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I. INTRODUCTION

From considerations based on (QCD one expeéts hadrons consisting only
{or mainly) of glue.1 The possibility of identifying as glueballs the
states 1(1240) and 6(1660) recently discovered in ¢ - yX,2’? has made it
even more interesting to get precise predictions from QCD. Since one
still cannot compute the hadron mass spectrum from first priamciples one
must resort to phenomenclogical models keeping as many as possible of the
properties of the full theory. In the case of glueballs, it is of special
importance that the model can handle massless particles, and also treat
gauge-invariance in a satisfactory way.“ One such model, and the one to
be used here, is the MIT bag. The aim of this work, which is in essence
technical, is to calculate to @(as) the spin—dependent energy shift due
to gluon—gluon interactions in the bag. Several authors have already
dealt with the properties of glueballs in the bag model,®-8 so we shall
only briefly summarize the general results concerning the mass spectrum.

Following the argument of Ref., 7, we will assume that spherical glue-
balls exist in the bag model. Hence we can use the static spherical
cavity approximation which has been successful in the case of low-lying
mesons and baryons. The effective Hamiltonian in the n-gluon sector
takes the form2:10

3
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where Hint has a nomtrivial color and spin dependence. The first two
terms (volume and kinetic energy) are well known, and the gluon-gluon
interaction Hint’ which also includes self-energies, will be dealt with

in detail below. The "center of mass" term (CcmS/R) can be estimated
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using the method of Donoghue and Johnson,!® but it is still not clear
whether the zero peint or "Casimir'" energy (CcaSIR) is of importance.
(In earlier works,? the two last terms in Eq. (1) were lumped together

with the self-energy part of Hint in a purely phenomenological term ZO/R

with ZO =~ -1,8.)
In this paper we shall derive explicit expressions for the two-gluon

interaction part of I-Ii in Bq. (i). However, as will become clear later,

nt

we are at this stage not ready to give any detailed predictions for the

mass spectrum.
The next section outlines the calculation of the effective Hamiltonian
leaving most of the technicalities to the appendices. In the last section

we consider some special cases of phenomenological interest.

I%. 6%&5) GLUON~GLUON EFFECTIVE HAMILTONIAN

The QCD interacticn Hamiltonian density to éﬂgz) is in Coulomb gauge

given by,11
4
S, = A28+ H B 4 AP0 2
.1 abe .a ,b,c 1 2 _abc _ade ,b ,c ,d ,e
=3 g £ ij Aj Ak + 7 g f f Aj Ak Aj Ak
1l 2 _abc _ade _b c d e
tye DT BT Fy Ay Dot For At

where the operator D is defined below. The bag model interaction

Coul

Hamiltonian

By = S a3x S, (%) 3

bag
operates on n-gluon cavity states |l,2,...,n>, which are direct products

of one gluon "cavity modes" {i) = [ai,n m ,x;> where a denotes color,

i’

(%,m) orbital angular momentum, and X radial quantum number as well as
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TE or TM'{transverse electric or transverse magnetic). We shall consider
the 2 = 1 modes only, for which |a,2,m,x> = [a,a,x>, where o is the polari-
zation index. A general n-gluon state built from these modes is specified

by wave functions

(R) ~ (R) ():l. .. G.N K}(

(s,M) nal...aN ¢(S,M) o

X
¥ i(xly..z{fcx ) )

N N
where (R) and (S,M) denotes color and spin respectively. The relevant

cavity modes A are given in Appendix A.

Now, write the effective interaction Hamiltonian Hint in Eg. (1)
as, 12
_ self
H =) H o+ ) H (5)
m<n m

Although we shall only compute the effect of the interaction terms Hmn
shown in Fig. 1{(a) and (b), the self energies (Fig. 1(c) and (d}) might
be important as will be briefly commented upon later. Using lowest order
perturbation theory Egs. (2) and (3) immediately yields,

- w38 4 %8, yCoul (6)
mt mr man mn

Ir

0 3 .3 3 3g,»
(-i)SB f dt fd x 47y (m’n’le?f g(?{*,t)«?f g(y,O) | >
- Bag

+ SB f d3x <m'n’[92043[mn> + 8y f d3x <m'ni]%COUlfmn>
bag bag

Here x = X' but in general a' # a and «' # «. Thus Hmn is still an oper-
ator in color and spin space although for notational simplicity we

suppressed the corresponding indices (uN,aN,,aN, etc.). The Bose

statistics factor is SB = 1/2 for identical modes, and otherwise SB = 1.
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The diagrams corresponding to the three terms are shown in Fig., 2. Now

