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Introduction

The integrable systems play a distinguished role in the theoretical

physics [1]. In fact, many of interesting physical theories are small

deformations of corresponding integrable system. The term “inte-

grable system” is coming from the Liouville’s theorem. It can be

formulated as follows[2]:

Theorem: Let on an n-dimensional symplectic manifold one has

n mutually commuting functions Fi:

F1, F2, . . . , Fn, {Fµ, Fν} = 0, µ, ν = 1, . . . , n : (0.1)

Let us define the level surface Mf as follows:

Mf = {x : Fµ = fµ, µ = 1, . . . n} . (0.2)

It follows from 0.1 that the one-forms dFi on Mf are linearly inde-

pendent. Then

1. Mf is a smooth manifold invariant under the phase flow of
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Introduction 5

function H = F1.

2. If Mf is compact and connected then it is diffeomorphic to the

n-dimensional torus:

T n = {(φ1, . . . φn) modd 2π} (0.3)

3. The phase flow of the function H defines a conditionally pe-

riodic motion on Mf , i.e. in terms of conditional coordinates

the equations of motion have the following form:

dφ

dt
= ω, ω = ω(f) (0.4)

4. The canonical equations with Hamiltonian H are integrable in

quadratures.

This theorem establishes the connection between the integrals

of motion and the integrability of the system. In other words, it

states, that if the system has n − 1 mutually commuting integrals

of motion then we can pass to variables where the system separates

on n independent oscillators. The coordinates φ together with their

conjugate momenta I are called action angle variables.

Such formulation of Liouville’s theorem prompts us to use geo-

metric method for the investigation of integrable systems (see e.g.
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[3]).

As a tool for the construction and investigation of some inte-

grable systems we will use the Hopf maps. These maps describe

fibrations of spheres over spheres: S2n−1/Sn−1 = Sn, n = 1, 2, 4, 8

and are strongly related to so called normed division algebras. (For

the review see e.g. [4] and references therein). Explicitly or not they

appear almost in all the fields of the modern theoretical physics. For

example, the distinct dimensions of the supergravity theories are re-

lated to the existence of Hopf maps[9]. They can be used for the

construction of supersymmetric systems as well as in the theory of

superconductors.

We are interested in Hopf maps due to the existence of the reduc-

tion procedure, which allows us to relate 2p-dimensional oscillator

with p+ 1-dimensional systems with monopoles for p = 1, 2, 4.

The reduction procedure seems to be a canonical way for the

construction of integrable systems. However, it was described in

terms of the Hamiltonian approach only. On the other hand, there

are many problems in physics, whose natural language is the La-

grangian formalism(e.g. some problems in superymmetric mechan-

ics). Thus, it would be nice to have an algorithm to perform the

reduction procedure without passing to Hamiltonian description of

the system. In the second chapter the procedure of the Lagrangian
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reduction was developed. In particular, it was considered the re-

duction procedure related to the first and second Hopf maps. The

resulting systems describe particle moving in the field of Dirac and

Yang monopoles respectively.

The systems with magnetic monopoles are interesting for their

duality property [5], their application in condensed matter theory

etc. On the other hand, the oscillator system is much more eas-

ier to investigate. It is, perhaps, the most known (super)integrable

system. The oscillator system appears almost in all the fields of the-

oretical physics at least for the description of small oscillations near

the point of equilibrium. Thus, the construction of its integrable

generalizations(with additional terms or on the curved manifolds

etc.) seems to be an important task.

Surprisingly, a multi-center generalization of Higgs oscillator can

be constructed from the spherical part of the Calogero model[45]

using simple geometry. On the other hand the Calogero model is

itself an interesting subject for investigation. It is an example of

many-body integrable system. Although it is formally integrable(in

sense of the Liouville’s theorem), its practical integration is very

hard task. The problem is that the motion integrals found using

the standard method of Lax pairs have power of momenta higher

than 2. This leads to the necessity to solve algebraic equations of



Introduction 8

the same order. We hope that the investigation of this model using

geometric methods will allow us to round these difficulties.

The work is organized as follows.

In the first Chapter we describe the Hopf fibrations in terms of

normed division algebras paying special attention on the first and

second maps.

In the Chapter 2 we develop the reduction procedure connected

to the first and second Hopf maps and investigate obtained systems.

In the Chapter 3 we construct a (pseudo)spherical analogue of

anisotropic inharmonic Higgs oscillator and apply to it the reduction

procedure.

In Chapter 4 we consider Calogero models relating it to multi-

center Higgs oscillator as well as construct action-angle variables for

them.
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Chapter 1

Hopf maps

Hopf maps play distinguished role in modern theoretical physics:

numerous constructions and models are related with them. Hopf

maps are of the special importance in the supersymmetry [7], mono-

poles [8], and more generally, in supergravity/string theories. Hopf

maps are useful in the study of the problems of classical and quan-

tum (supersymmetric) mechanics as well. They are useful for the

construction of the mechanical systems (including supersymmetric

ones) with monopoles by the reduction method, including super-

symmetric mechanics.

The Hopf maps describe a fibration of 2p− 1-dimensional sphere

over a p-dimensional one with fiber (p−1)-sphere(p = 1, 2, 4, 8). The

first(p = 2) Hopf map was discovered in 1931 by Heinz Hopf [10]

and is the first example of a map from a higher-dimensional sphere

10
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to a lower-dimensional one which is not null-homotopic. The distin-

guished dimensions of Hopf maps are related with the existence of

normed division algebras: the first Hopf map is related with com-

plex, the second with quaternionic and the third one with octonionic

numbers. The modern theory of octonions and their relations to the

Hopf maps can be found in [4] and references therein. The content

of this chapter is based on the [38, 80]

1.1 General consideration

The Hopf maps (or Hopf fibrations) are the fibrations of the sphere

over a sphere,

S1/Z2 = S1 (zero Hopf map);

S3/S1 = S2 (first Hopf map);

S7/S3 = S4 (second Hopf map) (1.1)

S15/S7 = S8 (third Hopf map)

These fibrations reflect the existence of real (p = 1), complex (p =

2), quaternionic (p = 4) and octonionic (p = 8) numbers.

Let us describe them in explicit terms. For this purpose, we
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consider the functions x(uα, ūα), xp+1(uα, ūα)

x = 2ū2u1, xp+1 = ū2u2 − ū1u1, (1.2)

where u1,u2 are complex numbers for the p = 2 case (first Hopf

map), quaternionic numbers for the p = 4 case (second Hopf map)

and octonionic numbers for p = 8 case(third Hopf map). One can

consider them as coordinates of the 2p-dimensional space IR2p (p = 2

for u1,2 complex numbers; p = 4 for u1,2 quaternionic numbers;

p = 8). In all cases xp+1 is a real number while x is, respectively,

a complex number (p = 2), a quaternionic (p = 4) or an octonionic

one(p = 8),

x ≡ xn +
∑

k=1,...,n−1

ekxk, eiej = −δij + Cijkek (1.3)

where the structure constants Cijk are totally antisymmetric by in-

dices (ijk), so that ek ≡ 0 for n = 1; ek ≡ i, i2 = −1, cijk = 0 for

n = 2; ek ≡ (i, j,k), Cijk = εijk for n = 4. For n = 8 the structure

constants cijk are defined by the relations

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1, (1.4)

while all other non-vanishing components are determined by the

total antisymmetry.
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Hence, (xp+1,x) parameterize the (p+1)-dimensional space IRp+1.

One could immediately check that the following equation holds:

r2 ≡ xx̄ + x2
p+1 = (u1ū1 + u2ū2)

2 ≡ R4. (1.5)

Thus, defining the (2p − 1)-dimensional sphere in IR2p of radius

R, uαūα = R2, we will get the p-dimensional sphere in IRp+1 with

radius r = R2.

The expressions (1.2) can be easily inverted by the use of

uα = grα, where r1 ≡ r+ =
√
xx√

2(r+xp+1)
,

r2 =
√

r+xp+1

2 , ḡg = 1.

(1.6)

It is seen that

g2 = u2(u2)
−1. (1.7)

It follows from the last equation in (1.6) that g parameterizes the

(p− 1)-dimensional sphere of unit radius.

One can notice from this expressions that the transformation

g 7→ Gg (1.8)

preserves the functions xµ. Here G is an arbitrary element of

corresponding algebra with unit length: GḠ = 1 and, therefore,

parametrizes (p− 1)-dimensional sphere. So, also taking in account
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the identitiy 1.5 we come to the factorization 1.2.

For the first and second Hopf maps the transformation 1.8 for

the quantities u1,2 can be written as follows:

uα 7→ Guα, α = 1, 2 (1.9)

while for the third Hopf map it looks a little more complicated:

uα =
(Gu2)(u2uα)

ū2ū2
(1.10)

The complexity, in fact, comes from the fact that the algebra of

octonions which corresponds to the third Hopf map is not associa-

tive. It is shown in [50] that this transformation cannot be made

global. Thus, one can consider only its simplification choosing the

parameter G depending on u1,2.

1.2 First and second Hopf maps

As it was mentioned in the Introduction, the reduction procedure

related to the third Hopf map does not exist because of the lack

of associativity of octonions. Since, we will use the Hopf maps to

perform the reduction, we will need more detailed formulae. Let us

give the description of first and second Hopf maps in internal terms,

using the decomposition IR2p = IR1 × S2p−1, IRp+1 = IR1 × Sp, and
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paramerizing Sp by inhomogeneous projective coordinates

z =
ū1u2

ū1u1
, ⇒ |u1|2 =

r

1 + z̄z
. (1.11)

Hence, we get

u1 =
g
√
r√

1 + z̄z
, u2 = u1z =

g
√
rz√

1 + z̄z
(1.12)

For r = const we get the description of S2p−1 in terms of the coor-

dinates of the base manifold Sp and of the fiber coordinates g. The

internal coordinate z of the sphere Sp is related with the Cartesian

coordinates of the ambient space IRp+1 (1.2) as follows

x = rh+, xp+1 = rhp+1, h+ =
2z

1 + z̄z
, hp+1 =

1− z̄z
1 + z̄z

.

(1.13)

For S1 the group element and the corresponding left-invariant

one-form can be presented as follows

S1 : g = eiϕ, gdg = idϕ, ϕ ∈ [0, 2π) (1.14)

Hence, the ambient coordinates of the S3 sphere of unit radius are

related with the internal coordinates of S1 and S2 by (1.12), where

we put r = 1 and g = eiϕ.

In quaternionic case we get the following expressions for the
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SU(2) group element and its left-invariant form

S3 : g = eiγ
1 + jz√
1 + zz̄

, gdg = Λ3i + Λ+j, Λ+ = (Λ2 + iΛ1),

(1.15)

where

Λ3 = h3dγ+
i

2

z̄dz − zdz̄
1 + zz̄

Λ+ = ih+dγ+
dz̄

1 + zz̄
i, j, k = 1, 2, 3.

(1.16)

Here h3,h± are the Euclidean coordinates of the ambient space IR3

given by (1.13): simultaneously they play the role of Killing poten-

tials of the Kähler structure on S2.

The vector fields dual to the above one-forms look as follows

V3 =
∂

∂γ
+ 2i

(
z
∂

∂z
− z̄ ∂

∂z̄

)
, V+ = V− =

∂

∂z̄
+ z2 ∂

∂z
− i

z

2

∂

∂γ

(1.17)

Λ3(V3) = Λ±(V±) = 1, Λ±(V∓) = Λ±(V3) = Λ3(V±) = 0.

(1.18)

Let us also write down the following expressions

− (ḡdg)2 = ΛiΛi =

(
dγ − i

2

z̄dz − zdz̄
1 + zz̄

)2

+
dzdz̄

(1 + zz̄)2
. (1.19)
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We also need another SU(2) group element parameterizing the

sphere S3 and “commuting” with (1.15):

g̃ =
1 + jz√
1 + zz̄

e−iγ, ḡ¯̃ggg̃ = 1. (1.20)

The corresponding left-invariant forms are given by the expressions

¯̃gdg̃ = Λ̃3i + Λ̃+j, Λ̃+ = Λ̃2 + iΛ̃1,

Λ̃3 = dγ + i
2
zdz̄−z̄dz

1+zz̄ Λ̃+ = e2iγdz̄
1+zz̄ ,

(1.21)

while the vector fields dual to these forms look as follows:

U3 = − ∂

∂γ
, U+ = U− = e−2iγ

(
(1 + zz̄)

∂

∂z̄
+

iz

2

∂

∂γ

)
(1.22)

Λ̃3(U3) = Λ̃±(U±) = 1, Λ̃±(U∓) = Λ̃±(U3) = Λ̃3(U±) = 0.

