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Departamento de F́ısica de Altas Enerǵıas, Instituto de Ciencias Nucleares,
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Abstract: We summarize the complete exact solution of the doubly compacted Schwinger model

(DCSM), defined by the condition that the domain of the electromagnetic degree of freedom

c = 1
L

∫ L
0
dxA1 is such that −c̄ < c < +c̄. The results are contrasted with the standard situa-

tion, where −∞ < c < +∞, which we call the non-compact case (NCSM). Both theories are also
compacted in a circle of length L for the space variable x.

1. Introduction

The motivation for having a compact domain in

the electromagnetic variable c arises from the

loop formulation of gauge theories [1], applied to

this model. In this approach all the information

about the theory is encoded in terms of variables,

which are gauge invariant under small and large

gauge transformations. In 1 + 1 dimensions the

basic variable for the electromagnetic degrees of

freedom is the holonomy T = exp iecL, which

exhibits the property that the choice of c in the

interval −c̄ < c < c̄, with c̄ = π
eL
, is sufficient to

describe the physics of the problem [2].

This feature of the compacted model leads

to a solution which has different properties from

those arising in the non-compact case. Among

the numerous papers on the NCSM [3] , we heav-

ily relay on the work of Iso and Murayama [4].

The details of the solution in the DCSM can be

found in Ref. [5]

2. Solution of the model

The Schwinger model is masless QED in 1+1 di-

mensions. In a standard notation the Lagrangian

is

L = −1
4
FµνF

µν + ψ̄γµ (i∂µ − eAµ)ψ (2.1)
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where we adopt periodic (antiperiodic) bundary

conditions for the fields Aµ(ψ). The above La-

grangian is invariant under the gauge transfor-

mations ψ → eieα(x,t)ψ, Aµ → Aµ − ∂µα(x, t).
There are two families of gauge transformations:

(i) those continuously connected to the identity,

called small gauge transformations, characterized

by the function α(x, t) = b(t)ei2πnx/L (ii) the

second family corresponds to the so called large

gauge transformations, which are generated by

the non-periodic functions α(x) = 2πn
eL
x, n =

±1,±2, . . .. The compactification condition upon
c means that two values of c differing by 2π

eL
must

be identified. In this way c is invariant under

both types of gauge transformations, as opposed

to the non-compact case where c→ c+ 2π
eL
under

large gauge transformations.

After the standard canonical analysis of the

Lagrangian density (2.1), describing the configu-

ration space variables A0, A1 and ψ, we obtain

H = 1
2
E2 + iψ†σ3 (∂1 + ieA1)ψ

−A0
(
∂1E − e ψ† ψ

)
,

Π0 ≈ 0, (2.2)

where the corresponding canonical momenta are

Π0, Π1 = F01 = E and Πψ = −i ψ∗. Conser-
vation in time of the primary constraint Π0 ≈ 0
leads to the the Gauss law constraint G = ∂1E−
eψ†ψ ≈ 0. There are no additional constraints.
The quantization proceeds in a way com-

pletely similar to the standard case. We choose
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the Coulomb gauge ∂A1∂x = 0, which means that

A0 = 0 and c = A1(t). The latter equality corre-

sponds to the zero mode of the electromagnetic

potential and it is the only electromagnetic de-

gree of freedom that remains. We fix the gauge

in the temporal component of the electromag-

netic potential, together with Π0 = 0. The only

remaining constraint G is first class and it is im-
posed strongly upon the physical states of the

system. The implementation of the zero-mode of

the Gauss law, as a constraint determining the

physical sates, implies that these must be states

of zero electric charge.

The first step in the quatization is the con-

struction of the fermionic Fock space in an exter-

nal electromagnetic field. Here a main difference

arises because, in the DCSM, it is possible to in-

troduce the conserved and gauge invariant chiral

charge

Q̄5 = lims→0
+∞∑

n=−∞

1

|λεn|s
(
a†nan − b†nbn

)
+
ecL

π
,

(2.3)

with eigenvalues 2N, N = 0,±1, . . ., where a
ζ-regularization is suggested. The one-particle

energy eigenvalues of hF , where HF = ψ†hFψ,
are εn =

2π
L

(
n+ 12 − eL

2π c
) ≡ 2πn

L
+ C, which

are fully gauge invariant in virtue of the com-

pactification process. Here, an and bn denote

generically the fermionic creation and annihila-

tion operators for each chirality. Under both type

of gauge tranformations, they change as an →
eieα(0)an, bn → eieα(0)bn. This establishes an-
other difference with respect to the NCSM. In the

latter situation, large gauge transformations lead

to an → an+1, bn → bn+1. States of minimum

energy are Dirac-type vacuums with all negative

energy levels filled,

|EN , 2N〉 =
N−1∏
n=−∞

a†n|0〉 ⊗
∞∏

m=N

b†m|0〉, (2.4)

each having chiral charge 2N and energy EN (c) =
2π
L

{(
N − ecL

2π

)2 − 1
12

}
. These states are related

by operators of the form jnm+− ≡ a†nbm, jnm−+ ≡
b†nam. These operators can be introduced in both
formulations of the model (compact and no com-

pact) however in the NCSM one can understand

the relation among the states (2.4) as large gauge

transformations. Since in the DCSM the states

are fully gauge invariant we do not have this in-

terpretation here. Our compactification condi-

tion implies that the state with N = 0 is the

true vacuum at this stage.

