' 2.3 ·105.
The trend is very similar to that for the TM010 mode (see Fig. 3.11), also regarding the
small difference between the ZFC and FC values at small B fields. For comparison, the
value of Q0 for the TM110 of the copper cavity (at frequency ν0 ' 14 GHz) is about 6 ·104,
thus at 5 T we gain in this case a factor of 3.83 with the NbTi cavity. The uncertainties
given to the Q0 data are:

• σQ = 10% in the range 0 T ≤ B ≤ 2 T;

• σQ = 4% in the range 2 T < B ≤ 5 T.

Note that in this case higher Q0 values are less precise.
As shown, the Q0 values obtained are again high for this mode. This is because the

RF currents do not cross the cavity cut and are not interrupted, since the current loops
are 90◦ rotated with respect to the previous TM110 mode loops of Fig. 3.14b. Therefore
this proves that the previous TM110 mode at ν0 = 14.266 GHz suffers from RF losses
due to the presence of a cavity cut (in that case the currents are interrupted by the cut).
On the contrary, the reversed TM110 mode at ν0 = 14.464 GHz is reliable for the QUAX
detection scheme exploiting axion-electron interactions.

To conclude this paragraph note that the cavity decay time, already defined as τc =

Q0/ω0, for resonant modes having Q0 ∼ 106 and for frequencies ν0 ' 14 GHz takes values:

τc =
Q0

ω0
≈ 10 µs. (3.15)
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Performing the same calculation at B = 2 T, where the reversed TM110 mode has Q0 ≈
5 · 105, yields the value τc ≈ 5 µs. These values are large compared to the spin relaxation
time, τ2 ' 0.11 µs [43], entering the expression of τmin in the signal power of the axion-
electron coupling (eq. (2.80)). This means that the signal power is only limited by the
relaxation time of magnetized materials, while τc is not limiting in the axion search through
axion-electron detection.
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Figure 3.16: (a): Unloaded quality factor of the reversed TM110 mode of NbTi with resonant frequency
ν0 = 14.464 GHz, at T = 4.2 K. The magnetic field is varied in the range 0 T ≤ B ≤
5 T. Blue data correspond to ZFC measurements, while the FC points are plotted in
red. (b): The correspondence between QL values and interpolated Q0 values. The black
squares are the fitted data and the line represents the interpolation function. The QL

errors are not present, due to experimental difficulties, see the comment to Fig. 3.7 in
the text of Sec. 3.2.1. Q0 uncertainties are only reported in the (Q0 vs B) plots.
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Temperature dependence. In Fig. 3.17 the QL(T ) dependences at B = 0 T for
all the three studied modes of NbTi are represented. The transition is seen at about
Tc ≈ (7.8 ÷ 8.0) K, and we were able to measure the plateau only for the TM010 mode
(Fig. 3.17a), having a value of QL ≈ 180. The QL(T ) curves for TM010 and reversed TM110

modes (Fig.s 3.17a and 3.17b respectively) seem to have almost a linear dependence on
temperature, while the same curve for the first TM110 mode (Fig. 3.17c) is saturated for
T . 6 K and then sharply decrease. This is probably due to the fact that for QL values
above ≈ 70 000 the dominating losses are due to RF field exiting from the cut of the
half-cells.

Fig. 3.18 shows the comparison of the temperature dependences of QL for the reversed
TM110 mode at different values of the applied B field. For values up to B = 3 T (red
points) data seem to show a good linear dependence from Tc to T = 4 K, while at
B = 5 T (green points) data start to saturate at low temperatures. This is important
from the point of view of the design of a possible future set-up. In fact, in the case that
lower temperatures are reached (for example ∼ 100 mK, the temperature of operation of
a Josephson Parametric Amplifier) we could improve the cavity quality factor. This is
true for the reversed TM110 mode with an applied field 0 T < B < 3 T, values needed to
magnetize the media in the QUAX set-up exploiting axion-electron spin interaction.

From Fig. 3.18 it can also be noted that the critical temperature Tc decreases if a
magnetic field is applied. For example with B = 3 T (red data) it is Tc ≈ 7.2 K, while at
0 T (black data) it is Tc ≈ (7.8÷ 8.0) K, as seen before (Fig. 3.17).

Niobium-Titanium Nitride cavity

The NbTiN has a higher critical temperature with respect to Nb and NbTi (Tc ' 12.6 K

in our case). This could result in an improvement of the quality factor at 4.2 K. On the
other hand, the nitriding process introduces contaminating defects in the NbTi that could
improve the surface resistance, lowering the Q0.