(1.23)

From the second expression in (1.21) follows the commutativity

of the Va and Ua fields. This pair forms the the so(4) = so(3)×so(3)

algebra of isometries of the S3 sphere.

[Vi,Vj] = 2εijkVk, [Ui,Uj] = 2εijkUk, [Vi,Uj] = 0,

(1.24)

with i, j, k = 1, 2, 3.
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The commutativity of Vi and Ui plays a key role in our further

considerations. Notice also that we can pass from the parametriza-

tion (1.21) to (1.15) via the z → z̃e−2iγ̃, γ = −γ̃ transformation.

For our further considerations this is all we need to know from

the Hopf maps.



Chapter 2

Hopf maps and Reductions

In this chapter we develop reduction procedures in two different me-

chanical approaches- Lagrangian and Hamiltonian. Although the-

oretically in the considered cases they are equivalent, the practical

passing from the first one to the second does not seem to be obvious.

On the other hand, the Lagrangian approach allows us to write the

supersymmetric extension more easily [38] while the Hamiltoinian

one gives us the ability to relate oscillator systems and their gen-

eralizations with the (MICZ)Kepler ones [64].The content of this

chapter is based on the [64, 38, 78].

2.1 Lagrangian Reduction

Let us consider a free particle on the 2p-dimensional space equipped

with the G-invariant conformal flat metric. Taking into account the

19
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expressions (1.6) we can represent its Lagrangian as follows

L2p = g(u · u)u̇αu̇α =

= g(r±, r2)
(
ṙ+ṙ− + ṙ2

2 − r (gġA+Argġ)− r(gġ)2
)

= (2.1)

= g
(
ṙ+ṙ− + ṙ2

2

)
+ grΛ̇aAa − grΛ̇aΛ̇a,

Here and in the following Λ̇a are defined in (1.16), with the differ-

entials replaced by the time derivatives, while

A = Aaea ≡
ṙ+r− − r+ṙ−

2r
=

xẋ− ẋx

2r(r + xp+1)
. (2.2)

We have used the identity r+r− + r2
2 = r and the notation u · u ≡

uα ·uα. One can see, for the p = 2 case (the complex numbers) that

A defines a Dirac monopole potential

A = ıAD = ı
x1ẋ2 − x2ẋ1

r(r + x3)
. (2.3)

In the p = 4 case (the quaternionic numbers) Aa defines the

potential of the the SU(2) Yang monopole. The explicit formulae

for Aa in terms of the real coordinates r+ = ρ4+ρaea look as follows:

Aa = ηabcρbρ̇c =
ηabcxbẋc
r (r + x5)

, ηabc = δabδ4c − δ4bδac + εabc,

where ηabc is the t’Hooft symbol.
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The Lagrangian (2.1) is manifestly invariant under the G−group

action.

In the p = 2 case the generator of the G = U(1) group is given

by the vector field V = ∂/∂ϕ; indeed, taking into account (1.14),

one can see that, for p = 2, ϕ is a cyclic variable in (2.1).

In the p = 4 case the generators of the G = SU(2) group are

given by the vector fields Ua (1.22). It is in agreement with the fact

that Ua define the isometries of the eight-dimensional Lagrangian

(2.1).

By making use of the Noether constants of motion we can de-

crease the dimensionality of the system.

In the p = 2 case we have a single Noether constant of motion

defined by the vector field dual to the left-invariant form Λ̇ = ϕ̇;

this is precisely the momentum conjugated to ϕ, which appears in

the Lagrangian (2.1) as a cyclic variable. Hence, excluding this

variable, we shall get, for p = 2, a three-dimensional system.

On the other hand, in the p = 4 case, thanks to the non-Abelian

nature of the G = SU(2) group, only the γ variable is a cyclic one,

even if z, z̄ appear in the Lagrangian (2.1) without time-derivatives

too. It is therefore expected that in this second case the reduction

procedure would be more complicated. In contrast with the Hamil-

tonian reduction procedure, the Lagrangian reduction is a less com-
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mon, or at least a less developed, procedure which deserves being

done with care.

For this reason we shall describe the Lagrangian counterparts of

the Hamiltonian reduction procedures separately for both the p = 2

and the p = 4 cases.

2.1.1 The U(1) reduction

Let us consider the reduction of the four-dimensional particle given

by the Lagrangian (2.1) to a three-dimensional system. Taking into

account the expression (1.14) we can re-write the Lagrangian as

follows:

L = g
(
ṙ+ṙ− + ṙ2

2 − 2rϕ̇AD + rϕ̇2
)
. (2.4)

Since ϕ is a cyclic variable, its conjugated momentum is a conserved

quantity

pϕ =
∂L
∂ϕ̇

= −2rgAD + 2grϕ̇ ⇔ ϕ̇ =
pϕ
2gr

+AD. (2.5)

Naively one could expect that the reduction would require fixing the

value of the Noether constant and substituting the corresponding

expression for ϕ̇ in the Lagrangian (2.4). However, acting in this

way, we shall get a three-dimensional Lagrangian without a linear

term in the velocities, i.e. without a magnetic field (of the Dirac
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monopole). This is in obvious contradiction with the result of the

Hamiltonian reduction of the four-dimensional system via the U(1)

group action!

The contradiction is due to the incorrectness of the proposed

procedure, since we are dealing with a variational principle.

The correct Lagrangian counterpart of the Hamiltonian reduc-

tion procedure should look as follows. At first we have to replace

the Lagrangian (2.4) by the following, variationally equivalent, one

(obtained by performing the Legendre transformation for ϕ̇):

L̃ = pϕϕ̇− pϕAD −
p2
ϕ

rg
− rA2

D + g
(
ṙ+ṙ− + ṙ2

2

)
. (2.6)

Indeed, varying the independent variable pϕ, we shall arrive to the

initial Lagrangian.

The isometry of the Lagrangian (2.6), corresponding to the U(1)-

generator V = ∂
∂ϕ , is given by the same vector field. It defines the

Noether constant of motion

I = pφ (2.7)

Upon fixing the value of the Noether constant pϕ = s, the first term

of the new Lagrangian transforms as a full time derivative and can

therefore be ignored.
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As a result, we shall get the following three-dimensional La-

grangian

L3 = g
(
ṙ+ṙ− + ṙ2

2

)
−sAD−rA2

D−
s2

2rg
=
g

r
ẋiẋi−sAD−

s2

2rg
. (2.8)

Clearly, it describes the motion of a particle moving in a three-

dimensional space equipped by the metric g̃ij = g
rδij in presence of

a Dirac monopole generating a magnetic field with strength

~B =
s~x

g̃x3
. (2.9)

A further reduction of the system to two dimensions corresponds

to a system with a nonlinear chiral multiplet (2, 4, 2), obtained by

fixing the “radius” r = const. Since the Dirac monopole potential

AD does not depend on r, we shall get a two-dimensional system

moving in the same magnetic field. It applies in particular to a

particle on the sphere moving in a constant magnetic field (the

Dirac monopole is located at the center of the sphere), i.e. the

Landau problem on a sphere.

We are now ready to discuss the analogous reduction associated

with the second Hopf map.
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2.1.2 The SU(2) reduction

In the case of the second Hopf map we have to reduce the Lagrangian

(2.1) with p = 4 via the action of the SU(2) group expressed by the

vector fields (1.22). Due to the non-Abelian nature of the SU(2)

group the system will be reduced to a five (or higher)-dimensional

one.

For a correct reduction procedure we have to replace the initial

Lagrangian by one which is variationally equivalent, extending the

initial configuration space with new variables, π, π̄, pγ, playing the

role of conjugate momenta to z, z̄, γ. In other words, we will replace

the sphere S3 (parameterized by z, z̄, γ) by its cotangent bundle

T ∗S3 parameterized by the coordinate z, z̄, γ, π, π̄, pγ. Let us

further define, on T ∗S3, the Poisson brackets given by the relations

{π, z} = 1, {π̄, z̄} = 1, {pγ, γ} = 1. (2.10)

We introduce the Hamiltonian generators Pa corresponding to the

vector fields (1.17) (replacing the derivatives entering the vector

fields Va by the corresponding momenta)

P+ =
P2 − ıP1

2
= π+z̄2π̄−ız̄

2
pγ, P− = P̄−, P3 =

pγ
2
−ı (zπ − z̄π̄) .

(2.11)



Hopf maps and Reductions 26

In the same way we introduce the Hamiltonian generators Ia corre-

sponding to the vector fields (1.22):

I3 = −pγ, I+ =
I2 − ıI1

2
=
ıpγz + 2π̄ (1 + zz̄)

2
e−2ıγ, I− = I+.

(2.12)

These quantities define, with respect to the Poisson bracket (2.10),

the so(4) = so(3)× so(3) algebra

{Pa, Pb} = εabcPc, {Ia, Ib} = εabcIc, {Ia, Pb} = 0. (2.13)

The functions Pa, Ia obey the following equality, important for our

considerations

IaIa = PaPa. (2.14)

At this point we replace the initial Lagrangian (2.1) by the following

one, which is variationally equivalent

Lint = (P+Λ+ + P−Λ− + P3Λ3)− PaAa −
PaPa
gr
−

−gr
4

(
A+A− + A2

3

)
+ g

(
ṙ+ṙ− + ṙ2

2

)
. (2.15)

The isometries of this modified Lagrangian corresponding to (1.22)

are defined by the vector fields

Ũa ≡ {Ia, }, (2.16)
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where Ia are given by (2.12) and the Poisson brackets are given by

(2.10). The quantities Ia entering (2.16) are the Noether constants

of motion of the modified Lagrangian (2.15). This can be easily

seen by taking into account the following equality

P+Λ+ + P−Λ− + P3Λ3 = pγγ̇ + πż + π̄ ˙̄z. (2.17)

We have now to perform the reduction via the action of the SU(2)

group given by the vector fields (2.16). For this purpose we have to

fix the Noether constants of motion (2.12), setting

Ia = sa = const, sasa ≡ s2.

Since the constants of motion Ia do not dependent on the r±, r5

coordinates we can perform an orthogonal rotation so that only the

third component of this set, I3, assumes a value different from zero.

Equating I+ and I− with zero we obtain:

I3 = pγ = s, π̄ = −s ı
2

z

1 + zz̄
, π = s

ı

2

z̄

1 + zz̄
. (2.18)

Hence,

P+ = −s ız

1 + zz̄
, P− = s

ız̄

1 + zz̄
. (2.19)

Therefore Pa coincide with the Killing potentials of the S2 sphere!
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This is by no means an occasional coincidence.

Taking in mind the equality (2.17) we can conclude that the

third term entering (2.15) can be ignored because it is a full time

derivative. Besides that, taking into account (2.14), we can rewrite

the Lagrangian as follows:

Lred = g
ẋµẋµ
r
− ısz̄ż − z

˙̄z

1 + zz̄
− sAaha(z, z̄)− s2

gr
, µ = 1, . . . , 5,

(2.20)

where we have used the identity

−gr
4

(
A+A− + A2

3

)
+ g

(
ṙ+ṙ− + ṙ2

2

)
= g

ẋµẋµ
r

.

The second term in the above reduced Hamiltonian is the one-form

defining the symplectic (and Kähler) structure on S2, in agreement

with the previous observation that Pa coincide with the Killing po-

tentials of S2.

It therefore follows that the Noether constants of motion do not

allow us to exclude the z, z̄ variables. However, their time deriva-

tives appear in the Lagrangian in a linear way only and define the

internal degrees of freedom of the five-dimensional isospin particle

interacting with a Yang monopole. As a consequence, the dimen-

sionality of the phase space of the reduced system is 2 · 5 + 2 = 12.

Only for the particular case s = 0, corresponding to the absence
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of the Yang monopole, we obtain a five-dimensional system. This

means that locally the Lagrangian of the system can be formulated

in a six-dimensional space. Such a representation seems, however,

useless, in contrast with the one presented here. Notice that a de-

tailed desciption of the dynamics of the isospin particle can be found

in [49].

The further reduction of the constructed (5 + ...)-dimensional

system to a (4+ ...)-dimensional one would be completely similar to

the U(1) case: it requires fixing the radial variable r. The resulted

system describes the isospin particle moving in a four-dimensional

space and interacting with the BPST instanton.

