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Abstract

The International Muon Ionisation Cooling Experiment (MICE) is currently

being commissioned at the Rutherford Appleton Laboratory (RAL) and aims to

be the first experiment to demonstrate the technique of muon beam ionisation

cooling, a key component in Neutrino Factory and Muon Collider designs. In

order to do so, high precision muon track and beam phase-space reconstruction

is required.

A Kalman Filter based track fit has been designed, implemented and tested

for the reconstruction of both straight and helical muon tracks, using data from

the MICE Scintillating Fibre Trackers. Detailed Monte Carlo simulation studies

have been conducted in order to verify the implementation and predict the

performance of the fitting algorithms when applied to real data. A combination

of simulation studies and statistical data analyses have been used to commission

the track reconstruction software and perform simple validation techniques.

The straight track reconstruction was applied to an alignment study, de-

signed to measure the relative positions of the two tracking detectors within the

MICE cooling channel. A translational resolution of 0.11 mm in both the x and

y directions was extracted, in addition a rotational resolution of 0.05 mrad of

the relative yaw, Φx, and pitch, Φy, between the two trackers was calculated.

The helical track reconstruction was successfully used in the analysis of the

first helical track data acquired within the MICE Cooling Channel. A mo-

mentum window of 195 to 205 MeV/c was applied to the default MICE muon

beam, which resulted in 5049 reconstructed tracks with a normalised transverse

emittance of 5.08± 0.05Stat ± 0.06Sys ± 0.02Field mm. The systematic error was

calculated based on the modelled momentum residuals, and a second systematic

error, due to the incomplete knowledge of the true field, was estimated through

comparisons of different field maps.
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Chapter 1

Introduction

1.1 Muon Acceleration

Muon acceleration has been recognised as an attractive future technology for

High Energy Physics (HEP) experiments. Muon colliders would offer a pre-

cise centre-of-mass energy similar to electrons, but with vastly reduced losses

from both synchrotron radiation and “beamstrahlung”,1 as the radiative losses

scale as 1/m4. At present the number of complex technological stages required,

although believed by most to be within reach of current technology, leave sub-

stantial reservations in many supporters. The predominant difficulty is the short

muon life time (approximately 2.2µs) which cannot simply be overcome by ex-

ploiting time dilation. The production, collimation and acceleration of a muon

beam must be conducted faster than in any other accelerator.

In order to further the development of technology, the Muon Accelerator

Project (MAP) [1] developed the Muon Accelerator Staging Study [2], in which

a staged construction and development project is conducted allowing individual

components to be built and tested, whilst making detailed physics measure-

ments. Initially a NuSTORM [3, 4] like facility could be constructed, providing

neutrino beams from pion and muon decays for neutrino interaction studies

and sterile neutrino searches. This could be later upgraded to a full Neutrino

Factory facility (NuMAX) as shown in figure 1.1. The overlap between the

initial stages of a Neutrino Factory and a Muon Collider would later permit

further upgrades, culminating with a dedicated collider storage ring. The en-

ergy of the Muon Collider could be initially designed to probe the Higgs boson

with unparalleled precision, before a final set of upgrades allows for multi-TeV

1Beamstrahlung is the radiation originating from the interaction of a charged particle beam
with the electromagnetic field generated by an oncoming beam.
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Figure 1.1: Block diagram describing the overall construction of a Neutrino Factory (NuMAX)
and a Muon Collider. A visualization including which components can be easily transferred
from one facility to another is included.

centre-of-mass lepton-antilepton collisions.

Before progressing towards a construction phase however, each component

must be individually developed. Several of which must also demonstrate the

expected design performance experimentally.

The Front End Test Stand [5] was developed to demonstrate early stage

proton acceleration techniques required to generate the megawatt powered pro-

ton beam. Such a beam is necessary to generate high enough numbers of pion

decays to produce high luminosity muon beams.

In order to quickly and efficiently disperse the energy of the high powered

proton beam, whilst providing a sufficient target cross section for pion pro-

duction, a liquid heavy metal target was the optimal choice. More traditional

choices such as solid metal and graphite targets simply would not sustain the

energy deposition for an extended period of time. The MERIT experiment [6],

conducted at CERN, showed that the construction of liquid mercury target is

feasible.

The options for rapid acceleration have also been investigated. Feasible

designs [7] include Fixed Field Alternating Gradient (FFAG) accelerators and

Recirculating Linear Accelerators (RLAs), as depicted in figure 1.1. At higher
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energies, rapid-cycling synchrotrons become more favourable, e.g. [8].

Most stages required to accelerate a muon beam however, must support

a much larger beam diameter when compared to more conventional facilities.

This is due to the large muon beam emittance at source, a side effect of both

the proton–target interaction and subsequent pion decays, and significantly in-

creases the difficulty of construction.

The most essential component of a high energy muon facility is therefore

the cooling stage. In order to collimate and focus a highly divergent beam

with a small lifetime, a novel method to reduce the transverse (and longitu-

dinal) phase-space must be considered. Ionisation cooling [9] is currently the

only feasible process by which the beam phase-space may be reduced quickly

enough to produce a high energy and high luminosity beam, without experienc-

ing significant losses due to muon decay. In order to achieve the transverse and

longitudinal beam dimensions required for a Muon Collider however, the relative

cooling power must be significantly greater than that for the Neutrino Factory.

This suggests that a staged construction/development project could be imple-

mented, where the additional stages further reduce the transverse phase-space

in addition to providing longitudinal cooling.

The Muon Ionisation Cooling Experiment (MICE) [10, 11] is currently under

construction and aims to be the first experimental demonstration of the use of

ionisation cooling to reduce the transverse phase-space of a muon beam. With

the conclusion of MICE, all the major components of a Neutrino Factory will

have been demonstrated successfully, opening a route for muon accelerators to

be further developed.

The content of this thesis will focus on the development of the MICE exper-

iment, with particular focus on the primary detectors, the Scintillating Fibre

Trackers. They are required to measure the phase-space of the MICE muon

beam, before and after a cooling channel, thereby demonstrating ionisation

cooling. However, in order to measure “cooling”, the phase-space of a muon

beam must be precisely parameterised.

1.2 Beam Optics and Emittance

The transverse coordinates of particle beams must be well controlled in order to

confine beams within beam pipes and highly transversely focussed at interaction

points, as in collider experiments. Additionally, the longitudinal coordinates

must be carefully controlled to maintain a correct phase relationship with RF

accelerating structures and general time-based events like interactions, injec-
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tion and extraction, etc. The transverse phase-space will be the focus of this

document, as the MICE experiment was primarily designed to provide precise

transverse diagnostics.

1.2.1 Phase-Space Description

Every particle in a beam, travelling along the positive z axis, can be completely

described by its position and momentum vectors, (t, x, y, z) and (E, px, py, pz),

where t represents the time in the laboratory frame of reference, z is the longi-

tudinal spatial dimension, parallel to the beam direction, and x and y are the

remaining transverse coordinates where y is assume to be the vertical coordi-

nate; E represents the total particle energy and px, py, and pz represent the

momentum of the particle projected into the position coordinate system. In

the transverse plane, particles are typically described by their geometric coor-

dinates: (x, x�, y, y�, E, t), where x� = px/pz and y� = py/pz.

When sufficient numbers of particles are analysed, it is possible to describe

the whole ensemble of particles by their distribution in phase-space. It is typical

to consider longitudinal, (E, t) or (pz, z), and transverse, (x, x�, y, y�), phase-

spaces separately, however the full 6-dimensional phase-space (x, x�, y, y�, E, t)

may also be considered.

A distribution of particles may typically be described by a probability den-

sity function in 6-dimensional phase-space, thus allowing the distribution to be

described at first order with the mean and variance of the phase-space density

in each dimension. In multiple dimensions, the scalar mean is generalised to a

vector of the means in each dimension. Similarly, the variance generalises to a

6 × 6 covariance matrix. Higher order moments become increasingly complex

higher-order objects. The mean of each dimension is typically constrained by

the beam pipe or choice of coordinate system, hence it is typical to completely

describe a particle beam using only the 6× 6 covariance matrix, or some subset

of coordinates.

Under the assumption that an ensemble of particles forms a gaussian prob-

ability distribution, modelling the ensemble by a single covariance matrix will

generally provide an accurate description of the beam. In rare occasions how-

ever, non-linear transformations will cause effects that are not correctly mod-

elled, resulting in a non-linear growth of the measured phase-space (see sec-

tion 1.2.2). However, most magnetic configurations are designed to mitigate

such effects.

The mean and covariance of each conjugate pair of coordinates (e.g. x–x�)

may computed such that a 2×2 covariance matrix, Σ, may be constructed that
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describes the distribution, equation 1.1. The central 68% of the distribution

forms an ellipse in phase-space and can be described by the covariance matrix,

Σ =

�
Var(x, x), Cov(x, x�)

Cov(x�, x), Var(x�, x�)

�
= �x

�
βx −αx

−αx γx

�
. (1.1)

where �x is the Root Mean Squared (RMS) emittance of the beam and αx, βx

and γx describe the shape of the beam phase-space in the (x, x�) dimensions.

The emittance corresponds to the volume of phase-space occupied by the cen-

tral 68% of the beam and is the most commonly considered parameter for the

requirements of an accelerator. It combines the overall size of the beam with

its dynamic confinement and as such provides a single measure of how well

contained and focussed the beam is.

αx, βx and γx are the Twiss parameters and correspond to the physical

description of the phase-space distribution. Commonly the betatron function,

βx, is discussed as it describes the width of the position distribution for a given

emittance. It therefore is a measure of how well focussed the beam is and is

commonly used in the design of magnetic lattices.

Using the properties of an ellipse, centred on the origin, the Twiss parameters

can be related to each other as in figure 1.2, and can be used to parameterise

the phase-space ellipse,

�x = γxx
2 + 2αxxx

� + βxx
�2. (1.2)

Figure 1.2: The relations between the Twiss parameters in the context of the RMS beam
envelope.
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If the particles within a beam were individually measured, the resulting

phase-space distribution could be analysed and used to generate the correspond-

ing covariance matrix, Σ. The emittance of the beam can then be directly

calculated in x-x� plane using the determinant of the covariance matrix,

�x =
�
|Σ|. (1.3)

This formulation is easily generalised from 2 to n dimensions. For a n × n

covariance matrix, the correspoonding n-dimensional emittance, �nD is given by,

�nD = |Σ| 1
n . (1.4)

Including more dimensions in the calculation increases the number of features

that will affect the emittance. In the 4 dimensional phase-space, the emittance

is not uniquely defined by the individual x and y phase-spaces. Rather the pres-

ence of mechanical angular momentum, L, creates additional x-y correlations,

where L is defined by,

L = �xy� − yx�� . (1.5)

For beams with no x-y correlations, which is typical of beams with no net

angular momentum, the 4 dimensional emittance is related to the individual 2

dimensional emittances by,

�4D =
√
�x�y. (1.6)

The addition of angular momentum causes this equality to fail as additional

terms are then included in the calculation of the 4 dimensional determinant.

Additionally, if the beam is subjected to accelerating forces or traverses

some substantial medium, the mean energy of the beam will change. As the

components, x� and y� are defined with respect to the momentum, they are no

longer conserved in the transverse phase-space. For this reason the normalised

RMS emittance, �N , which is invariant under acceleration, is the more commonly

used parameter. It can be directly calculated from a covariance matrix as,

�N =
(Σ)

1
n

βγ
(1.7)

where β and γ are the usual relativistic functions.

The 2 dimensional αx, βx, and γx parameters are also generalised to an

arbitrary covariance matrix. Using the relationships in figure 1.2, and averaging

the appropriate variances/covariances, the 4 dimensional, transverse parameters
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are given by,

α⊥ =
�xx��+ �yy��

2�⊥
, (1.8)

β⊥ =

�
x2

�
+
�
y2
�

2�⊥
, (1.9)

γ⊥ =

�
x�2�+

�
y�2

�

2�⊥
, (1.10)

where �⊥ is the 4-dimensional emittance calculated from the (x, x�, y, y�) phase-

space.

1.2.2 Linear Beam Optics

Once the beam has been appropriately described at a given position in space

or time, it is possible to define functions that propagate that description to

a subsequent position. The simplest example is the drift space of length l.

Without any magnetic fields or materials, each particle will continue along its

momentum trajectory unimpeded. The effect on the phase-space is a stretch of

the distribution in the x and y components, and a constant distribution in x�

and y�. As there is no x-y coupling the x and y distributions may be considered

separately. Figure 1.3 shows the effect of a drift space on the distribution.

x
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Figure 1.3: The effect of some small drift on the x-x� phase-space distribution for a beam in
arbitrary units. The particles with larger gradient have moved further from the centre of the
position axis, while the distribution of gradients has remained constant.

This can be realised by calculating a transfer matrix, designed to transform

the beam parameters from one state into another. For the simple case of a drift
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space, the transfer matrix can be written down as:

M =

�
1 l

0 1

�
. (1.11)

If we apply this to a particle state vector, (x x�)T it can be seen that the

transverse position increases as a linear function of the transverse gradient, as

expected. This transformation can be applied to both the particle state vector,

x, and covariance matrix,V, in the usual fashion,

x(l) = Mx(0),

V(l) = MV(0)M�.
(1.12)

This simple linear approach can be easily extended to a variety of magnetic

configurations, using the correct calculation of the transfer matrix. The trans-

formations through the most common magnet types, (dipoles and quadrupoles)2

are well documented, and typically considered as thin lenses within the formal-

ism. A detailed overview of the mathematical foundation of modelling charged

particle beams can be found in ref [12]. Magnetic lattices can always be sub-

divided into a series of short elements, which can then be modelled using a

combination of thin lenses and drifts.

1.2.3 Solenoid Optics

For most beamlines, there is little or no transverse coupling. Beams are ideally

produced symmetrically and few magnets induce any x-y coupling, hence the

phase-space may be modelled in x and y independently. For solenoid optics

however, there is an inherent coupling in the transverse plane as the Larmor

rotation of the particles, through the magnetic field, sees them rotate between

the x and y phase-space distributions. Hence the phase-space must be inher-

ently modelled in at least 4 dimensions, the longitudinal components are still

uncoupled to first order, but may also be included.

The Twiss parameters may similarly be defined [13] using the expected x-

y symmetry in the beam. The standard 2 × 2 covariance matrix is therefore

extended to a 4× 4 covariance matrix, with components (x, x�, y, y�), assuming

2Higher order magnetic structures, sextupoles, octupoles, etc., are not linear at first order
and hence are generally more difficult to model in the linear optics regime.
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a gaussian distribution that is symmetric in both x and y,

Σ4D = �⊥




β⊥ −α⊥ 0 −(β⊥κ− L)
−α⊥ γ⊥ (β⊥κ− L) 0

0 (β⊥κ− L) β⊥ −α⊥

−(β⊥κ− L) 0 −α⊥ γ⊥




(1.13)

where κ = qBz/2pz, α⊥, β⊥ and γ⊥ are the transverse Twiss parameters, �⊥

is the geometric 4D RMS beam emittance and L is a dimensionless parameter

defined by the mechanical angular momentum. Additionally,

L = �xpy − ypx� = −2pz�⊥(β⊥κ− L), (1.14)

L ≈ �Lcanon�
2pz�

. (1.15)

The structure resembles that of the 2 dimensional case, with off-diagonal terms

as a direct result of the mean canonical angular momentum (�Lcanon�). The

addition of these terms implies that the 4 dimensional emittance is greater than

the sum of the two, 2 dimensional emittances (in x and y). Hence the full

4D phase-space must be reconstructed in order to precisely determine the total

transverse emittance.

Note also that this formulation assumes some symmetry in the initial beam

distribution. If the x and y components are strongly correlated, the equations of

motion based on this parameterisation will not completely describe the evolution

of the phase-space. Hence the distributions in each transverse component are

still of use during analyses.

This parameterisation is predominantly useful in the design and modelling of

solenoid beam optics as it allows for the derivation of transfer matrices, similar

to those used with the Twiss parameters. Indeed the parameter, κ2, can be

shown to be proportional to the focussing strength of a thin solenoid “lens”.

1.2.4 Liouville’s Theorem

Liouville’s theorem is a key component in the discussion of beam optics and

the propagation of beam ellipses, and may be derived with relatively few simple

assumptions.

Consider a closed system of non-interacting particles with no external forces.3

The example beam phase-space can then be modelled with some unspecified cen-

3Interacting particles may also be modelled where the space charge induced electric and
magnetic fields, between a particle and its nearest neighbour, are negligible in comparison to
the collective fields.
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tral distribution, with a number density given by, n(t, x, y, z, E, px, py, pz). It is

assumed that the canonical position and momentum coordinates can be given by

qi and pi respectively, hence a velocity vector may be constructed, v = {q̇i, ṗi},
for each particle in the phase-space. Therefore, in order to conserve the number

of particles within the beam, the phase-space density must obey the continuity

equation:

∇ · (nv) + ∂n

∂t
= 0, (1.16)

n∇ · v + v ·∇n+
∂n

∂t
= 0.

Hamilton’s equations for this system,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (1.17)

where H is the Hamiltonian, may be used to simplify the first term,

∇ · v =
∂q̇i
∂qi

+
∂ṗj
∂pj

, (1.18)

∇ · v =
∂2H

∂qi∂pi
− ∂2H

∂pj∂qj
= 0. (1.19)

Hence the continuity equation may be simplified to,

v ·∇n+
∂n

∂t
= 0, (1.20)

q̇i
∂n

∂qi
+ ṗj

∂n

∂pj
+

∂n

∂t
=

dn

dt
= 0; (1.21)

that is, the phase-space density remains constant with time. Liouville’s theorem

states that the total occupied volume of a given number of particles in phase-

space is invariant. If conservative transformations are introduced, it can be

similarly shown that the total volume of phase-space is still conserved even if

the distribution changes. This directly applies to the modelling and design of

magnetic lattices, as it implies that a measure of the phase-space volume, e.g.

the emittance, must also remain constant.

As magnetic fields induce conservative forces, magnetic lattices will con-

serve the beam phase-space, and by extension the beam emittance, assuming

that the distribution of the phase-space only undergoes linear transformations.

Section 1.2.5 describes an occasion where non-linearities cause a growth in the

measured emittance, however the total phase-space volume still remains con-

stant. This also highlights the fundamental difficulty in beam cooling, i.e. re-
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ducing the phase-space volume, as non-conservative forces must be applied to

the beam.

1.2.5 Matching a Beam

Linear beam optics is widely used as the simplest method to model beamlines

and predict particle phase-space distributions, without the need to simulate

many thousands of particles. However, as the approach is only accurate to first

order, a combination of linear optics and full tracking of particles, within a mag-

netic field model, is generally required in order to precisely design a magnetic

lattice.

During the procedure of matching, the settings for each magnet may be

adjusted in order to vary the focussing strength of each individual component.

The objective is to achieve the required beam optics at positions of interest

within the lattice. In circular colliders/storage rings, where beams experience

multiple turns through the same magnetic lattice, the Twiss parameters are

generally required to start and finish with the same values, thereby preserving

the machine symmetry within the beam optics and reducing losses.

In linear beamlines, such as MICE however, the matching of the beam with

respect to the quasi-symmetric structures is still of great interest. Correct

matching ensures that the beam can be optimally focussed through the absorber

(the reasons for doing so are discussed below), and that a high transmission can

be maintained. Cooling channels such as those designed for the neutrino factory,

require long chains of similarly designed cells, hence it is optimal for the optics

of the beam to reflect the repetitive nature of the machine.

The natural emittance of the MICE beamline is many orders of magnitude

higher than that of a typical electron or proton synchrotron due to the produc-

tion mechanism of the muon beam - a proton-target interaction and subsequent

pion decays. The larger phase-space volume is much more susceptible to non-

linear effects as more muons are further from the origin of the phase-space,

where the linear approximation starts to fail. The complex magnetic config-

uration of MICE (see section 2.4), with several strong focussing fields further

amplifies the sensitivity to non-linear effects.

Poor matching of a beamline will generally lead to a non-linear increase in the

beam emittance, which cannot be predicted by linear beam optics. Figure 1.4

illustrates one such example of this non-linear emittance growth - a phenomenon

known as filamentation. This is where the extremes of the distribution are in a

regime which is only very approximately linear, leading to a different behaviour

which is generally only notable over a large amount of time spent in the magnetic
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Figure 1.4: An illustration of the filamentation phenomenon and how over time it may lead to
a non-linear emittance growth despite Liouville’s theorem.

lattice.

1.3 Ionisation Cooling

Many particle accelerator based experiments are reliant on high quality beams.

For example, small transverse (and longitudinal) phase-spaces are required to

ensure colliding bunches are precisely focussed, and beams that use complex

or stochastically driven production mechanisms are often produced with large

phase-spaces that must be reduced. Although this thesis is focussed on muon

beam development, similar issues are present in many other beamlines, each

with a different optimal solution.

The proton-antiproton collisions that occurred at CERN were heavily re-

liant on stochastic cooling to reduce the transverse phase-space of the antipro-

ton beam. Transverse electrical pick-ups detect the deviation of particles from

the beam centre, and use that information to construct an active electric field

designed to counteract the measured effect [14].

Additionally, schemes such as electron cooling have been used, where a

“colder” electron beam is combined with the primary beam, allowed to interact

through Coulomb Scattering and then extracted such that the temperature of

the original beam is reduced. It was originally conceived by Budker [15] and

first proven experimentally at Novosibirsk [16].

Laser cooling systems, similar to the mechanism used in laser-ion traps,

have been used to great effect. A laser is focussed onto a beam of ions, thereby

exciting them to a higher electrical state, before an isometric emission of photons
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Figure 1.5: Diagrammatic representation of the process of ionisation cooling in momentum
space. The green arrow represents the effect of the absorber - a net reduction in total momen-
tum; the red arrow represents a smearing of the momentum spread due to multiple Coulomb
scattering; and the blue arrow represents the final momentum following some accelerating
structure. The net effect is a reduction in momentum spread, while maintaining the mean
beam momentum.

follows. This results in a reduction of the momentum spread of the beam [17].

Each of the three systems mentioned (and indeed several others) have been

experimentally tested and shown to produce efficient cooling for a variety of

situations. However they all require a storage ring, such that the relatively

small effect that they induce can be applied many thousands of times. For a

muon beam however, the small lifetime renders almost every scheme inapplicable

apart from ionisation cooling.

1.3.1 Principles of Ionisation Cooling

Consider a beam incident on a material, the Bethe formula [18] for mean energy

loss describes the rate of energy loss per unit of areal density, the product

of penetration distance and material density (x = sρ). At first order this is

proportional to the ratio of atomic number (Z) to atomic mass (A), in addition

to being inversely proportional to the normalised velocity squared (β2),

�
dE

dx

�
∝ Z

A

1

β2
.

It is therefore optimal to use a material with a high value of Z/A, and a beam

with a relatively low velocity. In practice, it is ideal to minimize the effect

of multiple Coulomb scattering, which naturally acts as to increase the beam

emittance, hence materials such as liquid hydrogen, liquid helium and lithium

hydride are the optimal choice.

As the beam traverses some volume of the selected material - the absorber - it

will naturally experience a reduction in the total momentum. If the longitudinal

components are then restored, the beam will have experienced a net reduction

in the transverse momentum spread. This corresponds to a decrease in the

transverse emittance, i.e. transverse cooling. Figure 1.5 describes this process.
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1.3.2 The Cooling Equation

In practical applications, muons are produced with a large phase-space and

require strongly focussing magnets in order to contain them within beamlines.

As they are generally produced at relatively low energy, and ionisation cooling

performs better at low energy, solenoid optics are the natural choice.

In a system with no x-y coupling and α⊥ = 0, the normalised transverse

emittance can be expressed as the product of the position and angular standard

deviations, �⊥ = βγσ(x,y)σ(x�,y�) where β and γ are the typical Lorentz factors.

Therefore the differential emittance follows,

d�⊥
�⊥

=
dp

p
=

dE

E

1

β2
, (1.22)

as dE = βdp. Hence we may deduce that the rate of change of emittance as a

function of the mean energy loss per unit of areal density, the cooling term, is

given by,
d�⊥
dx

= − �⊥
β2E

�
dE

dx

�
. (1.23)

Similarly, we may consider the “heating” effect due to multiple Coulomb

scattering as a separate term. The approximate differential scattering angle per

unit of areal density is typically given by [19] where a scattering model based

on Highland’s work, as presented in the PDG, [18] is used.

∂σ2
θ

∂x
≈ 1

X0

�
13.6MeV/c

pβ

�2

, (1.24)

where X0 is the radiation length of the material. The precise value of the

constant is dependent on the choice of scattering model and the materials to

which it applies. Other materials and models yield different values. Often the

model described by Rossi [20] is projected into a single dimension producing a

value of approximately 14 MeV/c. This can be incorporated in the emittance

change, by considering the differential,

d�2⊥ = β2γ2σ2
xdσ

2
θ ,

2�⊥d�⊥ = βγβ⊥�⊥dσ
2
θ ,

d�⊥ =
β⊥γβ
2

dσ2
θ ,

d�⊥
dx

=
β⊥(13.6MeV/c)2

2β3EmµX0
, (1.25)

where the identity, σ2
x = �⊥β⊥/βγ has been used. Equation 1.25 is the heating
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term, the rate of change of emittance due to the effects of multiple Coulomb

scattering.