The excited states are constructed by using

the following current operators

ψ1
†(x)ψ1(x) =

1

L

+∞∑
n=−∞

e−
2πin
L x j+

n,

ψ2
†(x)ψ2(x) =

1

L

+∞∑
n=−∞

e+
2πin
L x j−n. (2.5)

In terms of the corresponding zero modes, we

have Q = j+
0+ j−0, Q̄5 = j+0− j−0+ ecL

π
. The

operators j±n, n ≥ 1 annihilate the states (2.4).
Finally, the fermionic Fock space in the back-

ground electromagnetic field will consist of all the

local vacuums (2.4), together with all possible

states constructed from them by the application

of an arbitrary number of the current operators

(j±n)†, n = 1, 2, . . . defined above. The regular-
ized current algebra on this fermionic Fock space

is given by

[j+
n, (j+

m)†] = nδm,n, [j−n, (j−m)†] = nδm,n,

[j+
n, j−m] = 0. (2.6)

Taking into account the spectrum of the system,

together with the way in which the Fock space

has been constructed, the fermionic Hamiltonian

in the external field can be rewritten as the fol-

lowing Sugawara transformed expression

HF = EN (c)+ 2π
L

∑
n>0

((jn+)
†jn++(j

n
−)
†jn−). (2.7)

Next we consider the quantization of the electro-

magnetic Fourier modes Am, Em, m = 0,±1, . . ..
The commmutator [E(x), ψα(y)] = 0 leads to

[Em, an] =
ie

2πm
(an − an+m) , m 6= 0,

[E0, an] = 0, (2.8)

together with an analogous relation for the b’s.

The above commutators arise because in the ex-

pansion of the fermionic fields in Fourier modes

we have used the wave functions in the electro-

magnetic field, instead of pure plane waves. The
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remaining commutators are the expected ones.

The required commutation relations are satisfied

by choosing

Em =
1

iL

∂

∂Am
− e

2πim

(
j+

m + (j−m)†
)
,m 6= 0,

E0 =
1

iL

∂

∂c
. (2.9)

The solution of Eq.(2.8) leads to the following

dependence of the fermionic operators upon the

non-zero electromagnetic modes

am = exp


−eL
2π

∑
k 6=0

1

k
Ak


 ām, (2.10)

where ām are new fermionic operators which are

independent of the gauge field Ak. With the re-

alization (2.9), the non-zero modes of the Gauss

law reduce to Gm = 2πm
L

∂
∂Am

≈ 0, m 6= 0.
Then we conclude that the wave functions of the

system must be of zero electric charge and also

independent of the modes Am, m 6= 0. Our ex-
pression for the Gauss law is somewhat different

from the one obtained in [4], though the final re-

sults are equivalent. In this way we conclude that

any further compactification in the electromag-

netic modes Am is irrelevant and also that the

compactification of c does not have any further

effect in the fermionic degrees of freedom of the

model. The next step is to write the full Hamil-

tonian making use of the Gauss law. This allows

us to rewrite the operators Em,m 6= 0 in terms
of the currents introduced in (2.5). The result-

ing Hamiltonian is subsequently diagonalized by

a Bogoliubov transformation [4], leading to

H =
π

2L

(
Q̄5 − ecL

π

)2
− 1
2L

(
∂

∂c

)2

+
∑
n>0

En

n

(
(jn+)

†jn+ + (j
n
−)
†jn−
)
, (2.11)

up to an infinite constant. In this equation En =√(
2πn
L

)2
+M2, where M = e√

π
. The Bogoli-

ubov rotation is a unitary transformation UB
which commutes with the electric and axial charge

operators. To construct the Hilbert space of the

full theory we will start from the states |N〉B =
|EN , 2N〉, arising from Eq.(2.4)(The subscript B
in any ket is to remind us that such vector is writ-

ten in the Bogoliubov rotated frame). As in the

Figure 1: The above curves provide the numeri-

cal solution for the parameter a0,N (l), for N = 0...3

and a given value l. The energies are E0,N,0 =

−(e/π1/2)a0,N

non-compact case, each mode decouples in such

a way that the Schroedinger equation H∆ = E∆

is solved by ∆ = Πn∆n, where Hn ∆n = En ∆n
and E =

∑
En. The general strategy to con-

struct the Hilbert space will be to start from the

zero modes FN (c) × |N〉B and to subsequently
apply all possible combinations of the raising op-

erators (j±m)† to them.
The zero modes correspond to the choice

|ground;N〉 = FN (c) × |N〉B , where wave func-
tions FN (c) satisfy the following Schroedinger

equation(
− 1
2L

(
∂

∂c

)2
+
e2L

2π

(
2πN

eL
− c
)2)

FN (c)

= EN,0FN (c), (2.12)

subjected to the boundary conditions

FN |c=−c̄ = FN |c=+c̄, ∂FN

∂c
|c=−c̄ = ∂FN

∂c
|c=+c̄,
(2.13)

arising from the compactification procedure. This

choice should be contrasted with that of Manton,

written in Eqs. (3.15) of Ref. [6]. The above

Schroedinger equation (2.12) and boundary con-

ditions (2.13) lead to energies which are not any

more given by the characteristic equally spaced

harmonic oscillator spectrum, as it is the case in

the NCSM.