In this Section we have considered the Lagrangian reduction pro-

cedures, restricting ourselves to 2p-dimensional systems with con-

formally flat metrics only. From our considerations it is however

clear that similar reductions can be performed also for particles

moving on other G-invariant 2p-dimensional spaces (not necessarily

conformally flat), in presence of a G-invariant potential. The modi-

fications do not yield any qualitative difference with the proposed re-

duction procedures and will be reflected in more complicated forms

of the resulting Lagrangians. It deserves to be mentioned that the

presence of monopoles in the reduced systems (including those with
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additional potential terms) do not change their solvability property,

neither at the classical, nor at the quantum level. As an example,

for SO(2p)-invariant systems, the only change in the spectrum af-

ter inclusion of the respective monopole is the change in the validity

range of the orbital momentum [50]. In supersymmetric systems, on

the other hand, the presence of a monopole can change essentially

the supersymmetric properties. This question will be considered in

one of the next sections.

2.2 Hamiltonian Reduction

Let us show how to implement the reduction procedure in Hamilto-

nian approach. While the Lagrangian language is more convenient

for the supersymmetrization we will see that the Hamiltonian one

allows us to establish the connection between reduced system and

(MICZ)Kepler one.

2.2.1 The U(1) reduction

For the description of the reduction procedure related to the first

Hopf map it is more convenient instead of 4 real coordinates consider

two complex ones: z1, z2 and their conjugated momenta π1, π2. The

Poisson brackets have canonical form
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{πα, zβ} = 1, {π̄α, z̄β} = 1, α, β = 1, 2 . (2.21)

with all others vanishing.

In this coordinates the Hamiltonian corresponding to 2.1 have

the following form:

H =
πµπ̄µ
g(zz̄)

+ U, (2.22)

where the dependency of the potential U on the coordinates will be

considered later.

The symmetry generator corresponding to the syymetry 1.8 looks

as foolows:

J =
ı

2
(πz − z̄π̄), (2.23)

For the case of the first Hopf map the transformation 1.2 can be

written in the following way:

x = zσz̄, p =
zσπ + π̄σz̄

2(zz̄)
, (2.24)

where σ are the Pauli matrices.

As a result, the reduced Poisson brackets read

{pi, xj} = δji , {pi, pj} = s
εijkx

k

x3
, x = |x| (2.25)

where s is value of the generator (2.23): J = s.
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After substitution 2.24 one finds for the Hamiltonian the follow-

ing expression:

H =
x

2g

(
p2 +

s2

x2

)
+ U(x). (2.26)

It is senn from the Poisson brackets 2.25 that the reduced system

contains a Dirac monopole in the origin. Indeed, replacing

p 7→ p− sAD, AD =
(x2,−x1, 0)

x(x+ x3)
, (2.27)

one will come to the canonical form of Poisson brackets between x

and p.

2.2.2 The SU(2) reduction

Again we start from the Hamiltonian of 8-dimensional free particle

system

H =
P2

2g
+ U, (2.28)

defined on a manifold with conform flat metric g and parametrized

by coordinates u and their conjugate momentum P .

For the description of the reduction procedure related to the

second Hopf map S7/S3 = S4 we first introduce five 8× 8 matrices

Γµ

{Γµ,Γν} = 2δµν18 (2.29)
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with the following relations:

Γ1 = τA ⊗ τ1 ⊗ τA, Γ2 = τA ⊗ τ2 ⊗ τA, Γ3 = τA ⊗ τA ⊗ 12,

Γ4 = τ1 ⊗ 12 ⊗ 12, Γ5 = τ2 ⊗ 12 ⊗ 12, (2.30)

where

τ1 =

 0 1

1 0

 , τ2 =

 1 0

0 −1

 , τA =

 0 1

−1 0

 . (2.31)

and {A,B} denotes the anticommutator. For our purposes we have

also to introduce three 8× 8 antisymmetric matrices Σa:

Σ1 =
1

2
12 ⊗ τA ⊗ τ1, Σ2 =

1

2
12 ⊗ τA ⊗ τ2, Σ3 =

1

2
12 ⊗ 12 ⊗ τA.

(2.32)

which commute with all matrices Γµ, anticommute with each other

and satisfy the su(2) algebra relations:

[
Γµ,Σi

]
= 0,

{
Σi,Σj

}
= −2δij18,

[
Σi,Σj

]
= εijkΣ

k (2.33)

We also consider functions xµ and pµ, which are connected with
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uA by the following relations

xµ = uΓµu, pµ =
PΓµu

u2
(2.34)

where u is an 8 dimensional column vector with elements uA, P is

the corresponding momentum and u2 = uTu.

One can can notice that the transformation

u→ (λ018 + λiΣi)u, λ2
0 +

∑
λ2
i = 1 (2.35)

leaves invariant the xµ quantities. Therefore, the fibration 2.34

identifies all points which differ by the transformation 2.35. It can

be checked explicitly that

xµxµ ≡ r2 = (uAuA)2 ≡ R4. (2.36)

Thus, defining the seven- dimensional sphere in IR8 of radius R:

uαūα = R2, we get a 4-dimensional sphere in IR5 with radius r =

R2, i.e. we obtain the second Hopf map. Taking into account the

relation 2.36 and the fact that the second relation in 2.35 defines the

S3 sphere, one can conclude that the second Hopf map is a fibration

of the sphere S7 over S3:

S7/S3 = S4
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In order to invert expressions let us introduce 3 additional coor-

dinates:

z =
u7 − iu8

u5 − iu6
, z̄ =

u7 + iu8

u5 + iu6
, γ = arctan

u5

u6
(2.37)

It is easy to see that the coordinates z, z̄, γ parametrize the sphere

xµ = const.

The matrices Σi define a set of functions on S3 that form the

su(2) algebra:

Ii = uAΣi
ABPB. (2.38)

In terms of the new coordinates these functions can be written as

follows:

I3 = −pγ
2

I2+iI1 = I+ =
e−2ıγ

4
(2 (1 + zz̄) π̄ + ızpγ) , I− = I+ :

(2.39)

We shall need also another SU(2) group elements parameterizing

the sphere S3 and commuting with (2.39):

P3 =
pγ
2

+ı (zπ − z̄π̄) , P+ =
1

2

(
π̄ + z2π + ı

z

2
pγ

)
, P− = P+

(2.40)

These quantities define, with respect to the Poisson brackets
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(2.21), the so(4) = so(3)× so(3) algebra

{Pi, Pj} = εijkPk, {Ii, Ij} = εijkIk, {Ii, Pj} = 0. (2.41)

The functions Pi, Ii obey the following equality, which is important

for our considerations

IiIi = PiPi. (2.42)

Let us perform now the reduction by the action of the SU(2)

group given by the functions (2.39). For this purpose we have to fix

constants of motion(2.39):

Ii = si = const, sisi ≡ s2.

Since Ii are constants of motion independent on the xµ coordinates

we can perform an orthogonal rotation, so that only the third com-

ponent of this set, I3, will be different from zero. Equating I+ and

I− with zero we obtain:

−I3 =
pγ
2

= s, π̄ = −sı z

1 + zz̄
, π = sı

z̄

1 + zz̄
. (2.43)

Hence,

P+ = −s ız

1 + zz̄
≡ ıh+, P− = s

ız̄

1 + zz̄
≡ ıh−, P3 = s

1− zz̄
1 + zz̄

≡ h3

(2.44)
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Thus Pi become precisely the Killing potentials of the S2 sphere! It

is not an occasional coincidence, indeed.

After fixing the values of motion integrals the Poisson brackets

between quantities pµ read:

{pµ, pν} = s
(
∂µA

i
νhi − ∂νAi

µhi − εijkhiAj
µA

k
ν

)
≡ sF i

µνhi, (2.45)

where

Ai
µ =

ηiνµx
ν

r (r + x5)
for µ = 1, 2, 3, 4, Ai

5 = 0 (2.46)

defines the potential of the SU(2) Yang monopole. Here

ηiνµ = δiνδ4µ − δ4νδiµ + ε4iνµ (2.47)

is t’Hooft symbol.

After substitution Hamiltonian takes the following form:

H =
x

2g
(p2 +

s2

x2
) + U. (2.48)

As it was expected exactly the corrsponding Hamiltonian for 2.20.



Chapter 3

Anisotropic Inharmonic Higgs

Oscillator and related systems

with monopoles

The oscillator and Kepler systems are the best known examples of

mechanical systems with hidden symmetries [1]. Due to the exis-

tence of hidden symmetry these systems admit separation of vari-

ables in few coordinate systems. Despite of their qualitative differ-

ence, they can be related with each other in some cases. Namely,

(p + 1)−dimensional Kepler system can be obtained by the appro-

priate reduction procedures from the 2p−dimensional oscillator for

p = 1, 2, 4 (for the review see, e.g. [11]).

These procedures, which are known as Levi-Civita (or Bohlin)

[12], Kustaanheimo-Stiefel [13] and Hurwitz [14] transformations

38
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imply the reduction of the oscillator by the action of Z2, U(1), SU(2)

group, respectively, and yield, in general case, the Kepler-like sys-

tems with monopoles [15, 17, 19]. The second system (with U(1)

(Dirac) monopole) is best known and most important among them.

It was invented independently by Zwanziger and by McIntosh and

Cisneros [16] and presently is refered as MICZ-Kepler system. There

are few deformations of oscillator and Kepler systems, which pre-

serve part of hidden symmetries, e.g., anisotropic oscillator, Kepler

system with additional linear potential, two-center Kepler system

[1], as well as their “MICZ-extensions” [56]. The Kepler system with

linear potential is of special importance due to its relevance to the

Stark effect. One can observe that the four-dimensional oscillator

with additional anisotropic term

UA =
∆ω2

2

p=2∑
i=1

(x2
i − x2

i+p) (3.1)

results in the (MICZ-)Kepler system with potential

Vcos =
∆ω2

4
cos θ =

∆ω2

4

xp+1

|x|
, (3.2)

which is the textbook example of the deformed Kepler system ad-

mitting the separation of variables in parabolic coordinates. While

(three-dimensional) Kepler system with additional linear potential
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(which is also separable in parabolic coordinates) is originated in the

(four-dimensional) oscillator system with fourth-order anisotropic

potential term

Unlin = −2εel

p=2∑
i=1

x4
i − x4

i+p. (3.3)

The corresponding potentials in other dimensions look similarly.

Oscillator and Kepler systems admit the generalizations on a

d−dimensional sphere and a two-sheet hyperboloid (pseudosphere).

They are defined, respectively, by the following potentials [46, 47]

Uosc =
ω2R2

0

2

x2

x2
0

, VKepler = − γ

R0

x0

|x|
, (3.4)

where x, x0 are the Cartesian coordinates of the ambient (pseudo)Euclidean

space IRd+1(IRd.1): εx2 +x2
0 = R2

0, ε = ±1. The ε = +1 corresponds

to the sphere and ε = −1 corresponds to the pseudosphere. These

systems also possess nonlinear hidden symmetries providing them

with the properties similar to those of conventional oscillator and

Kepler systems. Various aspects of these systems were investigated

in [53]. Let us notice also mention the Ref. [57], where the integra-

bility of the spherical two-center Kepler system was proved.

Completely similar to the planar case one can relate the oscilla-

tor and MICZ-Kepler systems on pseudospheres (two-sheet hyper-

boloids). In the case of sphere, the relation between these systems is
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slightly different: the oscillator on sphere results in the oscillator on

hyperboloid [51]. After appropriate “Wick rotation” (compare with

[54]) of the MICZ-Kepler system on hyperboloid one can obtain the

MICZ-Kepler system on the sphere, constructed in [55].

As far as we know, the integrable (pseudo)spherical analogs of

the anisotropic oscillator and of the oscillator with nonlinear poten-

tial (3.3) were unknown up to now, as well as the (pseudo)spherical

analog of the (MICZ-)Kepler system with linear and cos θ potential

terms. The construction of these (pseudo)spherical systems is not

only of the academic interest. They could be useful for the study

of the various physical phenomena in nanostructures, as well as in

the early Universe. For example, the spherical generalization of the

anisotropic oscillator potential can be used as the confining poten-

tial restricting the motion of particles in the asymmetric segments of

the thin (pseudo)spherical films. While with the (pseudo)spherical

generalization of the linear potential at hands one can study the

impact of the curvature of space in the Stark effect.

