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ABSTRACT 

We discuss problems encountered in defining gauge-dependent propagators 

in a confining theory. For precision we use a finite Polyakov-Wilson lattice 

to define the Yang-Mills theory and to provide the ultraviolet and infrared 

regularization. Gauge fixing in a class of superaxial gauges is natural in 

this framework. A variety of approaches for defining the propagators for 

quarks and gluons is discussed and the propagators are evaluated explicitly 

in the strong-coupling limit. We speculate upon the infrared behavior of 

these propagators in the weak-coupling limit and upon the utility and validity 

of the Schwinger-Dyson equations for these propagators. In conclusion we 

propose that the leading infrared behavior is strongly gauge dependent and 

governed by the masses of low-lying color singlet states in the hadron spectrum. 

In the ultraviolet limit, however, with a properly constructed propagator, 

we find no reason to question the conventional wisdom derived from perturbation 

theory. Our conclusions should not depend in any fundamental way on the 

lattice formulation of the gauge theory, except insofar as that formulation 

serves to give precision to the continuum functional integration. 
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1. Introduction 

In a confining theory such as quantum chromodynamics (QCD), physical 

states are composite states in the singlet representation of the gauge group. 

Thus it seems unnatural and academic to attempt to discuss the propagation of 

non-singlet excitations. Nonetheless, our experience with non-confining 

theories, such as quantum electrodynamics (QED) and our confidence in the 

use of perturbation theory for QCD at short distances tempts us to proceed 

to a treatment of quark and gluon propagation at large distances. Thus, 

there have been many efforts to determine the long-distance behavior of 

these propagators for a variety of reasons [l-5]. Of course, even if we 

found the correct behavior of the propagators, it is not clear what we 

could do with them, since perturbation theory is not to be trusted at long 

distances. Nevertheless, in view of continuing interest in these propagators 

we felt it worthwhile to study them in the context of a lattice version of 

the gauge theory. 

That there are subtleties in the definition of the propagators in axial 

gauge has been emphasized by Mandelstam [6]. In a companion work we discuss 

the appearance of spurious source currents in axial gauge propagators induced 

by gauge dependent operators [7]. In this work we add another chapter to the 

pedagogical discussion by examining the effect of these spurious sources upon 

quark and gluon propagators in confining theories. The lattice provides a 

framework for a precise definition of the propagators and exposes points that 

are often glossed over in the continuum treatments. The strong coupling lattice 

results are readily obtained and are suggestive of the weak coupling continuum 

results. The weak coupling version of the theory, with some qualifications, 

could indeed be what we intend to mean by the "continuum" version of QCD. 
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The plan of this paper is as follows. In Section 2 we review the lattice 

gauge theory and discuss the process of gauge fixing in a class of superaxial 

gauges. In Section 3 we discuss various definitions of the propagators in 

a class of superaxial gauges. In Section 4 we find the strong coupling 

limit of the propagators [8] and speculate upon the weak coupling results 

both at long and short distances. Concluding remarks are given in Section 

5. In the Appendix we discuss the gluon propagator induced by the vector 

potential. 

Our main conclusion, that quark and gluon propagation to long distances 

is governed by the low-lying color-singlet states, can be understood from one 

trivial observation: in a confining theory, defined through a Euclidean func- 

tional integral, the propagation of any disturbance whatsoever is mediated 

by finite energy, i.e. physical, intermediate states. The manner in which a 

non-singlet operator gives rise to singlet excitations is amusing and is 

described at length below. 
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2. Review of Gauge Fixing on the Lattice 

a. Notation 

Let us begin by discussing the pure Yang-Mills theory on a lattice [9]. 

For definiteness we use the gauge group SU(21. The generalization to other 

groups is straightforward. On a four-dimensional Euclidean space-time 

lattice of spacing a and side N the gauge link variables U,,, E SU(21 are 

associated with each site x and direction u = 0,1,2,3. In the continuum limit 

the corresponding vector potential A; is obtained from 

U 
XP 

= exp Cig $ A,,1 (2.1) 

where g is the gauge coupling, Au = A",, 8, and ua are the Pauli matrices. 

The lattice is assumed to be periodic 

“x+N$,p = uX,P (2.2) 

where $ is a unit vector in the direction u. We require periodicity in 

complex time in order to be able to treat averages over thermal ensembles 

and to guarantee that zero temperature expectation values are taken on finite 

energy states. Periodicity in space is optional. 

Operator averages are obtained by carrying out the usual functional 

integration 

<Bi = JCdUl (exp SG1@(Ul 
(2.3) 

lCdU1 exp SG 

where 

sG = 2/g2 C Tr Up - 
P 

(2.4) 

The sum is taken over all plaquettes in the lattice, where, as usual, for a 

plaquette at site x in the uv plane, 
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UP = Uxuv = "XI1 Ux+$," ULb,u 4" * (2.5) 

The integration is carried out over each link variable in the sense of the 

Haar measure. For convenience we choose the normalization 

I[dU] = 1 . (2.6) 

The action SG and integration volume is invariant with respect to gauge 

transformations G, E SU(2) such that 

UG 
x,p = Gx u,,,, G& . (2.7) 

To preserve periodicity the gauge transformation must itself satisfy 

G,tN;1 = Z,, Gx (2.8) 

where the z,, are elements in the center of the gauge group ClOl. 

b. Hamiltonian Formulation-A Synopsis 

We summarize here some useful results relating the Euclidean action 

formulation and the hamiltonian formulation of the lattice gauge theory [ll]. 