The only resonant mode that has been studied for the NbTiN cavity is the reversed
TM110 mode at resonant frequency ν0 = 14.461 GHz, because of the impossibility to find
the other modes of interest (TM010 and TM110 at ν0 = 14.266 GHz). In Figure 3.19
the (Q0 vs B) curve is plotted. The highest Q0 value that has been measured is about
Q0 ' 6.5 · 105, while the smallest is Q0 ' 6.4 · 104. The trend is quite regular, apart
the step found at B ' 0.9 T in the ZFC data. This is due to the fact that the depth
of the antennas was strongly changed because, as the magnetic field was increased, the
couplings κ1 and κ2 became increasingly smaller. Thus they were inserted more deeply.
In correspondence of this operation the extracted Q0 emerges with lower values, and then
this means that the fit procedure failed in solving the bias. The FC data match the ZFC
data when turning off the magnetic field until the value B ' 0.9 T is reached, where the
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FC curve deviates from the ZFC curve.
The uncertainties given to the Q0 values are:

• σQ = 4% in the range 0 T ≤ B ≤ 2 T;

• σQ = 3% in the range 2 T < B ≤ 5 T.

To conclude, the contamination with nitrogen has not introduced improvements to-
wards higher quality factors.
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Figure 3.17: (a): Temperature dependence of QL for the TM010 mode of NbTi at B = 0 T. (b): Tem-
perature dependence of QL for the reversed TM110 mode of NbTi at B = 0 T. (c): Tem-
perature dependence of QL for the first TM110 mode of NbTi at B = 0 T. From the
curves we see that the transition occurs approximately at Tc ≈ (7.8÷ 8.0) K. The errors
on the temperature are negligible, while the QL errors are not present, see the comment
to Fig. 3.7 in the text of Sec. 3.2.1.
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Figure 3.18: Comparison of the temperature dependences of QL for the reversed TM110 mode at
different values of applied B field. In black the data at B = 0 T are shown, blue is
relative to B = 1 T data, red is used for B = 3 T and green for B = 5 T. The errors
on the temperature are negligible, while the QL errors are not present, see the comment
to Fig. 3.7 in the text of Sec. 3.2.1.
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Figure 3.19: Unloaded quality factor of the reversed TM110 mode of NbTiN with resonant frequency
ν0 = 14.461 GHz, at T = 4.2 K. The magnetic field is varied in the range 0 T ≤ B ≤
5 T. Blue data correspond to ZFC measurements, while the FC points are plotted in red.
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(a) (b)

Figure 3.20: (a): The Magnesium Diboride bulk cavity, with the two lids of the same material. One
of the lids is provided with two bores for the antennas. (b): A detail of the MgB2 cavity
after the first test. One of the edges is ruined, and this probably causes RF losses.

3.2.3 Magnesium Diboride cavity

MgB2 is a High-Temperature Superconductor (HTS) (i.e. with high Tc). It was chosen
for two main reasons: it has a quite high critical field (Bc2 ≈ 15 T [59]), and from the
measurements reported in Ref. [60] it is seen that the resistivity has a linear dependence
on the magnetic field, ρf ∝ B/Bc2.

The MgB2 cavity (Fig. 3.20a) was manufactured by the authors of Ref. [61] with a
technique consisting in a reaction of B2 powder and pure liquid Magnesium (see [61] and
ref.s therein). This cavity has a cylindrical shape, thus the TM110 modes are degenerate.
Also the lids are made of MgB2.

A first measurement at temperature T = 4.3 K was performed with this MgB2 cavity.
According to Ref. [61], the expected quality factor was Q0 ∼ few · 105, but our cavity
shows QL values not higher than 7500 for both the two modes of interest, that are TM010

at ν0 ' 8.8 GHz and TM110 at ν0 ' 14.02 GHz. This is probably due to the fact that
the cavity edges were ruined when pressing the lids to the cylindrical body, as shown in
the detail of Fig. 3.20b. This could cause RF losses and limit the quality factor. As a
next step it was suggested to add two copper rings, although it is not superconducting, to
ensure a better electric contact between the body and the lids. Then a further test will
be executed.