The differential change in normalised transverse emittance may now be con-

structed as a function of the material traversed as a sum of the cooling term

(1.23) and the heating term (1.25),.

dε⊥
dx

= − ε⊥
β2E

�
dE

dx

�
+

β⊥(13.6MeV/c)2

2β3EmµX0
. (1.26)

This describes the approximate change in normalised transverse emittance, �⊥,

of a muon beam with betatron function, β⊥, as it propagates through a material

of radiation length X0. Several key conclusions can be noted from the structure

of this equation:

• The rate of cooling is optimized by having a large initial emittance. i.e.

the rate of cooling decreases as the phase-space is compressed.

• Slower beams (approximately minimum ionising particles) experience a

greater rate of cooling.

• Beams with a smaller betatron function experience less emittance growth

due to multiple Coulomb scattering, hence they are “easier” to cool.

• The choice of material affects both the rate of energy loss and multiple

Coulomb scattering, hence its a critical decision in any cooling apparatus.

It can also be noted that there is a well defined minimum, at the equilibrium

emittance �0⊥. For a fixed value of beta and a given material, the beam cannot

be cooled past this point. It is given by,

�0⊥ =
β⊥(13.6MeV/c)2

2βmµX0

�
dE

dx

�−1

. (1.27)

The derivation of the cooling equation uses only simple treatment of the

effects of multiple Coulomb scattering and energy loss. As such the theoretical

performance has been shown to disagree with Monte Carlo simulations [21],

however the known deviations in mean scattering angle between Monte Carlo

models and the true low-Z materials will cause further disagreements when

compared to data. The MICE experiment has a unique ability to test the

accuracy of these models and improve on the assumptions used in the cooling

equation. This is a necessary step towards the development of a muon cooling

channel.

32



1.3.3 Building a Muon Cooling Channel

The ideal cooling channel would be composed of very strong solenoid magnets,

in order to create the smallest possible betatron function, with repeated ab-

sorbers and accelerating cavities. This would ensure that the beam energy is

maintained, while the emittance is iteratively reduced. However the cost and

practicality of a single long solenoid, housing liquid hydrogen or lithium hy-

dride vessels and accelerating structures is nearly impossible, hence a periodic

lattice structure is preferred. This not only allows for the required services to

access each component, but the focussing strength can be concentrated at the

absorbers and overall increased throughout the lattice, thereby gradually and

efficiently reducing the equilibrium emittance.

The simplest periodic focussing lattice, a so-called FOFO (FOcussing - FO-

cussing) lattice, is designed such that the absorbers are placed in the region of

lowest betatron function and RF cavities are place in regions of higher betatron

function.

An additional concern is that of how the canonical angular momentum is

affected by the induced energy loss [22]. Consider a beam with zero canoni-

cal angular momentum that enters a solenoidal field, the mechanical angular

momentum experiences a kick due to the field. Each individual particle experi-

ences a change in mechanical momentum of qBzr/2 due to the fringe field. The

canonical momentum however, is conserved throughout by definition. When

the beam passes through an absorber within the solenoid field, the momentum

is isometrically reduced, which results in a change of both the mechanical and

canonical angular momenta. As the beam then leaves the solenoid field and

experiences the opposite momentum kick, a net increase in the canonical angu-

lar momentum is found. This is experienced as a net emittance growth. For

this effect to be mitigated the solenoidal fields used must periodically change

polarity through the absorbers.

Figure 1.6 describes an example solenoid FOFO lattice which forms a sim-

plified cooling channel. After optimization however, a Super-FOFO (SFOFO)

lattice is typically preferred, where twice the number of coils are used and placed

much closer to the absorber. In this way the focussing strength can be increased,

while the peak magnetic field is in fact decreased resulting in a more efficient

design. Figure 1.7 describes this structure.
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Solenoid

Absorber
RF Cavity

Bz

Figure 1.6: Representation of a FOFO-type cooling lattice. The absorbers (blue) are placed
in regions of low betatron function to enhance the cooling performance. The RF accelerating
cavities are placed in between to replenish the longitudinal momentum components. The
relative field flip between pairs of solenoids prevents the accumulation of canonical angular
momentum.

Solenoid

Absorber
RF Cavity

Bz

Figure 1.7: Representation of a Super-FOFO-type cooling lattice. The absorbers (blue) are
placed in regions of low betatron function to enhance the cooling performance. The RF ac-
celerating cavities are placed in between to replenish the longitudinal momentum components.
The relative field flip between pairs of solenoids prevents the accumulation of canonical angular
momentum. The increase in the number of coils allows them to be smaller and provide greater
focussing through the absorber.
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Chapter 2

MICE

The International Muon Ionisation Cooling Experiment (MICE), was designed

to be the first experiment to demonstrate practical ionisation cooling and to

provide the first measurement of normalised transverse emittance reduction in

a muon beam. Since its initial conception, the experiment has been re-baselined

and thoroughly scrutinised [23]. The current designs are expected to permit

emittance and ionisation cooling measurements during 2016 (MICE Step IV).

A variety of detailed studies based on material physics (energy loss and mul-

tiple Coulomb scattering) and beam physics will also be conducted in parallel.

MICE Step IV has simple configuration allowing both the incoming and outgo-

ing beams to be measured to high precision, with flexible optics. The central

absorber module was designed to support a range of different absorbers, allow-

ing for the cooling performance of different materials to be measured. Hence

the experimental setup is well suited to make measurements of material physics

and the effects of different optical configurations, which are otherwise difficult

to perform.

The programme will conclude with the completion of the final stage of de-

velopment, the MICE Demonstration of Ionisation Cooling [23]. This is due in

2019 and will demonstrate emittance reduction with partial energy recovery in a

realistic cooling cell, where the energy recovery is provided through two 201MHz

RF cavities. Additionally, further beam-physics studies will be conducted with

a detailed focus on the effects of different optical configurations on the cooling

cell performance.
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2.1 Introduction

The MICE experiment may be subdivided into three parts, the upstream beam-

line, the cooling channel, and the diagnostics and detectors; these are outlined

in the sections 2.2, 2.3 and 2.4 respectively. MICE is a parasitic experiment that

uses a titanium target, dipped into the halo of the ISIS proton beam [24], to

produce a spray of baryons, predominately pions, within the ISIS synchrotron

hall. The upstream beamline uses a combination of dipole magnets, for steering

and momentum selection, and quadrupole magnets, for containment and match-

ing to steer the pion beam into the MICE experiment hall. A superconducting

solenoid is used as a strong focussing element to contain as many muons as

possible from pion decay.

With the correct settings a high purity, low current (one muon per event),

muon beam is produced directly into the cooling channel where the detailed

emittance, material physics and optics studies are undertaken. The cooling

channel contains the scintillating fibre trackers (ScFi Trackers), situated at the

centre of a 4T solenoid, providing precise measurements of the muon position

and momentum, in order to form a 6D phase-space for selected ensembles of

particles. The remaining detectors are used for particle ID and event selection.

2.2 The Muon Beamline

The beamline is composed of some of the oldest components of the MICE ex-

periment. Construction was completed in 2009 such that MICE Step I could

be conducted [25]. An overview of the structure of beamline can be seen in

figure 2.1. The MICE target [26] is composed of a titanium rod and a set of

high powered linear motors. Owing to high repetition rate of ISIS, the con-

trolled fluctuations in beam diameter and sensitivity of the ISIS machine the

target had a precise specification to meet, which was achieved by ensuring an

acceleration of 780ms−2 could be applied to the target itself.

The fine control of the target dip-depth permits very stable pion production

for use in the MICE Beamline. The most upstream quadrupoles, Q1–3 were in-

stalled to capture as many of the emitted particles as possible, given constraints

on construction1. They direct the beam which is predominantly pions into the

first dipole magnet, D1. The field strength in D1 permits the selection of the

pion momentum and the sign of the charge, into the decay solenoid.

1A structure similar to a magnetic horn would be a more efficient pion capture system,
however the space available around the ISIS synchrotron, coupled with the low requirement
on transmission, meant that this would not have been a feasible design.
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DiffuserCkov
MICE Cooling

Channel

Figure 2.1: Schematic of the MICE beam line from target to the upstream tracker. Q1 to Q9
are quadrupole magnets used for containment and matching, Dipole 1 and 2 are used to select
the momentum of pions and muons respectively, the Decay Solenoid increases the efficiency of
containing muons following pion decay and the TOF0, 1, and 2 detectors permit particle ID
and global tracking. The Cerenkov detectors (Ckov) offer additional, coarse data for particle
identification and the beam position monitor (BPM) may be used to determine the approximate
envelope of the beam. Finally, the diffuser can be used to artificially increase the emittance of
the beam before the cooling channel.

Figure 2.2: Left: schematic diagram of the structure of the target. Right: photograph of the
target as installed upon the ISIS synchrotron.
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Figure 2.3: Left: front view of a Cerenkov detector with the aerogel removed. Each quadrant
is monitored using a single photo-multiplier tube. Right: Both Cerenkov detectors as installed
in the MICE beamline, immediately downstream of Q6 (blue in the image).

The decay solenoid greatly increases the transmission of the beamline owing

to the strong magnetic focussing, providing a large dynamical acceptance. A

large fraction of muons are produced within the bore of the magnet, before

being directed into the second dipole, D2, where the muon momentum can be

effectively selected by controlling the field strength.

The remaining quadupoles serve as to contain the resulting muon beam

as much as possible through the upstream section of the MICE hall. They

additionally provide some magnetic degrees of freedom, permitting the beam to

be matched into cooling channel as best as possible.

During operation the MICE target typically dips every 2s into the ISIS beam

and produces on the order of 10-20 muons within the cooling channel, if the

decay solenoid is not powered, or on the order of 100-200 muons with the decay

solenoid powered. Each muon is sufficiently separated in time for individual

particle ID and reconstruction routines to be applied.

2.3 Detector Systems

There is a range of detectors both up- and downstream of the cooling channel

[27], designed to provide a very high precision particle identification (PID) sys-

tem. The first of these are the Cerenkov detectors [28]. They are constructed

from two separate types of aerogel, with carefully selected refractive indices,

such that the velocity of incoming particles can be quickly and coarsely deter-

mined by analysing which aerogel slab has a high enough refractive index to

invoke Cerenkov radiation.

Additionally the Time-Of-Flight (TOF) detectors are found upstream (TOF0
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Figure 2.4: Left: TOF0 as installed on the end of Q6. Right: The TOF2, KL and EMR
detectors as installed together. TOF2 is the first detector, just in front of the KL detector,
followed by the EMR.

and TOF1) and downstream (TOF2) of the cooling channel [29]. The TOF de-

tectors were constructed from scintillating bars and were designed to have a very

fast response time to scintillation light. This permits any of the TOF detectors

to act as the readout trigger for the experiment. In practice TOF1 is the most

efficient trigger, as it is immediately upstream of the cooling channel. Figure 2.4

shows two of the TOF detectors, as installed within the MICE experiment. The

three detectors permit two distinct measurements of individual particle time-

of-flight, such that the particle species can be estimated both before and after

the cooling channel. Additionally, accurate modelling of the beamline and high

precision reconstruction algorithms permitted an emittance measurement of the

standard MICE muon beam to be undertaken [30].

Downstream of the cooling channel, following TOF2, there are two more

detectors - the Kloe-Light (KL) detector and the Electron-Muon Ranger (EMR).

The KL detector was so named as it has a similar but smaller construction than

that of the original Kloe calorimeter [31]. The layers of lead and scintillating

fibres provide a measurement of particle penetration, especially when coupled

with the EMR, as electrons can be easily tagged using the pre-shower effect

of the KL. The KL and EMR were installed collectively with TOF2 to form a

complete downstream calorimetry system, as shown in figure 2.4.

The EMR [32] is a fully active, scintillating-fibre based, sampling calorime-

ter, constructed from plastic scintillating bars. The high granularity in the

longitudinal direction permits the penetration depth and track uniformity to be

exploited very effectively in separating electrons from muons.
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Figure 2.5: Photograph of the EMR as installed in the MICE experiment during the construc-
tion phase of MICE Step IV.

A pion contamination study was undertaken to demonstrate the accuracy of

the particle ID system and the purity of the MICE muon beam [33].

2.4 MICE Cooling Channel

The MICE Cooling channel forms the main body of the MICE experiment. In

the MICE Step IV configuration it is essentially composed of an upstream spec-

trometer (SSU), an Absorber-Focus Coil (AFC), and a downstream spectrome-

ter (SSD). It was designed to allow the upstream and downstream spectrometers

to analyse the muon beam as it enters, and again as it leaves the cooling chan-

nel, such that the evolution of the phase-space can be recorded. In order to

contain and control the beam, the cooling channel contains 12 superconducting

solenoid coils: 5 in each of the spectrometers and two in the absorber focus

coil. Additionally, each spectrometer solenoid houses a scintillating fibre based

tracker, in order to perform the particle track reconstruction. A brass-tungsten

beam diffuser was installed in the upstream spectrometer, permitting the beam

emittance to be artificially increased before entering the cooling channel, such

that different emittance beams may be studied. It contains leaves of brass and

tungsten that can be placed within the beam to artificially increase the beam

emittance via multiple Coulomb scattering. Figure 2.6 describes physical layout

of the cooling channel.

The MICE absorber was constructed to house liquid hydrogen within a low
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Figure 2.6: Layout of the MICE cooling channel, as constructed. The Diffuser, SciFi Trackers
and Absorber are marked, and each magnetic coil is shown in red.

density vacuum chamber, owing to the benefits of using hydrogen over other

materials. The module is however reconfigurable, permitting different materials

to be tested in addition to hydrogen. Due to the less volatile nature of lithium

hydride, but very low density, it was chosen to be the primary addition to

Step IV run plan.

With the magnets turned off, materials placed within the absorber mod-

ule may be used to make precise measurements of multiple Coulomb scattering.

With the magnets energised, the upstream and downstream beam momenta can

be measured such that the mean energy-loss for different materials can be calcu-

lated. However the primary mode of operation is to measure the incoming and

outgoing beam emittance and beta-function, such that the change in emittance

through the chosen absorber material can be measured.

2.4.1 Magnetic Layout

A driving force behind the design of the MICE cooling channel were the existing

designs for neutrino factory cooling channels that were being developed [34],

section 1.3.3 outlines the basics of this development. The two spectrometer

solenoids were constructed such that they may be approximated to an infinite

solenoid field. This defines the points in the magnetic lattice where the beam

must be matched into and out of the cooling channel. Between these two points,

the “cooling cell” is defined. If the muon beam can be matched both at the

beginning and the end of the cooling cell, it can be repeated to increase the
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Coil
z Current Density Length Thickness Inner Radius

mm A/mm2 mm mm mm

Up - E2 -3200.0 133.88 110.6 67.8 258.0
Up - C -2450.0 144.90 1314.3 22.1 258.0
Up - E1 -1700.0 124.51 110.6 60.9 258.0
Up - M2 -1300.0 120.10 199.5 30.9 258.0
Up - M1 -861.0 129.04 201.3 46.2 258.0
Up - FC -202.75 58.66 213.3 94.8 267.0

Down - FC 202.75 58.66 213.3 94.8 267.0
Down - M1 861.0 129.04 201.3 46.2 258.0
Down - M2 1300.0 120.10 199.5 30.9 258.0
Down - E1 1700.0 124.51 110.6 60.9 258.0
Down - C 2450.0 144.90 1314.3 22.1 258.0
Down - E2 3200.0 133.88 110.6 67.8 258.0

Table 2.1: Description of the magnetic lattice used to perform the simple Step IV Monte Carlo
Studies shown in figures 2.7 and 2.8.

amount of emittance reduction.2

The original designs for the construction of MICE concluded with Step VI

[35], however the experiment has since been re-baselined and will no longer

continue to this final form. Designs for alternate lattices with lower financial

burden and construction difficulties were investigated [23]. In both cases, the

idea was to construct a component of a muon cooling channel that could repre-

sent modern designs.

The present state of MICE is the Step IV configuration, which serves to test

only the AFC component of a cooling cell, containing the absorber and focussing

magnets and does not include the RF cavities required to permit sustainable

cooling. The AFC was designed to provide strong magnetic focussing at the

absorber, to enhance the rate of emittance reduction. Figure 2.6 shows the

physical layout of Step IV and figure 2.7 shows the magnetic field strength and

betatron function throughout the lattice in “solenoid mode”, where there is no

change in magnetic field polarity. The cooling channel can also be operated in

“flip mode”, where the polarity of the fields is inverted about the AFC module.

The parameters used to generate the simulation data are listed in table 2.1.

The beam was required to be correctly matched from the upstream spec-

trometer solenoid into the AFC module and finally into the downstream spec-

trometer solenoid. In order to do so, the 2 AFC coils and 2 match coils in

each spectrometer were individually varied in order to find the set of magnetic

currents that provide the optimal settings. The magnitude of the current in the

2The repetition however would not be indefinite due to the equilibrium emittance, defined
in equation 1.27. Rather the focussing strength in each cell must be gradually increased as
the transverse emittance is decreased.
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Figure 2.7: The mean z-component of the magnetic field throughout the cooling channel (left)
and the mean transverse betatron function throughout the cooling channel (right). The red
line marks the position of the absorber and the green lines mark the positions of the 10 tracker
stations.

AFC coils is the same, but may be reversed for “flip mode” operation.

Despite an iterative sequence of improvements to the magnetic configuration,

there still exists some mismatch in the downstream spectrometer solenoid. This

can be seen in figure 2.7–right, by the oscillations in the beta function within

the uniform solenoid region. Further optimisations were conducted in order to

improve the field uniformity within the tracker region and reduce this mismatch,

however there was only a finite amount of improvement to be gained due to the

momentum spread of the muon beam.

As the focussing strength of a magnet depends on the momentum of the

particles experiencing the field, configurations such as MICE may only be truly

matched for a single value of momentum, any additional spread in energy re-

sults some particles experiencing a different amount of focussing, which inte-

grates through the magnetic fields and eventually results in a mismatch. Over a

long and repeated cooling channel involving RF reacceleration, particles will un-

dergo synchrotron oscillations, periodically moving from matched to unmatched

momenta.

Although this effect is small, repeatedly inducing these so-called “chromatic”

effects could eventually lead to a non-linear emittance growth due to effects such

as filamentation. This highlights some of the difficulties in designing magnetic

lattices of this type.

The overall performance of the beam emittance as it traverses the cooling

channel with a Liquid Hydrogen absorber is shown in figure 2.8. It can be

seen that despite the small mismatch due to the chromatic aberrations, the

normalised emittance is well behaved and in fact decreases between the two
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Figure 2.8: Behaviour of the normalised transverse emittance of a realistic muon beam with
the MICE Step IV cooling channel. The centre of the liquid hydrogen absorber is marked in
red and the 10 tracker stations are marked in green.

trackers.

There is a clear reduction in emittance due to the small beta function and

absorber material at the centre of the lattice, as predicted by the cooling equa-

tion (equation 1.26). Additionally, each tracker station also provides a small

amount of cooling due to the relatively low beta function in those regions and

the relatively low-Z construction materials of each plane. Finally it can be noted

that there exists some emittance growth through the regions of high focussing

- or large changes in field gradient. The finite momentum spread leads to this

chromatic effect, while the effects of energy straggling and energy loss means

that despite a symmetric field, the focussing strength is not symmetric either

side of the absorber. These effect could be further reduced by optimally tuning

each side of the cooling cell individually based on slightly different momentum

distributions.

2.4.2 The SciFi Trackers

The scintillating fibre (SciFi) trackers are the key measurement device within

the MICE experiment. They permit the reconstruction of the position and

momentum of individual muon tracks within a uniform solenoid field, and the

reconstruction of the position and trajectory in configurations without magnetic

fields. The body of the detector is constructed predominantly from carbon fibre,

with the detector planes made out of scintillating fibres, laid to form a doublet

layer, before glued in place and coated with Mylar. Figure 2.9 demonstrates
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Figure 2.9: Schematic layout of the planes and how they are related to each other within a
station. All measurements are in microns.

how the fibres are located with respect to each other. The scintillating fibres

produce scintillation light from ionising radiation which is typically within the

UV spectrum. Wavelength shifting fibres are connected to the end to transform

the UV scintillation light into the visible spectrum. The wavelength shifting

fibres are then connected in bunches of 7 to form a channel, and each channel

is passed out of solenoid bore, via a light guide and into a Visual Light Photon

Counter (VLPC).

The planes themselves are mounted in triplets (planes U, V and W), and

rotated at 120 degree’s to their neighbour, to form a station. The three orienta-

tions provide an x and a y component in the reconstruction. As only two planes

are required to deduce an x-y position, the third planes serves as to reduce the

probability that any recorded hits are due to noise by requiring a coincidence

across each of the three planes. Figure 2.10 shows a completed tracker during

the final stages of construction.

The read out for the detector is similar to the readout used in the D0 ex-

periment [36] as both experiments make use of a scintillating fibre tracker and

require a careful calibration system to calculated the number of photoelectrons

produced by a minimum ionising particle based on the amount of charge gener-

ated in the VLPCs. Due to the relatively low numbers of photo electrons, the

VLPCs must be very sensitive and are cooled by liquid Helium within specially

designed cryostats. Due to the high sensitivity of the readout system, it is sus-

ceptible to noticeable electronics noise. The calibration was conducted such that

during an event, on average each channel has a 2.3% probability of generating

a 1PE noise digit. This makes the noise level noticeable and measurable, but

is low enough that it can be distinguished from signal in the majority of cases.

The electronics and calibration procedures are detailed in [37].
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Figure 2.10: Photograph of a completed tracker. Note that to prevent discolouration of the
scintillating fibres, they must be stored either in darkness or a yellow light. The 5 individual
stations can be clearly seen in the image as the wavelength shifting fibres have not yet been
connected to the edges of the planes.

2.5 Conclusion

The configuration of MICE permits a unique range of experiments to be con-

ducted, with the goal of aiding the design of future muon accelerators and beam

lines.

The material physics programme will provide data required to tune the mod-

els for mean and modal energy loss, and multiple coulomb scattering for the

materials that are of greatest interest in cooling channels. This in turn will

permit existing models of ionisation cooling to be improved.

The emittance change programme will provide the only experimental means

to study ionisation cooling. The design of the cooling channel offers the flexibilty

required to study the cooling equation in detail, across a wide range of momenta

and betatron functions. Such measurements are vital for future muon facilities.

The constuction and commissioning of the cooling channel additionally pro-

vides a unique set of challenges. Few beamlines are composed entirely of super-

conducting solenoids and the procedures for installation, training and alignment

are still being developed. MICE provides the first test of how feasible and com-

plex such configurations are to install and use.

Finally, a beam physics programme is also under development. Due to the

strongly-focussing solenoid magnets and high precision reconstruction devices,

the SciFi Trackers, MICE is uniquely placed to be able to study the precise effect

of strong focussing elements on the evolution of the beam emittance. Studies

of non-linear emittance growth may be precisely conducted and analysed as a
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function of momentum and field strength. Linear or quasi-linear models may

then be constructed for use in future beamline models.

The outlined experimental programme and possible measurements for the

MICE experiment are all heavily reliant on the performance of the MICE Scin-

tillating Fibre Trackers. Systematic errors must be carefully controlled in order

to produce the precise measurements required for the materials physics pro-

gramme. Statistical errors and correlations must also be carefully modelled as

they will directly bias the reconstruction of the beam emittance.
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Chapter 3

MICE Track

Reconstruction

3.1 Introduction

The development and testing of the track reconstruction software was a ma-

jor component of the work conducted by the author. An existing codebase,

MAUS [38], created by the MICE Collaboration was in place and tested, and

contained the routines required for detector analysis and simulation, in addition

to cooling channel simulations. The track reconstruction software was included

within this framework. The main focus of the following section will be the

theory and implementation of a Kalman Filter based track-fit algorithm.

The final track-fit follows on from lower-level reconstruction objects, which

are created in sequence, beginning with the processing of the raw tracker DAQ

data. The process of building these objects is described in section 3.3. The final

track fit uses data from each plane, which is selected using a pattern recognition

algorithm, before applying a Kalman Filter based fitting algorithm.

The low level reconstruction stages were implemented and tested by various

collaborators and formed the required structure and processing framework on

which the Kalman track fit could be implemented.