The relationship is most readily established in temporal axial gauge in 

which the lattice hamiltonian is 

H= 1 2 (Ea )2- 2 1 tr up 

2a "xi ag2 ‘SS 
ss + . 

x,1 >a 

(2.9) 

where i = 1, 2, 3, and where P,, denotes the set of plaquettes constructed with 

space-like links on all sides. The electric flux Et. emanating from site l 

in the direction i on a given link and the link varllble U, satisfy the 
Yj 

commutation relation 
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ii 

E= , 
"xi 

Ef, 1 = ie"pT El d 6 . ..++ ; 
YJ YJ 1J XY 
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(2.lOa) 

(2.lOb) 

i.e. the E" 
;i 

are infinitesimal generators of the left transformation 

"+ + G, U, . (2.11) 
Yj Y Yj 

The right transformations are generated by E'" , which have the property 
"xi 

[E" 
ii 

, U,.l = - 1 U,.hij 6, + 2 . 
YJ 2 YJ X,Y 

They are related to the other variables through 

Ela X-R 
"xi 

ap (“, ) EB 
xi "xi 

sometimes denoted 

Ea + 5 El" (2. 131 
x,-i x-f,i 

:tion -:. and interpreted as the electric flux emanating from site "x in the direc 

(2.1Oc) 

(2.12) 

where R(U) is the O(3) transformation representing U. These generators are 

The operators 

u: = 
X 

; (Eii+E: ) 
i=l x,-i 

(2.14) 

are the infinitesimal generators of time-independent gauge transformations. 

Physical states must satisfy the subsidiary condition 



7 

Q: Iphys’ = D > 
X 

(2.15) 

which is equivalent to requiring that the total color electric flux leaving a 

site must form a color singlet. This is the lattice version of Gauss' law. 

In the continuum limit the condition reads 

4s l 
8 Iphys> = D (2.161 

where ia5 is the gauge covariant derivative. 

The partition function for the hamiltonian H at inverse temperature Bt is 

Z(et) = Tr exp (-fitHl = TrCexp (-zH)l Nt (2.171 

where 6t = riit. The trace is taken over the physical Hilbert space. Since it 

is convenient to use the basis in which the U, are diagonal in carrying out 

the trace it is necessary to introduce a proj%ion operator P onto the 

physical states satisfying Gauss' law (2.15) [12]. The projection operator 

is merely a functional integral over all time-independent gauge transformations 

Pl{U,,]> = JEW I {“,G 1) 
Xl x,i 

where{Ut } are given by (2.7). Thus 
xi 

Z(pt) = Tr Cexp (-sH)Pl Nt = Tr {[exp (-7H)] Nt P) (2.191 

(Note that [P,H] = 01. The partition function has been expressed as the trace 

of a power of the transfer matrix. The transfer matrix element in the limit 

of small z has the form 
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<{Ui i] text (-TN PI{U+ 1) 
x,i 

= J[dG] exp (k I 
22 

tr Upst + - C tr Up,,1 (2.20) 

a2 
P st ag2 pss 

where P,t denotes the set of plaquettes formed on each space-link of the form 

"P,t = "ii xi CU; )+ = G, U 
X "xi (2.21) 

and P,, denotes the set of space-space plaquettes appearing in H. The connec- 

tions with the action formulation is now straightforward. There is an inte- 

gration over a set of gauge transformations (G,] in each of the Nt terms in 

the product and an integration over Nt basis szt (U,.]. The G's become the 

time-like gauge links and the U., 's become the spacgllike gauge links Uxi. 

The resulting partition functioi'is that of an anisotropic lattice: 

where 

Z(ptl a J[dU] exp SG (U, z/a) (2.22) 

sG (u, T/al = 2a C tr Upst + 2r 
2 

Ip tr UP,, (2.23) 

.g2 Pst ss 

for a lattice with lattice constant 'C in imaginary time and a in space. 

c. Gauge Fixing 

Creutz cl31 described a method for carrying out the integration over the 

U's in a class of gauges. Because of the gauge invariance of the functional 

integration many of the link variables are redundant and can be eliminated 

from the integrand by a change of variable. Thus, for example, it is possible 

to eliminate one of the Uyu by carrying out a gauge transformation with 



for x = y 

1 for x f y . 

(2.24) 

The result is to replace that particular link variable by the identity. The 

elimination of further variables can be effected by a sequence of such gauge 

transformations. Once a variable is eliminated, it is, of course, necessary 

to take care that further elimination does not restore the variable. It is 

easily shown [13] that the largest set that can be eliminated in this way is 

the set of link variables that form a maximally connected tree structure on 

the lattice (see Fig. 1). The tree has no branches that form a closed loop. 

Loops that close by virtue of the periodicity of the lattice are also excluded. 

Every point on the lattice is on a branch of the tree. Furthermore, the tree 

defines a unique path connecting any pair of points on the lattice. This is, 

of course, the essence of local gauge fixing: the internal symmetry space on 

each site is fixed uniquely in relationship to that on any other site. 

Some of the gauges obtained in this way have an obvious continuum limit. 

For example, a continuum temporal axial gauge A, = 0 is obtained by setting 

to one as many links as possible in the time direction. For other axial 

gauges nPAu = 0 the correspondence is most natural if the primary gauge fixing 

direction nu is one of the axes of the lattice. For other directions, paths 

along the lattice approximating the rays n,, would have to be constructed. 