introduce the current and charge density operatorsl3

2B _ ey KB _ abce b ,c _,b c

Jp = (1) A%, =g f (2 ik Aj Aj 3 Ak) (7a)
a _ iy LA _ abc _b ¢
pT = (-1 Ao =g f Fox A (7b)

a , th . . R
where A" is the a color generator. The corresponding antisymmetrized

matrix elements are given by

3

o m| Tl - <n]|m (8a)

p <mlp|n> - <alpjm> (8b)

mn
After some algebra and after carrying out the t-integration one gets

3g _ .2 ,a 3 .3 .k > > > ko
Hmn = ﬂm An SB dINd x d7y [Jmm(x) D(x,v; ®) Jnn(y) (9

bag
ko > > k>
IELR R TeRAD LN cH

Coul _ ,a ,a 3,3 = >, s
H = Am An SB ng d7x d7y [pmm(x) DCoul(x’y’ w) Dnn(y) (10

> > -+
+ D ;
pmn(x) Coul(x’y’ w) pnm(yj]
where the "exchange® term jmnjnm is absent for identical modes. Here

the "confined" propagators D and D differ from the "free" ones by

Coul

boundary terms.l%s15

Instead of using explicit expressions for the
cavity propagators, we follow the original MIT approach and directly

calculate the pott-zni::'.als,gﬂ16

é*mn&) = _fd3y D(X,y: ) ;?mn(;) (11a)
> 3 -+ >
o @ = - f Py by G0Ts W) o (0  aw)

subject to the boundary conditions,



. e (Vxa)=0 (12a)
+
- da
L vl 0 on the surface (12b)
~ >
T -V =0 {(12¢)

We can then write H as
N

n_=-F % s f d>x [jm&) cE I & - an(%’)] (13)

o bag

1 % s fd3x ¢ma |o# 8 (%, 0) |mm>
m 0 B
Pag

Ay Ky sy afg Px [om® + 0, @ + oy - es)
Since we consider the lowest TE and TM modes only, there are just
three possible combinations (TE)(TE)}, (TE)(TM) and {TM)(TM). The wave
functions (K&) are given in Appendix A, the relevant current and charge
densities (3 and p) {as calculated in Appendix €) in Table I and the
corresponding potentials (g and ¢) in Appendix D. Substituting all this
in Eq. (13) we get (see Appendix E) for the spin-dependent parts in the

three cases}7

i) (TE) (TE)

44
- __8 .
g 7 TR MM [aEE S+ 8y g le] (142)
- .38 L .48
age = age + ag® = 0.263 {14b)
_ . Coul
bep = Pgp 0.041 (1l4c)

ii) (TE) (M)

o
5

Hoy = = 1 Aihy [aEM '§1 ) §2 + boy TlZ] (152)
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3 4o Coul __
2mg = 2py + 2on + Ay 0.271 {15h)
_ . 3g Coul __
boy = Ppw t by & 0,000 (15¢)
iii)  (TM) (T™)
Zs g .3
far T TR Mt [am 1 %2 " P le] (162)
= 238 4 %8 o 5,247 - (16b)
Bt T M T P
_ Coul _
by = bapy = 0-007 _ (16¢)

where e, = 32/4, % is the spin-operator and le a tensor operator
acting in spin space given by

T, = 2 [(§l 3% - 112] +3 -3 (17)
This tensor is convenient since it is the symmetric counterpart of §l . §2
(see Appendix B). The Egs. (14) through (16) are the main results of
this paper and we shall make some comments.

As is clear from Appendix D, the contribution from the spin indepen~-
dent part of the Coulomb interaction is not uniquely defined by the
boundary conditions Eq. (12). To understand this, note that the arbitrari-
ness is due to the residual gauge freedom ¢ + ¢ + constant. Of course,
the energy-shift to 6Kas) is gauge invariant, but that also includes the
contributions from the self-energy diagrams (Fig. 1{c) and (d)}). These
are of the same form (const. aS/R) as the spin independent Coulomb con-
tributions and have to be added to these in order to get a gauge imvariant
result. Without computing the self emnergy graphs (work in progress), we
feel that nothing can be safely said about the size of the spin independent

terms. Here we should mention that in Ref. 5 these contributions are



calculatéd by putting ¢ = 0 at infinity and neglecting the self-energies.
We can see no cempelling reason for this prescription.

As explained in Appendix B., the general form of the effective
Hamiltonian involves three linearly independent tensors in 2 particle
spin—-space. The above results expressed in the tensors gm . gn and Tmn
can easily be transformed to any other basis by using the formulae in

Appendix B.