3.2 Geometry

In order to determine the parameters of the fitted tracks, in the global coordinate

system of the experiment, a model of the tracker geometry was required for the

reconstruction and simulation of tracker data. For the simulation, this was
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Upstream Downstream

Station
x y z x y z

[mm] [mm] [mm] [mm] [mm] [mm]
1 0.0 0.0 −549.9513 0.0 0.0 −549.8789
2 −0.4698 0.0052 −349.0577 −0.5709 −0.7375 −349.9143
3 −0.6717 −0.1759 −100.0523 −1.2021 −0.1657 −100.0513
4 0.1722 −0.2912 199.8771 −0.5694 −0.6040 199.9491
5 0.0 0.0 549.9513 0.0 0.0 549.8789

Table 3.1: Summary of survey measurements of the tracker stations made during the construc-
tion of the trackers. The centres of the first and last stations were used to define the coordinate
system.

implemented as a specific reconstruction geometry file, written in a plain text

format, and contained all the physical components of the trackers. Each fibre

was individually modelled, the Mylar sheets that cover each plane were included

as thin discs that stretch across the whole plane, additionally an estimate for the

resin used to glue the fibres in place was also included. The ease of editing the

geometry file permitted the effect of different materials, or material thicknesses

to be investigated as required.

For the reconstruction however, a simplified geometry was used. In order to

simplify the calculations of energy loss and multiple Coulomb scattering for each

track, the scintillating fibre planes were modelled as solid planes of polystyrene.

The effect of the Mylar sheets was also included, however the resin used in the

construction was not. This vastly simplified the reconstruction, and provided

a reconstruction rate that allowed for real time data analysis. Unfortunately,

the reconstruction is sensitive to systematic errors due to discrepancies in the

modelling of the precise material budget used in the tracker construction.

During the construction of each tracker, the stations were surveyed to a

high precision to ensure that they could be precisely modelled. A summary

is provided in table 3.1. The survey measurements were included in both the

simulation and reconstruction geometries such that the tracks could be correctly

reconstructed with respect to the other detectors.

The stations themselves were each identically constructed with the excep-

tion of the downstream station 5 which was constructed with an additional 3

channels. Table 3.2 summaries the relative positions of each plane within a

station.

The trackers were installed within the bores of the two spectrometer solenoids

such that the sensitive tracking volume was centred within the large centre coil,

which provides the 4T magnetic field for use in momentum reconstruction. The

magnets were carefully designed to provide the most uniform field as was cost
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Plane
z θ No. Channels

[mm] [Degrees]
0 −0.6398 −120 213
1 0.0125 +120 213
2 0.6648 0 211
2� 0.6648 0 214

Table 3.2: Summary of geometry of each plane within any given station. z is the longitudinal
position with respect to the centre of the station and θ is the rotation of the plane around
the tracker’s central axis. Plane 2� refers to the anomalous plane in the downstream tracker,
station 5.

effective (approximately uniform to 1%). However due to natural imperfections

in the manufacturing process and the difficulty in maintaining a perfectly uni-

form field, early tests revealed non-uniformities on the order of 3% [39] which

will have some systematic effect on the reconstruction parameters. More precise

analyses that correctly model the thermal properties of the coils are underway

in order to improve the field mapping.

3.3 Track Selection

3.3.1 Digitisation

The raw information received from the DAQ was composed of a list of all the

tracker channels that registered some amount of scintillation light, which gen-

erated some non-zero Number of Photo-Electrons (NPE) in the VLPCs. Each

channel was subjected to a NPE cut in order to remove electronics noise from

the reconstruction. Due to the precision of the calibration, to pass the cut a

channel was required to have at least 2 PE. If the channel passes the noise cut,

it is saved within the reconstruction data structure as a Digit - the simplest

reconstruction object. The NPE is stored, in addition to the raw signals from

the front-end electronics and calibration, thereby allowing the reconstruction to

access as much raw data possible when applying cuts and creating higher level

objects.

3.3.2 Clustering

Clustering is the process where digits are examined in the context of the tracker

plane, to see if there are any neighbouring digits, and if so, they are combined to

form a cluster. Due to the geometry of the plane construction it is possible that

a particle will produce a sufficient amount of light in two neighbouring channels,
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it is therefore necessary to ensure both one-channel hits and two-channel hits

are recorded and analysed.

The clustering algorithm is applied recursively, plane-by-plane, to a list of all

the digits in that plane, ordered by their NPE. The result is that the digits with

the largest signal take precedence, such that the clusters that are produced all

have the largest signal possible, while only being constructed from a maximum

of two digits. When more that two digits appear as neighbours, one is expected

to be noise owing to the low percentage of multiple tracks recorded. The lowest

signal digit would be promoted as a separate cluster.

The produced clusters, both one-channel and two-channel varieties, are then

subjected to a second NPE cut if required, to further reduce the detector noise.

By default this cut is not imposed, as it is statistically possible to generate

low signal clusters. As the trackers are currently operating within the expected

level of noise and background hits this second cut was not necessary for the

processing of MICE Step IV data.

3.3.3 Space Point Production

Spacepoints are the next level in the reconstruction procedure, representing

objects with 3 dimensional spatial information. Each station is considered in

turn and examined to find sets of clusters from neighbouring planes that co-

incide. By combining the one-dimensional measurement from multiple planes,

the two-dimensional x, y components of the spacepoint can be calculated using

knowledge of the structure of the station. Spacepoints constructed from two

clusters are referred to as “Doublets” and spacepoints constructed from three

clusters are referred to as “Triplets”.

Kuno’s conjecture provides an efficient method to quickly determine if over-

lapping channels form a viable triplet spacepoint. It states that the sum of α

(the distance of the cluster from the centre of the plane) for each of the three

clusters will equate to zero if they simultaneously coincide with each other. This

can be easily seen by projecting the position of any spacepoint (x, y) into the

three different plane orientations as follows:

α1 =

�
x

y

��
1

0

�
= x,

α2 =

�
x

y

��
cos(120)

sin(120)

�
= − 1

2x+
√
3
2 y,

α3 =

�
x

y

��
cos(120)

− sin(120)

�
= − 1

2x−
√
3
2 y,

(3.1)
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α1 + α2 + α3 = 0. (3.2)

These “Kuno-Sums” are also useful for examining noise and ensuring correct

cable mapping within a station (See section 5.3). In practice, the clusters have

a channel ID, corresponding to the centre of the channel(s) that make up the

cluster, rather than α. Hence it can be shown that a successful Kuno-Sum

should equate half the total sum of channels.

The algorithm prioritises triplet spacepoints over doublet spacepoints as they

allow a better rejection of noise-initiated clusters. The probability of noise

creating a cluster is small, hence the probability of producing three coincidental

noise clusters is negligible (<1 in 106) for most applications. The centre of the

overlapping region is used as the estimate of the spacepoint position.

For the doublet-spacepoints, combinations of clusters from each unique pair

of planes (0&1, 1&2 and 2&0) were analysed in turn. Each unique combination

of clusters, that generate an x-y coordinate within the fiducial radius of the

station, is accepted to produce a doublet-spacepoint.

Section 5.3 details the analysis of these simple reconstruction objects in

Monte Carlo simulations and data.

3.3.4 Pattern Recognition

Pattern recognition is the stage where multiple spacepoints, distributed across

a tracker are combined in an effort to determine if they were all formed from

the same track. This is the first stage of the reconstruction where the magnetic

field affect the reconstruction, as there is both a straight line pattern recognition

algorithm and a helix pattern recognition algorithm, however the procedure is

identical for both systems.

The spacepoints generated by the preceding stages are combinatorially se-

lected to form candidate tracks, with precisely one spacepoint from each station,

and triplet spacepoints taking priority. If there are multiple spacepoints in one

or more stations, all possible combinations of spacepoints are examined in turn.

For helical tracks, there must be at least 4 spacepoints, with 5 being pre-

ferred. For straight tracks there must be at least 3 spacepoints, with 5 being

preferred. The candidate tracks are then subjected to a linear least squares

fit, the implementation of which is detailed in appendix A. A goodness-of-fit

parameter, the χ2, is used to select the best fit track from all candidate tracks.

Additionally a “road-cut”, which excludes spacepoints that are perpendicularly

too far from the fit, is also implemented to reduce the number of tracks con-

taining noise hits and hard scatters.
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The chi-squared requirements and road-cuts used in the track selection were

determined through a series of trial and error studies using Monte Carlo simula-

tions [40], in which the efficiency of the trackers was contrasted with the purity

of the reconstructed tracks in order obtain the optimum values.

The helical fit is prioritised over the straight line fit, when there is a field

defined within the tracker geometry, due to a notable overlap in the acceptance

criteria for the straight line fit and the helix fit with a low transverse momentum

particle.

3.4 Kalman Filtering

The Kalman Filter [41] is an algorithm derived from signal processing applica-

tions and is an optimal, linear estimator that correctly takes into account all

errors and correlations of measured data. For linear systems no fitting algorithm

can perform better. For non-linear systems the Kalman filter provides only the

optimal linear approximation, non-linear extensions to the Kalman may be used

to improve the performance where necessary [42].

It has been used extensively in signal processing applications, and used to

very good effect as an adaptive filter for GPS guidance systems, spacecraft

monitoring, etc. Within the particle physics community, it has been augmented

such that the usual independent variable, time, was changed to a spatial axis

such that the “signal” being processed became the track parameters for a re-

constructed particle [43, 44].

In order to implement a Kalman Filter, a consistent model of the system is

required which must include:

• A model of the system dynamics - how one state may propagate into

another state at a later time/position.

• Knowledge of how the measurement coordinate system relates to the state

vectors

• Accurate estimates of the both the measurement noise, and the stochastic

effects in the system dynamics.

Providing that the models used in the Kalman Filter accurately represent

the system being measured, the results of the filter will include the correct

correlations and uncertainties in all parameters.
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3.4.1 Conceptual Description

The implementation can be broken down into three stages: Prediction, Filtering

and Smoothing:

1. The Prediction stage estimates the system state (and state covariance

matrix) at a subsequent position along the track, given the current state

information, the system model and the expected process noise induced

during the propagation.

2. The Filtering stage then makes use of the measurement at the next po-

sition to adjust the predicted state. The errors on the measurement and

the prediction are used to weight the adjustment applied to the state.

3. The Smoothing stage occurs typically at the end of the fitting routine

and uses the optimal estimate for the final state, which has accumulated

the measurements from the previous filtering stages, and propagates in

reverse to each of the preceding positions. The information acquired at

all positions in the track is used to adjust each state to the optimal values

given all the data obtained.

The result, following the smoothing stage, is that the state deduced at each

position contains the optimal linear estimate for the system, using information

extracted from all measurements. Figure 3.1 provides a cartoon demonstration

of how the prediction and filtering stages may be considered in two spatial

dimensions. Figure 3.2 provides a cartoon demonstration of how smoothing

may appear in two spatial dimensions.

Prediction Filtering

Figure 3.1: Conceptual behaviour of the Kalman Filter in the prediction and filtering stages.
The blue arrow is a prediction made from a previous state with an error indicated by the blue
circle. The measurement (red star) and associated error is used to form the filtered state and
associated error (green arrow and circle).

In order to use the Kalman Filter as effectively as possible, the estimates

for the noise, measurement and propagation functions must be as accurate as

possible. The predominant difficulties during the implementation of the MAUS

track fit was found to be the correct parameterisation of the sources of noise

and non-linear measurement function.
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Smoothing

Figure 3.2: Conceptual behaviour of the Kalman Filter in the smoothing stage. The black
arrows represent the smoothed track, which is created by using the reverse-propagated filtered
states (green arrows), compared with the measurements at each point (red stars). Owing to
the gain of information, the earliest filtered states are more likely to be heavily corrected by
this process than the later states.

3.4.2 The Algorithm

The algorithm of the Kalman Filter is universal to all applications, however in

order to implement it, the following must be known for the system in question:

The Propagator

A matrix F that linearly extrapolates the current state estimate to the

next position, given the current position. It can be accompanied with

a process noise vector w with expectation values and covariance matrix

defined by exp(w) = 0 and cov(w) = Q respectively.

The Measurement

A matrix H that transforms the current state estimate into the measure-

ment space, given the current position. It can be accompanied with a

measurement noise vector ε with expectation value and covariance matrix

defined by exp(ε) = 0 and cov(ε) = V respectively.

The system may now be modelled using the following equations:

xk,t = Fk−1xk−1,t +wk−1, (3.3)

mk = Hkxk,t + εk, (3.4)

exp(w) = 0 and cov(w) = Q, (3.5)

exp(ε) = 0 and cov(ε) = V. (3.6)

The true system state (denoted by the subscript t), xt at position (k) is

propagated from the preceding state, (k − 1), in equation 3.3; and the current

system state may be projected in to the measurement space using equation 3.4.

This notation was used by [43] and will be used in the rest of this document

owing to the conciseness and ease of viewing. Hence we similarly define:
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xn
k : State estimate at postition k,

Cn
k : Covariance matrix of state vector,

rnk : Measurement residual at position k,

Rn
k : Covariance of measurement residual.

(3.7)

The subscript, k, indicates the current position of the variable and the super-

script n indicates the current stage of the information propagation; i.e. (n < k)

indicates a predicted state, (n = k) indicates a filtered state (also written as

xk ≡ xk
k), and (n > k) indicates a smoothed state.

The process of applying the three stages of the Kalman Filter is described

in the following text, where the gain matrix formalism for the Kalman filter has

been chosen. The alternative (the weighted means formalism) is mathematically

identical, but more complex to implement (see [43] for more details).

Prediction

The current state vector (xk) and its covariance matrix (Ck) are propagated to

the predicted state (xk
k+1) and covariance matrix (Ck

k+1) by:

xk
k+1 = Fkxk, (3.8)

Ck
k+1 = FkCkF

T
k +Qk. (3.9)

Filtering

The Filtering stage is centred around the application of the Kalman Gain Ma-

trix, which is calculated using the predicted covariance matrix and the estimated

measurement noise. It can be considered as determining the relative weight to

be applied to the measurement, given the accuracy of the prediction,

Kk = Ck−1
k HT

k (Vk +HkC
k−1
k HT

k )
−1. (3.10)

The current state and covariance matrix can then be “filtered” by the follow-

ing equations where the Kalman Gain Matrix is used to weight the adjustment

applied from the measurement residual:

xk = xk−1
k +Kk(mk −Hkx

k−1
k ), (3.11)

Ck = (I−KkHk)C
k−1
k . (3.12)
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Smoothing

The Kalman Smoother Gain Matrix (Ak) determines how the information from

the next state is propagated back to the current state, assuming it has already

been filtered. It is calculated using both the filtered and predicted covariance

matrices for the current state:

Ak = CkF
T
k (C

k
k+1)

−1. (3.13)

The smoothed state and covariance matrix can then be calculated using the

current filtered state and difference between the predicted and smoothed states

at the next position. This form correctly propagates the information back to

the current state:

xn
k = xk +Ak(x

n
k+1 − xk

k+1), (3.14)

Cn
k = Ck +Ak(C

n
k+1 −Ck

k+1)A
T
k . (3.15)

At all stages in the algorithm the residual states and covariance matrices,

required for the calculation of goodness-of-fit parameters (e.g. chi-squared and

p-value - see chapter 4), can be calculated using:

rnk = mk −Hkx
n
k , (3.16)

Rn
k = Vk +HkC

n
kH

T
k . (3.17)

Weighted Pulls

Following the track fit procedure, the pull, πk, for each reconstructed track-

point may be calculated. The distribution of pulls, weighted by their respective

errors, represents a measure of the whether the statistical properties of the fit

are correct on the level of individual measurements. If the model correctly rep-

resents the data, the weighted pulls will be gaussian distributed with a variance

of 1. This implies that the error associated with a trackpoint is correctly calcu-

lated with respect to the residual between the measurement and the estimate,

and that the data is appropriately weighted within the filtering and smoothing

stages.

The inverse gain matrix is first calculated in order to counter the filtering

procedure, where the measurement noise (Vk) is subtracted from the measured

covariance matrix,

K�
k = Cn

kH
T
k (−Vk +HkC

n
kH

T
k )

−1. (3.18)
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The pull πk and the associated covariance matrix Πk of the current state k

can then be calculated,

πk = xn
k +K�

k(mk −Hkx
n
k ), (3.19)

Πk = (I−K�
kHk)C

n
k . (3.20)

The components of the weighted pull, ρk, are then calculated using the

estimated standard deviations of each component from the diagonal of the co-

variance matrix,

(ρk)i =
(πk)i�
(Πk)ii

. (3.21)

3.4.3 The Extended Kalman Filter

The extended Kalman Filter differs from the standard implementation in that

it features an analytic prediction of the track point, using an appropriate, non-

linear propagator function. The prediction of the covariance matrix may then

be performed using a first order expansion of the propagator function, about

the predicted position.

If the state vector x can be analytically propagated using

xk
k+1 = f(k,xk),

then the ith-jth component of the extended propagator F can be calculated as

the first derivative of the matrix function f . This can be written as:

(Fk)ij =
∂fi(k,xk)

∂(xk)j

����
x=x̂k

. (3.22)

The prediction of a subsequent track point can now be modified using the

definitions of f and F,

xk
k+1 = f(k,xk), (3.23)

Ck
k+1 = FkCkF

T
k +Qk. (3.24)

Following this step the filtering and smoothing procedures are as before, with

the newly calculated F matrix.
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3.4.4 MAUS Implementation

Straight Tracks

The straight track system is parameterised by a 4-dimensional state vector,

given by:

x =




x

mx

y

my




, (3.25)

where x and y are the spatial transverse coordinates of the track at the current

position in mm, and mx and my are the transverse gradients of the track at the

current position.

The propagation is conducted by extrapolating the current state along a

straight line using the usual Cartesian parameterisation. This is realised with

the propagator matrix:

Fk =




1 Δzk 0 0

0 1 0 0

0 0 1 Δzk

0 0 0 1




, (3.26)

whereΔzk represents the distance between the current tracker plane (at position

k) and the next tracker plane (at position k + 1). Tables 3.1 and 3.2 provide

the information required to calculate the values of zk.

Helical Tracks

The helical track system is parameterised by a 5-dimensional state vector, given

by:

x =




x

px

y

py

κ




, (3.27)

where x and y are the spatial transverse coordinates of the track at the current

position in mm, and px and py are the transverse momenta of the track at the

current position in MeV/c and κ = q/pz, where q is the particle charge in units

of e and pz is the longitudinal momentum in MeV/c.

The propagation is conducted by extracting the current state along the path
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of a helix. The following equations of motion were used to parameterise the

propagator matrix:

x� = x+
px
pt

R sin(Δθ)− py
pt

R(1− cos(Δθ)),

p�x = px cos(Δθ)− py sin(Δθ),

y� = y +
py
pt

R sin(Δθ) +
py
pt

R(1− cos(Δθ)),

p�y = py cos(Δθ)− px sin(Δθ),

p�z = pz,

z� = z +Δz,

(3.28)

where Δθ is the amount of rotation of the particle along the path of the helix

and the prime-values of x�, p�x, etc., mark the values at some arbitrary position

along z, a distance Δz away. To simplify the implementation, the parameter u

was introduced,

u = qcBz =
pt
R
, (3.29)

where q is the particle charge in units of the electron charge, c is the speed of

light in a vacuum, Bz is the solenoidal magnetic field strength and R is the

radius of the helix. This simplifies the determination of Δθ:

Δθ =
q

pz

pt
R
Δz = uκΔz. (3.30)

As the equations of motion are inherently non-linear, an extended Kalman

filter must be implemented. To account for the non-linearity of the propaga-

tion, the state vectors are propagated analytically using the equations of motion

(equation 3.28), ensuring the estimates are calculated correctly; while the co-

variance matrices must be propagated using a first order, linear approximation

to the equations of motion. The extended propagator is given by:

Fk =




1 sin(Δθ)
u 0 cos(Δθ)−1

u Δz(px cos(Δθ)− py sin(Δθ))

0 cos(Δθ) 0 − sin(Δθ) −uΔz(px sin(Δθ) + py cos(Δθ))

0 1−cos(Δθ)
u 1 sin(Δθ)−1

u Δz(px sin(Δθ) + py cos(Δθ))

0 sin(Δθ) 0 cos(Δθ) uΔz(px cos(Δθ)− py sin(Δθ))

0 0 0 0 1




.

(3.31)
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Measurement System

The measurement system describes how a state vector may be transformed into

the coordinate system of an individual measurement. The measurements used

are the clusters formed during the low-level reconstruction (see section 3.3), as

this permits the effects of energy loss, energy straggling (stochastic variations

in the rate of energy loss) and MCS to be modelled on a plane-by-plane basis,

rather than station-by-station, which would theoretically improve the perfor-

mance of the Kalman filter by more precisely modelling where the energy is

lost.

Each measurement is a vector of length 1 and contains only the parameter α,

the distance of the cluster from the centre of the plane. Hence the measurement

matrix simply projects the spatial dimensions of the current state vector onto

the orientation of the current plane. Although the straight track state vector

has a length of 4 and the helical track state vector has a length of 5, only the

x and y components are used, therefore the measurement matrices are almost

identical for both cases.

Plane V: H =
�
cos(120◦) 0 sin(120◦) 0

�
,

Plane W: H =
�
cos(−120◦) 0 sin(−120◦) 0

�
, (3.32)

Plane U: H =
�

1 0 0 0
�
.

It can be noted that as Plane U has fibres that are parallel to the y axis, the

projection into the measurement coordinate system is simply the extraction of

x from the state vector. Planes V and W involve a rotation of ±120◦.

The measurement noise associated with the measurements is calculated as-

suming a uniform distribution of hits across the width of a channel, hence the

measurement variance can be considered to be the second moment of a nor-

malised square-function distribution, whose width is the channel width, w:

V =

w/2�

−w/2

x2

w
dx =

w2

12
, (3.33)

hence the measurement error as used in the reconstruction is given by:
√
V =

w/
√
12. The nominal channel width for the MICE tracker is 1.4945 mm, hence

the error on each measurement is ≈ 0.43 mm.
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Energy Loss

The material within the tracker (helium between stations, scintillating fibres and

Mylar sheets), must be accounted for during the propagation of a track. Two

models of energy loss were considered during the development of the Kalman

Filter, the Bethe formula for mean energy loss (equation 3.34) and the Landau-

Vavilov formula for the most common energy loss (equation 3.35).

For an incoming particle, traversing some material, the mean energy loss per

unit of areal density, �dE/dx�, is given by,

�
−dE

dx

�
=

Z

A

Kz2

β2

�
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

�
, (3.34)

where K is a constant, mec
2 is the electron mass, β and γ are the usual rel-

ativistic parameters for the incoming particle, Z and A are the atomic and

mass numbers of the material, z is the particle charge, Wmax is mean energy

transferred to an electron in a single collision, I is the ionisation energy for the

material and δ(βγ) is a density effect correction, normally calculated from data.

Conversely, for the same particle traversing some material, the most probable

energy loss, Δp, is given by,

Δp = ξ

�
ln

2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

�
, (3.35)

where mc2 is the mass of the particle, j = 0.200 derived from [45], ξ =

(K/2) �Z/A� z2(x/β2) and the remaining symbols share the same meaning as

for equation 3.34.

Through a sequence of tests, the Bethe formula was found to perform more

accurately than the Landau-Vavilov formula. This is believed to be due to the

inability of the track fit to correctly model hard scatters. In addition, due to

the requirement of MICE to reconstruct statistical measures of the incoming

muon beam, it is more logical to use an energy loss model better suited to the

mean energy loss.

The Bethe formula was used to estimate the mean energy loss for each track

depending on the material traversed during each propagation step. The calcu-

lated values were included as an additional set of coefficients during the calcula-

tion of the propagator matrix and the analytic propagation as for the extended

Kalman Filter. Each material, enumerated by i ∈ [1, N ], was analysed in turn

to estimate the mean energy loss, given the energy of the particle, at that point
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in the propagation. The individual values were then combined as given by,

ΔE =

N�

i

�
dE

dx

�

i

ρiδi, (3.36)

where ΔE is the combined mean energy loss, xi = δiρi corresponds to areal

density passed through by the particle, the product of the width of the material,

δ, and the density, ρ. The fractional momentum loss can then be calculated for

an assumed particle species. By default, all tracks are assumed to be muons for

simplicity, hence the fractional momentum loss, µ, is given by,

µk =

�
(E0 −ΔE)2 −m2

µ

p0
, (3.37)

where E0 and p0 are the initial energy and momentum respectively and mµ is

the muon mass. The helical propagator can then be updated by pre-multiplying

by the matrix Pk, where κ is correctly updated with the inverse of µk:

Fk → PkFk, (3.38)

Pk =




1 0 0 0 0

0 µk 0 0 0

0 0 1 0 0

0 0 0 µk 0

0 0 0 0 1/µk




. (3.39)

Multiple Coulomb Scattering

The predominant stochastic effect is multiple Coulomb scattering, and is mod-

elled using the results summarised by the PDG [18]. Moliere provided the initial

theory, which was later incrementally improved by Highland et al. The best es-

timate for the root mean squared (RMS) angular deviation in trajectory that is

projected onto a 2D plane, θ0, is given by,

θ0 =
13.6MeV/c

βcp
z

�
x

X0

�
1 + 0.038 ln

�
x

X0

��
, (3.40)

where z, p and βc describe the charge, momentum and velocity of a particle

respectively, travelling through a material with a thickness per radiation length

of x/X0. The planar scattering distribution is related to the full spatial distri-

bution by,

θ0 = θ RMS
plane =

1√
2
θ RMS
space. (3.41)
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The propagation noise, Qk, which is assumed to be entirely due to multiple

Coulomb scattering for simplicity, can then be calculated using θ0. From the

derivation of equation 3.40, it can be shown that the RMS trajectory deviation

is given by y = xθ0/
√
3 with a correlation coefficient1 of Corr(y, θ) =

√
3/2.