Of course to require A, = 0 does not fix the gauge completely. There 

is a residual gauge freedom. A gauge transformation 

$ + x$x + t1xa X+ 
9 p 

(2.25) 

is still permitted if x is time-independent. The gauge can be fixed further, 
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for example, by choosing AI = 0 at one particular time, say x0 = to. Such an 

operation is analogous to setting to one links in the l-direction for one time 

slice as in Fig. 1. After fixing the gauge in this way it is still possible 

to carry out gauge transformations that have no dependence on XI and x0. Thus 

further subsidiary conditions are required. For example one may set A2 = 0 

for fixed x0 = t0 and XI = zI, corresponding on the lattice to establishing 

connections between (x0, XI) planes. Then one may set A3 = 0 for fixed x0 = to, 

Xl = Zl> and x2 = 22. Finally, the only remaining gauge freedom is through a 

global gauge transformation. With such a transformation it is possible to 

arrange so that one of the non-fixed components of the vector potential at 

one space-time point is aligned along in a particular direction in the color 

space, or correspondingly, one of the remaining link variables is replaced 

by a specific element of the equivalence class to which it belongs, but we 

shall instead omit this final step. We call the gauge thus defined up to a 

global gauge transformation a "superaxial gauge." 

In temporal gauge hamiltonian language the subsidiary gauge fixing 

conditions do not correspond to imposing further restrictions on the Hilbert 

space, which might be objectionable [14]. Rather, they correspond to intro- 

ducing a projection operator in the Green's functions that acts at a specific 

time t0. The projection operator is derived from the completeness relation 

for the eigenstates of the space-like link matrices (equivalently, the three- 

vector potential): 

PSG = iG Id u+ .I I{u+ .}‘<iu+ .}I. 
x,1 x,1 x,1 

(2.26) 

where the integration is restricted to a subset of configurations satisfying 

the subsidiary gauge condition. A typical Green's function 
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(2.27) 

is then rewritten as the equivalent expression 

<phySlTPSG(to) Oi(t,i) Oj(t',;)JphyS>/<phyS/PSG (t,)lphys> * (2.28) 

Since the matrix element is evaluated on a physical state the effect of the 

projection is to remove a common factor of a group volume of time-independent 

(redundant) gauge transformations from numerator and denominator. This type 

of projection can be done at only one time without altering the Green's function. 

It is apparent that in such a super temporal gauge there is a set of time- 

like gauge links that can not be set to one, as shown in Fig. 1. The integration 

over these links has a special function that can be understood in the transfer- 

matrix language. As we have noted in Sec. IIb above this integration is associ- 

ated with the projection onto states satisfying Gauss' law and is necessary to 

define the partition function. This stipulation is often omitted in continuum 

formulations of the axial gauge function integral. The required integration over 

a set of time-like links is, in fact, associated with the required periodicity of 

the lattice in complex time. This periodicity excludes branches in the tree that 

close from 5 = 0 to 7 = pt. Thus the integration over these links is common to 

all axial gauges. There is also a complete set of space-like links for a given 

value of x in Fig. 1 that is not set to one. This feature is peculiar to the 

choice of periodic boundary conditions in space. If we had chosen a non-periodic, 

finite spatial volume, then it would have been possible to enlarge the connected 

tree so as to include connections from one spatial boundary to the opposite 

spatial boundary. 

If we do not wish to fix the residual gauge, then the cross-connections 

between the rays in the primary gauge direction should not be set to one. 
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Thus in temporal axial gauge without residual gauge fixing, Fig. 1 should be 

drawn without the cross links in the x-direction along the lower part of the 

figure. 
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3. Gauge-Dependent Propagators on the Lattice 

a. The Naive Axial Gauge Propagators on the Lattice 

For simplicity we begin by discussing the gluon propagator defined 

through the correlation of the field tensor 

a$ 
G~pvPa = <F;,,(x) F;,(Y)>~A , (3.11 

where < >SA denotes an expectation value in a superaxial gauge as described 

in Sec. IIc. The expectation value may be an average over a thermal statistical 

ensemble or a vacuum expectation value, as desired. (Time ordering is omitted, 

since we are concerned here with problems associated with the definition of 

the correlation product. The appropriate time-ordering can always be inserted 

to give the propagator without altering our conclusions.) The corresponding 

lattice expression is obtained by using 

Thus on the lattice 

G$"J) :,y) = 1 

g2a4 

<Tr (Uxpv 8) Tr (U&c &'CJ . 

U xpv - 
a+0 

exp (ig ??! F!,(X) dB) . 
2 

(3.3) 

Since the gauge restriction still permits a global gauge transformation, the 

propagator is diagonal and can be written 

a$ 
GFppO (x,y) 6ab = __ < Tr (Q,v ay) Tr(Uypa uyY)>SA . (3.4) 

3g2a4 

The traces can be restored to gauge-invariant form by introducing a string 

operator in the adjoint representation 
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CA(x,x', path1 = n UiP 
&path 

#here the path is defined by a sequence of links z$ connecting x and x'. If 

the path follows the connected tree for the superaxial gauge in question, the 

string operator is the identity. Thus with the expression 

G;;“p, (x,y) = 6,b <Tr(U,,, 0~1 CA(x,y, gauge$& Tr(Ut 081> (3.6) 
3g2a4 

YPd 

we make no change in the gauge in question, but because the expression is gauge- 

invariant it can be evaluated in that form in any other gauge and it gives the 

same result. Therefore we can remove the gauge restriction by introducing into 

the definition of the propagators an appropriate set of string operators. For 

the gauge of Fig. 1 the result is represented by the diagram in Fig. 2. 