III. LEVEL SPLITTINGS IN LOW-LYING GLUEBALLS

Using Egs. (14) through {(16) we can compute the spin-dependent energy-
shifts for any given state consisting of the lowest lying 4 = 1 TE and/or
™ modes. Some of the phenomenclogically most relevant states are the

color singlets,

1y TEA, 7O - ot T
11)  (TE)Y (™M), JTC = o7t ot
111)  (mn2, 3FC = o, ot

for which the expectation values of the operators Alﬂz, §1§2 and le are

listed in Table 2. Thus we have,

(TE) % AE | = =2,07 s
ot R
(18)
aS
L\.EZ_H_ = 3,67 _ﬁ—



i a
S5
(TE) (TM) : AEO_+ = -1,63 =
(19)
GS
i\Ez___*_ = 0.82 -—R—
2 %
(TM}™: L\EO_H_ = -1.57 =
o {20)
:‘_\EZ_H_ = 0,72 =

The self-energy contributions are not included above, but will be dealt

with in a subsequent paper.'® With an increasing amount of group theoreti-

cal labor similar calculations can be performed for a general n-gluon state.
. 3 . PC -+

One example is the (TE)~ color singlet J = 0 state where (AiAj> = -3/2

and <Z gi . _§J> = =3 and thus

i<j

e

AEO'H' = -1,00 ?s (21)

There are two dangers in obtaining the splittings among the physical
glueball states by simply adding the above energy shift to the lowest
order termg and then subtract. One is that there will be mixing between
the listed states and the non-glueball states with the same quantum
numbers, This mixing problem is probably most severe for the (TE)2 o™t
state, which is expected to mix strongly with the vacuum.!® The second
uncertainty comes from the @(aS/R) spin independent energy shifts and
the self energies. The value of R, and hence the spin-dependent split-
tings (Eq. (18)), depend on these contributions. Also, the self-

energies are different for different gluon modes {most successful bag-

calculations for quark based hadrons have quarks only in the lowest
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state so'the mode dependence is often not mentioned). Glueballs contain-
ing of gluoms in the same mode have, of course, the same self-energies
to the extent that the radii are the same. Thus one can for example

predict

M - M = AE - AE = 2.45 — (22)

We shall not 1list any further predictions here.
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APPENDIX A

The wavefunctions for the lowest & = 1 TE and TM modes with P = +
and P = ~, respectively, are given by
N —iw_t
-)I - -~
Kz(r,t) = - ;ﬁ jl(XED) (r x ea) e E {A,1la)
N - —iw t
M, _ MU, ~ a 1l - 2. - M
R CCYIICREE ENRE PRCVIEN SRS
where
=
2 _ 3 1 E
NE ~ 8m Ré ] ) 2 ) (A.22a)
3o ¥y’ *g
I N
NM T 8m R&_Z () (4.2b)
to Yy
also R is the bag radius, “gy T KE(M)/R’ Xp = 2,744, Ry = 4.493 and

p = r/R. The spherical unit (or polarization) vectors are denoted by éa

~ .y A . . - -
and r, 7T e, The relation to spherical harmonics is

o (3 .
Yl(SB) = \/Z}T T, (A.3)

ZE(M _ ¢, 2EMD

The corresponding magnetic fields, , are given by (£ = Q)

N
B ;;EE [23-1(;%;));:&% - 55 (o3, Crgpd) (B ¢ (E > _éa))J (A.42)

Blr) = N3, Ge,0) (% &) (A.4b)
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' APPENDIX B

In this appendix we define the various operators acting in spin-
space and also give some useful relations.

First consider operators ¢ , acting in one particle spin-space with

af
{(polarization) wvectors éa' In addition to the usual antisymmetrie spin

vector operator h

S =-ia x& (B.1)

=i(r,rxe +rrxe,l (B.2)

_as _1
Uuﬁ = rarB -3 ] {(B.3)

Since S dQ TaB =0 and T - iaB = 0, we can conclude that TaB has purely

% = 2 orbital angular momentum, and the same holds up for UuB' On the

1]

other hand, §a8 obviously has £ = 0 only. A useful expression for %QB is

= . - -+ A > -~ ~ -+
Tp= (D LG DExE+1x3E - HI,
where the order of the spin operators is important.
Next consider scalar (r-independent) operators é%ay),(&ﬁ) acting on

the direct product spin space with vectors & e There are three linearly

a B’
independent operators of this type, namely 6&Bsyd’ Sayéeé and éaﬁsYB'

A more convenient basis is

112 = Gu85Y5 (B.52)
§1 . §2 = Sua " S5 = Suser T Saydss (B.5b)
T = 5 ' (B.5¢)