For a distance of d between measurement planes, where θ0 is calculated for the

mean value of x/X0, Qk is given by,

Qk = Jk




d2θ2
0

3
dθ2

0

2 0 0
dθ2

0

2 θ20 0 0

0 0
d2θ2

0

3
dθ2

0

2

0 0
dθ2

0

2 θ20




JT
k , (3.42)

where Jk is the required Jacobian matrix to transform from the natural (x, θ)

coordinate system to either the straight track phase-space or the helical track

phase-space. The straight-track phase-space is described by (x, x�), where x� ∼ θ

at first order, hence the straight track Jacobian is assumed to be the identity

matrix.

For the helical phase-space, the Jacobian is a 5× 4 matrix given by,

Jk =




1 0 0 0

0 pz 0 0

0 0 1 0

0 0 0 pz

0 0 0 0




, (3.43)

where the paraxial approximation has been used, i.e. that the transverse mo-

mentum is small compared to the longitudinal momentum, such that px/pz ∼
py/pz ∼ θ.

3.5 Conclusions

The low-level reconstuction routines provided the necessary stages of noise re-

jection and hit-building required to optimize both the efficiency and purity of

the final track fit. The rejection of noise-induced clusters and spacepoints is

demonstrated in the next chapter. There are few improvements that could be

made to this functionality.

A pattern recognition algorithm was implemented using linear least squares

fitting routines in order to allow the process to proceed in real time, however

1Correlation coefficients are defined by the covariance between the two variables, divided
by the product of standard deviations: Corr(x, y) = Cov(x, y)/σxσy
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the models of energy loss and multiple coulomb scattering were not included,

meaning that the chi-squared and road cut parameters required carefully tuning.

Further improvements based on a combined, non-linear helical fit, rather than

the existing circle+linear fit, have been considered but only as a low priority.

The Kalman Filter based track fit was anticipated to work exceptionally

well for straight tracks. The models for multiple coulomb scattering typically

describe a Guassian effect that agrees with the central 98% of the population.

Hence the only component that is not closely approximated by a Gaussian dis-

tribution is the measurement noise. The use of additional statistical discrimina-

tors would therefore remove the outlying events, leaving a statistically accurate

fitting routine.

The helical track fit was conceivably more likely to bias the fitted parameters.

In addition to the non-Gaussian measurement noise, the propagation of the co-

variance matrix between stations is inherently non-linear, even though the state

vector is propagated analytically. The assumption was made that these effects

would be small and would not significantly bias the fitted parameters. Further

improvements in order to reduce any possible biases would involve either further

extensions involving second order propagation and measurement routines or a

non-linear fitting algorithm. Both options would require a significant amount

of study and are currently viewed as potential upgrades.

Different parameterisations were also considered in an attempt to improve

the modelling of the longitudinal momentum. It was found that the implemented

Euclidean-style paramterisation was the most efficient. Different paramterisa-

tions nearly always involved highly complex approximations in order to estimate

the process noise, hence they were discarded.

The current implementation of the track reconstruction routines was believed

to be the most sensible given the time for development and testing, and level

of complexity. The simulated and reconstructed performance of the algorithms

are discussed in detail in the following two chapters.
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Chapter 4

Validation of Track Fitting

Routines

Simulation studies were performed in order to provide a detailed analysis of the

performance of the Kalman Filter. The resolution of the track fit in each of

the reconstruction coordinates was calculated and the efficiency at which the

track finding algorithm successfully identifies tracks was estimated using the MC

data. Additionally, estimates for the statistical and systematic errors present in

the higher-order analysis, e.g. emittance and beta function calculations, were

obtained.

4.1 Introduction

The initial stage of validation was to ensure that the statistical measures of the

Kalman Filter agreed with the theoretical values for a correct implementation.

The fit chi-squared value provides a simple and effective test of the implementa-

tion and the associated p-value can be used to compare the global performance

of the system model.

4.1.1 Chi-Squared Distributions

For a system of N independent, normally distributed, random variables (zi),

the sum of their squares is defined to be the chi-squared parameter:

χ2 =

N�

i=1

z2i .
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Repeated sampling of a chi-squared value will produce a distribution defined

to be the chi-squared distribution, with a shape that depends only on the number

of degrees of freedom within the system, N .

In practice the system in question is typically under analysis, hence the

parameters that describe the system must be estimated. For a simple system

with only one parameter, the mean of the distribution, the more common form

of the χ2 definition is therefore,

χ2 =

N�

i=1

|zi − z|2
σi

,

where z is the estimate for the mean and σi is the error on the residual. In

this case, repeated experiments would generate a chi-squared distribution cor-

responding to N−1 degrees of freedom. A degree of freedom is lost by imposing

an additional constraint on the system - the calculated value of the mean of the

distribution.

In general it can be deduced that for a given system definable by M pa-

rameters, with N measurements, the Number of Degrees of freedom is given by

N −M .

4.1.2 P-Value Distributions

A simple way to determine how close a measured distribution is to a standard

chi-squared distribution is to analyse the p-value for each experiment. The p-

value (P ) is calculated as the probability of obtaining a fit with a chi-squared

worse than the one currently obtained, if the experiment were to be repeated.

This probability can be calculated by performing the appropriate integral.

If the distribution is assumed to have a chi-squared distribution with N degrees

of freedom i.e. f(x) = χ2
N (x), and a given experiment produced a chi-squared

value of X, the p-value would be calculated by:

P =

� X

−∞
f(x)dx P ∈ (0, 1) . (4.1)

If the distributed values ofX are perfectly modelled by the function f(x), the

resulting distribution of p-values will be flat. The qualitative “flatness” of the

p-value distribution is generally an excellent indicator for the appropriateness

of the model that was used.
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4.2 Algorithm Validation

The validation of the implementation of the algorithm was conducted using mul-

tiple Monte Carlo simulations, based around a simplified geometry. In order to

exclude unwanted effects due to field uniformity, misalignments and poor trans-

mission, the geometry was greatly simplified, such that it used only perfectly

aligned components within an ideal solenoid field. The beam that was used was

also configurable such that the input phase-space could be changed, and the

physics effects could be controlled (MCS, energy loss, energy straggling, etc).

This allowed the fit performance to be examined as it was developed.

The simulations were performed using MAUS, which uses Geant4 [46] to

model the particle physics. Due to the chosen implementation, additional func-

tionality was required to test the tracker reconstruction, without energy loss

being modelled. The detectors generate a “measurement” based on the amount

of energy a particle deposited within a sensitive virtual volume. If energy loss

is not permitted, no detector hits are recorded. In order to combat this issue,

a function that bypasses the standard detector digitisation was required, which

made use of the direct tracking information available from Geant4. Such a

function was created and tested successfully.

The first stage of analysis was to produce distributions of the p-value found

from each track, thereby allowing a simple qualitative measure of the perfor-

mance of the algorithms. The track reconstruction was performed on a sim-

ulated sample of muons with a uniform distribution of both longitudinal and

transverse momentum components. Both the straight and helical reconstruc-

tion algorithms were tested where different physical effects were both modelled

and accounted for. This was found to highlight the components of the system

that caused the design to deviate from the ideal linear model. These deviations

could lead to systematic discrepancies or an increase in the resolution of the

fitted parameters.

4.2.1 Energy Loss

The stochastic effects of the Monte Carlo simulations were excluded from the

simulations. In addition, the standard measurement system was bypassed in

order to prevent the non-gaussian nature of the measurement errors affecting

the fit performance (see section 3.4.4). An algorithm that simulates the mea-

surements with an ideal gaussian error was used instead.

The only physical effect, modelled within the simulation, was mean-energy

loss. This allowed for a direct test of the basic propagation routines, in addition
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Figure 4.1: The reconstructed p-value distribution for a simulation of straight (left) and helical
(right) muon tracks, where the only physical effect is the mean energy loss.

to the Kalman filter algorithm. If the model correctly describes the data, and

the implementation is correct and linear, the produced distributions would be

perfectly flat.

Figure 4.1 shows the p-value distribution for 20000 events in a single tracker

for both straight and helical tracks. The straight tracks produced a distribution

which was nearly flat, however there exists some small discrepancy between

model and data that has not been accounted for, it is believed that the cause is

the seed of the Kalman fit. As pattern recognition is used to derive the initial

seed state, the fit is biased towards an accurate track. In doing so, the p-values

are biased high as the fit results are generally slightly better than expected.

The helical tracks distribution demonstrates a much stronger deviation from

the ideal flatness. The causes are more difficult to define as the helix model

itself is not linear. As for the straight track reconstruction, there is some bias

from the seed values towards an accurate track, however the non-linearity in

propagator will also affect the final fit parameters. As both the prediction and

smoothing steps in the reconstruction (see section 3.4) make use of the linear

approximations, the final fit results could never form the ideal distributions. It is

demonstrated in section 4.3 that there is little bias in the means of the fit results

due to this discrepancy, and the biases that are found can be modelled and

corrected for. The predominant effect of this discrepancy will be the modelling

of the errors associated with each reconstructed trackpoint.
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Figure 4.2: The reconstructed p-value distribution for a simulation of straight (left) and helical
(right) muon tracks, where the only physical effect is the measurement system.

4.2.2 Measurement Effects

The second stage of testing was to examine the effect that non-gaussian measure-

ment uncertainties have on the final fit parameters. Other physical effects were

still neglected. Figure 4.2 shows the resulting p-value distributions for a system

where the mean energy loss and the measurements are correctly modelled, but

all other physical effects (MCS and energy straggling) are neglected.

The distributions were found to deviate more strongly from the ideal dis-

tributions and include the discrepancies found previously (figure 4.1). The dis-

cretisation of the channels would prevent a “perfect” fit from appearing as the

clusters are always quantised by channel number. Hence there is never a fit

with a very high p-value. Additionally, as the width of the channel is finite, it

is unlikely that measurements that would typically appear in the tails of the

gaussian are included in the fit, hence the lower p-values are also reduced.

4.2.3 Stochastic Effects

The stochastic effects were the final component to verify. The same measure-

ment system as described in section 4.2.1 was used to remove the effects of

non-gaussian measurement errors, leaving mean energy loss, energy straggling

and multiple Coulomb scattering as the only physics processes that were mod-

elled. Figure 4.3 shows the p-value distributions for both straight and helical

track reconstructions for this simulation.

The stochastic effects can be seen to have the most significant effect on the

p-value distributions. This implies that the model used to estimate the amount

of scattering between each plane is over estimating the effect of the material.
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Figure 4.3: The reconstructed P value distribution for a simulation of straight (left) and helical
(right) muon tracks, where the only physical effects are multiple Coulomb scattering and energy
straggling.

The majority of tracks are biased towards high p-values which implies that the

fit is performing better than expected given the noise estimates.

Geant4 uses the Lewis Theory [47] to model scattering on a particle transport

level, which differs from the typically assumed Highland Formula [48]. Addi-

tionally, it is known that scattering distributions are not perfectly gaussian, as

was assumed for the reconstruction, and in fact deviate by up to 11% from data

[18]. It is conceivable therefore that the differences between the two models

cause the p-values to be biased higher than anticipated.

There was not sufficient time to implement a detailed study of the differences

between the two models, with a specific focus on the materials and muon energies

assumed within the reconstruction. Following the analysis of the MICE Step 4

data, which anticipates improving the current models of both energy loss and

multiple Coulomb scattering, the approximations used in the reconstruction

may be updated to better reflect the physics involved. However there will still

exist some discrepancies as the Kalman Filter inherently assumes a gaussian

distribution for the noise, which only approximates multiple Coulomb scattering.

The first bin in the histogram, for both straight and helical tracks, has a sig-

nificantly greater number of entries than the nearest neighbours. This suggests

that there is some effect causing a small number of tracks to be reconstructed

more poorly than expected. This can be well explained by the non gaussian

nature of multiple Coulomb scattering and energy straggling, in that the longer

tails are not correctly modelled by the Kalman Filter. The result is the excess of

tail events are added to the lowest bin(s). If the binning is increased a smooth

peak can be resolved assuming sufficient statistics are generated.
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Figure 4.4: The reconstructed P value distribution for an simulation of straight (left) and
helical (right) muon tracks, where all physical effects were modelled in the reconstruction.

4.2.4 Full Reconstruction

The p-value analysis was completed with a full reconstruction simulation. All

stochastic physical effects were modelled and the correct digitisation routines

were used. Figure 4.4 demonstrates the straight track distributions and helical

track distribution. These results are a non-trivial combination of the results

found for all previous stages. As such the optimal “flat” p-value distribution is

no longer achievable due to the range of approximations and assumption made

throughout the development of the algorithms.

The p-value is typically a powerful selection criteria, owing to the ease at

which poor fit results may be objectively discarded. Typically a cut of 0.05 (cor-

responding to the 5% worst fit tracks) is implemented, however in a distinctly

non-uniform distribution, a value of 0.05 no longer corresponds to 5%. As there

is a local excess of values in the first bin due to poor modelling of tail events, it

is difficult to justify this broad selection criteria. However a tighter p-value re-

quirement may still be used to remove those tracks that are mis-reconstructed,

in practice and cut on P < 0.01 was found to improve the samples used in

analyses (see chapter 5).

4.3 Monte Carlo Simulation Performance

The entire reconstruction chain was tested using a complete simulation, in-

cluding mean energy loss, stochastic effects and the non-gaussian measurement

errors. This study provides the benchmarks for the track reconstruction resolu-

tion in all components, and gives a good indication of the behaviour expected
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Figure 4.5: The x−y position residuals for both straight tracks (left) and helical tracks (right)
at the tracker reference plane.

for real data reconstruction. The Monte Carlo true track parameters were com-

pared against the reconstructed track parameters on a track-by-track basis, such

that the resulting residuals could be histogrammed and analysed.

The straight and helical track analyses were both conducted using the same

geometry as described in the previous section. The beam was composed en-

tirely of muons that were not permitted to decay with both a uniform lon-

gitudinal momentum distribution and a uniform transverse momentum distri-

bution. For both beams, the longitudinal momentum was defined by, pz ∈
[140.0, 260.0] MeV/c. For the straight track analysis, the transverse compo-

nent was defined by, p⊥ ∈ [0.0, 20.0] MeV/c, similarly for the helical track

analysis the transverse component was defined by, p⊥ ∈ [0.0, 180.0] MeV/c.

The analysis of each trackpoint was conducted at the reference planes of

the trackers, both upstream and downstream, as these are the nominal recon-

struction planes for the experiment. The reconstruction at all other planes is

performed and analysed by default, but not included for brevity.

4.3.1 Transverse Reconstruction

Figure 4.5 describes the position residuals for both straight and helical tracks.

The residuals are compared at the reference frame of the upstream tracker. The

position resolution of the final track can be estimated by assuming that the

residuals form an approximate gaussian distribution about zero. The standard

deviation of the fitted gaussian then corresponds to the position measurement

resolution.

For straight tracks, the angular resolution of the trackers can be calculated

in a similar fashion. Figure 4.6 demonstrates the x−y angular resolution of the
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Figure 4.6: The transverse gradient residuals (left) and transverse momentum residuals (right)
of the upstream tracker.

upstream tracker at the reference plane. As before, the resolution is estimated

using a fitted gaussian.

The transverse momentum resolution is more complex to analyse as the helix

fit performance depends on the momentum of the track. At low values of trans-

verse momentum, the radius of the helix becomes very small and is comparable

to the width of the multiple Coulomb scattering distribution, coupled with the

natural position resolution of the trackers. Due to this, the reconstruction of

these tracks becomes much less accurate and results in an increase in resolution.

This was found to have the most pronounced effect on the reconstruction of the

longitudinal momentum and can be seen in figure 4.7. Both the pz and p⊥

residuals were binned by the true value of p⊥. Each bin was then fitted with a

gaussian function and the standard deviation, representing the resolution for a

specific p⊥ bin, was plotted on the y-axis. The vertical error bars represent the

statistical error on the fitted gaussian, and the horizontal error bars describe

the bin width.

It can be noted that the transverse reconstruction is very stable across all

values. There are some fluctuations away from a uniform resolution, the causes

of which have not yet been identified, however the fluctuations are small enough

to not have an effect on the final reconstruction of the parameters of interest for

MICE (emittance and beta function). The longitudinal distribution is however

much more sensitive to the true transverse momentum. The increase in reso-

lution at low-p⊥ will decrease the precision possible for single track analyses.

However, any analyses that uses a sufficiently large ensemble of particles will

still be able to make a precise momentum estimate with high enough statistics.

Additionally, the inclusion of the MICE TOF and EMR detectors (see chap-

ter 2) may be used to improve the estimate of the longitudinal momentum via
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Figure 4.7: The longitudinal momentum resolution (left) and transverse momentum resolution
(right) as a function of transverse momentum.

a track-matching algorithm.

4.3.2 Momentum Reconstruction

The longitudinal momentum can be seen to be the least precise reconstruction

parameter for the Kalman track fit. This is due to the choice of model and the

non-linearity of the pz dependency in the propagation steps. Pattern Recogni-

tion (PR) may be discussed in contrast as the PR model performs a fit in the

s-z plane (s is the helical path length), where the deviations in pz are linear

with respect to the state space, for this reason, pattern recognition may actually

be used to more precisely estimate the longitudinal momentum. However, in

order to do so, the helix is decoupled in the transverse and longitudinal compo-

nents, such that the transverse fit may be performed first, and used during the

longitudinal fit.

The Kalman fit however, does not permit the longitudinal and transverse

components to be decoupled as the calculation of MCS and energy loss requires

the total momentum, which inherently couples the components. This also per-

mits a more precise level of measurement information, the clusters rather than

the spacepoints, to be used. Due to this precise modelling of the stochastic

effects, the pz component is only accessible through first order corrections in

the trigonometric functions of the extended propagator (see section 3.4.3 for de-

tails). This reduced sensitivity causes the increase in the longitudinal resolution

of the Kalman track fit. The seed for the Kalman fit is therefore more critical,

as it can have a significant bias on the reconstructed longitudinal momentum.

As pattern recognition does not model energy loss or any stochastic pro-

cesses, the evaluated seed momentum will be systematically incorrect. Figure 4.8
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shows how the total track momentum, as estimated by pattern recognition, de-

viates from the true momentum at the seed position. This is due primarily

to two effects, firstly there is an amount of energy loss (downstream tracker),

or energy gain (upstream tracker) between the centre of the fit and the seed

position, and secondly there is a systematic effect due to using an approximate

model.
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Figure 4.8: The deviation of the pattern recognition total momentum from the true total
momentum at the Kalman seed position in the upstream tracker (left) and downstream tracker
(right).

This discrepancy was reduced through the use of two constants, the approx-

imate momentum loss (a) and a systematic bias (b). From fits to the Monte

Carlo simulation data in figure 4.8, it was found that the total momentum,

as determined by pattern recognition, required a correction described by equa-

tion 4.2. The values for a and b are found when the residuals in figure 4.8 are

simultaneously corrected to zero.

pc = p+ a+ b Upstream,

pc = p− a+ b Downstream. (4.2)

In calculating and applying this correction, the systematic influence of pat-

tern recognition is dramatically reduced over the momentum range of interest;

however, it is not completely removed. The remaining bias of pattern recogni-

tion couples with the small systematic uncertainty in the energy loss calculation,

and can be seen in the total momentum residuals, shown in figure 4.9.

These residuals correspond to the most significant bias in the track recon-

struction and are of critical importance for any analysis. They are most ef-

ficiently examined as a function of total momentum, rather than longitudinal

momentum, as the predominant cause is the correct calculation of the mean
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Figure 4.9: The deviation of the total track momentum, evaluated at both the upstream (left)
and downstream (right) reference planes, from the true track momentum.

energy loss which is a function of the total momentum. The residuals in the

seed, although corrected, are still a function of momentum. The ideal correc-

tion would involve some approximation of the Bethe formula, but there wasn’t

sufficient time to investigate this concept. Additionally, there are known dis-

crepancies between the material model in the reconstruction, the Monte Carlo

model and the true geometry, which lead to a systematic mis-estimate of the

energy loss per plane.

The combined effect is that of a momentum-dependent bias in the total

momentum, which can be well approximated with a linear fit. Ideally the bias

would be modelled using some coefficients derived from the Bethe formula, but

for simplicity this was not investigated. As 200 MeV muons are very close to

minimum ionisation, the energy loss is well approximated at first order, hence

a linear fit was the preferred, simpler option.

Each plot in figure 4.9 was subjected to a first order polynomial fit, such

that the intercept c and gradient, g may be used to approximately parameterise

the residuals,

Δp = c+ gpTrue. (4.3)

The inverse of this equation can then be used to correct the reconstructed total

momentum of each track.

4.3.3 Track Finding Efficiency

The inherent reconstruction efficiency was analysed using the datasets that were

generated for the resolution analysis, discussed in the previous sections. For

every simulated particle that traversed a tracker, a reconstructed track was

expected. For the straight track reconstruction, the limiting factors were the
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Figure 4.10: Efficiency of the upstream (left) and downstream (right) helical track reconstruc-
tion algorithms as a function of transverse momentum. The inefficiency in the lowest bin is
due to the difficulties of reconstructing tracks with low transverse momentum.

selection criteria placed on the track during pattern recognition. This is a small

effect leading to better than 99.99% track finding efficiency for the straight

track algorithm. Only tracks that experience extremely hard scatters can fail

the reconstruction.

The helical reconstruction however, was less efficient and more sensitive to

the condition of the beam. A preliminary study was performed (results shown

in figure 4.10), however both data-driven and Monte Carlo based analyses are

still ongoing at the time of writing [49, 50].

The current results suggest that uniform reconstruction efficiency is present

across most of the phase-space, with a small reduction for the lowest values

of transverse momentum. There will be some small bias for absolute emittance

measurements, as the centre of the phase-space will be slightly under represented

in analyses. The effect on cooling measurements however, will be negligible as

each muon track is required to be reconstruction in both trackers, hence any

bias due to the track selection will only affect the absolute emittance that is

measured, not the relative change.

4.4 Conclusions

Tables 4.1 & 4.2 describe the bias and resolution of all the reconstruction pa-

rameters available from the Kalman track fit for the straight and helical track

reconstruction respectively. Table 4.3 describes the corrections to the track

fitting procedure in order to optimize the helical track reconstruction.

Overall the implementation of the Kalman filter has been a success, the simplest
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case performs very close to the theoretical ideal, with the ability to test various

individual aspects using different configuration flags. The study of how each

component affects the final fit parameters revealed the full extent of the non-

linear features of the full implementation and allowed for them to be carefully

studied.

Despite the non-uniform p-value distributions, they may still be used for

their intended purpose - a quantitative measure of the goodness of fit for a

single track - as long as the requirement is relaxed. Care must therefore be

exercised when comparing the track reconstruction to other detectors and in

analyses to ensure that the poor fits are correctly accounted for. Due to the tight

requirements from pattern recognition for forming a track this is not anticipated

to cause an issue.

The primary improvement to the Kalman track fit would be a better model of

the multiple Coulomb scattering experienced by each track. This would improve

the distribution of the p-values and hence allow for a more precise determination

of the parameter errors, as discussed in section 3.4.4.

There would still, however be issues with the non-linear and non-gaussian

components of the model. The measurement errors, for example, would require

an additional correction in order to account for the non-gaussian errors. It would

be possible, but not trivial, to include the kurtosis of the assumed measurement

error within the filtering stage, providing a better approximation to the true

top-hat distribution. Additionally, non-linear smoothing and alternative system

models could also be considered and tested in case they are found to perform

noticeably better than the current implementation.

Monte Carlo studies have allowed the resolution of the tracker to be modelled

for both straight and helical tracks across the entire region of interest in both

transverse and longitudinal momenta. The final fit parameters were found to

perform within initial expectations and were in good agreement with the Monte

Carlo truth. The remaining systematic effect of the total momentum recon-

struction has been identified and corrected using a linear approximation. A

more precise treatment of such biases would theoretically improve the overall

reconstruction resolution.

The influence of pattern recognition on the final fit was found to be a sig-

nificant contributor to the systematic bias of the total momentum and required

careful modelling. Simple corrections for the both the PR seed and the final

track fit were calculated, and found to improve the residuals within the Monte

Carlo study. These studies assumed ideal conditions within the trackers and do

not account for any field misalignments and non-uniformity. The determina-
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tion of the momentum correction is repeated in section 7, where the emittance

reconstruction requires precise modelling of the reconstruction in a non-ideal

field.