If we had not fixed the residual gauge, then it would not have been pos- 

sible to connect x to y with an "invisible" string unless x and y happened to 

lie on a ray along the primary gauge fixing direction. The expectation value 

(3.4) with x and y on different rays would then give zero [6], because the 

functional integration would be carried out over the residual gauge group, 

allowing independent gauge transformations of the two non-singlet terms in 

the product. It is because we wanted to allow propagation between rays in 

the primary gauge direction that we have chosen to fix the residual gauge. 

Although it would seem that the strings are irrelevant, because they are 

invisible in tne gauge of interest, in fact they play a dynamical role that 

is more apparent in a different gauge. They correspond to the introduction 

of a source current for the vector potential. For example, consider the 

evaluation of (3.6) using (2.3). The integration is over all gauges, but the 

string paths are fixed. In the transfer matrix formalism there are time 
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slices T with extra factors of time-like links coming from the strings. 

These extra factors correspond to a modification of the projection operator 

(2.18) by the inclusion of an extra factor, say Gi s Uit o, thus: 
, 

Pi I{Uxi]> = JCdGI Gi I{‘Ji ij’ 
, 

The resulting state forms a multiplet in the adjoint representation that 

satisfies 

Qylc> = 6, + Aa 
X X.Y 

A cdld' (3.8) 

where A'$ is the color generator for the adjoint representation, i.e. 

Gauss' law (2.15) is modified by the inclusion of an adjoint point charge 

at the coordinate ; of the corresponding time-like link of the string. This 

interpretation of the time-like string is, of course, well known [15]. The 

space-like string corresponds in hamiltonian language to an operator tnat 

removes or adds a line of flux, at the same time removing or adding a pair of 

fixed sources at the end points or displacing a fixed source from end to end. 

The string sources necessarily have an important effect upon the propa- 

gator C71. To make this point most emphatically, we consider the simpler case 

of the corresponding electron propagator in temporal axial gauge in quantum 

electrodynamics: 

Sa6(x,y) = <+,(x1 exp (ie J: Au(x')dxu')$i(y)> (3.91 

where the path of the line integral again conforms to the tree for the super 

temporal gauge in question. Here, the subscripts a and 6 label spin degrees 

of freedom. As with the gluon propagator, the string corresponds to a point 

source that is fixed in space over most of its trajectory. The spectrum of 

the propagator is the same as the spectrum of the hamiltonian in the one- 
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electron sector in the presence of a fixed source of the opposite charge. 

This spectrum is that of the hydrogen atom (with the proton replaced by a 

spinless source of infinite mass) and not that of a free mass renormalized 

electron! The Euclidean propagator is dominated by the Rydberg levels at 

large imaginary time-like separation of x and y. This result can also be 

demonstrated in perturbation theory. It was shown in Ref. 7 that the lowest 

order electron self-energy in temporal axial gauge corresponds in Coulomb 

gauge to the self-energy of both the electron and spurious source and a photon 

exchange between the electron and spurious source. The result can be general- 

ized to higher orders to produce the traditional ladder graphs, among others, 

that give rise to the hydrogenic bound states and scattering states. The 

fixed source is point-like, just like the field operator. Therefore, there 

will be the usual ultraviolet divergences associated with its self-energy. 

The origin of the fixed source can also be understood in a slightly dif- 

ferent language. The propagator is to be evaluated on the physical states. 

Thus it should change nothing if we introduce the projection onto states 

satisfying Gauss' law: 

sa,(x,y) = <#,h, $J;(y)P>ST . (3.10) 

where ST denotes a super temporal gauge. For this Abelian case 

P = l[d+1 exp {ilCv.i-P) 4(x) d3x} , 

which enforces 

0.i = p = - e:$ yO*: 

everywhere. Note, however, that 

(3.11) 

(3.12) 

*;(;I P = P, *;c;, 
Y 

(3.131 
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where 

P, = /[@I exp {iJCo.z - p - es3(x-y)] +(x)d3x] , (3.14) 
Y 

which enforces 

s@(x,y) = <$,(X1 P; $Yl’ (3.16) 

The intermediate states must therefore be states that satisfy Gauss' law with 

the addition of a fixed charge opposite that of the fermion. This is the 

string source. 

The alert reader will notice that moving the projection operator to the 

left of e,(x) gives 

S a6 (X,Yl = 'Pyw $,(X1 $(Yb (3.17) 

indicating that the bra st :ates should include two fixed sources of opposite 

charge, one at x and one at y. These sources are removed by making use of 

the residual gauge fixing condition. (Without residual gauge fixing and with 

x # y this modified projection operator would force the expectation value to 

vanish since the bra and ket states would be forced to lie in orthogonal 

Hilbert spaces.) For example, if, as in Fig. 1, the residual gauge fixing 

takes place at a fixed time, say to, an invisible space-like string can be 

constructed at the same fixed time which has the property 

(3.15) 

everywhere. 

v-E = p + e63ixzyl 

Thus the propagator (3.10) is equivalent to 

cc?& p;ry = P CCL;, (3.18) 
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i.e. it removes the pair of fixed sources, leaving states that satisfy the 

original, unadorned version of Gauss' law (3.12). Thus the propagator can 

be written in the equivalent manner: 

Q(X'Y) = < C(x,y) &(X1 ll$ylP> (3.19) 

where the bra and ket states are now physical states satisfying (3.12) and 

the expectation value is taken in the manner of (2.28). 