12 GQGGBY * Gay RS
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where I.' is the unit operator, while T

12 can be expressed as,

iz
> 2 > >
= . _ . B.6
T, =205 - 8)° -1,1+8 -8, (B.6)
One can, of course, use other basis than Eq. (B.4). If we, e.g., use the

*guadrupole-quadrupole" tensor

ij_gij)(ij_zij)= LEN2 4
(ss S671) (88 - 56701, (§1 §2) 3 Tio E.7)
we have -
> > L _ -> > -+ -+ 2 ﬁ Z
a 8, 52+bT12+c.—~(a+b) S; SZ+2b[(Sl Sz) - 3]+c+3b
{B.8)

where 112 is understood in the constant terms. In Appendix E we also need

the angular integral

1 > +_i_£
el I R T (8.9)
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APPENDIX C

Here we calculate the current and charge demsities JEX, pEE_ etc.

The current operator in Eq. (7a) can be written as
1< wffx3- @01 .1

The antisymmetrical expectation value of j [cf., Eq. (8)] which is an

cperater in spin space, takes the form
-+ s > -
I = 1g[Kax§B+ BaxKB-i-%x (AQXKB)] {C.2)

i} The TE-TE Current

2
ZNZR
-!'E —PEZ _ E .EZ[A -~ A - ~ ~ -~ ]
ZEX§ES:+BCCXAB > 33 (rxea)xr}:B (rxes)xrra
XEp
2
N_R
E~ g2 >
——le—z'— 1 rXSaB (C.3)
ED

where the last step follows from Eq. (B.2) and we introduced the notation

7 = 3i1(xg0) it = j1(xy0) ete.

2.2 2
N_R N_R
> +E.E_E g2 P T - s E _E2A+
v x (Aa KS) =5 I3 Vx {rx ea) x {rx eB) i~ j7 ¥x SGB
Xy OX
(C.4)
So for the current §EE we get (suppressing polarization indices)
2
N'R
JEE = 3 _EZ j?’- Px3 (C.5)
QXE
ii) The TM~TM Current
NR .2 '
MM M M Me - >
= =P —— 3 C.6
AuxBS+Ba><BB 2i szi iy rxsue (C.6)
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%{f(p) [2(2 -3, —é’uB]- ig(p) §a8} €.7)

where £{p) and g{p) are defined as

£(o) = 5 dy(23p- iy (C.8a)
1 .M M2
gle) = 5 Q2ig-iy )" - (€.8b)
The current 3MM ig then given by
2
N R
+MM M M2 .M2, 4
i =g - YY) o3 (C.9)
iii) The TE-TM Current
N_N
EExEM - 3 EM 5 M B3 2 .10
GxBg =1 x R3] Jl(rx Saﬁ)r (C.10)
DBy BN g Px (ExS (:r*+()'s*} (c.11)
g X B = i 3XE {al(p) rx {rx SaB)4-a2 o) w8t 2 0788 .

where we used the definitions Eq. (B.1), (B.3) and (B.6) and

_ iE M, M .E _ .E .M
al(p) = 32 JO + 32 JO 32 32 (C.12a)
- :E M M LR .
az(p) =37 1 ~ J2 Jp (C.12b)
e_ 1 B .M _ 5:E iM _ 9:E sM 3 :E sM
33(0) =- 3 (4]0 g 230 ig 232 ig + 33 32) {C.12c)
KEx*M-NENM RZ JE[3M 7 7 P+L (24— M -2 M+ M7 ] (C.13)
a B XXy 12 TaTet ™3 WlgTdo/0,3 73 NMpT 42 B o *
NN 3538 X A X
Tx @Bxyas 2N [0 gyl (iEgmy E B aME 0ud) L B 4B b
o B X X 2 o 1-2 2-1 p X, 2
E M XMD M M aR
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For the current j®¥ we thus get

N_N
N E'M A2 1> ~ = 2
3EM o _ _— R[fz(p) r(r-8)-3 S) + £,(0)T + fo(p)s} (C.15)
E M
where
__ .E.M E M
Eo(0) = %37y + ®gind, (C.16a)
~ i M.E E.M E.M
¥ -1 B EM . C.16b
2(P) = 3 XE(JZJO 393y 23230) (€.168)
1 ELM .M EM
- = . s Doy C.16
iv) The TE~TE charge
EE 8 ap om "‘T‘ER 2 2
L _ B ELZ® L _,, LB g 2, c.17
Pag = B R Aa AB 28 % 51 (UGB 3 GB) ( )

where UaB is defined in Eq. (B.3).

v) The TM-TM charge

=

2

x 2 2
MM . o M MM _ MR .M(.M ,M) 2 M2 M )6
Pag - &R ch\: Ag = 28 3 [32 3y 7435 ) U Y3 \39 30/ %aB

(€.18)

=

vi} The TE-TM charge

%+ X_+x
EM EX M 2B M _, _E M E,M_ My 2 ¢ .19
bop = B m AuAp TiENgNyR ey i§235-3) v 5, (€19
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APPENDIX D

In this section we calculate the potentials 2 and 8.