In addition to the improvements outlined for the implementation of the basic

algorithm, a better model of the tracker could also be included using:

• A more detailed pattern recognition correction;

• An adaptive Kalman Filter to correct the energy loss per-plane.

The pattern recognition correction would involve a momentum-dependent fac-

tor, likely a scaled implementation of the Bethe-formula, such that the momen-

tum bias in the seed can be almost completely removed, barring some uniform

systematic. This is anticipated to reduce the systematic momentum bias in the

final track fit.

Finally, an Adaptive Kalman Filter (see [42]) would permit the energy loss

per-plane to be fitted per-plane, hence there would be less requirements on the

actual modelling of the tracker materials, as the overall momentum-dependent

energy loss could be measured by the tracker, rather than assumed. This would

increase the complexity of the fit and likely require a restructuring of the system

model such that the pz component is more easily accessible within the measure-

ment procedure. There are several potential implementations and the result

would permit an energy loss calculation that is predominantly data-driven. This

would reduce the dependency on Monte Carlo studies for momentum corrections

to the track fit algorithms.
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Upstream Downstream
Bias Resolution Bias Resolution Units

x 0.0 0.247 0.0 0.224 mm
y 0.0 0.202 0.0 0.197 mm
mx 0.0 0.004 0.0 0.003 N/A
my 0.0 0.004 0.0 0.003 N/A

Table 4.1: A summary of the reconstruction parameters produced from the straight track
Kalman fit. The values are averaged across uniform phase-space which spans 140 to 260 MeV/c
in pz and 0 to 20 MeV/c in p⊥.

Upstream Downstream
Bias Resolution Bias Resolution Units

x 0.0 0.213 0.0 0.217 mm
y 0.0 0.207 0.0 0.201 mm
px 0.0 0.884 0.0 0.874 MeV/c
py 0.0 0.876 0.0 0.889 MeV/c
pz −0.097 1.64 0.458 1.63 MeV/c

Table 4.2: A summary of the reconstruction parameters produced from the helical track Kalman
fit. The values are averaged across uniform phase-space which spans 140 to 260 MeV/c in pz
and 0 to 180 MeV/c in p⊥.

Correction Formula Parameters

PR Momentum pc = p± a+ b
a = −0.156 MeV/c
b = −1.157 MeV/c

Upstream Total Momentum
Δp = c+ gpTrue

c = −0.95± 0.10 MeV/c
g = 0.0035± 0.00053

Downstream Total Momentum
c = 2.08± 0.23 MeV/c
g = −0.0088± 0.0011

Table 4.3: A summary of the correction functions required to optimize the results from the
Kalman Track Fit.
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Chapter 5

Validation of Reconstructed

Data

5.1 Introduction

During the initial stages of the tracker commissioning, the first data taken were

used to verify the installation of both the upstream and downstream trackers,

and the reconstruction routines. Several runs comprising of different particle

species, momenta and beamline optics were studied to ensure a good perfor-

mance across the measurable phase-space. The primary goal was to verify the

installation of the fibres and cables to the VLPCs, and validate the data readout

was working correctly.

Following on from these initial runs, the MICE Step IV physics run plan

came into effect. The primary runs selected for analysis in this and subsequent

chapters were muon beam runs of 2 different momenta, 200 and 240 MeV/c,

designed to examine the alignment of the trackers (no absorber material) and to

measure the multiple Coulomb scattering distributions for different materials.1

An additional run with the upstream spectrometer solenoid magnet powered

was also analysed, as it was the only available run to test the helical track

reconstruction. It is discussed in detail in chapter 7.

The runs that are presented below were selected following a program of im-

provements and corrections to both hardware and software, in an attempt to

commission the trackers at full specification. These data represent only a frac-

tion of the calibration and commissioning data sets required to fully commission

1At the time of writing the analysis of these data is underway and expected to be published
in 2016–2017 by the MICE Collaboration.
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the detectors and analyse their performance.

Table 5.1 describes the run numbers of interest during the period of data

taking from September 2015 to March 2016. The data taken were predomi-

nantly for the use in the multiple Coulomb scattering study, hence there were

no magnetic fields. The runs that make up a control data set, where no absorber

was present, were preferred, as they allowed for a direct tracker to tracker align-

ment to be conducted in parallel to the primary analysis. The final run, 07469,

was recorded during the initial stages of the magnet commissioning and per-

mits the first validation of the helical track fitting routines, in addition to the

high-precision emittance measurement for the accepted muon beam.

Dataset Run Number Momentum Beamline Description

A

07672

200 MeV/c 3 mm
No Absorber

Scattering Study
07673
07681
07695

B

07674

240 MeV/c 3 mm
No Absorber

Scattering Study

07682
07685
07686
07691
07693
07694

C 07469 200 MeV/c 3 mm Helical Reconstruction

Table 5.1: List of the runs that were used in this and subsequent chapters. The momentum
value refers to the nominal beam momentum at the centre of the cooling channel, and the
beamline value refers to the nominal beam emittance at the entrance to the cooling channel.
These two values allow for the correct beamline settings to be identified from a predefined
catalogue.

5.2 Beam Selection

To ensure that the analyses were conducted using only non-decaying, muon

tracks that were fully contained within the experimental volume, several cuts

were applied to the high-level reconstruction objects. These higher level cuts are

indicative of the sort of selection criteria that could be determined from more

detailed Particle-ID and global track fitting studies. Hence, the data analysed

below describes the reconstruction performance for a dataset representative of

more detailed analyses. Dataset A was selected for the low-level analysis de-

scribed in this chapter, in addition to the high-level straight track validation.

Dataset C was selected for the specific helical track validation in section 5.4.
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A coincidence cut was required such that precisely one track was recon-

structed in each of the two trackers, and precisely one TOF spacepoint was

reconstructed in each of the TOF1 and TOF2 detectors. This was to reduce

the number of decaying muons that were reconstructed and to ensure that no

multiple track events were analysed. As the reconstruction was not constructed

to correctly treat multiple muon tracks at the time of writing, this greatly sim-

plified the reconstruction process.

A time of flight cut was imposed to ensure that the selected events were

almost entirely composed of muon tracks. It was previously shown that the

pion contamination of muon beam is < 1% [33], however there was still some

contamination due to electrons which was easily removed. As TOF 1 and TOF 2

mark the start and end of the cooling channel, the time of flight cut was imposed

on the difference between these two detectors. Figure 5.1 demonstrates the TOF

seen for the 200 MeV/c muon beam, in addition to the cut that was applied,

28.5 < TOF1→2 < 34.0 [ns]. (5.1)

Note that the electron peak can be seen at approximately 27.5 ns, and the tails

of the muon peak were removed to reduce the contamination from slow decay

electrons and to ensure that a precise central momentum was retained. No

other criteria were required for the low-level validation routines. For the higher-

level objects, additional cuts on p-values and fit parameters could be applied,

however those are discussed in the appropriate sections.

An additional Monte Carlo dataset was also required in order to fully validate

the reconstruction. A model of the inherit detector noise was included in the

simulation, in addition to the effects of known dead channels and the calibration.

In general some channels have a decreased efficiency of producing digits as they

are either damaged, or not able to be correctly calibrated (see section 2.4.2 for

more detail on the calibration procedure). Additionally, there are some channels

that are more susceptible to producing noise digits. All these effects have been

approximately modelled in an attempt to better simulate the reconstruction

environment of the trackers [49].

More work is required in order to better tune the noise models to reproduce

the distributions seen in data. Only a first approximation has so far been

included, based on the measurements taken from a test on a single station [51].
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Figure 5.1: The time-of-flight distribution between TOF1 and TOF2. The events within the
TOF cut are highlighted in red.

5.3 Low Level Reconstruction

5.3.1 Digit Production

The first stage of the data validation procedure was to ensure that the simplest

objects in the reconstruction chain were being produced in the expected ratios,

and with expected values. The data analysed were normalised by the number of

events that passed the cuts described previously. This ensured that the results

were not biased by the efficiency of a single detector, or by the track finding

efficiency, rather they are representative of an analysable dataset with 100%

transmission.

Previous studies on the material and structural composition of the trackers

allowed for predictions for their performance to be calculated using only simple

physics. The modal number of clusters for any track was expected to be 15.

There are 5 stations, each containing 3 planes, where the average fibre has a

better than 99% probability of producing a digit above background noise [52].

Additionally, clusters were expected to be predominately constructed from single

digits due to the geometry of the planes, with approximately 1 two-digit cluster

produced for every 11 single-digit clusters.

Distributions of the simplest reconstructed objects are shown below. For

simplicity, plots from an arbitrary plane: the upstream tracker, station 2, plane
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Figure 5.2: Distribution of raw ADC values (left) and the estimated NPE (right) for every
digit across Plane 1, Station 2 in the upstream tracker.

1 have been included. Appendix B contains additional plots across all planes

in both trackers. Data from all the planes looks extremely similar and any

differences from expected distributions are highlight in the text. Figure 5.2

displays the distribution of digit raw ADC counts and NPE and figure 5.3 shows

the number of digits recorded in each channel.

There are several features to note from figures 5.2 & 5.3 that are visible

in multiple planes across both trackers. The combination of a very delicate

construction, and large lengths of optical cabling was expected to introduce so

called “dead channels” within each plane. Broken/damaged fibres and damaged

connectors were expected in low numbers during the construction and can be

clearly seen as channels where there are no data.

In addition, some VLPCs are known to have a poorly calibrated response to

some channels, which resulted in large numbers of noise digits being produced.

These channels may be masked in software at the digitisation stage, and will be

indistinguishable from hardware based dead-channels. The combination of these

two effects leads to some reduction in efficiency of the spacepoint reconstruction.

The steps in the distributions of figure 5.2 are due to boundaries between

the electronics readout. Channels were readout in groups of 4 at a time, with

every alternate 4 channels connected to a different ADC board which received a

unique calibration. The boundaries between the different calibrations generate

the stepped response. A program of calibration and testing was repeatedly

applied in order to finalise the calibration techniques that were used in the

reconstruction of the data under discussion.
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Figure 5.3: Distribution of reconstructed digits across a single tracker plane in the upstream
tracker, station 2, plane 1. The shape of the distribution is due to the natural muon beam
profile after leaving the final quadrupole.

5.3.2 Cluster Production

The ratio of 2-digit clusters to 1-digit clusters provides a simple mechanism to

verify the clustering algorithm. Table 5.2 summarises the ratio of single-digit

to double-digit clusters for each plane in the upstream tracker.

It can be shown that the deviation from the ideal ratio is correlated with the

amount of noise within each plane. If the noise were to be ideally removed from

the analysis, it is anticipated that the ratios would be in agreement with the

theoretical prediction. More detailed studies regarding the rate of noise within

the trackers [53] and the effect on the reconstruction efficiencies are ongoing at

the time of writing.

5.3.3 Spacepoint Production

Spacepoints are ideally constructed from 3 clusters, one from each of the three

planes as this includes an extra degree of freedom when calculating the x and

y transverse coordinates. The extra degree of freedom is effectively a powerful

noise-rejection feature. It is likely that several noise digits will be produced in

each event, however the probability of three noise digits coinciding within a sta-

tion is vanishingly small. Hence, triplet-spacepoints are preferred for the track

selection procedure, however this is not always possible due to dead channels or

stochastically poor light yields.

The presence of dead-channels means that there are regions within several
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Station Plane 1-Digit 2-Digits Ratio

1

0 14115 1033 13.66

1 16451 1283 12.82

2 16452 1146 14.36

2

0 16561 1308 12.66

1 16493 1355 12.17

2 16741 1195 14.01

3

0 16565 1366 12.13

1 16916 1397 12.11

2 16772 1213 13.83

4

0 16465 1344 12.25

1 15779 1192 13.24

2 16715 1200 13.93

5

0 16621 1436 11.57

1 16771 1281 13.09

2 16853 1133 14.87

Total 246270 18882 13.04

Table 5.2: Comparison of single-digit clusters to double digit clusters.

stations where it is physically impossible to reconstruct a triplet spacepoint. Ad-

ditionally, imperfections in the fibres or deviations in the individual channels’

response to scintillation light can reduce the triplet spacepoint efficiency. Fig-

ure 5.4 describes the total number of spacepoints in each station (red), including

the number that were successfully used in tracks (green), and what fraction of

those were triplets (blue).

The difference between the red and green curves corresponds to the amount

of noise that is inherently present for the track finding algorithms. This is

composed of overlapping noise digits, decay products and knock-on electrons.

Theoretically the green curve, the space points that are included within tracks,

should be flat in both trackers. This would demonstrate the efficiency of each

station to produce a spacepoint is similar. This holds for the upstream tracker

however some stations in the downstream tracker experience some reduced effi-

ciency, most notably in station 5.

If the blue curve is also considered (the number of those spacepoints that

are triplets) it can be seen that there is a significant reduction in the number of

triplet spacepoints in the planes with lower efficiency. This is due to regions of

the tracker where there is a high concentration of dead channels, removing the

ability to actually find a cluster in each of the three planes. Additionally where

dead channels from two planes overlap, the efficiency of finding a spacepoint
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Figure 5.4: The number of spacepoints in each station. Red is the total number of space-
points recorded, green are only those spacepoints that were assigned to a track during pattern
recognition and the blue shows only those spacepoints that were assigned to a track and were
composed of three clusters. Negative station IDs refer to the upstream tracker and positive
station IDs refer to the downstream tracker.

drops to zero. Figure 5.5 shows the distribution of digits for each of the three

planes in station 5 of the downstream tracker.

It can be seen that each of the planes has some number of a dead channels,

especially plane 2, which corresponds to the significant drop in efficiency seen

in figure 5.4. At present, possible options for improving the efficiency of down-

stream station 5 are currently under consideration. The option to swap out

external waveguides and VLPCs for spares could be easily employed, however

the exact cause of the dead channels is likely to be the internal wave guides

or the fibres themselves, which would require a more involved operation. At
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Figure 5.5: The distribution of recorded digits in planes 0 (left), 1 (centre) and 2 (right) of
Station 5 in the downstream tracker. Note the large number of dead channels in plane 2 that
detrimentally affect the reconstruction.
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present there is not enough ancillary time permitted within the schedule to

conduct such an operation. The algorithms however, are constructed such that

they are able to correctly reconstruct non-ideal tracks, hence the efficiency will

be slightly reduced but with little or no bias in the parameters of the final track

fit.

Triplet spacepoints are quickly identified within the reconstruction by use

of the Kuno conjecture (section 3.3.3), which requires the sum of the cluster

positions to equate to a constant value determined by the number of channels

in each plane. If however, all clusters across all three planes are summed together

the distribution of Kuno-Sums highlights regions of high noise, in addition to

verifying that the reconstruction is performing as expected.

Figure 5.6 demonstrates the distribution of Kuno-Sums across Station 1

in the upstream tracker. The expected peak at 318.5 is clearly visible (left),

in addition to the effects of noise, while an enlarged scale (right) highlights

alternate features of the same principle distribution.

The left hand plot sums every cluster that was present in the station per

event. This allows the effects of noise to be clearly highlight. A band of noise

can be seen from 320 upwards, corresponding to where there was a true triplet

spacepoint, in addition to some noise clusters. Additionally there is a small

excess around 220, which corresponds to a combination of noise and pairs of

clusters that are missing a third in order to produce a triplet spacepoint.

A comparison with a Monte Carlo simulation is also provided, where only

those spacepoints used in the track fit were included. This demonstrates the

expected two-peak structure due to the integer values of 1-digit clusters and

half-integer values of 2-digit clusters.

Such results could be used as an additional noise rejection procedure, where

doublet spacepoints are rejected based on their Kuno-Sum for areas where there

are several dead channels, thereby removing the known sources of doublet-

spacepoint noise. At present, no such algorithm has been implemented, however

several are under development.

A final feature to note is that the primary peak is not symmetric. Small

discrepancies in the placement of the planes with respect to each other, have

lead to an effective change in the kuno-number for some of the stations. This has

been partially modelled in simulations, however a more precise measurement is

required in order to precisely reproduce this effect.
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Figure 5.6: An example Kuno distribution of the clusters found in Station 1 of the upstream
tracker (left) and a comparison with Monte Carlo on the region of interest (right). The well
defined peak at 318.5 corresponds to the expected Kuno-peak for the number of channels used
in the construction of the station. The remaining entries correspond to a collection of noise,
knock on electrons and poorly formed spacepoints. The two peak structure is an artefact of
the integer binning used in determining the channel number.

5.3.4 Pattern Recognition

The final stage of track selection is pattern recognition. Spacepoints are se-

lected combinatorially and tested to see which combination minimises the chi-

squared of a track model (straight or helix) depending on the magnetic field

(section 3.3.4). Spacepoints that are deduced not to belong to a track can then

be removed from the subsequent track fitting and further analysis stages.

The superfluous spacepoints may be a result of several physical effects: coin-

cidental noise; knock-on electrons, which are occaisonally emitted from a plane

due to the ionising effect of the primary track; decaying muons and pions; and

secondary tracks due to multiple muons within the same event. However, their

inclusion in the final track fitting stage would be detrimental to the analysis

procedure.

The effect of the pattern recognition routine is to provide a final stage of

noise rejection in the track reconstruction. This is illustrated in figure 5.7 which

compares the NPE distributions for all spacepoints, and all spacepoints that are

included in tracks. The peak due to single photo-electron noise has been almost

completely removed with little effect on the remaining spacepoints. Knock on

electrons and decays are expected at a low level, hence some spacepoints outside

the 1 NPE peak were expected to be rejected also.

Detailed analyses are ongoing at the time of writing, to fully quantify the

efficiency of the trackers using both MC and real data derived analyses [50].

This is the remaining component in a full validation of the track finding and

fitting routines that are part of MAUS.
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Figure 5.7: NPE per spacepoint. The red line includes all spacepoints that were reconstructed,
the black line only includes spacepoints that were successfully used in a straight line, track fit.

5.4 High Level Reconstruction

The stages of pattern recognition were validated in detail using a Monte Carlo

study (section 4.3). Additionally, the low-level reconstruction was previously

validated with data. It can therefore be deduced that, assuming there are

no structural differences between the trackers in simulation and as-built, the

selection of spacepoints will proceed as expected. The following section will

therefore concentrate on the reconstructed parameters following the Kalman

Track Fit. More information regarding the performance of the specific pattern

recognition stages can be found in [49, 51].

In order to improve the statistical weight of the following analyses both

datasets A and B were analysed in parallel. Both datasets were subjected to the

combined TOF and tracker coincidence requirements. Dataset A was subjected

to a TOF cut of 28.5 ns < TOF1→2 < 34.0 ns, and Dataset B was subjected to

a TOF cut of 28.5 ns < TOF1→2 < 32.0 ns.

5.4.1 Straight Tracks

The straight tracks used in this analysis were extracted from Dataset A (ta-

ble 5.1). No additional cuts or requirements were placed on the tracks other

than the coincidence and TOF cuts previously discussed.

In order to validate the reconstruction of the trackers, when no “true” in-

formation is present, only the more qualitative measures of the fit performance

can be analysed.
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In addition, a comparable Monte Carlo simulation was required. The full

MICE geometry, including the up- and downstream PID detectors, and all ma-

terials, was used. To ensure that the trackers were modelled as precisely as

possible, a digitisation model that mimics the NPE produced according to the

current tracker calibration, in addition to modelling noise and dead channels,

was included. This would theoretically produce resolutions similar to those in

the real data reconstruction, hence permitting the global fit parameters to be

compared between simulation and data.

Each reconstructed trackpoint has a “pull” value, defined as the distance

between the fit and the measurement, when that particular data point is ex-

cluded from the fit (section 3.4.1). This is easily calculated using the Kalman

filter structure by conceptually “reverse-filtering” that particular measurement,

as described in [43].

The distribution of the pulls for each measurement plane can be used to

demonstrate that the reconstructed track is in agreement with the raw data,

and that the data is being appropriately weighted during the algorithm. Addi-

tionally, if the pulls are individually weighted by the reconstruction error, it can

be seen whether the reconstruction is correctly calculating the errors associated

with each trackpoint. Figure 5.8 shows the distribution of weighted pulls for

both up and downstream reference planes.

It can be seen from figure 5.8 that there is good agreement between the

Monte Carlo simulation and the data reconstruction. Particularly that they are

both centred on zero with very similar widths. However the two-peak structure

highlights a subtle effect of the geometrical layout of the channels. The nominal

centre of an ideal hit - the geometric centre of three overlapping channels - is

the centre of the resulting triangular overlapping region. However the centre

of these triangles is not in the centre of the individual channel. Hence there

are distinctly two identical distributions for each alternate channel. Figure 5.9

illustrates this effect.

This is the same asymmetry as seen in the distribution of the Kuno-sums

(figure 5.6). A simple correction, was successfully applied to the upstream

tracker, however the downstream tracker requires further improvements in order

to correctly model this effect. At present this effect is still under study and not

yet correctly modelled within the Monte Carlo geometries.

Similar plots for the other 28 planes can be found in appendix B. The RMS

deviation from zero is approximately 0.37 for all distributions reconstructed at

the reference plane. As the distributions are weighted by the calculated error,

an RMS value of 1 is expected. These data demonstrate that the errors are
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Figure 5.8: The distributions of weighted trackpoint pulls at the reference frame of the upstream
(left) and downstream (right) trackers, for Dataset A (top) and Dataset B (bottom). The RMS
deviation from zero is approximately 0.37 for all plots.

Figure 5.9: Planar representation of the overlapping fibres in the centre (green) of a station.
The red markers indicate the centre of the overlapping channels and can be seen to alternate
in their vertical position.
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Figure 5.10: A comparison of the reconstructed p-values, for the straight track reconstruction,
from data (black) and the Monte Carlo simulated p-values (red). Top: Dataset A, Bottom:
Dataset B, Left: Upstream Tracker, Right: Downstream Tracker.

being over estimated by the fit. This is the expected behaviour given the results

of section 4.2 as the multiple Coulomb scattering approximation was shown to

overestimate the accuracy of the fit. If the multiple Coulomb scattering model

were to be improved, the width of the distributions is expected to converge

towards 1, indicating that the uncertainty due to multiple Coulomb scattering

is more correctly modelled.

A more encompassing test of the implementation is available by considering

the p-value distributions for each tracker. Figure 5.10 shows the comparison

between the reconstructed straight track p-values and the appropriate recon-

structed Monte Carlo p-values.

The plots demonstrate a strong similarity between the Monte Carlo model

and the data reconstruction. As the p-value encompasses all aspects of the fit
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performance, and directly compares the model of the system to the behaviour of

the fit, these results strongly suggest that the reconstruction of data is behaving

very similarly to that of the Monte Carlo models. Hence the reconstruction

parameters can be assumed to be similarly accurate to Monte Carlo studies,

barring any misalignments of either the trackers or the fields.

The small discrepancy between the reconstructed data and Monte Carlo in

the downstream tracker, is a direct result of the plane misalignments that pro-

duced the asymmetry in the Kuno and Pull distributions, described previously.

5.4.2 Helical Tracks

A similar procedure was conducted for the helical track reconstruction. The

availability of data however was more difficult. Only one run, Dataset C, was

available at the time of writing. For this run, only the upstream spectrometer

solenoid was powered, and only the End2-Centre-End1 coil pack was energised.

Without the additional match-coils (M1 and M2) to further stabilise the fringe

field, the uniformity of the field was not ideal. An Opera [54] field model was

calculated and used within the Monte Carlo to better approximate the field

conditions.

The events surrounding that period of data taking, and the specific com-

plexities associated with Dataset C are detailed in chapter 7. For this analysis,

it is assumed that the field map is sufficiently similar to the real field and that

the Monte Carlo geometry correctly places all detectors, such that a comparison

between Monte Carlo and data may be performed for the purpose of validation.

Despite these issues, the dataset does provide helical tracks that originated

from the MICE nominal 200 MeV/c muon beam, reconstructed in an approxi-

mately 4T field. As only the upstream solenoid was powered, the transmission

through to TOF2 was poor, hence it was not logical to apply a similar set of

cuts as used previously, as many viable tracks would not be included. Rather a

TOF0 to TOF1 time cut (figure 5.11) was enforced to ensure that the majority

of the beam was composed of muons, and that precisely one helical track was

reconstructed in the upstream tracker. Without improving the transmission,

the downstream detectors could not be utilised without a significant reduction

in statistics.

In order to ensure the effect of inefficiencies is reduced in the absence of ideal

PID or transmission requirements, each track that was analysed was required

to have precisely 15 trackpoints. This ensured that all the tracks were entirely

composed of triplet-spacepoints and therefore have very low amounts of noise.
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Figure 5.11: The time-of-flight distribution between TOF0 and TOF1. The events within the
TOF cut are highlighted. The secondary peak was believed to be due to a combination of poor
calibration and noise, and was removed as a precaution only.