Of course, the naive temporal axial gauge propagator (3.10) is not the 

familiar propagator of QED. Certainly, we would prefer to discuss propagation 

without introducing spurious sources. Consider the Coulomb gauge propagator 

for the electron. In that gauge the scalar potential is determined by the 

instantaneous charge density, so that Gauss' law is immediately satisfied 

without the need for a subsidiary condition on the states. At the moment an 

electron is created from the vacuum, an electric flux is also automatically 

created, extending to an image charge at infinity. To produce the same result 

in temporal axial gauge, it is necessary to create the accompanying electric 

flux by hand, thus: 

CO"1 
S a6 = <‘Z’(X) +,(X1 $;(Y) @+b)>ST 

where the operator m+(y) creates the desired longitudinal electric flux. 

Of course the projection operation P (3.11) commutes with the combinations 

++ mt and @k, because they are gauge invariant. One representation for @+ is 

@+(y) = /paths d, -) 

where the integration is over all paths connecting ; to -. Since the flux 

lines are not explicitly created in (3.lb1, it is obvious why the spurious 

source occurs. Because of Gauss' law, an operator cannot create charge 
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without creating flux. Since flux is not created in (3.101, the operator 

that creates a fermion also creates the canceling spurious charge, whether 

we wanted it or not. 

Why not use Coulomb gauge, then? There are many reasons that Coulomb 

gauge is unsuitable for QCD [161, not to mention that an operator that pro- 

duces flux radiating isotropically to infinity creates a state of infinite 

energy. 

Are other axial gauges immune from the spurious sources? In axial gauges 

other than temporal axial gauge, there is a scalar potential. However, if the 

theory is defined through a Euclidean path integral on a periodic space-time 

volume, O(4) symmetry of the theory leads us immediately to the same conclusion 

for gauges of the type n,Ap = 0 with fixed nu, namely, that fixed sources 

accompany the creation of charged particles. The sources always follow trajec- 

tories defined by the tree. Thus the problem of the spurious source is, in 

fact, common to all axial gauges, independent of the spatial boundary condi- 

tions. 

e. An Improved Axial Gauge Propagator 

If the naive axial gauge propagator gives trouble with spurious sources, 

can we define a propagator that is closer to what is desired? Of course, the 

answer depends on what we intend to do with the propagator. Suppose we are 

merely interested in defining a propagator that has intermediate states free 

of spurious charges. For the electron propagator in QED we could try 

s;+x,y) = %,(x) p ++ST (3.22) 

However, the bra and ket states must now have the fixed sources, since the 

intermediate state do not. We could put the source at; in the ket and bra, 

if the residual gauge fixing permits a cancellation of the flux between ; and 
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; through the introduction of C(x,y), thus: 

S,&(S’Yl = <C(X,Yl 4Ja(xl $$Yb, 
Y 

(3.23) 

where the subscript; denotes an expectation value on states with a fixed source 

at ; with the same charge as the fermion. Now the intermediate states are free 

electrons. 

The corresponding gluon propagator has the form 

WJ 
GFuvpa = ;p+y,xl F;,(x) F;,(Y)>;~ 

(3.24) 

where a color label p for the fixed source has been included and we have 

subtracted the disconnected part. The state 10, is the physical vacuum 

state in that gauge with no extra sources present. 

What is the spectrum of this propagator? The intermediate states should, 

of course, be the physical states of the theory. But in a confining theory, 

they are glueball states. It may seem paradoxical that they should occur, 

since we have taken pains to construct a non-singlet propagator. However, if, 

the propagator is defined through a Euclidean functional integral, then the 

expectation value in (3.24) is an average over a statistical ensemble of states 

satisfying Gauss' law, but with a non-singlet source at;. The states of 

finite free energy in such an ensemble are states in which the fixed source 

is screened by at least one gluon in the ensemble. These are the states that 

survive the zero temperature limit. They are the Yang-Mills analogs of the 

hydrogen atom, i.e. the lightest glueball that can be made with one of the 

gluons replaced by a fixed adjoint source. Let us call this a "heavy-light" 
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glueball. Since it undoubtedly has an energy different from that of the 

physical vacuum, it is necessary to normalize the expectation value to the 

partition function in the vacuum with the same fixed source to avoid getting 

zero or infinity in the zero temperature limit. The propagator, then, can 

be described as the amplitude for a process in which a heavy-light glueball 

is converted into a normal glueball, allowed to propagate, and then is recon- 

verted to a heavy-light state. In this way the intermediate states are 

glueballs and not gluons. However, the spectrum of the propagator reflects 

the normalization in that all energies are compared with the energy of the 

modified vacuum with the fixed source present. Therefore the frequency 

spectrum of the propagator (3.24) is the difference between the physical 

glueball frequency and the heavy-light glueball mass. 

Because the spectrum of the propagator is physical, and the vacuum state 

has been removed explicitly, we expect that the dominant contribution to the 

propagator at large distances is that of the lowest lying glueball of mass 

m&--thus 
ab 

GFpvpO(x~y) ,,lx-yT>,l exp [-(mG-mH)]X-yI] . (3.25) 

Tne distance scale l/n is the confinement scale or size of the glueball. 