1. The z—potentials

Generally one has
+
1 R AFENEYC S ARG fc2 .1
bag
We use the free Green's functions and impose the boundary conditions
later. The currents jEE and jM have no time-dependence and hence the

-+ >
appropriate expression for D(x,y; w) in Eq. (D.1) is

L
> > _ 1 T g '
D(x,y; w) = Z A1 TR AMOR AINCI (D.2)
2,m >
whereas in the TE-TM case one has
> > . %
DGxyys w) = B~ 3 (xp ) myGwo ) ¥, () Y, (Q7) (D.3)
3 a

£,m

where WR = x = xy-xE
a8

i} The TE-TE Case

From Eqs., (€.5), (D.1) and (D.2) we get

N2RO
e = g B [—17 o) + mﬁ(p)] Px3 (0.4)
X P
E

where

o}
2 .2 .
JE(D) =f dg & Jl(xEEj) . (D.5a
0
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i
E - .E 1 .2
¥ (o) = af + f dE & 37 (8 (D.5b)
P

The constant a? is determined by the boundary condition Eg. (12) and

found to be

af =-% Jf(l) (D.6)

ii} The T™™~TM Case

From Eq. (C.9), (D.1) and (D.2) we get

2.3
>MM NMR 1 . »
al =g [*‘5 31(9) + le(p)] rx 3 (0.7)
3XM o}
where
o
M _ 2 .2 L2
Jl(p) = f dg g [431(XM€,) - JZ(XME)] (D.8a}
¥;
1
1 2 2
M _ .M < . o
Nl{p} = ay +-.f.d£ : [431(xME) jz(ng)] (D.8b)
e

The boundary condition [Eq. (12)1 gives

M_ 1 M
a; =5 3, (1) (D.9)

iii) The TE-TM Case

e 2 . TEM
Here we face the complication that jEM is not transverse (V -« j £0).

EM

Care must be taken because in the Coulomb gauge the vector potential gT

satisfies the equation

(cP? 4, 2yZB o 7B SEM g Log  EM _ EM  3EM (D.10)
T T VZ L
Note that
}EM - 1wRY T (D.11a)
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where wR = %, - %, and ¢ is given in Eq. (D.22) below. Also

: o ;EM -0 (D.11b)
cn the bag surface.

EM
Rather than calculating agM directly we first compute 2 defined by

T N (D.12a)
and then obtain ggM from -
M _ M _ gl M3 g M 13 B o
T v2 w2 @

{(This procedure is equivalent to first calculating the vector potential in
Lorentz gauge and then returning to Coulomb gauge using a gauge transforma-
tion.)

We get
;EM _ XNE NM R3

T =8 o {[jz(xp) ﬁgM(p) + 1y (x0) ngM(o)] T (D.132)
>

+ [3,60) #%0) + 0,0y 3™

+ 213,000 87%0) + 0y 1) + —ig(-i— £,6) + 1 ()] 3+ 2175
where
e p Mt
o o) = f ag £ 3,(xe) F () (D.13b)
0

g \BJ) = 32 . dg § nz(XE) fz(g) (D.13c)

. e
6y = [ ar (35,00 50 1360 n©] 050

0

1
N (p) = g™ 4 f dz 52 [% nz(xg) fz(g) + nO(XE) fo(s)] . (D.13e)
o]

)

)+ 5 (5 5,00 + 5@)] (@5 £33

|



The constants EEM and QEM

2

NEM_

2y

II. The ¢~potentials

Generally one has

$(x) =

i) The TE-TE Case

-20-

are determined by Eq. (12) and given by

nz(x) + xné(x) ~EM

T 3,00 F xi 6 3, 1) (D.13£)

M nl(x) SEM

a. = - jl(x) I (D.13g)
fd3y DCoul(Sc",Sr’) o(¥) (D.14)
bag

Here both the § = 2 and ¢ = 0 waves in Eq. (D.14) contribute and

we get
N2R3
S
XE 0
where
Gg(p)
E
Hz(p)
E
Go(p)
E
Ho(p)

G5 (p) + p2H§(p)] U—[% GE(p) + H%(p)] 1} (0.15)

o
- [ act® oo (D.162)
0
1
= B +f ae L 320 (D.16b)
2 £ 318 .
g
%
- f ag €2 35 (x0) (0. 16¢)
0
1
2
=55 * f dg € 37 (x4E) (D.16d)
[

Following the same procedure as above the constants sg and sg should be

determined by the boundary condition [Eq., (12)1.