Figure 5.12 shows the distribution of the reconstructed and simulated weighted

pulls at the reference plane of the upstream tracker. The width of the distribu-

tion shows good agreement between Monte Carlo and data, while the structure

of the distribution is not perfectly modelled. This is likely due to the plane

alignment issues discussed within the straight track validation. As only a sim-

ple correction was used to model this effect, the relatively higher track gradients

of the helical tracks could further distort the distribution. Further study is re-

quired to analyse the precise description of the misalignment. Additionally,

discrepancies between the field model and the actual field may provide some

additional bias to the pulls. However the overall agreement in mean and width

of the distribution implies that little effect should be seen in the final recon-

struction parameters.

Figure 5.13 shows a comparison of the simulated and reconstructed p-values

in the upstream tracker. The low statistics of Dataset C increases the difficulty

in making the comparison between reconstructed data and Monte Carlo. How-

ever the close agreement that is seen is encouraging. The lower values, 0.1-0.4

appear to be overrepresented by the Monte Carlo, however the shape of the

distribution is in good agreement.

The disagreement in the pull distributions would cause the p-values to ex-

97



Weighted Pull
10− 5− 0 5 10

#
 T

ra
ck

s

0

10

20

30

40

50

60

70 Recon

MC

Recon

MC

Figure 5.12: The distribution of weighted trackpoint pulls at the reference frame of the up-
stream tracker.
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Figure 5.13: A comparison of the reconstructed p-values, for the helical track reconstruction,
from data (black) and the Monte Carlo simulated p-values (red) in the upstream tracker.
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perience some related effect, as was found. Additionally, the effect of using an

approximate field map will also alter the p-value distribution. Furthermore,

the known plane alignment discrepancy would likely also subtly detriment the

p-value distribution. The good agreement despite these uncertainties associated

with this dataset, demonstrates that the fit is working well.

5.5 Conclusions

Overall, the low-level reconstruction was found to behave as well as expected,

given the complications of variable calibration potency, noise induced digits

and decay/knock-on electrons. The predominant form of noise rejection works

through the track selection in that only those spacepoints that are with some

criteria for forming a track are accepted. This was shown to be very effective

at removing the 1 NPE noise peak from the data set.

The effects of the poor station efficiency in station 5 of the downstream

tracker have not been fully analysed. However, the first indication is that only

a slightly reduced efficiency is expected. Distributions of pulls and p-values are

still in agreement with Monte Carlo Studies. The option of replacing compo-

nents of the tracker in order to improve the efficiency is under consideration but

unlikely due to the amount of man-hours required to disassemble downstream

spectrometer solenoid and perform the repairs. The Monte Carlo simulation

however, can natively model dead channels and poor efficiencies, hence the ef-

fect of these dead channels will be included in all future simulations.

As the efficiency of pattern recognition was shown to be very high (sec-

tion 4.3) in Monte Carlo studies, and the spacepoint forming algorithms are

shown to be working at a high efficiency, the behaviour of pattern recognition

on data can be deduced to be within expectations, assuming that the track

model is correct. A validation of this assertion is currently under study [50]

whereby the efficiency of the track finding is to be tested by estimating the

number of tracks expected using up- and downstream PID detectors. There

will still be a small component of noise within this study, however it is expected

to agree with Monte Carlo to a high precision.

The high-level reconstruction has been shown to produce global measures

that are in good agreement with the Monte Carlo models. The p-value compar-

isons demonstrate that all the combined effects, that the track fit is sensitive to,

are well modelled in the Monte Carlo geometries and configurations. This does

not guarantee the performance of the fit parameters, however it does demon-

strate that the entire system model is accurate. Section 4.2 can be considered
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to demonstrate the sensitivity of the p-value distribution to small changes in

the model.

Validation of the parameters of the track fit was conducted as required in

chapters 6 & 7. The straight track reconstruction has very few systematics that

can affect the fit, other than the alignment of the trackers, which is directly

analysed in chapter 6. The helical fit is more complex and very sensitive to

both the magnitude and uniformity of the solenoid field. This is discussed in

chapter 7, where the sensitivity of different field configurations is considered in

addition to the effects of a misalignment.

Due to the relative simplicity of the straight line fit, the results shown

strongly suggest that it is performing as expected by the Monte Carlo model.

The helical fit has been shown to have a good agreement with the Monte Carlo

model, however the absolute scale of the fit parameters will be discussed in

subsequent chapters.
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Chapter 6

Alignment of the MICE

Trackers Using Data

6.1 Introduction

The installation of the trackers was a complex procedure that involved careful

manipulation of the trackers themselves within a low light environment. The

available space within the Spectrometer Solenoids did not allow for the trackers

to be rigidly fixed in place, rather they were installed and braced with the use of

a rubber “foot”. Hence, the final location of the trackers was difficult to precisely

survey, and although unlikely, they were susceptible to movement during transit.

As such, a measure of the location of the two trackers, in addition to the usual

survey measurements, was required to allow the detectors to be modelled to a

high precision.

Additionally, performing an alignment procedure between the two trackers

provides a powerful consistency check on the reconstruction parameters of the

track fit. An unbiased and accurate reconstruction of both the positions and

gradients is required in order to successfully align the two trackers.

No magnetic fields were present within the cooling channel hence the straight

track reconstruction was used. This required elements of the track selection and

fitting routines to perform as expected, in addition to the use of global track

matching and calibration handling. As such, this provided the first end-to-end

analysis task for the track reconstruction.

The reference planes of the trackers, both upstream and downstream, mark

the point of the detectors at which the alignment was compared. A convention

of aligning all components to the centre of the upstream tracker reference plane
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Figure 6.1: Schematic representation of a reconstructed straight track and how a misalignment
affects the global placement of the reconstruction. Note that the misalignment has been greatly
exaggerated and is not to scale.

was chosen for simplicity. The alignment of the downstream tracker describes

the translation and rotation of the downstream tracker reference plane from

the expected position, as assumed in the reconstruction geometry. Initially the

trackers were expected to be perfectly aligned in the transverse dimensions and

have a known longitudinal separation, L.

The data inherently describes the transverse components of the alignment,

however it would also be possible to estimate the longitudinal displacement from

the expected tracker separation in future analyses.

Figure 6.1 shows a cartoon layout of the trackers, as described by the re-

construction geometry and as they would be in reality, with an example track

reconstructed (note that these drawings are not to scale, and are greatly exagger-

ated to provide a visual representation only). They demonstrate the differences

in the reconstruction of a single track using both the upstream and downstream

trackers. By comparing the downstream position and gradient to the expected

position and gradient, the full transverse alignment can be calculated.

6.2 Alignment Method

6.2.1 Outline

The upstream tracker was used to define the origin of the coordinate system,

hence the upstream tracks were defined to be correctly reconstructed, therefore
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only one set of corrections, for the downstream tracker, needed to be calculated.

Each upstream reconstructed track provides position (X, Y , Z) and gradient

(Mx, My) information at the reference plane.

The upstream tracks can then be individually propagated to the downstream

tracker using a linear extrapolation to determine the expected positions (x, y)

and gradients (mx, my). The downstream longitudinal position, z was used as

expected from the geometry, hence only the parameter L = z−Z is used. This

propagation was performed using the equations:

x = X +MxL,

y = Y +MyL,

mx = Mx,

my = My.

(6.1)

In practice it was more sensible to use the arc-tangent of the gradients - the

track angle - hence, this is the nomenclature adopted in the following discussion.

The x and y track angles (ηx and ηy) are calculated from the gradient as,

η = arctan(m).

The downstream tracker also provides measured estimates to the track pa-

rameters, these are distinguished with a superscript m: (xm, ym, ηmx , ηmy ).

The comparison between the estimated track parameters and the measured

track parameters permitted the downstream tracker to be aligned with respect

to the upstream tracker. If there were no stochastic effects, a single track

could be used to precisely determine the alignment of the trackers through the

residuals between the reconstructed track parameters and the predicted track

parameters:

δx ≡ xm − x,

δy ≡ ym − y,

φx ≡ ηmx − ηx,

φy ≡ ηmy − ηy.

(6.2)

Multiple Coulomb scattering causes the δ and φ distributions to be heavily

smeared, depending on the particle species and velocity, hence the parameters

δ and φ are only estimates for the actual tracker misalignments, Δ and Φ.

Figure 6.2 provides a graphical representation for how the parameters relate in

a single transverse dimension.

Repeated analysis of straight tracks would produce some distributions in

each of δx, δy, φx, φy, which can then be used to estimate the relative alignment
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Figure 6.2: Geometrical layout of the alignment variables, and their relation to each other.
This diagram describes some arbitrary axis, the x and y parametrisations are identical.

between the two trackers.

6.2.2 Assumptions

The Paraxial Approximation

From close inspection of figure 6.2 it can be seen that the equations 6.2 are

only correct to first order. In fact, the value of δ experiences a parallax-style

correction due to the rotation, Φ, which has been ignored under the paraxial

approximation. For this reason, the alignment procedure must be iteratively

applied to the geometry and re-processed, such that the residuals may be min-

imised in order to make the second-order corrections negligible.

No Axial Rotation

It was assumed that the trackers do no rotate about their central axis, or if they

do, the angle between the two is known to a high precision and is correctly mod-

elled in the reconstruction geometry. This assumption permits the alignment

procedure to be treated as two separate problems, one in the x-z plane and one

in the y-z plane1. For this reason, x and y subscripts will be used to denote the

separate systems, however the equations are identical for both systems.

6.2.3 Procedure

The runs that were used in this analysis correspond to Datasets A and B in

table 5.1. Both datasets were used as the only difference between them is the

1Due to how the 3D rotations are modelled, the two reconstruction planes are coupled by
the order in which the rotations are applied, they may be treated as uncoupled under the
paraxial approximation only.
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Figure 6.3: Comparison of the two Time of Flight windows used in this analysis. Dataset A,
corresponding to the 200 MeV/c muon beam are in the left plot and Dataset B corresponding
to the 240 MeV/c muon beam are in the right plot.

mean muon momentum. Hence the only comparable effect between the two

datasets will be the effect of multiple scattering. As this does not statistically

bias the fit, only affecting the distribution widths, both datasets can be used

without issue.

The deviation due to gravity will affect the two datasets differently as they

will have different mean velocities, however the magnitude of the deviation is

estimated to be on the order of 10−15 m across the entire length of the cooling

channel, many orders of magnitude lower than the resolution of all the detectors,

hence it was neglected within this analysis.

For each run, reconstructed straight tracks were processed individually at the

reference plane of each tracker. Only events that produced precisely one track

in each of the upstream and downstream trackers, in coincidence with passing

the TOF cut, were considered. For Dataset A, the TOF cut set to (28.5, 34.0),

as was used for the validation procedure in chapter 5. For Dataset B, a similar

cut was imposed, (28.5, 32.0). Figure 6.3 shows the comparison between the

two TOF distributions for the two datasets.

To ensure that the dataset contained only high-quality reconstructed tracks,

thereby reducing the effects of noise and hard scatters, a cut on the reconstructed

p-value was imposed. Only tracks with a reconstruction p-value > 0.01 were

included within the analysis. For an ideally flat distribution, this would ensure

that the 1% worst tracks would be removed. However due to the effects described

in section 4.2, fewer than 1% of tracks are actually removed. However those that

are removed, still correspond to the poorest quality fits.

An additional requirement on the radius of the projected track was also im-
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posed. Each tracker only has a fiducial radius of 15 cm. Any spacepoints that

could be reconstructed outside of that radius are excluded from the analysis.

This ensures that the curvature of the fibres near the edge of a plane does not af-

fect the measurements. However, the fiducial radius does affect the transmission

into the downstream tracker. It manifests as a convolution of the 15 cm radial

window with the approximately gaussian beam distribution, hence the actual

distribution will experience some bias as a function of the tracker misalignment.

By ensuring that only tracks that, once projected, fall within a selection radius

are included in the analysis, the effect of the fiducial radius can be negated.

The typical amount of scattering between the two trackers corresponds ap-

proximately to a 20 mm RMS displacement. Therefore if the projection cut was

chosen such that it was larger than the nominal scattering angle, but smaller

than the fiducial radius, the central region of the distribution would be repre-

sentative of the true distribution. The projection cut was placed at 100 mm, 2.5

standard deviations from the limit fiducial cut (containing approximately 90%

tracks that pass the cut). This maintained a reasonable transmission, whilst a

gaussian fit was then applied to the central peak in order to calculate the mean

and standard deviation.

Each track in the upstream tracker was then propagated to the downstream

tracker and compared to the downstream reconstructed track parameters. The

residuals in each of the four reconstruction parameters, (x, y, ηx and ηy) were

then histogrammed and fitted. Figure 6.4 shows these distributions as generated

using the default MICE geometry.

A Monte Carlo study that made use of a precise geometry and a similar beam

was performed in parallel in order to estimate the sensitivity of the method and

verify that it was accurate.

The downstream tracker alignment can then be estimated from the distri-

butions using a gaussian fit in each of the four dimensions, where,

Φx = �φx�, Δx = �δx�,
Φy = �φy�, Δy = �δy�.

(6.3)

The total error on the fitted gaussian provides an estimate for the error in the

alignment; however, the tracker resolution adds an additional smearing effect to

the reconstruction. The result is that the distributions obtained were in fact a

convolution of the multiple Coulomb scattering distribution with the intrinsic

tracker resolution, hence the error on the alignment was over estimated. This

can be approximately corrected to determine the true reconstruction precision.
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Figure 6.4: Position (left) and angular (right) residuals calculated by propagating the track
parameters from the upstream tracker to the downstream tracker. The position residuals have
x and y standard deviations of approximately 20 mm. The angular residuals have x and y
standard deviations of approximately 8.3 mrad.

Section 4.3, details the resolution of straight track reconstruction within a

detailed Monte Carlo study. If the tracker resolution and the multiple Coulomb

scattering distributions are assumed to be gaussian distributed, the convolu-

tion between the two distributions corresponds to the addition in quadrature of

the standard deviations. Using this approximation, the resolution-independent

standard deviation can be estimated.

The final results obtained from this procedure were then applied to the re-

construction geometry, and the process was repeated. Subsequent iterations

provided smaller corrections to the initial estimate, and eventually converged

within the expected errors. In practice, approximately 3 iterations were neces-

sary to converge sufficiently.

6.3 Monte Carlo Validation

In order to validate the procedure outlined in section 6.2, two Monte Carlo simu-

lations were conducted. The baseline, MICE Step IV geometry was altered such

that both trackers were perfectly placed in the transverse plane and perfectly

aligned with each other for the first study. Both trackers were then misaligned

by a known measure for the second study. A simple gaussian muon beam with

a small spread in momentum as modelled, starting immediately before the up-

stream tracker and allowed to propagate through the downstream tracker. No

other detectors were required for the study.

Figure 6.5 shows both the position and angular residuals for the aligned

geometry. The alignment residuals and their associated errors were calculated
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Figure 6.5: Position (left) and track angle (right) residuals for the ideal Monte Carlo Simulation.
The x and y standard deviations of the position distribution is approximately 19 mm and the
x and y standard deviations of the angular distribution is approximately 8 mrad.

using a gaussian fit, applied to the histogrammed data. As indicated, alignment

residuals were found to be:

Δx = −0.208± 0.215 mm,

Δy = −0.093± 0.208 mm,

Φx = −0.010± 0.081 mrad,

Φy = 0.086± 0.081 mrad.

All components are comfortably in agreement with no misalignment. No cuts

on time of flight or p-value were imposed for this Monte Carlo study. The effect

of hard scatters in the trackers or other materials were therefore not correctly

accounted for, but did not result in an significant biases or degradation of the

results.

The misalignment introduced into the second Monte Carlo study corre-

sponded to 5 mm translation in both x and y for the upstream tracker and

a −10 mrad rotation in the y-z plane for the downstream tracker. Figure 6.6

shows the position and angular resolutions from the study. The measured align-

ment residuals were found to be:

Δx = −5.097± 0.207 mm,

Δy = −5.395± 0.216 mm,

Φx = −0.118± 0.084 mrad,

Φy = 10.063± 0.081 mrad.

All components were again found to be in agreement with the known misalign-
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Figure 6.6: Position (left) and track angle (right) residuals for the ideal Monte Carlo Simulation.
The standard deviation of the position distribution is approximately 19 mm and the standard
deviation of the angular distribution is approximately 8 mrad.

ment in the geometry. Note that the plots demonstrate the residual between

the projected and reconstructed trackpoints, hence there is a sign inversion in

order to calculate the actual geometric misalignment. This study validates that

the measured parameters were correctly calculated.

6.4 TOF Extrapolation

A final verification of the straight track reconstruction, and a secondary align-

ment measurement, was the extrapolation to the TOF1 and TOF2 detectors

from the upstream and downstream trackers respectively. Both offer a coarse

position estimate for the track and may be used to estimate the alignment of

the tracker-tracker system to the other PID detectors.

For each event that passed the cuts outlined above, the upstream and down-

stream tracks were treated similarly, in that they were sequentially propagated

to the nearest TOF detector, and the residual between the predicted and recon-

structed x and y components was histogrammed. The results of this are shown

in figure 6.7.

The relatively large pixels in the TOF detectors caused the distinctly square

residual distribution, in addition to having a smearing effect. Note also that

the positions of the TOF detectors with respect to the trackers is not perfect,

rather there is some misalignment. Due to the construction and installation of

the detectors, this was expected.

The trackers were assumed to be correctly aligned with respect to the rota-

tion about the central axis; however, no assumptions were made with respect

to the TOF detectors. Figure 6.8 shows the correlation between the predicted
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Figure 6.7: Upstream (left) and downstream (right) residuals calculated by propagating the
track parameters to the nearest TOF detector. The upstream tracker was propagated to TOF1
and the downstream tracker was propagated to TOF2.
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Figure 6.8: The correlations between the predicted and reconstructed transverse coordinates at
TOF1, as compared to the upstream tracker. x is shown in the left histogram and y is shown
in the right histogram. The black points mark describe the profile of the residuals in each TOF
measurement bin. The gradient of the correlation was calculated from the linear fit drawn in
red.

and reconstructed values of x and y for the upstream tracker-TOF1 system.

Figure 6.9 shows the similar distributions for the downstream tracker-TOF2

system. These figures demonstrate that any misalignment about the central

axis is minimal, as all components are correlated with a gradient of 1.0 within

errors.

6.5 Axial Rotation

The trackers were assumed to be aligned in terms of the axial rotation (rotation

around the beam axis). This assumption was believed to be true due to the

installation tolerances, however a validation of this assertion was required.
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Figure 6.9: The correlations between the predicted and reconstructed transverse coordinates
at TOF2, as compared to the downstream tracker. x is shown in the left histogram and y is
shown in the right histogram. The black points mark describe the profile of the residuals in
each TOF measurement bin. The gradient of the correlation was calculated from the linear fit
drawn in red.

When projecting a track from the upstream tracker to the downstream

tracker, the ηx and ηy track angles may be used to determine the track de-

scription in cylindrical polar coordinates, η =
�

η2x + η2y (the polar angle with

respect to the z axis) and θ = arctan(ηy/ηx) (the azimuthal angle around z in

the x-y plane).

Any rotation of the downstream tracker with respect to the upstream tracker

would have been reconstructed as a residual, ω, between the predicted value, θ,

and the measured value, θm, Figure 6.10 shows this distribution.
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Figure 6.10: Residual between the projected track azimuthal angle and the measured azimuthal
angle. A gaussian fit (shown in red) was applied to the peak in order to determine an approx-
imate parametrisation for the distribution.
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Run Muons Δx/mm Δy/mm Φx/mrad Φy/mrad

07672 515 −12.25± 0.94 14.11± 1.00 1.93± 0.42 1.18± 0.40

07673 4614 −10.23± 0.34 14.11± 0.34 1.69± 0.14 2.51± 0.14

07674 3821 −9.92± 0.32 14.86± 0.32 1.83± 0.13 2.71± 0.13

07681 4298 −10.16± 0.34 14.29± 0.36 1.41± 0.14 2.48± 0.14

07682 3978 −10.33± 0.31 14.46± 0.32 1.51± 0.13 2.53± 0.13

07685 3949 −10.43± 0.32 15.44± 0.32 1.70± 0.13 2.81± 0.13

07686 2889 −9.95± 0.37 14.83± 0.38 1.61± 0.15 2.93± 0.15

07691 3906 −9.92± 0.32 14.77± 0.32 1.49± 0.13 2.49± 0.13

07693 638 −10.53± 0.82 15.49± 0.86 1.73± 0.32 2.87± 0.31

07694 2768 −9.56± 0.37 14.82± 0.38 1.85± 0.16 2.59± 0.15

07695 3328 −9.32± 0.41 14.73± 0.42 1.86± 0.17 2.83± 0.17

Combined 34740 −10.06± 0.11 14.71± 0.11 1.65± 0.05 2.62± 0.05

Table 6.1: A summary of the transverse alignment measurements for each run in the two
Datasets that were analysed. The combined alignment is calculated from the weighted mean
of all runs.

The results show that the trackers were aligned to a high accuracy, how-

ever a statistically significant misalignment does exist, reconstructed to be

Ω = (−0.027 ± 0.004) rad. As a result, there is a fractional, systematic er-

ror within the transverse alignment on the order of sin(0.027) ≈ 0.027. As the

fractional errors on the reconstruction is still an order of magnitude larger than

this correction, the no-axial rotation assumption is valid to first order. However

with higher statistics, thereby permitting a more precise measurement, a full

3-dimensional fit would be required.

6.6 Results

The complete set of transverse alignment measurements from both Datasets A

and B is presented in table 6.1. Each run was processed individually such that

any deviations between consecutive measurements could be noted in the event of

some systematic change. The overall alignment was calculated as the weighted

mean of each individual measurement.

Section 6.5 described the process of analysing the relative axial rotation

between the two trackers and section 6.4 described the comparisons between the

trackers and the TOF detectors. With all measurements in hand, the combined

TOF1-tracker-tracker-TOF2 system can be globally positioned with respect to
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Detector Δx/mm Δy/mm Φx/mrad Φy/mrad

TOF 1 −1.57± 0.07 −4.77± 0.07 - -

Upstream Tracker 0.0 0.0 0.0 0.0

Downstream Tracker −10.06± 0.11 14.71± 0.11 1.65± 0.05 2.62± 0.05

TOF 2 6.96± 0.10 6.18± 0.10 - -

Table 6.2: A summary of the relative alignment measurements for each of the trackers and
TOF detectors. The upstream tracker defines the origin of the coordinate system, and hence
has no relative alignment.

each other. Table 6.2 describes the relative positions and rotations between the

detectors. The effect of the axial rotation was applied as a first order correction

to the downstream tracker and TOF parameters.

The errors for each parameter were calculated using the residual distribu-

tions of the final iteration of the alignment procedure. This was to correct any

additional smearing of the error due to the misalignments. Each parameter was

assumed to be gaussian distributed and the error on the mean was calculated

as appropriate given the number of entries.

6.7 Conclusions

The straight track alignment provided a powerful test of the straight track re-

construction. The alignment procedure required the reconstruction parameters

to be accurate and precise in order to make a sufficiently precise measurement,

such that the reconstruction geometry may be modified for future analyses.

A global validation in the form of the TOF extrapolation demonstrated that

the reconstruction is not experiencing any systematic errors within the tracker-

tracker system, and the good agreement between all the detectors has shown

that the track reconstruction is performing within expectations.

Additionally, figures 6.5 & 6.6, the Monte Carlo transverse residuals, show

an excellent agreement with the results in figure 6.4, the reconstruction residuals

from data. The close agreement between the width of these two distributions

demonstrates that the Monte Carlo model is closely modelling the multiple

Coulomb scattering due the materials within the MICE cooling channel. The

small discrepancy that does exist may be explained as being due to GEANT4’s

model of MCS, in particular with the treatment of tail-events outside the region

that is approximately Gaussian. The ongoing and detailed multiple Coulomb

scattering study will provide a more thorough investigation into these results.

The transverse alignment was performed without complications, and demon-
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strated that the trackers are rotationally aligned to a high accuracy, however

the 10-15 mm misalignments are of concern. The construction tolerances were

typically on the order of 1-5 mm, hence this demonstrates an unexpectedly poor

placement of the downstream tracker. However, laser-survey measurements of

the downstream solenoid are in agreement with this measurement, indicating

that the cause of the misalignment was the initial placement of the downstream

spectrometer solenoid. Currently a mechanical correction is being planned to

improve the relative placement of the Spectrometer Solenoids.

Additional studies have/are being performed in order to provide further

alignment measurements. A global detector alignment, has been performed

using all downstream PID detectors in addition to an attempted extrapolation

to TOF0 that required the quadrupole magnets Q4-Q9 to be unpowered. Due

to the relatively large distance and very low rate without the quadrupoles,

the extrapolation to TOF0 was unsuccessful. However a comparable set of

results that are in agreement with those presented above were obtained [55].

Additionally, as part of the ongoing multiple Coulomb scattering study a more

precise, fit-based approach using the existing library Millipede [56] is under

development. This will involve a full 3D fit to spacepoint level-data at all

tracker stations. The results are expected to be sensitive to the axial rotations

and provide a more precise measure of the relative tracker rotations as a result.