However, it was proved that the superconducting state of MgB2 is reached and is ef-
fective. In fact the measured QL values in dependence on temperature of Fig. 3.21 clearly
show a transition. The critical temperature is estimated to be Tc ≈ 38 K, before which
the loaded quality factor is higher than the constant value of QL ' 2000 of the normal
state (after Tc), and it shows a growing trend as the temperature decreases.

Table 3.2 summarizes the obtained results concerning the quality factors of the four cavi-
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Figure 3.21: Loaded quality factor versus temperature of the MgB2 cavity, from T = 4.3 K to T =
55 K, with B = 0 T. The transition from superconducting to normal state happens at
Tc ' 38 K, after which the quality factor reaches a constant value. At about 20 K the QL

values measured by the VNA present some fluctuations. The errors on the temperature
are negligible, while the error bars of QL are not present, see the discussion in Sec. 3.2.1.

ties.

Table 3.2: Summary of the results obtained concerning quality factors. rTM110 refers to the reversed
TM110 and pertains only to NbTi and NbTiN cavities.

mode Nb NbTi NbTiN MgB2

TM010 1.18 · 106 (±2%)
Q0(0T) TM110 1.78 · 106 (±1%) 9.75 · 104 (±4%)

rTM110 1.52 · 106 (±10%) 6.55 · 105 (±4%)

TM010 2.67 · 105 (±5%)
Q0(5T) TM110 9.1 · 104 (±4%)

rTM110 2.27 · 105 (±4%) 6.44 · 104 (±3%)

Q0B2

Q0B2(Cu)
∣∣
5 T

TM010 3.34

QL(0T) TM010 ≈ 7500

τc(2T) [µs] rTM110 ≈ 5
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Conclusion

I have conducted my thesis work in the characterization of superconducting microwave
resonant cavities for their employment in the galactic axion detection with the QUAX ex-
periment. Axions are well-motivated candidates of Dark Matter and have small couplings
to Standard Model particles. The QUAX experiment aims at detecting axions exploiting
their coupling with photons and interaction with the electron spin. The main challenge in
the design of the QUAX experiment concerns finding a superconducting RF cavity with
a high quality factor in the presence of magnetic fields, and finding a magnetized medium
with large relaxation time. In particular, my thesis work has focused on the former.

Several materials, each with benefits and issues connected, were tested. The Niobium
cavity showed very high unloaded quality factors (up to about 1.78·106±1%), but for small
applied magnetic fields (B . 0.22 T). However, the Nb cavity undergoes the transition
from superconducting to normal state with relatively small fields, B ∼ (0.5 ÷ 0.6) T.
Therefore it is not suitable to be used in the QUAX experiment.

With the Niobium-Titanium cavity, one of the goals of the QUAX R&D can be con-
sidered achieved: we found that this cavity maintains high enough quality factors without
spoiling superconductivity in the presence of magnetic fields. In particular at B = 5 T

the reversed TM110 mode has Q0 ' (2.3 · 105 ± 4%), a factor of almost 4 with respect to
a copper cavity. For the TM010 mode, instead, Q0 ' (2.67 · 105 ± 5%) is reached at 5 T

and this allows to gain a factor of 3.34 with respect to copper on the signal power of an
experiment testing the axion-photon coupling. Moreover, the cavity decay time τc of this
cavity is quite large, and is not limiting in the search for axions through the axion-electron
coupling.

The Magnesium Diboride cavity was tested for the first time, and didn’t present quality
factors as high as expected, probably due to RF losses caused by a not perfect closure of
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the cavity. In any case, we ensured that the superconducting state is reached.

Outlook. Regarding the immediate future of the QUAX R&D, further tests of the MgB2

cavity will be performed. Next, the manufacturing of a new NbTi cavity has been ordered.
The dimensions and the coating are the same as for the already measured cavities, but
the cut that divides the two halves is designed to be 90◦ rotated with respect to the
present configuration (see Fig. 3.14 for clarity). This will allow to properly characterize
the TM110 mode at ν0 = 14.266 GHz, because the currents won’t be interrupted by the
cut. Subsequently, QUAX R&D could continue to test other superconducting materials,
as for example the YBCO (Yttrium Barium Copper Oxide) that is a High-Temperature
Superconductor with Tc ≈ 90 K and Bc2 ≈ 150 T.