For the simplicity we will start our consideration from p = 4 eu-

clidean system. The generalization to higher dimensions is straight-

forward [78]. The content of this chapter is based on the [64, 38,

78, 18].
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3.1 Euclidean system

In complex coordinates z1, z2 and their corresponding momenta

π1, π2 the Hamiltonian of isotropic oscillator reads

H0 = ππ̄ + ω2zz̄. (3.5)

Its rotational symmetry generators are defined by the expressions

J = ı
2(πz − z̄π̄), (3.6)

J = ı
2(πσz − z̄σπ̄), (3.7)

Jαβ = 1
2παz̄

β, Jᾱβ̄ = 1
2 π̄αz

β , (3.8)

and the hidden symmetry generators read

A = 1
2(πσπ̄ + ω2z̄σz), (3.9)

Aαβ = 1
2(παπβ + ω2z̄αz̄β), Aᾱβ̄ = Aβα (3.10)

Note, that 2.23 is exactly the operator corresponding to the U(1)

symmetry of the first Hopf map. The integrable anisotropic inhar-

monic deformation of this system looks as follows

Haosc = H0 + (∆ω2 + 2εelzz̄)zσ3z̄. (3.11)
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Its constants of motion are given by (2.23), by the third component

of (3.7), and by the hidden symmetry generator

A = A3 +
∆ω2

2
(zz̄) +

εel
2

(
(zz̄)2 + (zσ3z̄)2

)
, (3.12)

Clearly, the first term in the additional potential decouples the ini-

tial isotropic oscillator in the anisotropic one with the frequencies

ω± =
√
ω2 ±∆ω2. The second part of the deformation term given

by (3.11) has no such simple explanation. After transformation

of the initial system in the Kepler-like one it results in the linear

potential.

Performing the reduction procedure described in the previous

setcion for the resulting system we find:

Hred
aosc =

xp2

2
+ ω2x+ ∆ω2x3 + εelxx3 (3.13)

Following ([51]), we can now transform the reduced oscillator to

a Kepler-like system. For this purpose we should fix the energy

surface Hred
aosc = E ≡ γ/2 and multiply by 1/x, to get

(
Hred
aosc − Ered

aosc

) 1

x
= 0 ≡ HMICZS − EMICZS, EMICZS = −ω2

(3.14)

HMICZ =
1

2

(
p2 +

s2

x2

)
+
γ

x
+ ∆ω2x3

x
+ εelx3 (3.15)
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For any motion integral I we have:

{HMICZS, I} =
{
Hred
aosc, I

}
|Hred

aosc=const
= 0 (3.16)

Hence, the new Hamiltonian has the same number of motion inte-

grals and therefore preserves the integrability of the initial system.

It is seen that 3.15 defines the MICZ-Kepler system with the

additional cos θ potential in the presence of constant electric field

pointed along x3-axes. For the completeness, let us write down the

constants of motion of the constructed system reducing the con-

stants of motion of the four-dimensional oscillator. The J3 results

in the corresponding component of angular momentum,

J = n3J, J = p× x + s
x

x
. (3.17)

The reduced generator A looks as follows

A = n3A +
εel
2

(n3 × x)2 + ∆ω2 (n3 × x)2

x
(3.18)

where

A = p× J + γ
x

x
(3.19)

is the Runge-Lenz vector of the unperturbed MICZ-Kepler system.
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3.2 Anisotropic inharmonic Higgs Oscillator

All the calculations in this section we will make for p = 4 case, how-

ever, the generalization to the higher dimensions is straightforward.

The Hamiltonian of four-dimensional Higgs oscillator looks as

follows

Hε
0 =

(1 + εzz̄)2ππ̄

2R2
0

+
2ω2R2

0zz̄

(1− εzz̄)2
. (3.20)

The symmetries of (pseudo)sphere are defined by the generators

(2.23)-(3.8), and

Jα = (1− εzz̄)πα + ε(πz + π̄z̄)z̄α, Jᾱ = J̄α. (3.21)

It is clear that the generators (2.23)-(3.8) define the so(4) (rota-

tional) symmetry algebra of the Higgs oscillator, while the genera-

tors (3.21) define the translations on (pseudo)the sphere. By their

use one can construct the generators of hidden symmetries of the

Higgs oscillator,

Aαβ =
JαJβ
2R2

0

+ 2ω2R2
0

z̄αz̄β

(1− εzz̄)2
, Iᾱβ̄ = Īαβ (3.22)

and

A =
(JσJ̄)

2R2
0

+ 2ω2R2
0

(zσz̄)

(1− εzz̄)2
. (3.23)
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Let us construct the integrable (pseudo)spherical analog of the

anisotropic inharmonic oscillator (3.11). We consider the class of

Hamiltonians

Hε
aosc = Hε

0 + (zσ3z̄)Λ(zz̄), (3.24)

which besides the symmetries defined by the generators J and J3,

possess the hidden symmetry defined by the constant of motion

A = A3 + g(zz̄) + (zσ̂3z̄)2h(zz̄). (3.25)

Here Λ(zz̄), g(zz̄) and h(zz̄) are some unknown functions, and A3

is the third component of (3.23).

Surprisingly, from the requirement that A is the constant of mo-

tion, we uniquely (up to constant parameters) define the functions

Λ, g, h, i.e. find the integrable anisotropic generalization of Higgs

oscillator. Namely, the function Λ in (3.24) reads

Λ ≡ 2R2
0∆ω2

(1 + εzz̄)2
+

8εelR
4
0

(1− (zz̄)2)2

(1 + (zz̄)2)(zz̄)

(1− εzz̄)2
, (3.26)

and the hidden symmetry generator looks as follows

A = A3 +
2R2

0∆ω2zz̄

(1 + εzz̄)2
+
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+4εelR
4
0

(
(zz̄)2

(1− (zz̄)2)2
+

(zσ̂3z̄)2

(1− εzz̄)4

)
. (3.27)

One can easily see that the constructed system results in (3.11)

results in the limit R0 →∞.

Hence, we have got the well-defined (pseudo)spherical general-

ization of (3.11).

In coordinates y of the ambient space the potential of the con-

structed system looks much simpler. The potential of (isotropic)

Higgs reads

UHiggs =
ω2R2

0

2

R2
0 − y2

0

y2
0

, (3.28)

while the anisotropy terms is defined by the expression

UAI =

(
∆ω2

2
+ εεelR

2
0

(R4
0 − y4

0)

y4
0

)
yσ̂3ȳ (3.29)

Let us mention that for the above construction the dimensionality

of the space is essential. The same reasonings for any number of real

coordinates (instead of two complex z)and any orthogonal matrix

(instead of Hermitean σ3) will lead us to the similar oscillator in

corresponding dimension. In particular, for the n = 8 one can use

Γ5 defined in 2.30 as an orthogonal matrix one can find an integrable

8-dimensional anisotropic inharmonic Higgs oscillator which can be

reduced following the procedure described in the second chapter.
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3.3 MICZ-Kepler-like systems on pseudosphere

In this Section performing Kustaanheimo-Stiefel transformation of

the constructed system we shall get the pseudospherical analog of

the Hamiltonian (3.15). This procedure is completely similar to

those of the isotropic Higgs oscillator [51].

At first, we must reduce the system by the Hamiltonian action

of the generator (2.23). Choosing the functions (2.24) as the re-

duced coordinates, and fixing the level surface J = s, we shall get

the six-dimensional phase space equipped by the Poisson brack-

ets (2.25). Then we fix the energy surface of the oscillator on the

(pseudo)sphere, Hε
aosc = Eaosc, and multiply it by (1− εx2)2/x2. As

a result, the energy surface of the reduced system takes the form

H−AMICZ = E−AMICZ , (3.30)

where

H−AMICZ =
(1− x2)2

8r2
0

(p2 +
s2

x2
)− γ

2r0

1 + x2

x
+

+
∆ω2

2

(
1− εx
1 + εx

)2
x3

x
+ 2εelr0

1 + x2

1− x2

x3

1− x2
, (3.31)

r0 = R2
0, γ =

Eaosc

2
, E−AMICZ = −ω

2

2
+ ε

Eaosc

2r0
. (3.32)

Interpreting x as the stereographic coordinates of three-dimensional
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pseudosphere

y = r0
2x

1− x2
, y0 = r0

1 + x2

1− x2
, (3.33)

we conclude that (3.31) defines the pseudospherical analog of the

MICZ-Kepler system with linear and cos θ potential terms (3.15).

It is clear that in quantum mechanical consideration the presence

linear term will lead to the analogue of Stark effect.

The constants of motion of the anisotropic oscillators, J3 and

A yield, respectively, the third component of angular momentum

(3.17) and the hidden symmetry generator

A = n3A +
r0∆ω

2

(1 + εx)2

[
x2 − x2

3

x

]
+ 2εelr

2
0

x2 − x2
3

(1− x2)2
(3.34)

where

A =
T× J

2r0
+ γ

x

x

is the Runge -Lenz vector of the MICZ-Kepler system on pseudo-

sphere, J is the generator of the rotational momentum defined by

the expression (3.17), and

T =
(
1 + x2

)
p− 2(xp) x. (3.35)

is translation generator.

This term also looks simply in Euclidean coordinates of ambient
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space:

VAI =
∆ω2

2

(
y3

y
+ εy0y3

)
+ εely0y3 (3.36)

Let us notice, that the term proportional to ∆ω2 depends on ε,

i.e., formally, the anisotropic terms yield different pseudospherical

generalizations of potential cos θ. However, this difference is rather

trivial: it is easy to observe, that one potential transforms in other

one upon spatial reflection.

Presented Kepler-like system admits the separation of variables

in the following generalization of parabolic coordinates (compare

with [52]):

x1 + ix2 =
2
√
ξη

r0 +

√√
(r20+ξ2)(r20+η2)+ξη+r20√

2

eıϕ,

x3 =

√
2
√√

(r2
0 + ξ2)(r2

0 + η2)− ξη − r2
0

r0 +

√√
(r20+ξ2)(r20+η2)+ξη+r20√

2

. (3.37)

In these coordinates the metric reads

ds2 =

= r2
0

ξ + η

4

(
dξ2

ξ(r2
0 + ξ2)

+
dη2

η(r2
0 + η2)

)
+ ξηdϕ2. (3.38)

Passing to the canonical momenta, one can represent the Hamilto-
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nian (3.31) as follows

H−MICZ =
2ξ(r2

0 + ξ2)

r2
0(ξ + η)

p2
ξ +

2η(r2
0 + η2)

r2
0(ξ + η)

p2
η +

1

ξη

p2
ϕ

2
+

spϕ + s2

r0(ξ + η)

(
r0 +

√
r2

0 + ξ2

ξ
+
r0 −

√
r2

0 + η2

η

)
+

+
∆ω2r0

2

ξ
√
r2

0 + ξ2 − η
√
r2

0 + η2 + ξ2 − η2

ξ + η
−

− γ
r0

√
r2

0 + ξ2 +
√
r2

0 + η2

ξ + η
+ εel

ξ − η
2

(3.39)

So, the corresponding generating function has to have the additive

form- S = EAMICZt + pϕϕ + S1(ξ) + S2(η) . Replacing pξ and pη

by dS1(ξ)/dξ and dS2(η)/dη respectively, we obtain the following

ordinary differential equations

2ξ(r2
0 + ξ2)

r2
0

(
dS1(ξ)

dξ

)2

+ (spϕ + s2)
r0 +

√
r2

0 + ξ2

r0ξ

+
∆ω2r0

2
(ξ
√
r2

0 + ξ2 + ξ2)−

− γ
r0

√
r2

0 + ξ2 + εelξ
2 − EAMICZξ +

p2
ϕ

ξ
= β (3.40)

2η(r2
0 + η2)

r2
0

(
dS2(η)

dη

)2

+ (spϕ + s2)
r0 −

√
r2

0 + η2

r0η
+

−∆ω2r0

2
(η
√
r2

0 + η2 + η2)−
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− γ
r0

√
r2

0 + η2 − εelη2 − EAMICZη +
p2
ϕ

η
= −β (3.41)

From these equations we can immediately find the explicit expres-

sion for the generating function. We have separated the variables

for the pseudospherical generalization of the Coulomb system with

linear and cos θ potential.

The above equations looks much simpler in the new coordinates

(χ, ζ), where ξ = r0 sinhχ, η = r0 sinh ζ.

(
dS1(χ)

dχ

)2

=
EAMICZ

2
− ∆ω2r4

0

2
(coshχ+ sinhχ)+

+(
γr0

2
− s2 − spϕ) cothχ− εelr

3
0

2
sinhχ−

p2
ϕ

2 sinh2 χ
+

+
βr0 − s2 − spϕ

2 sinhχ
, (3.42)

(
dS2(ζ)

dζ

)2

=
EAMICZ

2
+

∆ω2r4
0

2
(cosh ζ + sinh ζ)+

+(
γr0

2
+ s2 + spϕ) coth ζ +

εelr
3
0

2
sinh ζ −

p2
ϕ

2 sinh2 ζ
−

−βr0 + s2 + spϕ
2 sinh ζ

. (3.43)

Remark 2. In the same manner the 2p−dimensional anisotropic

inharmonic oscillator on (pseudo)sphere can be connected to the

(p + 1)−dimensional Kepler-like systems on pseudosphere also for
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the p = 1, 4 . For p = 1 we should just assume that zα are real

coordinates. In this case we should not perform any reduction at

the classical level (in quantum case we have to reduce the initial

system by the discreet Z2 group action, see [15]). For the p = 4 we

have to assume, that zα are quaternionic coordinates (equivalently,

that zα are complex coordinates with α = 1, . . . 4). In contrast with

p = 1, 2 cases, we should reduce the initial system by the SU(2)

group action [19].