The extrapolation to the TOF detectors demonstrated that the reconstruc-

tion within the tracker software is globally consistent with other detectors. The

correlation measurements demonstrated that the axial rotation between the

trackers and the TOFs is consistent with zero, as expected, and the transverse

residuals highlighted some expected displacements. The laser-survey measure-

ments are in agreement with the reconstructed residuals, which further demon-

strates that the straight track reconstruction is performing as expected.

The relative axial rotation between the two trackers, Ω, was estimated using

the residuals in the reconstructed azimuthal track angles, ω. The resulting

distribution demonstrated a small, non-zero relative rotation of −0.027 rad. As

this is a relatively small rotation, the reconstructed transverse alignment values

were only approximately correct within the current errors. However with higher

statistics, providing a more precise measurement, the axial rotation will become

a prominent systematic error. A first order correction, based on Ω, was used in

table 6.2 which represents the most accurate values obtained within this study.
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Chapter 7

Measurement of the MICE

Muon Beam Emittance

During the commissioning of the MICE Cooling Channel, many issues were

experienced relating to the design and construction of Spectrometer Solenoids.

During the 2015-2016 run period, a flaw in the design of the quench protection

system meant that it was no longer practical, or safe, to run either of the

two Spectrometer Solenoids until they have been retrofitted with an upgraded

system.

During a non-standard commissioning exercise, an event occurred that high-

lighted these issues and resulted in Match Coil 1 of the downstream Spectrom-

eter Solenoid being irreparably damaged [57]. Unfortunately only one run had

so far been recorded that contained muon data with the 4T magnetic field.

This chapter describes the use of these data in estimating the intrinsic beam

emittance that was accepted into the MICE Cooling Channel.

7.1 Experiment Configuration

The MICE muon beamline was configured in the standard “muon beam” setting,

as was used in previous analyses [33]. This provided a very pure muon beam

with which this analysis was conducted. All PID detectors were present and

functioning, however the trackers were being commissioned at this time and

were still being calibrated. During the data taking period only the upstream

tracker was functioning correctly and could provide useful data. As a result,

only one run was successful and the number of muon tracks, within a solenoidal

field, that could be analysed was limited.
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The state of the magnet commissioning programme permitted only the

End 2-Centre-End 1 coils of the upstream solenoid to be powered. This had

two significant effects on the analysis:

1. The transmission into the upstream tracker was high due to presence of

the focussing solenoid field. However, as the field ended after the End 1

coil, the relative transmission into the downstream PID detectors was very

low. If the downstream PID was to be used for analysis, the number of

muons tracks recorded in this short run would be significantly reduced,

hence only upstream PID and the upstream tracker could be used without

the adversely affecting the statistics of the study.

2. The default operating currents for the Spectrometer Solenoids assumed a

magnetic field in both Match Coil 1 and Match Coil 2, in addition to the

ECE pack. As these coils were not powered, the actual field within the

tracking volume was not as uniform as expected by the design parame-

ters. As the track fit algorithms all make extensive use of the uniform

field assumption, the performance of the reconstruction during the run

was subject to some non-linear systematic effect. This required detailed

analysis in order to precisely model the behaviour of the reconstruction in

such an environment.

An official Monte Carlo simulation was also performed in order to model the

full experimental configuration, from the MICE target through to the down-

stream PID detectors. This allowed the analysis techniques and algorithms to

be applied to a situation where the true values are known, such that they can be

tested before being applied to real data. Additional simulations also permitted

the systematic effects to be precisely modelled and analysed.

7.2 Procedure

In order to accurately determine the emittance of the MICE muon beam, it

was imperative that all sources of systematic error be correctly modelled and

accounted for. Monte Carlo studies were extensively used in order to quantify

the predominant effects: field misalignment, field uniformity, and reconstruction

bias.

The track fit assumes a uniform solenoidal field throughout the tracking

region, perfectly aligned to the trackers. If there existed a significant mis-

alignment, the reconstruction model would be unable to perform any reliable
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reconstruction. Hence initial studies were conducted in order to establish that

any effect was small.

The effect of the field uniformity was then examined. Although the recon-

struction model does not anticipate a non-uniform field, it would appear as

a less significant effect in the reconstruction. Even with a moderately non-

uniform field, the track path would remain approximately helical. The effects

would therefore be seen in the magnitude of the reconstructed momentum. As

momentum corrections have already been discussed and applied successfully

(section 4.3.2), this was an anticipated systematic correction for the analysis

procedure.

The final systematic source of error is the reconstruction bias. The emittance

calculation relies on the correlations between all phase-space variables. Hence

it is possible for the reconstruction to produce statistically accurately x, y, px,

and py estimates that don’t reproduce an accurate emittance estimate due to:

(a) off-diagonal correlation terms in the covariance matrix; and (b) a smearing

effect due to the detector resolution. These effects are accounted for through the

use of covariance matrix corrections. By analysing the differences between the

simulated track information and reconstructed track information it is possible

to estimate the parameters in this correction term.

The covariance matrix corrections could theoretically account for any field

concerns, reconstruction biases, or momentum residuals. The applied recon-

struction procedure was to apply the momentum corrections to the individually

reconstructed tracks, before applying the calculated covariance matrix correc-

tions. The alternative would be to neglect the momentum corrections, and rely

on a more detailed covariance matrix correction that correctly accounted for the

momentum residuals.

On the assumption that the Monte Carlo model is a perfect representation

of the experiment, this would be a feasible approach; however, there are two

concerns. Doing so requires a Monte Carlo simulation that is a very precise

model of the experiment, including all field descriptions and beam parametri-

sations. It was not possible to generate such a model to sufficient precision and

accuracy. Additionally, this would also mean that the track reconstruction is

prepared without the known momentum corrections being applied, hence any

analysis that was not based around the reconstruction of the covariance matrix

would need to apply a momentum correction regardless.

The primary source of error was found to be the momentum residual, hence

the decision was therefore taken to calculate and apply the total momentum

corrections to the reconstructed tracks, and use covariance matrix corrections
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to finally correct the covariance matrix before analysis.

The correction parameters were determined through a set of simulations

using MAUS. A realistic model of the tracker was placed within a configurable

field map. The uniformity and alignment of the field map could be varied

independently. Additionally the beam being simulated was initiated at the

entrance to the upstream tracker, immediately before station 5, and could be

configured to model any simple distribution.

The alignment of the field was estimated using a combination of survey data

and tracker alignment data, and any variations between the model and real

field will correspond to a source of error. However, the effect on the emittance

reconstruction can be shown to be small (see below) at the measured value

(≈ 3.3 mrad). Additionally, the statistical properties of the data reconstruction

have been shown to be in good agreement with the Monte Carlo model (see

chapter 5), hence the tracker geometry and reconstruction biases should be

accurately reproduced by the simulation. Due to time constraints there still

exists some difficulty in the modelling of the canonical angular momentum,

hence beams with a large transverse coupling, would not be well reproduced

by the systematic studies. This effect is small however. The primary source

of error in estimating the correction parameters is therefore the knowledge of

the field map within the tracking region. Studies are ongoing [58] to precisely

determine the agreement, however a conservative estimate is presented below.

Following the determination of the correction parameters, the analysis pro-

cedure was performed on an official Batch Monte Carlo dataset in parallel with

Dataset C (table 5.1). The Batch Monte Carlo is maintained by the MICE

collaboration and is undergoing constant improvements to better model the be-

haviour of the MICE experiment at all positions within both the beamline and

the cooling channel. As such it will introduce additional effects and correla-

tions to the transverse phase-space that are not modelled by simple gaussian

approximations, but are more similar to the real experiment.

For both the Batch Monte Carlo dataset and Dataset C, an initial analysis

of the uncorrected reconstruction was performed in order to determine the dis-

tribution of tracks in phase-space, and select the most appropriate correction

parameters. Each track was then subjected to a momentum correction, before

being added to the covariance matrix calculation. Following the determination

of the covariance matrix, the emittance and other optical parameters could be

calculated.

The Batch Monte Carlo analysis permitted a comparison between recon-
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structed optical functions and the true beam information, such that the recon-

struction and error analysis may be validated within the study. The reconstruc-

tion of Dataset C was then assumed to be accurate with the estimated errors,

with an additional small uncertainty due to the field map being used within the

Monte Carlo model.

7.3 Error Analysis

In order to precisely determine the true beam emittance, both the statistical

and systematic errors must be determined. The statistical error is due to the

sampling of the beam, as it is only possible to record a finite number of tracks,

thus sampling from the true distribution

Conversely, systematic effects, derived from the tracker reconstruction and

field configuration, result in the beam being incorrectly reconstructed and form

a significant source of error in the final emittance measurements. Both the

statistical and systematic sources of error are discussed below, with particular

attention to the treatment of the systematic errors.

7.3.1 Statistical Errors

The transverse emittance of a beam is calculated by determining the 4 × 4

covariance matrix, Σ, and calculating the determinant such that the normalised

emittance is given by,

�⊥ =
|Σ| 14
βγ

. (7.1)

The determinant calculation can be expanded to reveal a sum of products

composed of the variances and covariances of the distribution, hence if the er-

ror on a variance estimate can be determined, the error on the emittance can

also be determined. It is assumed for simplicity that the error on a covariance

(Cov(x, y) = σxσyρ) is entirely determined by the errors of the associated stan-

dard deviations (σx and σy) and that any error associated with the correlation

coefficient (ρ) can be neglected.

It can be shown (Cochran’s Theorem [59]), that for n samples of a gaussian

distribution with variance, σ2, that the sample variance, s2, is related to the

true variance by a chi-squared distribution,

(n− 1)σ2

s2
∼ χ2

n−1. (7.2)

It can therefore be shown that the variance of the variance-estimate is ap-
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proximately given by,

Var(σ2) = Var(
s2

n− 1
χ2
n−1), (7.3)

=
2s4

n− 1
.

Hence, the error on the estimate of a sample variance, s2, is given by
�
2s4/(n− 1).

It can additionally be shown that, using this estimate, the approximate error

on a sample standard deviation, s, is given by s/
�

2(n− 1).

For a 2×2 covariance matrix Σ2D, the determinant may be written in terms

of the sample variances, s2x, and sample covariances, Cov(x, y) = sxsyρ, where

ρ represents the correlation coefficient,

|Σ2D| =

������
s2x sxsyρ

sxsyρ s2y

������
= s2xs

2
y − s2xs

2
yρ

2. (7.4)

The error on the determinant can be expressed in terms of the errors on the

standard deviation estimates,

σ2
|Σ2D| = 4

�
1− ρ2

�2
s2xs

2
y

�
s2yσ

2
sx + s2xσ

2
sy

�
. (7.5)

Using the results from above,

σ2
|Σ2D| =

4
�
1− ρ2

�2
s4xs

4
y

n− 1
=

4

n− 1
|Σ2D|2 . (7.6)

It therefore follows that the error on a 2× 2 determinant is given by,

σ|Σ2D| =
2√
n− 1

|Σ2D| . (7.7)

Extending this calculation to higher dimensions results in the formula for an

N ×N covariance matrix,

σ|ΣND| =

�
2N

n− 1
|ΣND| . (7.8)

It therefore follows that the error on an 4-dimensional normalised emittance

measurement is given by,

σ�⊥ =
�⊥�

2(n− 1)
. (7.9)
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7.3.2 Covariance Matrix Corrections

The emittance is a statistical quantity based on the width of the phase-space

distribution and all correlations within. It is therefore sensitive to any statistical

effects within the system. Although the detector performance is consistent with

zero systematic fluctuations, both the resolution of the track parameters and

any correlations between the coordinates of individual measurements have an

effect on the reconstructed emittance. This can be seen by considering the effect

of measuring many tracks of some true phase-space distribution, with some error

applied to the track parameters.

Consider a vector measurement of some arbitrary phase-space, where the

true phase-space vector is denoted by u and the measured or reconstructed

phase-space vector is given by,

m = u+ δ, (7.10)

where δ is some statistical error on the measurement. The covariance matrix

for the true phase-space distribution can then be written down in component

form as a function of the individual covariances,

Σij = Cov(mi,mj) = �mimj� − �mi� �mj� . (7.11)

Using the definition for the measurement error and expanding,

Cov(mi,mj) = Cov ((ui + δi), (uj + δj)) ,

= Cov(ui, uj) + Cov(ui, δj) + Cov(δi, uj) + Cov(δi, δj). (7.12)

This can be used to identify two covariance matrix corrections, R and C, such

that the reconstructed covariance matrix may be related to the true covariance

matrix by,

Σmeas = Σtrue +R+RT +C, (7.13)

where R corresponds the correlations between the measurement error and the

true state vector parameters and C corresponds to the covariances of the mea-

surement errors.

A detailed study based on the analysis described in section 4.3, may be

used to estimate the individual elements of R and C, using the widths of the

resolutions. In practice however, this is a poor assumption. The momentum

reconstruction is derived from position information, hence there are several in-

herent correlations in both the R and C matrices.
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Equations 7.14 and 7.15 outline the most significant components of the R

and C matrices, as calculated using the Monte Carlo data in section 4.3.

RMC =




0.075 1.11 −0.161 −3.18

−0.501 −5.75 −0.200 −1.56

0.282 3.46 0.100 1.08

0.181 1.49 −0.362 −5.38




, (7.14)

CMC =




0.043 0.062 0 0.027

0.062 2.06 −0.035 0.420

0 −0.035 0.042 0.057

0.027 0.420 0.057 2.27




. (7.15)

Within the C matrix, the individual x and y variances are consistent with

the position resolutions of the detectors. The remaining components however,

demonstrate the significance of the measurement correlations on the covariance

matrix reconstruction.

These corrections were calculated for a uniform beam, without any momen-

tum corrections applied to the reconstruction. Different beam distributions and

different magnetic field configurations would require different correction matri-

ces. Section 4.3 has shown that the resolution of the trackers is dependent on

the momentum of the beam, hence a beam with a small momentum spread

would require a different correction matrix to a beam with a large momentum

spread.

In order to simplify the treatment of this source of systematic error for the

analyses detailed throughout the rest of this chapter, the covariance matrix

corrections were calculated and applied as single matrix M . The matrix M is

given by,

M = −R−RT −C,

Mij = −Cov(mi, δj)− Cov(δi,mj)− Cov(δi, δj).
(7.16)

7.3.3 Field Alignment Correction

The installation of the trackers into the solenoid bore was a difficult operation

due to the tight restrictions on mounting the trackers within a highly confined

space. In order to reduce the amount of material within the cooling channel,

the bore was constructed such that the tracker did not required any additional

fixings, barring a single rubber foot. While this simplified the construction of
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Figure 7.1: A schematic layout of the simulation geometry used to probe the effects of mis-
aligning the tracker with respect to the solenoid field.

the solenoid and reduces the material budget within the cooling channel, the

trackers were susceptible to small deviations in position. The magnet coils were

also difficult to construct and only rotationally aligned to within a few mrad.

Hence there was a concern that the alignment of the trackers to the magnetic

field could affect the reconstruction of the beam emittance.

A series of Monte Carlo studies were undertaken in order to investigate the

sensitivity of the emittance reconstruction with respect to the field alignment.

A standard tracker was simulated within a uniform solenoidal field and exposed

to a selection of matched muon beams with normalised transverse emittance

values of 3, 6, 8 and 10 mm. The tracker was independently rotated (by angle

θ around the vertical y axis) in steps of 2 mrad with respect to the field. As

the tracker uses only the mean z-component of the magnetic field to perform

the reconstruction, the track reconstruction was performed with no knowledge

of the misalignment. Figure 7.1 describes the simulation geometry used in the

Monte Carlo Studies.

At each rotation, θ, the standard tracker reconstruction was used to estimate

the beam emittance at the tracker reference plane, with no corrections applied,

for each of the 4 values of emittance. This was performed using a sample of

200,000 muons at each point, which were required to pass a p-value cut of 0.01

and resulted in between 10 and 100, 2000-muon ensembles for each beam. The

mean and standard deviations of the calculated emittances for each ensemble

were used to estimate the effect on the reconstruction of the beam emittance.

The mean difference in reconstructed emittance, compared to the true beam

emittance at the reference plane is shown in figure 7.2.

At large rotations, the number of particles that pass the pattern recognition
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selection criteria, and the p-value cut, starts to significantly decrease, hence

the statistical errors are seen to increase. Additionally the reconstructed track

parameters are statistically much less accurate, further increasing the statistical

error.
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Figure 7.2: The mean residual between the reconstructed beam emittance and the true beam
emittance, evaluated at the reference plane, as a function of the misalignment of the tracker
to the field. Four difference emittances were simulated: 3, 6, 8 and 10 mm.

From the results shown, the statistical error on the emittance reconstruction

is unbiased by misalignments up to 4 mrad, while a small systematic bias in

the absolute value is introduced. At rotations greater than 4 mrad, deviations

from the expected resolution become increasingly significant. Additionally, the

number of tracks failing to be reconstructed (not shown) greatly increases above

10 mrad, which in turn increases the statistical error.

For small rotations, a small correction term may be calculated as necessary,

without any additional modelling. The application of a momentum correction

derived for the specific field rotation may prove sufficient to fully account for

the field misalignment. For larger rotations a more detailed study would be

required in order to determine the ideal progression. As the reconstruction

model assumes a co-axial field, it may need to be augmented such that this

requirement is more flexible, otherwise the calculated errors and correlations

would significantly diverge from the correct values.

The current best estimate for the rotation of the upstream tracker with re-
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spect to the field, from a combination of laser survey measurements and the

tracker alignment procedures, is approximately 3.3 mrad. A more detailed

study, designed to make a direct measurement of the alignment is underway [58].

However, at the time of writing, the study was not mature enough to provide a

precise estimate.

As the estimated effect of the field misalignment is small, the decision was

taken to estimate the systematic corrections using a model that includes the

misalignment that is seen, without the addition of a specific alignment correc-

tion. This was achieved through the analysis of Monte Carlo Sample No. 4 in

the following section.

7.3.4 Field Uniformity Correction

A second source of systematic error due to the field is the effect of the non-

uniformity due to only having three of five magnetic coils powered. In order to

precisely estimate the effect of this non-ideal field, four Monte Carlo samples

were compared: (1) a perfect 4 Tesla solenoid field with a tracker simulated

within; (2) a simple field approximation calculated from the coil dimensions -

the native MAUS implementation; (3) an Opera field map [54] which includes

the effects of the magnetic materials used in the construction of the cooling

channel; (4) the same Opera field map, only rotated with respect to the upstream

tracker, in accordance with the best measurements of alignment. In theory the

difference in performance between the simple model and the Opera model will

provide an estimate for the upper limit on the fluctuations in the reconstruction

parameters. Similarly, the ideal field provides a comparison with the expected

performance.

Linear momentum corrections (calculated as in section 4.3.2) could then be

estimated such that the total momentum of the upstream track reconstruction

is globally improved for the four different field models under study. Each track

from the 4 datasets was compared against the true track parameters, such that

the momentum residual as a function of total momentum could be calculated

(figure 7.3). A linear fit to each dataset was performed, the results of which

are presented in table 7.1. The application of the correction parameters to the

analysis thus improved the reconstruction, as seen in figure 7.3.

Each field configuration generated a correction of a similar order of magni-

tude; however, due to the complex and subtle differences between each model,

it is difficult to observe a distinct trend across them. It can be noted however,

that each study was performed with the same number of particles, hence the

differences in the errors on each correction parameter are due to the statistical
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Field Model
Momentum Intercept Momentum Gradient

[MeV/c] [N/A]

Perfect −1.075± 0.052 0.00320± 0.00025

MAUS Model −1.255± 0.063 0.00326± 0.00032

Opera Model −1.99± 0.11 0.00723± 0.00058

Misaligned Opera Model −1.47± 0.12 0.00487± 0.00064

Table 7.1: The results of the linear fits applied to the total momentum residuals for the four
different field models that were analysed.
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Figure 7.3: Comparison of the total momentum residual before (left) and after (right) a linear
correction factor has been applied.
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fluctuations in the calculated residuals. Therefore the corrections calculated for

the Opera field maps are less precise than those for the MAUS-based or perfect

field maps, implying that this may not be the most precise parameterisation.

Overall, the corrections were effective and the total deviation due to the field

uniformity is on the order of 0.4 MeV/c total momentum, once the correction has

been applied. The corrections were calculated using a uniform beam distribution

to (a) demonstrate the principle and (b) remove any biasing from the beam

distribution. An issue with this approach is that the correction is sensitive to

the transverse distribution as beams with a larger transverse momentum, will

be better reconstructed using the Kalman filter than those with lower transverse

momentum.

Figure 7.3 also demonstrates the issues with a linear correction parameter-

isation. The Opera field maps show a distinctly sinusoidal behaviour in the

momentum distribution. As the shape of these residuals relies on several non-

linear effects, it is not trivial to determine the optimal parameterisation. Hence

a simple linear option was used. An alternative parameterisation where each

bin in momentum receives a unique correction based on the analysis of a Monte

Carlo data set could also be employed. A more detailed study however, would

be required in order to correctly estimate the precision of such corrections.

7.3.5 Combined Correction Terms

The four field configurations discussed above were used to analyse the simulated

emittance residuals for a range of emittances. Ten values of emittance from 1

to 10 mm, were sequentially used to generate ten beams, each initialised at the

entrance to the upstream tracker, with no spread in longitudinal momentum.

The nominal 200 MeV/c central momentum was assumed.

For each value of emittance, the reconstructed and true parameters were used

in identical emittance calculations, allowing the resulting residuals to be anal-

ysed. This was performed multiple times, allowing different correction terms to

be applied and examined in turn. Figure 7.4 shows the emittance reconstruction

residuals for the uncorrected reconstruction (left) and the reconstruction using

the momentum corrections determined previously (right).

The momentum correction has a significant effect on the reconstruction resid-

uals, which was expected from the results of section 4.3.2. The emittance recon-

struction residuals with the Opera field maps were reduced to less than 0.01 mm

which corresponds to 0.17% for the nominal 6 mm beam. These results suggest

that the Opera field map facilitates a more accurate emittance measurement

within the trackers. However, this is primarily due to the fluctuations in the
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Figure 7.4: The emittance reconstruction residuals of the upstream tracker (left) and the re-
construction residual including the linear momentum correction (right), as predicted by Monte
Carlo.

covariance matrix corrections discussed in section 7.3.2, in conjunction with the

non-linear nature of the momentum corrections.

Using the simulated data for the 5 mm beam in each field configuration, a

field-specific correction matrix was calculated using the procedure described in

section 7.3.2. Figure 7.5 shows the final emittance residual when this correction

matrix is applied to the reconstruction. By design, the residuals of the nominal

5 mm beam are zero within errors.

These results demonstrate the sensitivity of these correction factors for dif-

ferent emittance beams. Even though the correction was calculated for a 5 mm

beam, the residuals are within 0.005 mm of zero for emittances in the range of

3 mm to 10 mm. It is only at very low emittances where the correction matrices

must be more carefully estimated.

Early tests of this correction mechanism revealed difficulty in correctly mod-

elling the beam. In these examples, used to demonstrate the principle and test

the implementation, the beams were not generated with any correlations be-

tween the x and y planes and with zero canonical angular momentum. This is

not always a good approximation for a real beamline. As a result, the actual re-

constructed emittance is susceptible to further variations in both the momentum

corrections and the covariance matrix corrections.

Brief comparisons between the covariance matrix corrections and momentum

corrections generally revealed that the momentum corrections would vary most

significantly for different beam distributions and field configurations. For this

reason the error on the total systematic bias was found to be well represented

by considering the 1σ variations in the momentum corrections. For a recon-
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Figure 7.5: The emittance reconstruction residuals of the upstream tracker including the mo-
mentum corrections and a covariance matrix correction, calculated using the simulated 5 mm
emittance beam.

structed emittance, with covariance matrix corrections applied, the momentum

corrections were varied to ±1σ in both the gradient and intercept, and applied

to the track reconstruction. The resulting variation in the reconstructed opti-

cal parameters provides an appropriate estimate to the potential fluctuations

in the systematic corrections. Due to time constraints this was found to be the

simplest and most reliable estimate for the systematic error.

7.4 Monte Carlo Analysis

A final test was conducted using an official simulation of the entire MICE ex-

periment, from the MICE target to the EMR. This Monte Carlo simulation

is maintained by the MICE collaboration and is undergoing constant improve-

ments to better model the behaviour of the MICE experiment at all positions

within both the beamline and the cooling channel. As such it will introduce

additional effects and correlations to the transverse phase-space that are not

modelled by simple gaussian approximations, but are more similar to the real

experiment.

The data were initially analysed without the corrections in order to deter-

mine the approximate magnitude of the emittance of the beam and the momen-

tum spread. This allowed the appropriate correction matrix to be selected from

the analysis performed previously (section 7.3.5). The uncorrected emittance of

the beam was found to be approximately 6.6 mm. The matrix correction for a
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Figure 7.6: Distribution of total momentum at the upstream tracker reference plane. The
events that were included in this Monte Carlo analysis are highlighted in red.