An activity that has been approved at LNF is the development of a single photon
counter, suitable for a proper detection of the tiny signal power coming from axion-electron
or axion-photon interactions (see eq.s (2.13) and (2.19)). The INFN-project SIMP pro-
poses two solutions for single microwave photon detection: a Current-Biased Josephson-
Junction (JJ) and a Transition Edge Sensor (TES). JJ are the basic building blocks of
superconducting qubits for quantum processors. Qubit-state readout is intimately con-
nected with single photon detection. High efficiency is obtained by coupling the JJ with
a planar microwave-resonator where the field confinement enhances the coupling to the
junction. TES are already used as bolometers for the measurement of the Cosmic Mi-
crowave Background (CMB) and they proved single-photon sensitivity in the IR regime.
Nanofabrication of the superconducting films and lowering of the critical temperature will
allow the single photon detection in the microwave regime.
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APPENDIX A

Resonant modes of a cylindrical cavity

In what follows I describe the field solutions in waveguides and then in cylindrical resonant
cavities, following Refs. [44, 14]. It has been said that resonant cavities are volumes en-
closed by conducting surfaces. Therefore the solution to their field modes can be found by
solving Maxwell’s equations in a waveguide and subsequently applying additional bound-
ary conditions to account for the conducting plates short-circuiting both ends.

A waveguide is a conducting structure made of one ore more conductors, in which
electromagnetic waves can propagate. It can have any shape, as long as it has cylindrical
symmetry, as in Fig. A.1. The axis is chosen to be that of the propagation direction ẑ.
All TE, TM and TEM modes can propagate in a waveguide, but since we treat resonant
cavities only TE and TM modes are considered here.

To begin one can write the electric and magnetic fields as a sum of transverse and

Figure A.1: Left: section of a waveguide made of two conductors; Right: section of a waveguide made
of only one conductor. Taken from [44].
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longitudinal components:

E(x, y, z) = [e(x, y) + ẑez(x, y)] e
−jβz,

H(x, y, z) = [h(x, y) + ẑhz(x, y)] e
−jβz,

(A.1)

where the phasor notation is used and an implicit ejωt time dependence is assumed. Here
only the forward propagating wave is taken into account; a backward propagation is ob-
tained summing the same components with β −→ −β. The guide is supposed to be
lossless. From the curl Maxwell’s equations in the frequency domain, ∇ ∧ E = −jωµH
and ∇ ∧H = jωεE, the transverse components of the fields can be written in terms of
the z components:

Ex =
−j
k2c

(
β
∂Ez

∂x
+ ωµ

∂Hz

∂y

)
, (A.2a)

Ey =
j

k2c

(
−β∂Ez

∂y
+ ωµ

∂Hz

∂x

)
, (A.2b)

Hx =
j

k2c

(
ωε
∂Ez

∂y
− β

∂Hz

∂x

)
, (A.2c)

Hy =
−j
k2c

(
ωε
∂Ez

∂x
+ β

∂Hz

∂y

)
, (A.2d)

where ε and µ are the electric permittivity and magnetic permeability, respectively, of
the medium that eventually fill the guide, β is the propagation constant appearing in the
propagation factor e−jβz, and kc is the cutoff wave number, defined as:

k2c = k2 − β2, (A.3)

and k is the wave number of the medium filling the guide: k = ω
√
µε. The name cutoff

will become clear later. Equations (A.2) can be solved when the components Ez and Hz

are known. They can be found solving the Helmholtz wave equations (that derive from
the two curl Maxwell’s equations):

(
∇2 + k2

)
Ez =

(
∂2

∂x2
+

∂2

∂y2
+ k2c

)
ez = 0, (A.4a)

(
∇2 + k2

)
Hz =

(
∂2

∂x2
+

∂2

∂y2
+ k2c

)
hz = 0. (A.4b)

The first equality holds because ∂2Ez
∂z2

= −β2Ez and k2 − β2 = k2c , and the same for Hz.
Now the solutions to the transverse fields are obtained imposing the field configurations
of the various modes and the boundary conditions.
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TE modes for circular waveguides

Here a cylindrical waveguide is taken into account, with cross-sectional radius a. Eq.s (A.2)
are rewritten in cylindrical components:

Eρ =
−j
k2c

(
β
∂Ez

∂ρ
+
ωµ

ρ

∂Hz

∂φ

)
, (A.5a)

Eφ =
−j
k2c

(
β

ρ

∂Ez

∂φ
− ωµ

∂Hz

∂ρ

)
, (A.5b)

Hρ =
j

k2c

(
ωε

ρ

∂Ez

∂φ
− β

∂Hz

∂ρ

)
, (A.5c)