Remark 3. The planar (MICZ)-Kepler system with linear po-

tential can be obtained as a limiting case of the two-center (MICZ-)

Kepler system, when one of the forced centers is placed at infin-

ity (see, e.g. [1]). The two-center (pseudo)spherical Kepler system

is the integrable system as well [57]. However, presented pseudo-

spherical generalization of the (MICZ-)Kepler system with linear

potential could not be obtained from the two-center pseudospheri-

cal Kepler system: it can be easily checked, that in contrast with

pseudospherical Kepler potential, it does not obey the correspond-

ing Laplas equation.
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3.3.1 Transition to the sphere

To get the spherical counterpart of the Hamiltonian (3.31), let us

perform its “Wick rotation” which yields

H+ = H+
0 + 2εelr0

1− x2

1 + x2

x3

1 + x2
+

+
∆ω2

2

(
1− iεx
1 + iεx

)2
x3

x
, (3.44)

where

H+
0 =

(1 + x2)2

8r2
0

(
p2 +

s2

x2

)2

− γ1− x2

2r0x
(3.45)

is the Hamiltonian of unperturbed MICZ-Kepler system on the

sphere. The hidden symmetry of this system is defined by the ex-

pression

A = n3A + ∆ω2

[
x2 − x2

3

(1 + iεx)2x

]
+ 2εelr

2
0

x2 − x2
3

(1 + x2)2
. (3.46)

where

A = J×T + γ
x

x
(3.47)

is Runge-Lenz vector of the spherical MICZ-Kepler system, with

the angular momentum J given by (3.17) and with the translation

generator

T =
(
1− x2

)
p + 2(xp)q. (3.48)
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One can see, that due to the last term in (3.44) this Hamiltonian

is a complex one. Taking its real part we shall get the integrable

spherical analog of the MICZ-Kepler system with linear and cos θ

potentials,

H+
MICZ = H+

0 +
∆ω2

2

1− 6x2 + x4

1 + x2

x3

x
+

+2εel
1− x2

1 + x2

x3

1 + x2
. (3.49)

The generator of its hidden symmetry is also given by the real part

of (3.46)

A = n3A +

[
∆ω2r0

1− x2

x
+
εel
2

]
x2 − x2

3

(1 + x2)2
. (3.50)

In the terms of ambient space IR4 the anisotropy term is defined by

the expression (3.29).

Remark 4. It is clear from our consideration, that the addition

to the constructed system of the potential

c0 Im

(
1− iεx
1 + iεx

)2
x3

x
(3.51)
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will also preserve the integrability. The hidden symmetry generator

will be given by the expression

A+ c0 Im
∆ω2

2(1 + iεx)2

[
x2 − x2

3

x

]
. (3.52)

However, it is easy to see, that this additional potential coinsides

with (3.44), i.e. we do not get anything new in this way.

3.3.2 Dipole transitions and Stark effect in the charge-

dyon system

One can investigate the influence of Dirac monopole on the Coulumb

system. For this reason let us consider the dipole transitions in

the MICZ-Kepler system interacting with planar monochromatic

electromagnetic wave, which are completely similar to the ones in

the “dyogen atom” [58].

H =
(p−A)2

2
+

s2

2r2
− 1

r
≈ HMIC −Ap, (3.53)

where HMIC is defined by (3.15) and

A = A0u cos(ωt− kr) , ∇ ·A = 0 (3.54)

is the vector potential of the wave.

Following the procedure described in [61] for the matrix elements
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of dipole transitions we find

udn,l,m|n′,l′,m′ = I(n, l|n′, l′)
[
ux + ıuy

2

(
l + 1

2(2l + 1)

√
(l +m)(l2 − s2)δm−1|m′δl−1|l′ +

+

√
(l + 1)(l −m+ 1)(l −m+ 2)((l + 1)2 − s2)

2
√
l + 2(l + 1)(2l + 2)

δm−1|m′δl+1|l′ + s

√
(l −m+ 1)(l +m)

l(l + 1)
δm−1|m′δl|l′

)

−ux − ıuy
2

(
l + 2

2(2l + 3)

√
(l +m+ 2)((l + 1)2 − s2)δm+1|m′δl+1|l′

−
√

l

l + 1

√
(l −m− 1)(l −m)(l2 − s2)

l(2l − 1)
δm+1|m′δl−1|l′ +s

√
(l +m+ 1)(l −m)

l(l + 1)
δm+1|m′δl|l′

)
+

uz

(√
(l + 1)(l2 −m2)(l2 − s2)√

ll(2l + 1)
δl−1|l′+

√
(l + 1)((l + 1)2 −m2)((l + 1)2 − s2)√

l + 2(l + 1)(2l + 1)
δl+1|l′ + s

m

l(l + 1)
δl|l′

)
δm|m′

]
(3.55)

where

I(n, l|n′, l′) =

∫ ∞
0

cnlc
∗
n′l′r

l+l′e−(
r
n′+

r
n
)F (l−n+1, 2l+2,

2r

n
)F (l′−n′+1, 2l′+2,

2r

n
)r3dr,

(3.56)

and

cnl =
2l

nl+2(2l + 1)!

√
(2l + 1)(n+ l)!

π(n− l − 1)!
(3.57)

are the normalization constants of non-perturbed charge-dyon sys-

tems. It is seen that the presence of Dirac monopole changes the
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selection rules of the system. Namely, in the absence of monopole

one has

uz 6= 0 : m = m′, l′ = l − 1 (3.58)

|ux + ıuy| 6= 0 : m′ = m± 1 , l′ = l ± 1 ; m′ = m± 1 , l′ = l ∓ 1(3.59)

In the presence of Dirac monopole, when s 6= 0 another transitions

are also possible [58, 59]

uz 6= 0 : m = m′, l′ = l (3.60)

|ux + ıuy| 6= 0 : m′ = m± 1 , l′ = l (3.61)

So, the presence of monopole makes the selection rules less rigor-

ous. Namely, besides (3.59), the transitions preserving the orbital

quantum number l become also allowed, (3.61). When the electro-

magnetic wave has transversal polarization (uz = 0), the transitions

preserving the orbital quantum number, and changing the azimuth

quantum number become possible. When longitudal mode in the

electromagnetic wave appears (uz 6= 0), the transitions, preserving

both orbital and azimuth quantum numbers are also admissible.

The other useful example is the Stark effect in the system with

presence of Dirac monopole.The Hamiltonian of the MICZ-Kepler

system (interpreting as charge-dyon system) in the external con-
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stant uniform electric field is of the form:

HStark = HMIC + Er. (3.62)

To find the energy spectrum we shall follow the procedure de-

scribed in [62]. For this reason let us assume that the electic field is

directed along the x3 axes and pass to the parabolic coordinate sys-

tems. After the separation of variables in the Schrödinger equation

for the Hamiltonian (3.62) we arrive at the system [60]

d

dξ

(
ξ
dΦ1

dξ

)
+

[
E
2
ξ − |E|

4
ξ2 − (m+ s)2

4ξ

]
Φ1 = −β1Φ1,

d

dη

(
η
dΦ2

dη

)
+

[
E
2
η +
|E|
4
η2 − (m− s)2

4η

]
Φ2 = −β2Φ2, β1 + β2 = 1.(3.63)

For s = 0 these equations coincide with the similar equations for

the hydrogen atom in the parabolic coordinates [62]. Hence, similar

to that, we can consider the energy E as a fixed parameter, and β1,2

as the eigenvalues of corresponding operators. These quantities are

defined after solving the above equations, as the functions on E and

E. Then, due to the relation β1 + β2 = 1, the energy E becomes a

function on the external field E.

It is seen from the above expressions, that the calculation of

the first and second order corrections to the β
(0)
1,2 will be completely

similar to the ones in the Coulomb problem [62], if one replaces
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|m| → |m + s| in β1, Φ1, and |m| → |m − s| in β2, Φ2. These

substitutions yields the following expressions

β(1)
a = −(−1)a|E|

4κ2

(
6n2

a + 6na|ma|+m2
a + 6na + 3|ma|+ 2

)
(3.64)

β(2)
a = − |E|

2

16κ5
(|ma|+ 2na + 1)

(
4m2

a + 17(2|ma|na + 2n2
a+

+|ma|+ 2na) + 18) . (3.65)

Then we get

β0
1 + β

(0)
2 = κn, β

(1)
1 + β

(1)
2 =

3|E|
2κ2

A, β
(2)
1 + β

(2)
2 = − |E|

2

16κ5
B,

(3.66)

where we introduce the notations

A ≡ nn−−
ms

3
, B ≡ 17n3− 3nn2

− + 54An− + 19n− 9n(m2 + s2),

(3.67)

and the quantum numbers

n = n1+n2+
|m+ s|+ |m− s|

2
+1 , n− ≡ n1−n2+

|m+ s| − |m− s|
2

.

(3.68)

Taking into account, that β1 + β2 = 1, we get

κn+
3|E|A
2κ2

− |E|
2B

16κ5
= 1 (3.69)
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Iteratively solving this equation, we get

κ = κ0+|E|κ1+|E|2κ2 , κ0 =
1

n
, κ1 = −3An

2
, κ2 = n3

(
Bn

16
− 9A2

2

)
.

(3.70)

Then, from E = −κ2/2 we find the energy of the system

E = − 1

2n2
+

3|E|
2

(
nn− −

ms

3

)
− |E|

2n2

16

(
17n4 − 3(nn− − 3ms)2−

−9n2m2 + 19n2 − 9n2s2 + 21(ms)2
)

(3.71)

One can represent the quantum numbers (3.68) as follows

n =

 n1 + n2 + |s|+ 1 for |m| ≤ |s|

n1 + n2 + |m|+ 1 for |m| > |s|
,

n− =

 n1 − n2 +m sgn s for |m| ≤ |s|

n1 − n2 + s sgn m for |m| > |s|
. (3.72)

The ground state of the non-perturbed charge-dyon system corre-

sponds to the following values of quantum numbers: n1 = n2 = 0,

|m| ≤ |s|. Hence,

n = |s|+ 1, n− = m sgn s , m = −|s|,−|s|+ 1, . . . , |s| − 1, |s|.

(3.73)
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Substituting these expressions in (3.71), we get

E0 = − 1

2(|s|+ 1)2
+m sgn s |E|

(
|s|+ 3

2

)
−

−|E|
2(|s|+ 1)2

16

[
17(|s|+ 1)4 + (|s|+ 1)2(19− 9s2)− 6m2 (|s|+ 2)

]
.

(3.74)

It is seen, that the ground state of the non-perturbed charge-dyon

system has (2|s|+1)-fold degeneracy (by azimuth quantum number

m), while the linear Stark effect completely removes the degeneracy

on m. It is proportional to the azimuth quantum number m, while

its sign depends on the relative sign of monopole number s and

m (the linear Stark effect in the “dyogen atom” possesses similar

properties [59]). In contrast to linear Stark effect, the quadratic

Stark effect of the ground state is independent neither on sign s, no

on sign m.



Chapter 4

Calogero model

The Calogero model [20, 21, 22] and its various extensions and gen-

eralizations play a distinguished role among other multi-particle in-

tegrable systems. They have attracted much attention due to their

rich internal structure and numerous applications in many areas of

physics (see, e.g., the recent review [23] and references therein).

In the continuum or thermodynamic limit, i.e. for large particle

numbers, the Calogero model gives rise to a Yang-Mills theory [24]

on a cylinder, while its superconformal extension describes a black

hole in the near-horizon limit [25]. In this limit, the system have

soliton solutions corresponding to the fundamental excitations [26].

The quantum Calogero model describes free particles with frac-

tional statistics whose type is determined by the interaction strength

[27]. Moreover, the variational ground state of the fractional quan-

63



Calogero model 64

tum Hall effect (known as the Laughlin state [28]) can be consid-

ered as some deformation of the ground state of Calogero model

[29]. The trigonometric analogue of the model [30] is related to in-

tegrable spin-1/2 chains with long range interactions, which possess

a resonating-valence-bond ground state [31]. Recently, the rela-

tion to the Benjamin-Ono equation arising in the hydrodynamics of

stratified fluids has been established [32].