The energy eigenvalues are parametrized in

the form Eα,N,0 = − eaα,N√π , where α labels the
resulting eigenvalues. A numerical evaluation of

aα,N as a function of l =
eL
π3/2

is presented in
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Figure 2: The numerical solution of aα,N (l), with

N = 0, 1 and α = 1, 2, for a given value of l, is given.

The energies are Eα,N,0 = −(e/π1/2)aα,N

Figs.(1) and (2). From the numerical calcula-

tion we find that the minimun value of E0,N,0
correspond to N = 0. Thus, in the DCSM the

physical, non-degenerated, vacuum of the theory

is |0, 0, 0〉B = F0(c)× |0〉B.
The excited states are obtained by appliying

the creation operators (j±m)† to the zero modes
of the problem. Each individual action raises the

energy by Em. The excited states will be labeled

by |α, N, N1, . . . , Nk, . . .〉B, where Nk is the the
total number of times that the operators (j±k)†

have been applied to the corresponding minimun

energy state. This is the ocuppation number of

the k-level. The total energy of the above state

is given by

Eα,N,N1,N2...Nk,... = Eα,0,N +
∑
k>0

Nk Ek. (2.14)

The fact that Q̃5 is conserved in the full Hilbert

space of the model is a direct consequence of the

way in which the Hilbert space has been con-

structed and can be proved accordingly.

3. Final comments

Motivated by the loop-space formulation of 1+1

massless QED, we have exactly solved the doubly

compactified Schwinger model, where both the

spatial coordinate x together with the electro-

magnetic degree of freedom c are compactified.

The first consequence of the compactification of

c is that the surviving electromagnetic degree of

freedom is invariant under both small and large

gauge transformations (LGT). This implies the

invariance of the individual eigenvalues εn of the

fermionic Fock space, together with the phase

transformation an → eieα(0)an, bn → eieα(0)bn,
for the fermionic operators an, bn, under LGT.

This has to be contrasted with the standard case,

where εn → εn+1, an → an+1, bn → bn+1 under

LGT. The next consequence has to do with the

definition of the total chiral charge Q̄5, which

is conserved and independent of the electromag-

netic degree of freedom c in both cases. This

charge Q̄5 has the invariance(non-invariance) un-

der LGT in the compact(non-compact) case, in

virtue of the transformation properties of the fer-

mionic operators. Thus, the compactification re-

quirement allows us to have the conservation of

the electric charge together with the modified

chiral charge. That is to say, we have neither

vector nor axial-vector charge anomalies. Never-

theless, the axial current anomaly is still present

due to the impossibility of constructing a local,

fully gauge invariant current J̄µ5, which repro-

duces the conserved axial charge Q̄5.

Next we discuss the spectra of the models.

In the standard non-compact case we have an

infinite set of sectors labeled by the integer N ,

which are connected by LGT. The corresponding

zero modes in each sector have energies given by

(n+1/2) e/
√
π , n = 0, 1, 2, . . . , independently of

the label N , thus been infinitely degenerated. It

is precisely this property that requires the intro-

duction of the θ-vacuum. In the compact case,

the sectors labeled by N , corresponding here to

the eigenvalues 2N of Q̄5, are also present. They

are connected through the operators j+−, j−+.
Nevertheless, due to the boundary conditions

(2.13), the corresponding zero modes energies de-

pend upon the label N and are non-degenerated

as can be seen in Figs.(1) and (2). In fact, the

lowest energy state corresponding to the N = 0

sector is the ground state of the model. Thus,

no θ-vacuum is required in the present case. The

exited states are constructed by the same proce-

dure in both cases by applying the raising oper-

ators (j±m)† to the zero mode states. Neverthe-
less, their action produces both eigenvectors and

eigenvalues which are different with respect to

the non-compact case. The non-equally spaced

spectra of the zero mode does not lead to a par-

ticle interpretation of the compact model, as it
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is the case in the non-compact situation.

For a given L 6= 0, the boundary conditions
for the compact model (Eq. (2.13)) and those of

the non-compact case ( Eqs. (3.15) of Ref. [6], or

Eq. (48) of Ref. [7]) can not be continuously con-

nected between each other. Thus, neither model

can be obtained from the other through an ade-

quate limiting process.
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