Hφ =
−j
k2c

(
ωε
∂Ez

∂ρ
+
β

ρ

∂Hz

∂φ

)
, (A.5d)

where the fields are now of the form E(ρ, φ, z) = [e(ρ, φ) + ẑez(ρ, φ)] e
−jβz. In the case

of TE modes the component Ez = 0, so equations (A.5) are solved founding Hz from the
Helmholtz equation in cylindrical coordinates:(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
+ k2c

)
hz(ρ, φ) = 0. (A.6)

The solution is derived with the method of separation of variables, so that it can be
factorized as hz(ρ, φ) = R(ρ)P (φ). The solution for P (φ) is:

P (φ) = A sin(nφ) +B cos(nφ),

where n is an integer number, because we require that the function is periodic in φ, due
to the cylindrical symmetry. A and B are arbitrary constants. The solution for R(ρ) is:

R(ρ) = CJn(kcρ) +DYn(kcρ).

Jn and Yn are Bessel functions of the first and second kind respectively, and satisfy the
Bessel’s differential equation. Yn is physically unacceptable because has an infinite at
ρ = 0, so the ultimate solution for the field hz is:

hz(ρ, φ) = (A sin(nφ) +B cos(nφ)) Jn(kcρ). (A.7)

Now the boundary conditions has to be applied. The requirement is that the electric field
tangential to the conducting walls must vanish. In this case the two tangential components
are Ez, that is identically null, and Eφ. Looking at eq. (A.5) Eφ depends on ∂Hz/∂ρ, then
imposing that Eφ(ρ = a, φ) = 0 yields the condition:

J ′
n(kca) = 0,
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because the dependence on ρ only resides in the Bessel function. J ′
n is the first derivative

of Jn. This is equivalent to the request that the argument of J ′
n be a root of this function.

Defining the roots p′nm such that J ′
n(p

′
nm) = 0, then we have for the cutoff wave number:

kcnm =
p′nm
a
. (A.8)

The m index stands for the m-th root of the n-th function J ′
n (Bessel functions have

dumped oscillations around the zero). The values of p′nm are tabulated. From a field
point of view the n index indicates the number of variations of the electric field in the
φ direction, i.e. the number of its maximum values, while m indicates the number of
variations along the ρ direction.

Once found the cutoff wave number (A.8), the propagation constant is:

βTE
nm =

√
k2 − k2cnm

=

√
k2 −

(
p′nm
a

)2

. (A.9)

Now it is clear why the name cutoff was used for the wave number: βnm is real when
k > kcnm and the waves can propagate, but when k < kcnm the corresponding mode
becomes evanescent, since β becomes pure imaginary and the propagation factor e−jβz

takes the form of a decaying exponential. Also, a cutoff frequency can be defined:

fTE
cnm

=
kcnm

2π
√
µε

=
p′nm

2πa
√
µε
. (A.10)

Finally, having found the solution hz(ρ, φ) (A.7), all the transverse field components
for the TEnm modes are:

Eρ =
−jωµn
k2cnm

ρ
(A cosnφ−B sinnφ)Jn(kcnmρ)e

−jβz, (A.11a)

Eφ =
jωµ

kcnm

(A sinnφ+B cosnφ)J ′
n(kcnmρ)e

−jβz, (A.11b)

Hρ =
−jβ
kcnm

(A sinnφ+B cosnφ)J ′
n(kcnmρ)e

−jβz, (A.11c)

Hφ =
−jβn
k2cnm

ρ
(A cosnφ−B sinnφ)Jn(kcnmρ)e

−jβz, (A.11d)

TM modes for circular waveguides

The derivation of the fields of TM modes follows the same procedure as for TE modes,
with little differences. The starting point is again equations (A.5), where now Hz = 0

is imposed. To find the transverse fields, the Helmholtz equation (A.6) for ez must be
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solved, giving the same type of solution as for Hz, that is:

ez(ρ, φ) = (A sinnφ+B cosnφ)Jn(kcρ). (A.12)

In this case the boundary condition Ez(ρ = a, φ) = 0 can be directly applied to ez, thus
giving the condition:

Jn(kca) = 0 ⇒ kcnm =
pnm
a
, (A.13)

where pnm are the m-th roots of the functions Jn, i.e. Jn(pnm) = 0. As for TE modes, the
propagation constant and the cutoff frequency can be determined in terms of kcnm given
in eq. (A.13). For TMnm modes they are:

βTM
nm =

√
k2 −

(pnm
a

)2
, (A.14)

fTM
cnm

=
pnm

2πa
√
µε
. (A.15)

As before, inserting the solution Ez(ρ, φ, z) = ez(ρ, φ)e
−jβnmz, with ez given by (A.12), in

equations (A.5), all the transverse field components for the TMnm modes are:

Eρ =
−jβ
kcnm

(A sinnφ+B cosnφ)J ′
n(kcnmρ)e

−jβz, (A.16a)

Eφ =
−jβn
k2cnm

ρ
(A cosnφ−B sinnφ)Jn(kcnmρ)e

−jβz, (A.16b)

Hρ =
jωεn

k2cnm
ρ
(A cosnφ−B sinnφ)Jn(kcnmρ)e

−jβz, (A.16c)

Hφ =
−jωε
kcnm

(A sinnφ+B cosnφ)J ′
n(kcnmρ)e

−jβz. (A.16d)

TE modes in a cylindrical cavity

Now that the electric and magnetic fields have been determined for cylindrical waveguides,
the field configurations for a cylindrical cavity can be easily derived. Since the cavity is
obtained by short-circuiting two sides of the waveguide, it suffices to impose additional
boundary conditions at both ends. The cavity, with longitudinal size d and radius a, is
shown in Fig. A.2. The electric fields of equations (A.11) for TE modes can be written in
the more compact form Et(ρ, φ, z) = e(ρ, φ)(A+e−jβnmz +A−ejβnmz), where now also the
backward travelling waves have been considered, and A+ and A− are arbitrary amplitude
constants for the forward and backward waves, respectively. Now the conditions that the
transverse electric fields must vanish at the end plates can be put. Assuming that the end
plates are at z = 0 and z = d, the conditions are Et(ρ, φ, 0) = 0 and Et(ρ, φ, d) = 0. The
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Figure A.2: A resonant cavity of length d and radius a. Taken from [44].

first gives A+ = −A−, and then the second becomes −2jA+e(ρ, φ) sinβnmd = 0, yielding:

βnmld = lπ. (A.17)

Thus the modes acquire another index l, that accounts for the number of field variations
along the z axis. Note that with the condition A+ = −A− the z dependence of the fields
is of the type −2jA+ sin(βnmlz), that is a standing wave, not a propagating wave, because
forward and backward travelling waves sum up with the same amplitude.

A resonant wave number k is now defined as k =
√
k2cnm

+ β2nml and then the resonant
frequency for the TEnml modes is:

fTE
nml =

kTE

2π
√
µε

=
1

2π
√
µε

√(
p′nm
a

)2

+

(
lπ

d

)2

, (A.18)

The expression of all the fields of TEnml modes of a cylindrical cavity are easily derived
taking their expressions for the cylindrical waveguide (eq. (A.11)), adding the backward
travelling wave and imposing that A+ = −A−. Then the TEnml field components are:

Ez = 0, (A.19a)

Eρ =
−jωµa2nH0

(p′nm)2ρ
Jn

(
p′nmρ

a

)
(A cosnφ−B sinnφ) sin

lπz

d
, (A.19b)

Eφ =
jωµaH0

p′nm
J ′
n

(
p′nmρ

a

)
(A sinnφ+B cosnφ) sin

lπz

d
, (A.19c)

Hz = H0Jn

(
p′nmρ

a

)
(A sinnφ+B cosnφ) sin

lπz

d
, (A.19d)

Hρ =
βnmlaH0

p′nm
J ′
n

(
p′nmρ

a

)
(A sinnφ+B cosnφ) cos

lπz

d
, (A.19e)

Hφ =
βnmla

2nH0

(p′nm)2ρ
Jn

(
p′nmρ

a

)
(A cosnφ−B sinnφ) cos

lπz

d
, (A.19f)

with the definition H0 = −2jA+. The arbitrary constants A and B remain in the solutions,
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and control the amplitudes of the sine and cosine terms. The latter are both valid solutions,
because they are independent. The magnitude of A and B depends on how the cavity is
excited.