The Calogero model and its modifications appear also in ma-

trix models [33], W∞-algebras [34], Yangian quantum groups [35],

random matrices [36] and many other areas of physics and mathe-

matics.

The content of this chapter is based on the [45, 72, 73].

4.1 Cuboctahedric Higgs oscillator from the ra-

tional Calogero model

In this chapter, we will study the classical rational Calogero sys-

tem without confining potential[72]. It describes one-dimensional

particles with inverse-square interaction [20, 21, 22]:

H =
1

2

N∑
i=1

p2
i +

∑
i<j

g

(xi − xj)2
, {pi, xj} = δij. (4.1)
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One of the important features of the system is its manifest conformal

invariance, which was essential for the invention of the model, as

well as for its further studies.

In the pioneering paper [20], the three-particle model had been

considered first. After excluding the center of mass (with á pri-

ory conserving momentum) and taking into account the conformal

invariance, the model was reduced to a one-dimensional exactly

solvable system on circle considered by Jacobi in the middle of XIX

century [37]:

I =
p2
ϕ

2
+

9g

2 cos2 3ϕ
. (4.2)

For more particles, the analysis of the Calogero model becomes more

complicated. In particular, the construction of the complete set of

the constants of motion assumes the use of the powerful method of

Lax pair [22]. This approach allowed to relate the Calogero system

to AN−1 Lie algebras, as well as to construct its integrable modifica-

tions related to other Lie algebras [39]. The Calogero systems can

be obtained from the free-particle system by an appropriate reduc-

tion procedure known as the projection method [1]. Recently, it has

been generalized to the Calogero model extensions corresponding to

the root systems [40].

However, the analog of the system (4.2) has not been properly
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studied for the case of more than three particles. Such a study

would be an interesting problem from few viewpoints.

Already in the pioneering papers [20, 21] it was observed that the

spectrum of the Calogero model with additional oscillator potential

is similar to the spectrum of free N -dimensional oscillator. It was

claimed there that a similarity transformation to the free-oscillator

system may exist, at least, in the part of Hilbert space. However,

this transformation has been written explicitly only three decades

later [41]. In Ref. [42], it has been related to the conformal group

SU(1, 1). This similarity transformation has a very transparent geo-

metric explanation for the two-particle Calogero model (the ”confor-

mal mechanics”): it corresponds to the inversion in the Klein model

of the Lobachevsky space, which describes the phase space of the

system. A natural way to extend this picture to the multi-particle

Calogero system is to identify the coordinates of its ”radial” part

with the coordinates of the Klein model. In other words, one must

extract and investigate the angular part of the system. The other

stimulation for the study of the angular part of the Calogero model

the translation of the discrete symmetries of the one-dimensional

multi-particle system to the higher-dimensional one-particle one.

This would provide us with á priori integrable higher-dimensional

one-particle system with some discrete symmetry.
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4.1.1 Center-of-mass system

For our purpose we need to introduce N -dimensional vectors bij as

follows:

bijk =
1√
2

(δik − δjk) . (4.3)

They satisfy to the relations

∑
k

(bijk )2 = 1 and (e, ba) = 0, (4.4)

where

e = (1, 1, ...., 1) ,

and round brackets define scalar product. After this denotation, we

can rewrite the Hamiltonian 4.1 as follows.

HN =
1

2

N∑
i=1

p2
i +

N(N−1)/2∑
a=1

g

2
(∑N

k=1 b
a
kxk

)2 , {pi, xj} = δij, (4.5)

where a ≡ (i, j) is N(N − 1)/2-valued index, which enumerates

pairs of interacting particles, pi are the corresponding momenta.

The second relation in 4.4 means that all vectors ba lie in a hy-

persurface, which is orthogonal to the vector e. This mean, that

the set of vectors is not N -dimensional one and can be putted in

N − 1 dimensional space by an orthogonal space rotation using an

appropriate matrix Aik. Dynamically, this rotation is equivalent to
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the transition to the center of mass system. Let us write down the

explicit formula for such rotation.

Akm =



1/
√
N for m = 1

−1/
√

(N −m+ 2)(N −m+ 1) for k ≥ m > 1

√
N − k/

√
N − k + 1 for m = k + 1

0 for the rest

(4.6)

Here and further, we will use this definition for matrix Aik, if not

specially mentioned. After performing the rotation we have:

HN =
1

2

N−1∑
i=1

p2
i +

N(N−1)/2∑
a=1

g

2
(∑N

k=2 b
a
kyk

)2 , {pi, yj} = δij, (4.7)

Where yk are new coordinates and pi corresponding momenta. It is

clear, that the expression (4.7) defines the constant of motion of the

Calogero model. It can be considered as the Hamiltonian of some

(N − 1)-dimensional system. From the orthogonality of the matrix

Aik we have:

cosαij,i′j′ =
∑
k

bijk b
i′j′

k =
1

2

∑
k

(δik−δjk)(δi′k−δj′k) =
1

2
(δii′+δjj′−δij′−δi′j),

(4.8)
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the quantities ba = (ba1, . . . , b
a
N−1) are unit vectors in (N − 1)-

dimensional space, and αij,i′j′ are the angles between them. Hence,

the angle between two arbitrary vectors can take the following val-

ues only

αij,i′j′ =
π

3
,

2π

3
,

π

2
. (4.9)

The reduced system can be interpreted as the one-particle sys-

tem in (N − 1)-dimensional space. Let us extract the radius r of

the obtained (N − 1)-dimensional system. This could be done, for

instance, in (N − 1)-dimensional spherical coordinates. In these

terms, the Hamiltonian of the Calogero model looks as follows

H =
p2
r

2
+
IN−2(pϕα, ϕα)

r2
,

with

IN−2 =
Ksph

2
+
∑
a

g

2 cos2 θa
, {pϕα, ϕα} = δαβ, α, β = 2, . . . , N−1.

(4.10)

Here Ksph is the standard kinetic term of the particle on (N − 2)-

dimensional sphere with unit radius, and θa is the angle between

ba and the unit vector directed from the center of the sphere to

the particle, n = r/r. Since IN−2 is independent from pr and r,

it commutes with the Hamiltonian HN−1. So, it is a constant of
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motion of the Calogero model. Note that this integral is quadratic

on the momenta (while in the standard Lax-pair based approach

the only constant of motion, which is quadratic on momenta, is

the Hamiltonian). It can be considered as the Hamiltonian of the

particle moving on the (N−2)-dimensional sphere with N(N−1)/2

force centers defined by the vectors ba. Since this system is invariant

under reflections ba → −ba for any a, sometimes it is reasonable to

consider the N(N − 1) properly located force centers.

In order to clarify the physical meaning of the obtained system,

let us rewrite its potential as follows

Vsph =
∑
a

g

2 cos2 θa
=
N(N − 1)g

4
+
g

2

∑
a

tan2 θa .

Let us remind that the potential

VHiggs =
ω2r2

0 tan2 θ

2

is well-known potential of the Higgs oscillator. It defines the gen-

eralization of the oscillator potential to the sphere with the radius

r0, which inherits all hidden symmetries of ordinary oscillator [47].

Hence, we obtained the integrableN(N−1)/2-centerN -dimensional

Higgs oscillator of the frequency ω =
√
g. The location of the force

centers is quite rigid, and deserves to be considered in more details.
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Π

3

j

b
23

b
13

b
12

y2

y1

Figure 4.1: The force centers
(b12, b23, b13 and their oppo-
sites), which form the root sys-
tem of su(3) and constitute an
hexagon. The angle ϕ describes
the position of a particle on cy-
cle.

Figure 4.2: The vectors (4.16)
together with their opposites
form a cuboctahedron and are
equivalent to the root system of
su(4). The bold points on the
large cycle correspond to b23,
b34 and b24 while the small cycle
contains the vertexes of the re-
maining three vectors. The bold
lines are the axes of the coordi-
nate system (4.18).

Note that the Higgs oscillator has been invented about thirty years

ago and has been studied the hundreds of papers so far (see, e.g. [63]

and refs therein). Nevertheless, its anisotropic version was found

quite recently [64], whereas its two-center version is not known yet,

up to our knowledge.

4.1.2 Three-particle case: circle

The simplest system is the angular part of three-particle model

considered in the pioneering paper by Calogero [20]. Actually, this

system was considered in the middle of XIX by Jacobi [37] (see also
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[65]). For N = 3, we get a particle on circle S1 with three force

centers defined by the unit vectors b12, b23 and b13. The angles

between them are equal to π/3 and 2π/3 (Fig. 4.1):

cosα12,13 = cosα13,23 = 1/2, cosα12,23 = −1/2.

The above vectors make up the set of positive roots of A2 ≡ su(3)

Lie algebra. Completing them by the oppositely directed vectors

corresponding to the negative roots, we obtain a system with six

force centers. The angular part of the Hamiltonian

I =
p2
ϕ

2
+

g

2 cos2 ϕ
+

g

2 cos2(ϕ+ π/3)
+

g

2 cos2(ϕ− π/3)
=
p2
ϕ

2
+

9g

1 + cos 6ϕ

(4.11)

coincides with (4.2). It is invariant under the rotation on π/3

and the reflection ϕ → −ϕ, which generate the symmetry group

D6 ≡ S3 ⊗ Z2 of the hexagon (Fig. 4.1). Here S3 is the symmet-

ric group of three-particle permutations, which I inherits from the

original Calogero Hamiltonian (4.1). The Z2-symmetry corresponds

to the reflection-invariance xi → −xi of (4.1). The integrability of

this system is obvious. Note that the splitting of the three-particle

Calogero Hamiltonian on the angular and radial parts has been used

in Ref. [68] for the detailed study of the quantization.

Let us briefly discuss the relation of the system on circle with the
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superintegrability of three-particle Calogero model. Note that its

superintegrability was studied in detail (see [74] and refs. therein).

In the center-of-mass system, three from the five functionally inde-

pendent constants of motion of the original Calogero system sur-

vive. Namely, the Hamiltoinian of the two-particle system H̃ =

p2
r/2 + I/r2 and its constant of motion

F =

(
p2
r −

6I
r2

)
pr sin 3ϕ+

(
3p2

r −
2I
r2

)
pϕ cos 3ϕ

r
(4.12)

are reduced from the second and third order (on momentum) Liou-

ville constants of motion. Similarly, the third conserved quantity

K =

(
p2
r −

6I
r2

)
prpϕ cos 3ϕ−

(
3p2

r −
2I
r2

)
2I sin 3ϕ

r
(4.13)

is inherited from the additional third order constant of motion of

three-particle Calogero system. The integrals H̃, F , and K are

functionally independent. We have expressed them in terms of the

angular part of the Hamiltonian (4.11), which also conserves. Its

Poisson bracket action maps the Liouville integral to the additional

one:

{I,F} = 3K, {I,K} = −6IF . (4.14)

The four quantities H̃, I, F , and K form an overcompleted set of
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constants of motion. They and subjected to the algebraic relation

K2 + 2IF2 = 8H̃3(2I − 9g), or I =
K2 + 72gH̃3

16H̃3 − 2F2
. (4.15)

Hence, one can choose H̃, I, and F as a complete set of function-

ally independent conserved quantities. The first two of them are

quadratic on momenta, which ensures the separation of variables in

the system.

It is easy to verify that the Poisson brackets (4.14) are in con-

sistency with the relation (4.15). Finally, using (4.15) and the first

equation in (4.14), we obtain the Poisson bracket between two third-

order integrals:

{K,F} = 3(8H̃3 −F2) = 3
K2 + 9gF2

2I − 9g
.

4.1.3 Four-particle system: sphere

In the four-particle case, everything becomes much more compli-

cated. In the same way, we obtain a system on the sphere with

six force centers defined by the unit vectors ba with the following

Cartesian coordinates of the ambient IR3 space:
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b12 =

(√
2

3
, − 1√

3
, 0

)
, b13 =

(√
2

3
,

1

2
√

3
, −1

2

)
,

b14 =

(√
2

3
,

1

2
√

3
,

1

2

)
, b23 =

(
0,

√
3

2
, −1

2

)
,

b24 =

(
0,

√
3

2
,

1

2

)
, b34 = (0, 0, 1).