>

Vo6 = 0 for p =1 (b.17)



This equation gives for the

For the unit tensor term in
fulfilled, which means that

related to a residual gauge

ii) The TM-TM Case

Using Egs. {C.9), (D.1)

=

2
¢MM=__20LIE R_3‘£[-1_
XM 3 1 5 p3

where

Gg(o)

fl

Hg(o)

I

M
Go(o)

il

HE(P)

and

g(xmi)

hxyE)
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"tensor" contribution to ¢

E_ 3 B
s, =3 GZ(l) (D.18)

&, the condition (D.17) is however identically
the constant sg remains vndetermined. This is

freedom as discussed in the main text.

and (D.2) we get

GH (o) + p B (0)U - %—cg<p>+—ﬂg<o>] 1} (0.19)

1

J” ac g g (xy6) (D.20a)
0
1
S5 * Jﬁ dg'é g (%8 (D.20b)
3
1
f ae g R(zE) (D.20¢)
0
1
M
8q F f d& & h(x &) (D.20d)
@
JZ(XME)[JZ(XME) + 4j0(xM£)] (D.20e)
= %’[3§(XM5) + 233<XM€)] (D.20€)

M .
Again only §, can be determined by the boundary conditions

[see Eq. (D.17)1., ©One finds

n
I
N Lo

¢ty m.21)

M2
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iii} The TE-TM Case

From Egs, (C.18), (D.2) and (D.l4) we get

K. +x
EM . s Byy Lg@BE_M[ 1 .M EM :. 3
» i 3 b{ENM 3 R % X { 2 Gl (D) + Hl (Q)] r*§S
EM )
where
¢
3.,
M(,) = . .

6TM(p) f dg g Jl(an)[ZJO(ng) Jz(xmg)]

O

1
HM(p) = $TM 4 f d& j (x8) [:ZJ'O(XM'E) - j2<KME)]
o

t

a?M is determined by Eq. (12) to be

EM _ EM
sy = 2G1 (1)

(D.22)

{D.23a)

(D.23b)

(D.24)
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APPENDIX E

Here we calculate the quantities a and b ocecurring in Eqs. (14)-(16).
In general, a and b get contributions from three sources: the 3-gluon,

4~gluon and Coulomb terms,

a = a38 + a4g + aCl - (E.la)
b = o8 + b8 4 O (£.1b)
i) TE-TE
From Eqs. (13), (C.5) and (D.4) one obtains
38 _ _ 3 B, 7EE _ % 3g 32
Hpp = =A A, f d°x JEE. JEE -agh, 2 et s 8 (E.2)
bag
where
1
3 9 L2 1 2 .
st =3 [ @ ite [l B vo NE(o) |~ 0.361 (E.3a)
G
with
SngR4 2
%

The Bose factor SB = % was cancelled in Eq, (E.2) because of the two

4g

identical terms im Eq. (9). The 4~glucn contribution HEE is given by

o
4g=_ 3 o 2ETY - _ 54g+.+ .
W mnny 2 [ Cx @ IED =-any 2 a2 85, e
bag

where

rs = 9AE L AE
zl(x) = 2Au xAB (E.5)
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and

1
3 2 .4
e = "% YE_/- dp p Jl(xE.O) ~ - 0,078 {(E.6)
0
For the Coulomb part one gets

C1_ 3, EE, .EE _ % C 1
Heg = Mhy f d'x p ¢ T mhAy Pep s T12 + g 12 (E.7)

where
i
ci_ 3 2 2,2 1 B E ~
b 25 YEfo de p Jl(pr)[p—3 Gylp) + Hz(p)} = - 0.041 (E.8)
0

C1

The coastant c-p 1s not determined by the boundary comdition [Eq, (i2)],

as described in the text.
ii) TM-TM

As above, one gets

3g _ f 3 MM oMM _ % 3g .
H® =- A A, 7% T e a™ =~ n, 2 §1 §2 (E.9)
bag
where
i
3g _ 1 .2 2, 1 M 2. M
B = 2 YM_[ dp[431(pr) - JZ(XMp_)][p Jie) + o Nl(p)] ~ 0,328
0 (E.10a)
with
8ﬂN§R4 2
v, o= T (E.10b)
M 2
3%,
also
bg _ f 3 m, w _ %s 4z g
Hy = —Aghy 2 Cx M = -, A §’1 5, (E.11)
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with
M - MM
0 = 2 A A (E.12)
Cne obtains
1
4 1 2 . . 2
S = 36 M f do ¢ (2 TotxyP) - JZ(XMD))
; (E.13)