TM modes in a cylindrical cavity

The solution to TMnml modes is found in a similar manner as for TE modes. Also in this
case, the boundary conditions yield to the same value of the propagation constant: βnml =

lπ/d. Thus the resonant wave number is kTM =
√
k2cnm

+ β2nml =
√
(pnm/a)2 + β2nml,

where kcnm = pnm/a is the cutoff wave number found in eq. (A.13). The resonant frequency
of the TMnml modes is then:

fTM
nml =

kTM

2π
√
µε

=
1

2π
√
µε

√(pnm
a

)2
+

(
lπ

d

)2

. (A.20)

For brevity, here I report only the (ρ, φ, z) dependence of all the electric and magnetic
field components of TMnml resonant modes:

Hz = 0, (A.21a)

Hρ ∼ 1

ρ
Jn

(pnmρ
a

)
(A cosnφ−B sinnφ) cos

lπz

d
, (A.21b)

Hφ ∼ J ′
n

(pnmρ
a

)
(A sinnφ+B cosnφ) cos

lπz

d
, (A.21c)

Ez ∼ Jn

(pnmρ
a

)
(A sinnφ+B cosnφ) cos

lπz

d
, (A.21d)

Eρ ∼ J ′
n

(pnmρ
a

)
(A sinnφ+B cosnφ) sin

lπz

d
, (A.21e)

Eφ ∼ 1

ρ
Jn

(pnmρ
a

)
(A cosnφ−B sinnφ) sin

lπz

d
. (A.21f)
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APPENDIX B

3-dB method

The 3-dB method relies on the measurement of the bandwidth of the resonance curve
S21(ω) at a particular value. The frequency ω of a resonance curve doesn’t differ very
much from the resonant frequency ω0, so that it can be written as ω = ω0 +∆ω, with ∆ω

small since ω0 ≈ ω. The expression of the input impedance (2.20) can be expanded near
resonance and becomes [44]:

Zin ' R

1 + 2jQ0∆ω/ω0
. (B.1)

There exist a value of the input impedance, |Zin| = R/
√
2, for which the real part of the

power delivered to the resonator is half the power at the resonant frequency, and is drawn
in Fig. 2.2b as the mark 0.707R. Calling ω1 and ω2 the frequencies at which this occurs,
the previous statement can be written as [44]:

Re {Pin(ω)} =
1

2
Ploss =

1

4

|V |2

R
. (B.2)

The half-power fractional bandwidth BW is defined as:

BW =
2∆ω

ω0
=
ω2 − ω1

ω0
, (B.3)

where in this case ∆ω = ω2 − ω0 = ω0 − ω1 assuming a symmetric resonance curve. With
this definition, eq. (B.1) becomes:

Zin ' R

1 + jQ0BW
, (B.4)
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hence the expression |Zin| = R/
√
2 is satisfied only if:

Q0 =
1

BW
. (B.5)

This is true for an ideal isolated resonator. When it is coupled to external circuitry, Q0

and QL are related through the coupling coefficients as in eq. (2.49). The latter can be
exploited to rewrite the expression of S21(ω) (2.57) as:

S21(ω) =
|S21(ω0)|
1 + jQLδ

, with |S21(ω0)| =
2
√
κ1κ2

1 + κ1 + κ2
. (B.6)

Now, in the approximation that the frequency is near the resonant frequency, ω ≈ ω0, δ is
just the fractional bandwidth: δ|ω≈ω0 ≈ BW . Thus, comparing the expression of Zin for
the parallel RLC circuit (B.4) and that for the transmission coefficient S21 (B.6), we see
that they have the same form:

f(ω) =
f(ω0)

1 + jQBW
,

with the difference that S21 presents the loaded quality factor QL instead of Q0. In this
case, that indeed is the real case, the bandwidth allows the determination of QL:

QL =
1

BW
. (B.7)

Having in mind the definition of BW (B.3), one can perform its measurement by deter-
mining the frequencies ω1 and ω2 for which |S21(ω)| = |S21(ω0)|/

√
2, and ω0 is easily

obtained as the frequency at which |S21| reaches its maximum, |S21(ω0)|. The procedure
is named the 3-dB method because if the transmission coefficient is expressed in decibels,
with |S21(ω0)|2 as the reference value, one has:

10 log10

(
|S21(ω)|2

|S21(ω0)|2

)
= 10 log10

(
1

2

)
' −3 dB. (B.8)

So, if data are expressed in decibels, the half-power fractional bandwidth corresponds to
a value of S21(ω) 3 decibels below the maximum value |S21(ω0)|. These calculations are
automatically made by network analyzers and give the loaded quality factor QL.
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