At short distances we expect that the screening gluons will have only a 

small effect upon the propagation, owing to asymptotic freedom, and we see 

no reason why we shouldn't recover the perturbation theoretical form of the 

propagator, albeit, the specific form of the perturbative propagator that 

has the fixed sources in the in and out states. 
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4. Strong Coupling Lattice Results for the Axial Gauge Propagtor 

a. Strong Coupling Preliminaries 

In the strong-coupling limit (p = 4/g2 + 01 operator expectation values 

are evaluated by expanding the integrand in (2.3) in a Taylor series in p and 

integrating over the gauge link variables [17]. As a preliminary we review 

the well-known evaluation of the expectation value of the m by n Wilson loop 

<Urn,> and the pair of thermal Wilson lines <L+L++>, illustrated in Figs. 
x Y 

3a and b. Each plaquette contributes a factor 

exp (p/2 Tr UP) = 1 + p/2 Tr UP (4.1) 

to the integrand. For most plaquettes the zeroth order term suffices. How- 

ever, the Wilson loop or thermal Wilson line introduces a gauge link matrix in 

the integrand of the numerator of (2.3) that must be compensated by including 

a higher order term in (4.1), according to the second and third of the following 

identities 

j[dUl = 1; JCdUl U = 0; l[dU] uaB U& 5; bay bp6 , 

f[d’Jl ‘J& “;a ‘J,,v ‘Jpo = $ (%p 66” *yp 660 + *,p *f30 *yp 66v’ 

- $ %p 6$” *yq 66, + *ql *pa *yp 66”’ . 

(4.2a) 

The minimal additional plaquette factors are also shown in Figs. 3a and b. 

They correspond to a minimal tiling of the diagram. We obtain easily 

<urn,> = tp/41mn (4.3) 

and 

<L L+ > = 1 [L (p,41Ntl'X-Y' 
XY 2 2 

(4.4) 
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The string tension K is obtained from W,, w exp (-Ka2mn) so that Ka2 = -nn(p/4) 

C181. The thermal Wilson lines measure the "free energy" of a separated pair 

of fixed sources in the fundamental representation [19]. 

<L~L) = exp (- a Nt F (Ix-y/)] (4.5) 

so that at low temperatures (large Nt) 

F(lx-y/I = Ka/x-Yj . (4.6) 

The "free energy" of a fixed source in the adjoint representation can be 

obtained from 

<L,Li - l> = exp (- a Nt FA) . (4.7) 

Subtracting 1 removes the color singlet component, and requires the higher 

order contribution represented by the plaquettes in Fig. 4, giving 

aFA N ;co amA = - 4 Xn (p/43 . (4.8) 

t 

Since the fixed adjoint source is screened by dynamical gluons, this result 

can be interpreted as giving the mass mA of a "heavy-light" glueball in the 

strong-coupling limit. The lowest glueball mass can be obtained in the strong 

coupling limit from the connected correlation between two plaquette operators. 

Thus for two facing plaquettes separated along one of the lattice axes by a 

distance d we have 

'I:1 trl>,j - <jIj'2 d ; _ eXP (-mgd) . (4.9’ 

The leading order strong coupling contribution again comes from a square 

cylindrical diagram and gives 
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amG = - 4 nn(p/b) . 

Thus the lightest glueball and the lightest heavy-light glueball have the 

same mass in the strong coupling limit. 

b. The Naive Gluon Propagator in Temporal Axial Gauge 

We turn now to an evaluation of the naive gluon propagator (3.1) in super- 

temporal gauge in the strong coupling limit. The leading order strong coupling 

contribution comes from the plaquettes shown in Fig. 5. The square cylindrical 

structure along the entire string is required. We find that 

3g2a4 G~~vPd(x,yl - 6,+ exp (-mA IA) (4.101 
b$, >> 1 

where I(A is the length of the string. 

The similarity between the structure in Figs. 4 and 5 suggests that a 

"heavy-light" glueball moves along the line of the adjoint string. In the 

continuum limit, we expect that as long as the string segments are very long 

compared with the confinement scale, the propagator will be of the form 

6ab eXP (- mA IAl 

where mA is the mass of the "heavy-light" glueball and AA is the length of 

the string. Even though there appear to be no infrared divergences, the 

mass mA is ultraviolet divergent, because of the point source. We have not 

attended to the details of removing these divergences. Nevertheless, it is 

still clear that the form of the naive propagator is far from what is usually 

expected: In particular our manner of incorporating the residual gauge fixing 

has severely disrupted the Poincar; invariance beyond what is expected in a 

temporal axial gauge. Furthermore, the long distance behavior is controlled 

by the mass of fictitious color-singlet objects. 
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Similar reasoning shows that the naive quark propagator (in a theory 

with dynamical quarks, of course) has the corresponding form 

S(X,Yl - eXP (-IJH ih) (4.12) 
A.eH >> 1 

where uh is the mass of a color singlet meson with a fixed source in the 

fundamental representation surrounded by one or more light screening quarks 

and lh is the length of the string. 

c. The Improved Gluon Propagator in Temporal Axial Gauge 

We now consider the improved lattice version of the propagator (3.24). 