.2
x (4 JO(XMD) + 4 jO(pr) jz(pr) + 3 jg(xmp)) s - 0.081

For the Coulomb part one obtains

a3
HCl=ﬁ1-ﬁ2 dex MM, MM f[bClT + G } (E.14)

MM 172
bag
where
1
ci_ 1 .2 27, , .
b T T 75 YMfo dp p [Jz(pr) (JZ(XMO) + 4 30(pr))]
9 (E.15)

1 M 2 M
x [03 Gz(p) + p Hz(p):l N~ — 0,007

Again the constant céﬁ is not determined by the boundary conditions.
iii) TE-TM
From Eqs. (13}, (C.15) and (D.10) one obtains
Hog =~y f & [T e gm )

bag (E.16a)

[+

- = [.382 . 3g
Mt R [aEM 8.0 8y + by le] ‘

L]

Here notice the equality
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-3 3EM  »EM 3 +EM  >EM
d”x 3 ta = d"x ] < a
T
bag bag

[ (e

bag

) fd3xpm_¢ﬁm
bag

2. gEM) (E.16b)

We recognize the last term in Eq. (E.16b) as the Coulomb (or longitudinal

electric) energy. In this case it would be simpler to directly calculate

the sum of magnetic and electric energies, For consistency we quote the

results separately as in the other cases. Also in this case the 3g-energy

shift has a transverse electric contribution in contrast to the (TE)2 and
2

(TM)} " cases.

The various contributions to agi and bgﬁ are given by

l -~ ~
aﬁf} = “YEM X_/(; dp 92{% £,(0) [jz(Xp) NGy + n, (xp) R o))

+ -%(% £,(0) + fo(p))] +% fo(p) [jo(xo) flEM(p)
X (E.17a)
~EM 1 /2
+ no(Xp) J 7 (p) +;}:§(*§ £,(0) + fo(o))]}
1
+3vm [ (i) - ) [5 716 407 M)
X 0.442
and
0380 [ o2 7 o [ B0
EM 10 PP Eop) dyRER) By Ae
0 (E.17b)

+ n,(xp) 35“(;))] ~ =0.003
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with

8w NENMR4 2
Y = —_—_— (E.l?C)
EM 3XEXM
For the 4g-interaction one has
s
4 -EM +EM »E M
HE& = —Alﬁz ?§-b d x [21 (x) 22 {g) + Rl(x) 22(x)]
ag (E.18)
%s bg =+ > kg ) b4g
=AM R [EEM Sy ° Sy ¥ by Tyy * gy I12]
where
M, . _ E_ M M _E
21 (x) = Aa X AB Aa X AB (E.19)
and
4g _ 2 .2 1 7., . 2
ame = Ve fdp P Jl(pr) [12 (ZJO(XMp) - Jz(kMp))
{E.20a)
1 - - - —
+3 32(XM°) (4Jo(pr) + JZ(XMQ))]"- 0.025
g _ 2.2 3 .
(E.20b)
. (éjo(xMQ) + jz(pr)) & -0.001
For the Coulomb part we get
ng]i - A, f &3y [pMM . oFE 4 B ¢EM]
bag
(E.21)
®s.c1 2 C1 c1
= Ay ?[am 1 8 by Ty ooy I12]
where
1
aot =y ot [ de 5 o) (25 (ko) - 3o (i)
EM 36 "EMCE T *M 0 P Jq\XgP 3o VP I\ 5P
(E.223a)

x [GEM(p) + o> HfM(p)] ~ ~0.146
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cll 1 '
Pen T 25 YmM ¥e Fu j(; de 35 Cxyp) (AJO(XMQ) ¥ Jz(XMp))
(E.22b)
x [% G];(p) * o Hg(p)] & -0.002

Again cg; is undetermined.
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Table I. Current and charge demnsities jpm and Prn for 2=1 gluon modes.
- _
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TE-TE 3g —% dy{xgp) xS *28T31(XE9)[U“_3‘I]
DXE E -
SRt Y &
X 4
TM-TM M
A > 2 2 2
- JZ(XMD)] r%xS +§ [JZ(XMO)-I-ZJO(XMO):I I
N_N . NN R{x_+x)
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TE-TM
1 o~ > = s s s, -
-3 S)+ £, (p)T+ fo(p)S] + [-—JO(XMD) JZ(KMP)] re$




Table I3I.

the operators AIA
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Expectation values for
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> >
S,+5

2

and le

the lowest lying glueball states,

for

ALK 3.3 T
12 1 51t 12
oM 5 2 4
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Fig. 1.