(4.16)

The vertexes of bij and their opposite vectors form an Archimedean

solid called cuboctahedron (Fig.4.2). This polyhedron, like cube,

has the octahedral symmetry Oh ≡ S4 ⊗ Z2 of order 48. Here S4 is

the symmetric group of four-particle permutations, which preserve

the original Calogero Hamiltonian (4.1). Note that S4 is isomorphic

to the Weyl group of A3 Lie algebra and preserves the orientation

of cuboctahedron. The Z2 symmetry corresponds to the reflection

xi → −xi of all four coordinates. In Lie algebraic description, it

corresponds to the reflection symmetry of A3 Dynkin diagram.

Note that the vectors b23, b34 and b24 belong to the ”equatorial”

plane, the angles between them are equal to π/3 and 2π/3. Their

vertexes and the vertexes of the opposite vectors form an hexagon

(Fig. 4.2). This is precisely the same picture as in the three-particle

Calogero model (see Fig. 4.1). The endpoints of the vectors b12,

b13, b14 are located on a plane parallel to the equatorial one (Fig.
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4.2). The distance between both planes is
√

2/3. They form the

(regular) triangular face of the cuboctahedron, which is shifted by

the angle π/6 with respect to the triangle (b23,b34,−b24).

Let us choose Cartesian coordinates with the first axis directed

along b13 while the second one belonging to the plane formed by

b12 and b13. The frame directions then are orthogonal to the tri-

angles of the cuboctahedron (Fig. 4.2). In the respective spherical

coordinates, the angular part of the Hamiltonian reads:

I =
p2
θ

2
+

p2
ϕ

2 sin2 θ
+

9g(8− tan2 θ)2

2(3 tan2 θ − 8 + tan3 θ cos 3ϕ)2
+

+
12g

3 tan2 θ − 8 + tan3 θ cos 3ϕ
+

9g

4 sin2 θ(1 + cos 6ϕ)
. (4.17)

The invariance under Z3 group of the rotation on 2π/3 along the

third axis is apparent.

The potential (4.17) is really horrible. It is difficult to believe,

that the system with such potential could be integrable, or could

admit a separation of variables. However, the Hamiltonian can be

represented in a much simpler form. Indeed, there are three pairs

of the orthogonal vectors b12 ·b34 = b13 ·b24 = b14 ·b23 = 0. Taking

the vector products of these pairs, one can find out that they form
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an orthogonal frame:

a1 ≡ b12×b34, a2 ≡ b13×b24, a3 ≡ b14×b23 : ai·aj = δij.

(4.18)

The vectors ai are normal to the squares of the cuboctahedron

(Fig.4.2). In this coordinate system, the Hamiltonian (4.7) looks

like

H̃ =
3∑
i=1

p2
i

2
+

∑
1≤i<j≤3

(
g

(ui − uj)2
+

g

(ui + uj)2

)
, {pi, uj} = δij,

(4.19)

where, again, we keep the old notations for the new momenta. This

is the three-particle D3 Calogero model [1]. However, this is an

expected result, since the diagrams D3 and A3 coincide and define

the same algebra (in the Dynkin classification, Dn is defined for

n ≥ 4).

The angular part of this Hamiltonian has the following form:

I =
p2
θ

2
+

p2
ϕ

sin2 θ
+

4g

sin2 θ

[
1

1 + cos 4ϕ
+

k − 6

k − 8 + 8/k − k cos 4ϕ
+

+
4(k − 16 + 16/k)

(k − 8 + 8/k − k cos 4ϕ)2

]
,(4.20)
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where

k = tan2 θ =
1− cos 2θ

1 + cos 2θ
.

In these new spherical coordinates, the invariance under Z4 rota-

tions ϕ → ϕ + π/4 and spatial reflections θ → π − θ, which are a

subgroup in Oh, is transparent.

As was explained above and showed explicitly for three-particle

system, I can be expressed in terms of the five integrals of the

maximally superintegrable Hamiltonian (4.19). It seems that the

two additional integrals of H̃ can be obtained from the Liouville

integrals by Poisson bracket action with I like in the three-particle

case (4.14).

Since the spherical system (4.20) was obtained from the Calogero

model, it is also integrable. Its constants of motion can be obtained

from those of the original model.

4.2 Action-angle variables for dihedral systems

on the circle

In this chapter we construct the action-angle variables for the dihe-

dral systems on a circle, which are defined by the Hamiltonian

H(p, q) = I(pϕ, ϕ|k) = 1
2p

2
ϕ + Vk(ϕ), (4.21)
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with canonical variables {pϕ, ϕ} = 1 and the potential

Vk(ϕ) =
k−1∑
`=0

1

(a` · n)2
where n =

cosϕ

sinϕ

 (4.22)

and a` are the positive roots of a two-dimensional Coxeter system

I2(k) called dihedral system. The full set of roots forms a regular

star shape with an angular separation of π/k. Since the symmetry

relates the root lengths as |a`|2 = |a`+2|2, for odd k all roots have

the same length, say α0, while for even k we may put |aeven| = α1

and |aodd| = α2. Clearly, we have to distinguish between k being

even or odd. As a`·n is proportional to cos(φ−`π
k ), it is a matter of

simple algebra to perform the finite sums and obtain

Vk(ϕ) =
k2α2

0

2 cos2 kϕ
for k = 2k′+1, (4.23)

Vk(ϕ) =
(k′α1)

2

2 cos2 k′ϕ
+

(k′α2)
2

2 sin2 k′ϕ
for k = 2k′, (4.24)

with k′ ∈ N. Hence, the odd systems feature one coupling (α0),

while the even ones allow for two (α1, α2), all naturally positive.

For α1=α2, the even potential attains the same form as the odd

one.

Formulating these systems in terms of action-angle-variables, we

shall find that both types are locally equivalent to the free particle
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on the circle. Besides, we establish a global equivalence between

systems (4.23) and (4.24) for α0 = α1 + α2 and 2kodd = keven. We

shall demonstrate that these systems are equivalently quantized in

their action-angle variables or initial coordinates. We shall also

present a supersymmetrization of the action-angle variable scheme

for the dihedral systems and its relation to the supergeneralization

of the Liouville theorem.

Finally, we shall shall enlarge the configuration space to R2 by

adding a radial degree of freedom to the circular motion. The

ensueing two-dimensional systems represent three-particle rational

Calogero models after separation of their center-of-mass motion.

For small values of k, the Coxeter roots belong to a rank-two Lie

algebra G, which labels the corresponding Calogero model [39]:

k 2 3 4 6

G D2 = A1⊕A1 A2 BC2 G2

(4.25)

In particular, this shall allow us to prove the global equivalence of

the A2 and G2 rational Calogero models and their local equivalence

to a free particle in the plane.
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4.2.1 Action-angle variables

In this Section we construct the action-angle variables for the sys-

tems defined by the potentials (4.23) and (4.24). We follow the

general prescription given in [2]. Being one-dimensional, our sys-

tems feature the Hamiltonian as their single constant of motion. To

construct the action variable, we should fix the level surface of the

Hamiltonian, H(pϕ, ϕ) = I(I) = h, and introduce the generating

function S(h, ϕ) for the canonical transformation (pϕ, ϕ) 7→ (I,Φ)

via

S(h, ϕ) =

∫ ϕ

ϕ0

pϕ(h, ϕ′) dϕ′ =

∫ ϕ

ϕ0

√
2(h− Vk(ϕ′)) dϕ′. (4.26)

The full period integral yields the action variable,

I(h) =
1

2π

∮
pϕ(h, ϕ′) dϕ′ =

1

2π

∮ √
2(h− Vk(ϕ′)) dϕ′, (4.27)

while the angular variable Φ arises from

Φ(h, ϕ) =
∂S

∂I
=
dh

dI

∂S

∂h
= 2π

∫ ϕ

ϕ0

dϕ′√
2(h− Vk(ϕ′))

/ ∮
dϕ′√

2(h− Vk(ϕ′))
.

(4.28)

The parity of parameter k does not play any role in our deriva-

tion.1 Surely, in the limit α2 → 0 the system (4.24) looks like

1Formally, k need not even be an integer. In such a case, however, the system lives on the
infinite cover R of the circle.
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system (4.23). In our construction, however, it is essential to keep

both α1 and α2 non-vanishing. For this reason we shall derive the

action-angle variables of the even and odd systems separately.

Systems with odd k

Inserting (4.23) into (4.27), we obtain

I =

√
2

π

∫ ϕ+

ϕ−

dϕ′

√
h− k2α2

0

2 cos2 kϕ′
, (4.29)

where the reflection points ϕ±(h) follow from

2h cos2 kϕ± = k2α2
0. (4.30)

Calculating the definite integral (4.29), we find

I =
1

k

√
2h− α0 ⇒ I =

k2

2
(I + α0)

2 (4.31)

and thus get

dh

dI
= k2(I + α0) = k

√
2h. (4.32)

At the potential mimimum (ϕ=0), we have I = 0 but h = hmin =

1
2k

2α2
0. To compute the angular variable Φ we employ (4.28) with
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ϕ0=0 and get

Φ =
dh

dI

1

k
√

2h

∫ x(ϕ)

0

dx′√
1− x′2

= arcsinx(ϕ) where x(ϕ) :=

√
2h√

2h− k2α2
0

sin kϕ.

(4.33)

Hence, the canonical transformation to the action-angle variables

looks as follows,

(pϕ, ϕ) 7→
(
I = 1

k

√
2I(pϕ, ϕ)−α0 , Φ = arcsin

{ √
2I(pϕ,ϕ)√

2I(pϕ,ϕ)−k2α2
0

sin kϕ
})
,

(4.34)

where I(pϕ, ϕ) is given by (4.21) and (4.23). When the particle

makes one cycle (the variable x runs from −1 to 1 and back), the

variable Φ advances by 2π as expected. In these variables the Hamil-

tonian is given by the second expression in (4.31). For completeness,

the inverse transformation (I,Φ) 7→ (pφ, φ) reads

ϕ =
1

k
arcsin

{√
I2+2Iα0

I+α0
sin Φ

}
, pϕ = k(I+α0)

√
I2+2Iα0

(I+α0)2+(α0 tan Φ)2 .

(4.35)

Performing the trivial canonical transformation (I,Φ) 7→ (Ĩ =

I+α0,Φ), we get

I =
k2

2
Ĩ2 with {Ĩ ,Φ} = 1, where Φ ∈ [0, 2π) and Ĩ ∈ [α0,∞).

(4.36)

This system can be interpreted as a free particle particle of mass
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k2 moving on a circle with unit radius. Equivalently, it describes

a free particle of unit mass moving on a circle with radius 1/k.

However, we can speak about local equivalence only, since the above

redefinition changes the domain of the action variable from [0,∞)

to [α0,∞)!

Systems with even k

For the case (4.24), i.e. k = 2k′, the action variable is slightly harder

to compute,

I(h) =

√
2

π

∫ ϕ+

ϕ−

dϕ′

√
h− k′2α2

1

2 cos2 k′ϕ′
− k′2α2

2

2 sin2 k′ϕ′
=

√
2ha2

kπ

1∫
−1

√
1− x2 dx

1− (ax+ b)2 ,

(4.37)

where

a =

√
1− k′2(α2

1 + α2
2)

h
+
k′4(α2

1 − α2
2)2

4h2
, b =

k′2(α2
2 − α2

1)

2h
,

x =
1

a

[
cos 2k′ϕ′ − b

]
, (4.38)

and the turning points ϕ±(h) derive from

2h sin k′ϕ± cos k′ϕ± = k′
2
(α2

1 tan k′ϕ±+α2
2 cot k′ϕ±) with α1, α2 > 0.

(4.39)
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The last integral in (4.37) can be calculated by standard methods

(see Appendix) [75]:

1∫
−1

√
1− x2 dx

1− (ax+ b)2 =
π

2a2

(
2−

√
(b− 1)2 − a2 −

√
(b+ 1)2 − a2

)
,

(4.40)

thus,

I =
1

k′

√
2h− (α1 +α2) ⇒ I =

k′2

2

(
I+(α1 +α2)

)2
. (4.41)

Similarly, the angular variable becomes

Φ = 1
2 arcsin

{
1
a

[
cos 2k′ϕ+ b

]}
, (4.42)

where a and b are defined by the expressions (4.38), and h should be

replaced by I(pϕ, ϕ). In these variables the Hamiltonian is displayed

by the second expression in (4.41). The inverse transformations

(I,Φ) 7→ (pϕ, ϕ) looks as follows,

φ =
1

2k′
arccos

{
a sin 2Φ−b

}
, pϕ = k′

√
(I + α1 + α2)2 − 2α2

1

1+b+a sin 2Φ −
2α2

2

1+b−a sin 2Φ ,

(4.43)

where the quantities a and b take the form

a =

√[
1−

(
α1+α2

I+α1+α2

)2
][

1−
(

α1−α2

I+α1+α2

)2
]
, b =

k′2(α2
2−α2

1)

(I+α1+α2)2
.