7 mm beam was therefore used. The same dataset that was used to determine

the covariance matrix correction, was also used to determine the momentum

correction parameters.

The nominal beam for the MICE experiment is a 200MeV/c muon beam.

However the momentum spread of the beam is sufficiently large to cause consid-

erable chromatic effects within analyses and significantly disrupt the optics. The

simplest solution to these issues is to select a momentum window for analysis.

Continuing with the nominal optics for the MICE experiment, a selection win-

dow of 10 MeV/c was place on the central momentum of 200 MeV/c. There were

4669 simulated muons present within this momentum window, as illustrated in

figure 7.6.

The momentum correction parameters were applied to each track and the

appropriate covariance matrix correction was subtracted from the reconstructed

covariance matrix. The transverse normalised emittance was calculated to be

6.69 ± 0.07 Stat ± 0.08 Sys mm. The statistical error was calculated using equa-

tion 7.9 and the systematic error is representative of the total variation in emit-

tance, calculated at the limits of the momentum corrections. The Monte Carlo

true emittance was calculated using an identical calculation, without any cor-

rection factors, to be 6.65 mm. Additional parameters as reconstructed from

the simulated data are described in table 7.2.
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Parameter Recon. Stat. Err Sys. Err MC Units

�⊥ 6.69 ±0.07 ±0.08 6.652 mm

�x 7.05 ±0.10 ±0.03 7.012 mm

�y 7.55 ±0.11 ±0.04 7.558 mm

β⊥ 211.0 ±2.0 ±2.0 213.9 mm

βx 201.0 ±3.0 ±1.0 203.9 mm

βy 187.0 ±3.0 ±2.0 187.4 mm

α⊥ 0.545 ±0.006 ±0.030 0.555 -

αx 0.680 ±0.010 ±0.030 0.686 -

αy 0.341 ±0.005 ±0.020 0.340 -

Table 7.2: Reconstruction results of the key optical parameters as calculated using the official
Monte Carlo simulation. 4669 muons were included in the calculation following the beam
selection. A statistical sampling error due to the number of muons selected and systematic
error due to the momentum bias are included. The true Monte Carlo values are included for
comparison.

7.5 Reconstruction Results

The data obtained from Dataset C (table 5.1) was subjected to the standard

reconstruction algorithms present in MAUS, as described in chapter 3. Each

event was then required to pass the following cuts in order to be included within

the analysis:

1. Precisely one spacepoint must be present in TOF1. As the transmission

to the downstream TOF2 detector was poor, only TOF1 could be used to

ensure high transmission through SSU. Additionally, multiple spacepoints

would imply either a secondary particle or a decay event, in both cases

the event would be vetoed;

2. Precisely one track must be present in SSU. Additional tracks would in-

dicate that an event beyond what was expected occurred, i.e. a decaying

muon or pion, a high fluctuation in knock-on electrons or noise, or a sec-

ondary muon/pion track;

3. P-value > 0.01. This ensures that the worst of the fitted tracks are re-

moved from the analysis;

4. Total momentum must be within a 10MeV/c momentum window, centred

on 200MeV/c. This ensured that the chromatic effects are reduced.

Following the application of these cuts, 5049 muons remained for analysis.

An initial analysis was performed in order to determine the approximate

131



p   [MeV/c]
0 50 100 150 200 250 300 350 400

#
 E

v
e

n
ts

0

100

200

300

400

500

600
All Events

Selected Events

Figure 7.7: Distribution of total momentum at the upstream tracker reference plane for
Run 07469. The events that were included in this analysis are highlighted in red.

beam emittance and momentum spread. This initial measurement produced a

value of 5.03 mm. The same set of momentum correction parameters that were

applied to the Monte Carlo model were used during the subsequent analysis

stages and the corresponding 5 mm matrix correction was used to determine

the final covariance matrix.

Figure 7.7 demonstrates the distribution of total momentum at the upstream

reference plane, following the cuts outlined above. The highlighted area corre-

sponds to the selected events. Figure 7.8 shows the x and y transverse phase-

space distributions at the upstream reference plane following all the cuts.

The transverse normalised emittance of the muon beam, calculated from

the 5049 tracks within the 10 MeV/c momentum window, at 200 MeV/c, as

measured at the reference plane of the upstream tracker, was calculated to

be 5.08 ± 0.05Stat ± 0.06Sys ± 0.02Field mm. Where the statistical error was

calculated using equation 7.9, the systematic error was estimated by the limits

of the momentum corrections, and the field precision error is representative of

the effect of different field models on the emittance residuals. The complete

set of optical parameters are outlined in table 7.3, including the statistical and

systematic errors.

A distinct disagreement between the actual field and the model would result

in an unknown bias in both the momentum corrections and the covariance ma-

trix corrections. Hence the field precision error is currently only an estimate,

based on the typical effect of changing the field map within the Monte Carlo as

seen in figure 7.4.
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Figure 7.8: The x (left) and y (right) phase-space distributions for the reconstructed beam at
the upstream reference plane for Run 07469.

Parameter Recon. Stat. Err Sys. Err Units

�⊥ 5.08 ±0.05 ±0.06 mm

�x 5.31 ±0.08 ±0.03 mm

�y 6.38 ±0.09 ±0.03 mm

β⊥ 232.0 ±2.0 ±3.0 mm

βx 219.0 ±3.0 ±0.2 mm

βy 188.0 ±3.0 ±2.0 mm

α⊥ 0.618 ±0.006 ±0.032 -

αx 0.775 ±0.010 ±0.027 -

αy 0.340 ±0.005 ±0.016 -

Table 7.3: Reconstruction results of the key optical parameters as calculated from Dataset C.
5049 muons were included in the calculation following a momentum selection and p-value cut.
A statistical sampling error due to the number of muons selected and systematic error due to
the momentum bias are included. An additional systematic error for the uncertainty in the
field map is not included.
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7.6 Conclusion

A high precision emittance measurement has been calculated using the data

from the MICE Step IV commissioning period. The overall accuracy has been

shown to be good within the assumption of a correct field model. However, the

measurement could further be improved through the reduction of both statistical

and systematic errors. Due to the relatively small data set, the statistical un-

certainty will not be improved until commissioning of the spectrometer solenoid

magnets is resumed. Due to the ≈ 1/
√
n scaling, greater statistics will provide

increasingly precise measurements.

The systematic uncertainty due to the knowledge of the magnetic field re-

quires further development, in order to reduce the effect on the final measure-

ments. If it is assumed (or at some point demonstrated) that the field is correctly

mapped to some level of precision, a selection of field maps could be generated

that are perturbed within the limits of that precision. By analysing the simu-

lated emittance residual for each of the field maps, an estimate for the overall

uncertainty on the emittance, due to the field map, could be derived from the

spread of residuals. This would also permit the variation in covariance matrix

corrections to be determined within the limits of the known field precision. It

is likely however, that with optimal estimates for all systematic corrections,

the precision of the field map will become the limiting systematic error for an

absolute emittance measurement.

The overall accuracy of the covariance matrix corrections could also be im-

proved by using a model that better represents the actual muon beam than the

simple gaussian approach used above. Ideally the corrections would be calcu-

lated using a simulation of the beam phase-space that was directly derived from

a measurement of the beam. Either another detector (TOF1), or the tracker

itself, could be used to provide an approximate parameterisation of the beam,

including the canonical angular momentum. Covariance matrix corrections that

were derived from this simulated beam should offer a more precise correction to

the reconstructed phase-space than those used above.

To further this approach, an iterative process could be used in order to

converge on an more accurate set of corrections. Firstly an uncorrected mea-

surement of the beam phase-space would be made. The parameterisation of

the phase-space, using the measurement, could then be used in a simulation

designed to generate the covariance matrix corrections for that specific beam.

The calculated covariance matrix corrections could then be applied to the data

reconstruction, to improve upon the initial measurement. The process could

then be repeated whereby the corrected reconstruction could be used to provide
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an increasingly precise beam model for the simulation stage. In theory, this

should quickly converge on the ideal correction matrix. At present a study of

the practicality of this method, or a demonstration of the performance has not

been performed due to time constraints.

A more radical improvement, following the detailed systematics studies,

would be to improve the track fitting process. The possibility of using an adap-

tive filter has been discussed previously, allowing for more precise modelling of

energy loss and/or multiple Coulomb scattering processes. Furthermore, the

Kalman filter could be further improved by using a Runge-Kutta propagation

algorithm, rather than the coarse Euler-steps in the current implementation. A

higher granularity propagation algorithm would permit a field map to be used

more effectively.

Both the alignment and uniformity of the field would be correctly modelled

at each step in the propagation process, which would result in a more precise de-

termination of the track parameters. It is believed that this would improve the

accuracy of the momentum reconstruction and reduce the scale of the calculated

covariance matrix corrections. Detailed testing of the algorithm would be im-

perative to ensure that the statistical properties of the fit are either maintained

or improved. At the time of writing this concept is under development.

Although the measurement is dominated by complex systematic effects, the

optical properties of the muon beam, within the selected momentum window,

have been accurately estimated within the assumptions made. Although there

is a great scope for improvement, given more time to invest, the procedure has

been demonstrated to be accurate with Monte Carlo studies and was successfully

applied to data with a conservative error analysis. This analysis corresponds to

one of the few high-precision emittance measurements made on a muon beam

and will serve to inform future studies.
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Chapter 8

Conclusions

Muon accelerators represent an exciting future for particle physics: Muon col-

liders offer the measurement precision of a lepton collider, but without the dif-

ficulties in overcoming synchrotron radiation. This allows the properties of the

Higgs Boson to be precisely measured in an environment with much lower levels

of noise and fewer backgrounds - a scenario unparalleled by hadron colliders.

Additionally, muon beams can offer very pure, high luminosity neutrino beams,

capable of providing a much greater sensitivity to potential CP violation and

the mass hierarchy, than current experiments.

Despite the substantial efforts in research, there still exists some technologi-

cal difficulties for the construction of these future accelerators. The last remain-

ing component, required for a high luminosity muon beamline to be produced,

is the process of ionisation cooling. The Muon Ionisation Cooling Experiment

is charged with demonstrating and measuring the physics processes required

for ionisation cooling to occur sustainably, in addition to making the first mea-

surement of normalised transverse emittance reduction of a muon beam using

ionisation cooling. Monte Carlo simulations can predict the precision and ac-

curacy to which this is believed to be possible, and the hardware is currently

being constructed and commissioned, with a complete demonstration of ionisa-

tion cooling expected by 2019.

In order to make such precise measurements, Scintillating Fibre (SciFi)

Trackers were designed and constructed for use within the MICE Cooling Chan-

nel. Monte Carlo studies have been used to demonstrate the predicted reso-

lution of these detectors, capable of reconstructing both straight and helical

muon tracks in solenoidal fields. The position resolution has been shown to be

approximately 0.2 mm, with an angular resolution (for straight tracks) of ap-

proximately 4 mrad, and a transverse momentum resolution (for helical tracks)
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of approximately 0.88 MeV/c.

A detailed assessment of the implemented reconstruction framework has been

used to validate the assumptions made during its design, in addition to a qualita-

tive analysis of the weaknesses of the algorithm. The Kalman Filter based track

fit has been shown to reliably and precisely reconstruct muon tracks, requiring

only a small correction to the total momentum. The source of this correction

stems from the use of a simplified reconstruction geometry, designed to stream-

line the online reconstruction of data. A more precise model of the materials

that compose the trackers would improve the energy loss estimates for recon-

structed tracks, which is expected to reduce the magnitude of the momentum

corrections.

There is an additional issue with the multiple Coulomb scattering model. At

present, the model overestimates the amount of scattering between measurement

planes, which results in an overestimate of the statistical errors on the track pa-

rameters. The statistical measures (p-values and pulls) of the reconstructed

parameters therefore differ from an ideal implementation. The accuracy of the

reconstruction is not detrimentally affected. However, it does create difficulties

in the justification of statistical cuts. For example, a p-value > 5% is a com-

mon requirement to ensure a high-quality reconstructed track. However, that

implicitly expects a uniform p-value distribution. Statistical cuts may still be

applied to good effect, however the justification and statistical understanding is

more complicated.

Comparisons between Monte Carlo simulations and real data reconstruc-

tions have shown excellent agreement, the effects seen in the Monte Carlo are

almost precisely reproduced in real data, requiring only small corrections to

the precise positioning of measurement planes to improve the agreement. This

demonstrates that the Monte Carlo model of the trackers closely agrees with

the true detectors in both the physical description and the performance of the

track fit. This strongly suggests that the performance seen in the Monte Carlo

accurately represents the performance of the real detector.

Following the range of validation analyses, an initial study of the alignment

of the two trackers was conducted. Due to the difficulties in installing and

surveying each detector, this was both a necessary step, in order to precisely

determine their place within the experiment hall; and a practical first test of

the reconstructed data. Data from 11 different runs was split into two datasets

and used to determine the transverse position and rotation of the downstream

tracker reference plane, with respect to the upstream tracker. The transverse

position resolution was 0.11 mm and the transverse rotation resolution was
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0.05 mrad. A significant misalignment was found, and discussions are currently

underway to address these issues.

A final study was conducted in order to measure the natural emittance of

the MICE muon beam within the upstream tracker. Several systematic studies

were conducted in order to determine the sensitivity of the track reconstruction

to (a) misalignments between the tracker and the solenoid field in which it sits,

and (b) the uniformity of the solenoidal field across the length of the tracker.

No formal validation of the precision of the field was available, therefore four

different models were investigated in order to estimate the approximate sensi-

tivity. Momentum corrections for the track reconstruction were calculated for

each field and shown to accurately correct the total momentum.

The calculation of covariance matrix corrections was also used in order to

determine how correlations within the beam, and within the reconstruction of

the beam, affect the final emittance measurement. A set of correction matrices,

corresponding to beams with normalised transverse emittances within the range

of 1 to 10 mm, were calculated and applied to a Monte Carlo beam. This resulted

in the reconstruction of the emittance within the fluctuation of systematic errors.

A momentum window of 195 to 205 MeV/c was imposed upon the recon-

structed tracks in addition to a p-value cut of 0.01. An ensemble of 5049 re-

constructed tracks were then used to reconstruct the covariance matrix that

described the muon beam at the reference plane of the upstream tracker. A

Monte Carlo comparison using a dataset that was designed to replicate the

results of these data was conducted in parallel and shown to accurately re-

produce the true beam emittance. The statistical error on the emittance re-

construction was calculated and the final value of the normalised transverse

emittance, at the reference plane of the upstream tracker, was measured to be

5.08± 0.05Stat ± 0.06Sys ± 0.02Field.

Several improvements could still be applied to this process. The aforemen-

tioned additions to the reconstruction would improve the reconstruction of each

track, thereby reducing the need for momentum corrections. However, there will

still be some effect from the field uniformity. The primary area for improvement

however, is the determination of the covariance matrix corrections. The beams

that were used to generate the correction matrices were not modelled with dif-

ferent values of canonical angular momentum - the correlations between x and

y positions and momentum. Hence the corrections did not correctly model the

systematic biases that would result from these correlations. The analysis of the

beam from other detectors, or from the trackers themselves, could be used to

better determine the ideal correction matrix.
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Appendix A

Pattern Recognition in

MAUS

A.1 The Method of Least Squares

The method of least squares is a standard tool used for data analysis. It pro-

vides a powerful and simple method to estimate the optimal solution to a set

of overdetermined equations, that is there are more constraints than unknowns.

This can be interpreted as fitting a model parameterised by a vector of param-

eters, β, of length N , to a set of M data points, y = {y1, y2, y3 . . . yM}.
In order to apply the method, the problem must be correctly constructed.

In the most general form, each measurement is allowed to depend on multi-

ple independent variables, xi, and can be written as some unknown function,

parametrised by the set of parameters, β,

yi = βTx = β1 + β2x2 + β3x3 + . . .+ βNxN , (A.1)

where x1 was assumed to be 1, allowing for a constant term. This can be

generalised to include the whole dataset y, by constructing a matrix X that

contains all the independent variables, hence,

y = Xβ =




1 x12 x13 · · · x1N

1 x22 x23 · · · x2N

...
...

...
. . .

...

1 xM2 xM3 · · · xMN







β1

β2

...

βN




. (A.2)
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A scalar function, S(β) can then be defined such that the optimal linear

solution represents a minimum of S. As S is positive-definite by definition, a

value of zero represents a perfect minimum in that all constraints are precisely

met by the dataset provided. Although theoretical systems can be designed

to emulate this effect, it is not typically seen in data analysis. Rather some

minimisation of S provides an optimal solution to the problem:

S(β) = |y −Xβ|2 = (y −Xβ)T(y −Xβ). (A.3)

In a typical case, however, the data points are accompanied by an associated

error, or more generally a covariance matrix, V = W−1, which effectively acts

as to weight each measurement according to it’s accuracy - the measurements

with the smallest error should provide the most accurate information. Hence,

equation A.3 may be updated to reflect this:

S(β) = (y −Xβ)TW(y −Xβ). (A.4)

Note that assuming the measurement errors are gaussian distributed and

the parameters β are known, repeated calculations of S with different datasets

would actually form a χ2 distribution, hence this is commonly referred to as

Chi-Squared Minimisation.

This problem can be analytically solved in matrix form, by calculating the

values of β which allows the derivative of S to equal zero,

dS

dβ
=

d

dβ

�
yTWy − yTWXβ − βTXTWy + βTXTWXβ

�
= 0. (A.5)

Making use of (a) each term is a scalar and hence is transpose invariant, and

(b) W = WT,
dS

dβ
=

d

dβ

�
βTXTWXβ − 2yTWXβ

�
, (A.6)

hence the solution can then be derived:

β =
�
XTWX

�−1
XTWy. (A.7)

The routines as written in the MAUS framework implement equation A.7 to

perform the least squares fits to the track information.
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A.2 Straight Track Fitting

For the straight track reconstruction, the x and y transverse coordinates are

independent, and can be treated as such. For an arbitrary transverse plane, e.g.

the x-z plane, the track model is the typical straight line parameterisation,

x = X0 + ztx, (A.8)

y = Y0 + zty,

where X0 is the intercept of the track with the reference plane and tx is the

gradient of the track in the x-z plane. Note that this model does not allow

for any stochastic effects. The parameters in the β vector correspond to the

intercept and gradient, with one independent variable, zi corresponding to the

z-position of the tracker stations. The dependent variables, i.e. the spacepoint

measurements mi, correspond to the y-vector. For the x-z plane the system is

described by,

y = Xβ =




1 z0

1 z1

1 z2

1 z3

1 z4





X0

tx


 =




x0

x1

x2

x3

x4




. (A.9)

The covariance matrix is determined from the error on each measurement.

The measurement error is assumed to be the variance of top-hat function with

width equal to the channel width, a. Hence the covariance matrix V for the x-z

system is given by,

V =




a/
�
(12) 0 0 0 0

0 a/
�
(12) 0 0 0

0 0 a/
�

(12) 0 0

0 0 0 a/
�

(12) 0

0 0 0 0 a/
�
(12)




. (A.10)

A.3 Helical Track Fitting

For the helical track fit, the model is inherently non linear. An analytical

treatment without approximations is therefore not possible, however using a
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specific formulation of the equation for a helix, a fit is still possible. The goal of

pattern recognition is not to provide a precise set of reconstruction parameters

for each track, rather it requires enough precision to determine whether a viable

track has been found.

Firstly, the fit is decomposed into transverse and longitudinal coordinates. In

the transverse plane, a circle fit is required, while in the longitudinal plane a non-

linear sinusoidal fit is required. This can be avoided by using the results of the

circle fit to estimate the rotation around the circumference for each spacepoint,

hence a fit to the path length of the track with respect to the z position is

performed instead. This corresponds to a straight line fit.

For the circle fit, the model is described in the x-y plane by the radius ρ,

and the circle centre (X0, Y0),

(x−X0)
2 + (y − Y0)

2 = ρ2, (A.11)

which can be more practically parameterised as,

α(x2 + y2) + βx+ γy = κ; (A.12)

α =
1

ρ2 − (X2
0 + Y 2

0 )
,

β = −2X0α,

γ = −2Y0α,

κ = 1.

In equation A.12, if the definition of dependent and independent variables is

suspended, the model parameters form a linear polynomial. This is not a bad

assumption as it implies that the parameter κ is the dependent variable and the

x and y values are independent variables. Formulating the fit for this system

will therefore attempt to generate a set of parameters for which κ is closest to

1,

y = Xβ =




(x2
0 + y20) x0 y0

(x2
1 + y21) x1 y1

(x2
2 + y22) x2 y2

(x2
3 + y23) x3 y3

(x2
4 + y24) x4 y4







α

β

γ


 =




κ

κ

κ

κ

κ




. (A.13)

As all measurements have an equivalent error, the corresponding covariance
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matrix would be diagonal, hence it can be factored out of the calculation. Al-

though conceptually this is not correct, in practice it provides a simple method

of applying a circle fit to the spacepoint data. The resulting covariances and

correlations would likely be incorrectly modelled, however for the coarse require-

ments of pattern recognition this was found to be more than sufficient.

The results of the circle fit are then used to assign each spacepoint a value of

s, the path length around the corresponding circle circumference. The second

stage - a fit in the s-z plane - is then conducted similarly for the straight line

fit where ts is the gradient in s-z space and S0 is the intersection of the path

length at the reference plane:

s = S0 + zts, (A.14)

y = Xβ =




1 z0

1 z1

1 z2

1 z3

1 z4





S0

ts


 =




s0

s1

s2

s3

s4




. (A.15)

In all cases the matrix calculation is performed using the algorithms provided

by the ROOT framework [60].
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Appendix B

Reconstruction Validation

Data

A complete set of plots, as produced from the reconstruction of Datasets A & B

(table 5.1) is detailed below. Three different plots are included:

1. The raw distributions of reconstructed digits,

2. The reconstructed trackpoint pulls for each plane,

3. The distribution of Kuno-sums for spacepoints that are included in the

track fit.

The distribution of reconstructed digits clearly reveals the channels that

produce excessive numbers of digits due to noise, in addition to dead channels.

The trackpoint pulls show an excellent agreement between Monte Carlo and

data, which results in the close agreement between simulated and reconstructed

p-value distributions (section 5.4). Additionally, the difference in widths be-

tween the first and last planes in each tracker is attributed to the poor mod-

elling of multiple Coulomb scattering, which in turn incorrectly weights the error

associated with each measurement.

The distributions of Kuno-sums demonstrate the spacepoint production and

channel cabling is correct. Together with the pull distributions, the misalign-

ments between neighbouring planes within a station can be observed. The

asymmetry in each distribution can be reproduced by Monte Carlo by mod-

elling a small displacement of the centre of each plane. This was attempted for

the upstream tracker, but only approximately. The improvement in agreement

between Monte Carlo and data can be clearly seen when contrasted with the

downstream tracker.
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Figure B.1: Distributions of reconstructed digits from Dataset A for all planes, 0 to 2, left to
right, and all stations 1 to 5, top to bottom in the upstream tracker.
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Figure B.2: Distributions of reconstructed digits from Dataset A for all planes, 0 to 2, left to
right, and all stations 1 to 5, top to bottom in the downstream tracker.
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Figure B.3: Distributions of reconstructed pulls from Dataset A for all planes, 0 to 2, left to
right, and all stations 1 to 5, top to bottom in the upstream tracker.
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Figure B.4: Distributions of reconstructed pulls from Dataset A for all planes, 0 to 2, left to
right, and all stations 1 to 5, top to bottom in the downstream tracker.
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Figure B.5: Distributions of the Kuno-Sums for spacepoints used to form a track from Dataset A
in stations 1 to 5 in the upstream tracker.
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Figure B.6: Distributions of the Kuno-Sums for spacepoints used to form a track from Dataset A
in stations 1 to 5 in the downstream tracker.
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Figure B.7: Distributions of reconstructed digits from Dataset B for all planes, 0 to 2, left to
right, and all stations 1 to 5, top to bottom in the upstream tracker.
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Figure B.8: Distributions of reconstructed digits from Dataset B for all planes, 0 to 2, left to
right, and all stations 1 to 5, top to bottom in the downstream tracker.
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Figure B.9: Distributions of reconstructed pulls from Dataset B for all planes, 0 to 2, left to
right, and all stations 1 to 5, top to bottom in the upstream tracker.
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Figure B.10: Distributions of reconstructed pulls from Dataset B for all planes, 0 to 2, left to
right, and all stations 1 to 5, top to bottom in the downstream tracker.
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Figure B.11: Distributions of the Kuno-Sums for spacepoints used to form a track from
Dataset B in stations 1 to 5 in the upstream tracker.
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Figure B.12: Distributions of the Kuno-Sums for spacepoints used to form a track from
Dataset B in stations 1 to 5 in the downstream tracker. Note that station 5 was constructed
with an additional channel in plane 2, hence the peak is appropriately displaced.
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