There are two terms in (3.24). The diagram for the first term is shown in 

Fig. 6. The string (shown as a heavy line) is now wrapped around from T = 0 

to T = B+,. As 6t + m the functional integration for very early and very late 

time is dominated by the lowest energy state containing the corresponding 

fixed point source as required by the matrix elements in Eq. (3.24). To 

represent the second term, i.e. the disconnected part, we use Fig. 6, but 

enlarge the lattice by making the interval 1~~ - T~I grow to infinity. The 

functional integration in the region between ~~ and ~~ will then be dominated 

by the vacuum state, as required in the matrix element. 

In the strong coupling limit the plaquettes contributing to the propagator 

in leading order are shown in Fig. 7. Subtracting the disconnected part has 

the effect of eliminating all graphs that do not connect x to y directly: 

(i.e. those that connect x to y only by wrapping around from T = 0 to T = 6t 

are eliminated.) We see that the structure lying along the string is as 

before, but the structure connecting x and y directly has the form of the 

glueball propagator. Thus we expect that in the continuum limit the large 

distance behavior of this propagator is governed by the lightest glueball in 
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the spectrum. Correspondingly, with dynamical quarks present the asymptotic 

behavior of the improved quark propagator is expected to be dominated by the 

lightest meson containing the quark in question. 
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5. Summary and Conclusions 

We have shown that in axial gauges, correlation products of charge 

dependent operators contain hidden, spurious non-dynamical sources that affect 

the propagation of dynamical fields. Arguing frown strong-coupling lattice 

gauge theory, we propose that in confining non-abelian gauge theories, the 

behavior of quark and gluon propagators in axial gauges is controlled at long 

distances by low-lying color singlet states. In the naive form of the 

propagator these color singlet states contain the spurious source. With an 

improved form of the propagator, proposed in Sec. 3e, these color singlet 

states are the physical hadrons. At distances short compared to the confine- 

ment scale, we expect, in asymptotically free theories, that a perturbative 

form of the propagator with spurious sources is, nevertheless, valid. 

There have been various efforts to determine the long-distance behavior 

of the gluon and quark propagators in axial gauges using the Dyson-Schwinger 

equations, the Ward-Takahashi identities, and additional assumptions [2-51. 

The results apparently disagree with ours. Although there may be subtleties 

in taking the continuum limit, we are confident that the spurious sources are 

present in the continuum limit and that they affect the propagation. Therefore 

the additional assumptions of the Dyson-Schwinger approach must be questioned. 

Finally, we should reiterate that none of the peculiar effects of spurious 

sources plagues calculations with gauge independent operators and conserved 

currents. 
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Appendix A. Gluon Propagation Induced by the Vector Potential 

1. Construction of the Improved Lattice Propagator 

Because the vector potential transforms in a slightly more complicated 

way than the field tensor under a gauge transformation, the spurious sources 

that it creates and the strings associated with it are slightly more com- 

plicated. It is most direct to consider an infinitesimal string element, say 

in the fundamental representation: 

C(x,x+dx) = P exp ig j 
xtdx 

ou hx') d;' , (4.1) 
X 

which transforms under a gauge transformation according to 

C(x,x+dxl + G, C(x,x+dxl G:,dx . (A.21 

The super-temporal gauge gluon propagator induced by the vector potential can 

then be obtained from 

GAuV(x,y) dxpdy" = - I < Tr Lo6 C(y,y+dy)l (1 - /0><01) P 
3 

Tr [os C(X,X+dX)l>ST , (A.31 

rhere the projection operator P enforces Gauss' law on the intermediate states 

with no spurious sources, and we have projected out the vacuum from the inter- 

mediate state. The in and out states must contain spurious sources, because 

C(x,x+dx) is not gauge invariant. The nature of these sources is revealed 

through the relation 

P C(X,X+dX)ab q C(X, X + dX) Ea;X+dX,b (A.41 

in analogy with the abelian case (3.181.' The projection operator Ea;x+dx,b 

selects a state with a pair of quark-like spurious states in the fundamental 

representation with color indices a (antiquark) and b (quark), separated by 
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the distance dx. As before, if the residual gauge fixing condition acts at a 

time to>yo, the spurious sources appear at x and xtdx in both the bra and ket 

states, if we introduce the appropriate string operators. To exhibit in 

detail the dependence upon the labels of the fundamental sources in the in 

and out states, we use the identity 

o'ab c 'cd = - 6ab 6cd + 26ad 6bc (A.51 

so that 

$,(x,y)dxP dx" = 1 fia.x+dx,b < Cba&d;,:,to) ~,,(;+&,;,t,, 
a,b,c,d ' 

ccd(;,;+d;,yo) (1 - lO><O/) Cab(;,:+d;,xo) 'ya,xtdx,b 

(1 - /o><oj) Cab(~,;;+d:,X,)>Sia,x+dx,b . (A.6) 
. 

On the lattice the infinitesimal string elements are replaced by the gauge 

link matrices. 

c(i,i + Ca,x,) = Ux+ . (A.7) 

The string connections corresponding to the second term in the correlation 

(A.6) are illustrated in Fig. 8. 

The use of strings in the fundamental representation has the consequence 

of requiring states with spurious sources in that representation. Had we 

chosen a different string representation, correspondingly different sources 

would have been necessary. 
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2. Ultraviolet Singularities in the Continuum Limit 

Presumably, the conventional propagator is obtained in the continuum 

limit dx,dy + 0. We have not studied this limit thoroughly. It is clear 

that, the limit is subtle. In quantum electrodynamics with or without sub- 

sidiary gauge fixing, the vector potential is an ultraviolet singular operator 

in temporal axial gauge, i.e. all of its matrix elements on nonorthogonal 

states on the physical sector are infinite in the limit of zero lattice 

spacing. Since the string-bit operator in temporal gauge maps physical 

states into states containing fixed sources, which are orthogonal to the 

physical sector of the Hilbert space, we have, for any physical states Ia> 

and ia'> 

~'1 C(x,x+dx) Ia> = 0 . (A.81 

Now if the vector potential is non-singular, we may expand C for infinitesimal 

dx, giving 

<a'1 (1 + ie i*dz)ln> = 0 , (A.9) 

which would imply that <a'la> = 0 for all physical states--a contradiction. 