(4.44)



Calogero model 86

Similar to the odd case, we perform a trivial canonical transfor-

mation (I,Φ) 7→ (Ĩ = I+α1+α2,Φ) and arrive at

I =
k′2

2
Ĩ2 with {Ĩ ,Φ} = 1, where Φ ∈ [0, 2π) and Ĩ ∈ [α1+α2,∞).

(4.45)

So, also the even system (4.24) is locally equivalent to a free particle

of mass k′2 moving on the circle with unit radius (or a free particle

of unit mass moving on the circle with radius 1/k′). Like in the

odd case, the equivalence is not global, since the above shift of the

action variable changes its range from [0,∞) to [α1+α2,∞).

Comparing the results (4.36) and (4.45), obtained by a canoni-

cal transformation from (4.23) and (4.24), respectively, we conclude

that they differ in the “mass” of the (locally equivalent) free par-

ticle as well as in the domain of the momentum (action) variable.

Thus, in general, all systems can be distinguished globally. Inter-

estingly, however, any odd system (kodd;α0) matches globally to a

one-parameter family system of even systems (keven;α1, α2) by the

equivalence

(kodd;α0) ∼ (2kodd; β, α0−β) with 0 < β < α0. (4.46)
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Quantization

In the action-angle variables (I,Φ) derived above it is quite sim-

ple to quantize the dihedral systems (4.23) and (4.24) à la Bohr-

Sommerfeld:

I 7→ Î =
~
ı

∂

∂Φ
, Ψn = 1√

2π
eınΦ for n ∈ Z ⇒ Î Ψn(Φ) = n~Ψn.

(4.47)

The energy spectra of the Hamiltonians (4.31) and (4.41) then read,

respectively,

En(k odd) = 1
2k

2(n~+α0)
2 and En(k even) = 1

8k
2(n~+α1+α2)

2.

(4.48)

This agrees with the literature [69, 70], where the Schrödinger equa-

tion for our potential (4.23) or (4.24) is known as the (first) Pöschl-

Teller equation, whose (normalizable) solutions are given in terms

of trigonometric and hypergeometric functions.

4.2.2 Supersymmetric extension

The supergeometric generalization of the Liouville theorem has been

known for many years [71]. For our context of one-dimensional su-

persymmetric mechanics, we follow here the construction of action-

angle (super)variables as presented in [76]. Let us have N=2M
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one-dimensional supersymmetric mechanics defined on a (2|2M)-

dimensional phase superspace, coordinatized by (pϕ, ϕ|θα, θ
β
). The

supersymmetry algebra reads

{Qα, Q
β} = 2δαβHs and {Qα, Hs} = {Qβ

, Hs} = 0

{Qα, Qβ} = {Qα
, Q

β} = 0 with α, β = 1, . . . ,M. (4.49)

Here, the Hamiltonian Hs differs from the previous H by nilpotent

terms. Fixing the level super-surface, Hs = hs, Q
α = qα and Q

α
=

qα, we arrive at a (1|0)-dimensional circle in the phase superspace.

On this circle, one defines bosonic action-angle variables (Φs, Ĩs),

analogous to the non-supersymmetric case, as well as fermionic ones,

Θα = Qα/
√

2hs, with the following non-zero Poisson brackets 2

{Φs, Ĩs} = 1 and {Θα,Θ
β} = δαβ. (4.50)

In these variables, the Hamiltonian does not depend on Θα or Θ
α
,

hence Hs = Is(Ĩs) just like previously. Nevertheless, the canonical

transformation from the initial to the action-angle supervariables

does mix bosonic and fermionic degrees of freedom.

Let us demonstrate the procedure for the simplest case of N=2,

2The tilde indicates that the action variable has been shifted as in the previous section,
depending on k being odd or even.
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given by the classical counterpart of Witten’s model of supersym-

metric mechanics [79]. It is defined by

Hs = 1
2

(
p2
ϕ+W ′2(ϕ)

)
+ ıθθW ′′(ϕ) and Q = θ

(
pϕ+ ıW ′(ϕ)

)
,

(4.51)

Q = θ
(
pϕ − ıW ′(ϕ)

)
,

with a chosen superpotential function W (ϕ). These functions obey

the superalgebra (4.49) with M=1, by virtue of

{pϕ, ϕ} = 1 and {θ, θ} = 1. (4.52)

Quantization replaces θ and θ by the Pauli matrices σ+ = 1
2(σ1+

ıσ2) and σ− = 1
2(σ1− ıσ2), respectively, and ıθθ goes to σ3. In this

way we arrive at one-dimensional N=2 supersymmetric quantum

mechanics of a spinning particle interacting with an external field.

However, when passing to action-angle variables it turns out that

there is no spin interaction, and the supersymmetric extension is

rather trivial. On the other hand, Witten’s model is quite special:

its supercharges allow no momentum dependence in the nilpotent

part of the Hamiltonian. For a more interesting system related to

our potentials (4.23) and (4.24), let us choose a more flexible form
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of the supercharges, namely

Q = θ k̃Ĩ eıλ(Ĩ ,Φ) =
√

2hs Θ and Q = θ k̃Ĩ e−ıλ(Ĩ ,Φ) =
√

2hs Θ,

(4.53)

where we defined k̃ := k for k odd and k̃ := k/2 = k′ for k even, and

λ(Ĩ ,Φ) is an arbitrary real function of the action-angle variables

of the underlying bosonic system. By expressing (Ĩ ,Φ) through

(pϕ, ϕ), the supercharges are functions of the initial phase super-

space variables. These supercharges also generate the superalgebra

(4.49) (with M=1) and produce the Hamiltonian

Hs := 1
2{Q,Q} = 1

2 k̃
2Ĩ2 + ıθθ k̃2Ĩ

∂λ(Ĩ ,Φ)

∂Φ
. (4.54)

The freedom of an arbitrary real function λ(Ĩ ,Φ) leads to a variety

of supersymmetric extensions of a given bosonic system. A similar

freedom (of an arbitrary holomorphic function) has been observed

in two-dimensional N=4 supersymmetric mechanics [77].

To relate to the standard N=2 supersymmetric mechanics con-

struction (4.2.2) with W ′ =
√
V , we must choose

k̃ Ĩ(pϕ, ϕ) eıλ(Ĩ(pϕ,ϕ),Φ(pϕ,ϕ)) = pϕ + ı
√
V (ϕ), ⇔ tanλ =

√
V (ϕ)

pϕ
,

(4.55)
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where V (ϕ) is defined by (4.23) or (4.24). For odd k we find

tanλ =
α0

cos Φ

/ √
Ĩ2 − α2

0, (4.56)

while for even k the expression is more complicated. Note that

λ = const yields trivial supersymmetry, with no spin interaction.

Another interesting case is λ = Φ/Ĩ, which produces a coordinate-

independent spin-background interaction.

Applying the (super-)Liouville theorem to the supersymmetric

system given by (4.53) and (4.54), we obtain

Ĩs = Ĩ + ıθθ
∂λ(Ĩ ,Φ)

∂Φ
, Φs = Φ + ıθθ (4.57)

∂λ(Ĩ ,Φ)

∂Ĩ
, Θ = eıλ(Ĩ ,Φ)θ, Θ = e−ıλ(Ĩ ,Φ)θ.

As already said, the Hamiltonian in these variables is of the same

form as the non-supersymmetric one, Is = 1
2 k̃

2Ĩ2
s .

4.2.3 Extension to two-dimensional systems

In any conformal mechanics one may separate the radial from the

angular degrees of freedom. The former part is universal, hence the

such models differ only by their angular Hamiltonian systems, whose

coordinates commute with the conformal algebra so(2, 1) [67]. Such
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a splitting is useful for quantization [68] and the construction of

superconformal extensions [66, 67]. For N -particle Calogero models

it yields a separation of one more variable beyond the center of mass.

Thus, their analysis becomes only complicated starting with N=4.

For example, the angular part of the AN−1 rational Calogero model

corresponds to a 1
2N(N−1)-center Higgs oscillator on SN−2. At

N=4 its force centers are located at the vertices of a cuboctahedron

[45]. For N=3 however, the angular part of any rational Calogero

model lives merely on a circle, and it is precisely one of the dihedral

systems considered in this Note.

Therefore, by adding a radial coordinate r ∈ [0,∞), we may

extend our one-dimensional system to a two-dimensional conformal

mechanics with dihedral symmetry (a rational 3-particle Calogero

model), defined by the SO(2, 1) generators

H0 =
p2
r

2
+
I(Ĩ)

r2
=

p2

2
+

k−1∑
`=0

1

(a` · r)2
,

D = prr = pr, K = 1
2r

2 = 1
2r

2, (4.58)

where a` run over the positive dihedral roots as before. This allows

us to extend the above-established equivalence of systems with dif-

ferent k-values to these two-dimensional systems. In particular, all

these Calogero models are locally equivalent to a free particle on the
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plane, which is in agreement with the “decoupling” transformation

of the quantum Calogero model to the free particle [42]. Further-

more, since for certain small values of k the model is based on a Lie

algebra listed in (4.25), we can also assert the global equivalence of

the G2 model with couplings (α1, α2) to the A2 model with coupling

α0 = α1 + α2.

Since the radial motion is unbounded, the Hamiltonian (4.58)

does non admit a formulation in terms of action-angle variables.

This complication my be avoided by adding an oscillator potential,

H =
p2

2
+

k−1∑
`=0

1

(a` · r)2
+
ω2r2

2
=
p2
r

2
+
I(Ĩ)

r2
+
ω2r2

2
. (4.59)

The confining potential allows for the application of the Liouville

theorem. Thus, in order to extend the action-angle variable formu-

lation to the latter system, we fix the level surface of the constants

of motion H and Ĩ and introduce the generating function in accor-

dance with the expression for the symplectic one-form ĨdΦ + prdr,

S = Ĩ Φ+

∫ r

r0

dr

√
2h− 2I(Ĩ)

r2 − ω2r2 = Ĩ Φ+

∫ r

r0

dr

√
2h− (k̃Ĩ)2

r2 − ω2r2,

(4.60)

where h is the value of the Hamiltonian H. By the standard tech-
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nique, we identify the action variables as

Iang = Ĩ and Irad =
h

2ω
− k̃Ĩ

2
(4.61)

and find the canonically conjugated angle variables

Φang = Φ+k̃Φrad−arcsin
h− k̃Ĩ

r2√
h2−k̃2

and Φrad = − arcsin h−ω2r2√
h2−(k̃Ĩω)2

.

(4.62)

Equation (4.61) gives us the Hamiltonian in terms of action vari-

ables,

I = ω (2Irad + k̃Iang). (4.63)

One sees that our confined system (4.59) is locally equivalent to a

two-dimensional anisotropic oscillator with frequencies ωrad = ω and

ωang = 1
2 k̃ω. Since the frequency ratio is rational, the trajectories

on the two-torus are closed.

Finally, we note that the general approach for the construction

of action-angle variables of Calogero models has been presented

in [44]. There, the action variables are associated with the Lax

constants of motion. On the other hand, due to its superintegra-

bility, the Calogero model enjoys an additional series of constants

of motion [43]. Our construction of action-angle variables is in fact

related to these additional constants of motion. In the A2 Calogero
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model, for instance, the angular Hamiltonian I is a function of the

Lax constants of motion as well as the Woijechowski one [45].



Chapter 5

Conclusion

1. We have developed the Lagrangian reduction procedure related

to the first and second Hopf maps. The reduced systems de-

scribe particle moving in the field of Dirac and Yang monopoles

respectively.

2. We have constructed an integrable anisotropic inharmonic Higgs

oscillator.

3. Applying the reduction procedure related tro Hopf maps to

anisotropic inharmonic Higgs oscillator we have constructed a

(pseudo)spherical generalization of (MICZ)Kepler system with

additional term describing an analogue of homogeneous electric

field. The coordinate systems in which the spatial coordinates

be separated was presented.

4. An n(n − 1)/2- center integrable Higgs oscillator was con-

96
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structed from the spherical part of n-particle Calogero model.

For n = 3 the force centers are located in the vertices of

hexagon and for n = 4- in the vertices of Archimedian solid

called cuboctahedron.

5. Action-angle variables were constructed for two dimensional

dihedral systems. It was shown, that choosing interaction pa-

rameters of G2 Calogero model being equal to the sum of inter-

action parameter of A3 one will establish complete correspon-

dence of that systems.
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