Therefore i(l) is a singular operator on the physical sector. Mandelstam has 

noted similar problems with Green's functions involving i(x) when the subsidiary 

gauge is not fixed [61. 

Although the QED vector potential is itself singular on the physical 

sector in temporal axial gauge, in non-abelian theories, matrix elements on 

the (color singlet) physical sector are trivially zero; moreover, matrix 

elements of a product of two vector potentials do not seem to suffer the same 

problem provided the subsidiary gauge is fixed. Therefore, it is possible 

the vector potential propagator is still well-defined. This point deserves 

further study. 
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3. Strong Coupling Limit of the Improved Propagator 

Returning to the lattice version, we find that in the strong coupling 

limit the leading contribution to the propagators (A.41 has a square cylindrical 

structure connecting x to y. Thus the large distance behavior is given by 

the glueball propagator, as before. However, a difference is found in the 

structure surrounding the strings. Whereas with the field tensor correlation 

product, as shown in Figs. 5 and 7, a square cylindrical structure runs 

parallel to the adjoint string, here in leading order as shown in Fig. 9, the 

fundamental dipole source pair is tiled over as in Fig. 3(b) where it is 

separated by one lattice unit and becomes a square cylindrical structure only 

where the string pair coincides, as at the bottom of Fig. 8. 



32 

References 

[l] Heinz Pagels, Phys. Rev. DE (1976) 2747; Phys. Rev. DE (1977) 2991. 

[21 R. Delbourgo, J. Phys. G5 (1979) 603. 

[3] M. Baker, J.S. Ball, and F. Zachariasen, Nucl. Phys. 8186 (1981) 531, 560. - 

J.S. Ball and F. Zachariasen, Phys. Lett. 1068, (1981) 133. 

[4] S. Mandelstam, Phys. Rev. D20 (1979) 3223. 

[5] J.M. Cornwall, Phys. Rev. D22 (1980) 1452; Phys. Rev. D26 (1982) 1453. - 

[6] S. Mandelstam, Phys. Rev. 019 (1979) 2391. 

[7] C.E. DeTar, J.E. King and L. McLerran, UU HEP 84/6. 

[8] S.P. Li, Ph.D. thesis, University of Washington, Seattle, Washington 

(19831. 

[91 K.G. Wilson, Phys. Rev. DlO (1974) 2445. 

A.M. Polyakov, Phys. Lett. 859 (1975) 82. - 

F. Wegner, J. Math. Phys. 12 (1971) 2259. 

[lo] L. G. Yaffe and B. Svetitsky, Phys. Rev. DE (1982) 963. 

Cl11 John B. Kogut, Rev. Mod. Phys. 55 (1983) 775. 

Cl21 D.J. Gross, R.D. Pisarski, and L.G. Yaffe, Rev. Mod. Phys. 53 (1981) 43. 

[13] M. Creutz, Phys. Rev. D15 (1977) 1128. - 

[14] J.L. Gervais and B. Sakita, Phys. Rev. Dl& (19781 453. 

[15] G. 't Hooft, Nucl. Phys. B153 (1979) 141. 

Cl61 V.N. Gribov, Lecture at the 12th Winter School, Leningrad, 1977; 

Nucl. Phys. 8139 (1978) 1. 

1171 Gernot Miinster, Nucl. Phys. B180 [FS2] (1981) 23. 

1181 K. Wilson, Ref. [9]. 

[19] L.D. McLerran and B. Svetitsky, Phys. Rev. D24 (1981) 450. - 

J. Kuti, J. Polonyi and K. Szl&hanyi, Phys. Lett. 98B (1981) 199. - 



Figure Captions 

1. Example of a maximally connected tree on a periodic two-dimensional 5x5 

lattice. (Note that periodicity requires links and sites on opposite edges 

to be equivalent.) The links are set to one in a super axial gauge. 

2. Example of the location of plaquettes and the adjoint string (heavy 

line) for the naive propagator in the gauge of Fig. 1. 

3. Bold lines: (a) 2x3 Wilson loop (b) pair of thermal Wilson lines 

separated by one lattice unit. Thin lines: minimum set of plaquettes for 

the leading strong coupling contribution. 

4. The leading strong coupling contribution to the free energy of a fixed 

source in the adjoint representation is a square cylindrical array of plaquettes. 

The string for the adjoint source is the heavy line. 

5. Leading order strong coupling contribution to the naive gluon propagator 

of Fig. 2. 

6. Location of plaquettes and the adjoint string (heavy line) for the improved 

propagator in the gauge of Fig. 1. 

7. Leading order strong coupling contribution to the improved gluon propagator 

of Fig. 6. 

8. String connections for the propagator of the vector potential in the 

gauge of Fig. 1 as described in Appendix A. 

9. Leading order strong coupling contribution to the gluon propagator 

induced by the vector potential corresponding to Fig. 8. 
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