Fig., 2.
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FIGURE CAPTIONS

Gluon~gluon interactions to @(as).

Two-gluon interaction diagrams in Coulomb gauge:

a) one-gluon exchange, b) four-gluon interaction

and ¢) Coulomb interaction.
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ADDENDUM

For states comsisting of more than two glucons there is an extra
contribution to the @(as)—energy shift for gluon pairs in color octet
spin one state. One part comes from the four-gluon interaction [Fig., 1(b)l
and is easily calculated. Another piece comes from the annihilation
diagrams [Fig. 1(c)] which is simply related to the gluon exchange graph
[Fig. 1(d)] via s-t chanmel crossing. We only deal with the (TE)2 and
(TM)2 cases, The calculations afe contained in Appendix F and here we

just quote the results

[+
AN _ s jeol _sp
Hmn - R P8 P1 dmn (1
_ 438 bg _
- dEE + 3agn N 0.529 (2a)
- 438 bg o
dpt = Gar t 3a 0.555 (2b)

where Pgo is the color projection operator on a color octet state and

P?p is the spin preojection operater on a spin one state.



APPENDIX F

In this Appendix we calculate the contribution to Hmn due to the
s—channel annihilation graphs Figs. 2(d)} and 2{e) for the (TE)Z- and
(TM)z—cases. These are related to the t—u-channel graphs 2{a) and 2{c)
by crossing. More explicitly we get the contribution of the annihilation
diagram from the corresponding exchange graph by'making the fellowing
changes:

(A) Use the relation

+.+ - _+.+ +.+2 _rpSP
(SI Si; et [21 5,28, - (5, sz) ]S_Ch 2p}? (F.1)

which can easily be derived using the formulae in Appendix B, to express
the spin operators in terms of s-channel invariants. As expected we get

the projection operator PTP on spin one states.

(B} Do the same for color, i.e., use

> r _ col
(AI AII)t-ch = - 3¢ (F.2)

where P§01 is the projection operator on color octet states. {As in the
spin case there is an explicit, though more complicated, formula giving
col

P8 in terms of s-channel invariants, i.e., the quadratic and cubic

SU(3) Casimir operators.)

(C} Nete that the gluon exchange graphs [Figs. 2(a) and 2(c)] are
the sum of t- and u-channel contributions, To get the s~channel results
by crossing we must use only the t-chanpnel piece. (For the (TE)Z- and
(TM)Z-cases, the t- and u-~channel contributions are equal so we can simply

divide the ¢ld expressions by 2.)
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(D) The energies of the propagators are for the (TE)Z- and (TM)2-

cases given by ZwE and ZmM respectively instead of 0 in the exchange case.

(E} For the Coulomb diagram it is easy to see that the charge
densities wvanish identically for the (TE)Z— and (TM)Z—cases. With these

changes, the calculations proceed exactly as in Appendices C-E and we get

the results:

_ _8 peol .sp
H = --Fe PP a (F.3)
d = a8 4 32%% & _0.296 - 0.234 & -0.529 (F.4a)
EE EE a—EE - - - -
_ .38 bg ., s
dgg = &b+ 328 ® -0.312 - 0,263 ~ -0.555 (F.4b)

where we also added am extra term which comes from the four-gluon inter-
action in Fig. 1(b}. Although formally not an annihilation contribution
this is included here for formal convenience. As usual we neglected a
spin independent constant term. Note that the diagram 1(c) gives a
positive energy shift as expected from mixing with a lower lying {in

this case dominantly the lowest one-gluon mode) state.



ERRATA

The results for the TE-TM-mode are applicable only te the 2-gluen

system, where all the TE-TM pairs are in color and spin symmetric states.

~J

In EBgs. (9), (10) and (13) the u-channel graphs {containing terms

i..) should carry am overall * sign where + refers to the color

mn- nm

symmetric (1,88,2?) and - to the antisymmetric representation (8A,10,T6).

Pl

P.

5:

18;

26:

The sentence ''where the exchange term ..."

Eq. (lic) shall read:

Coul

bEE = bEE = —-0,041 .
Eq. {21) shall read:
%s
EO_H_ = 0.59-}3— .
Eq. (D.1la) shall read:
§H1= iw$¢m4 .
L
Eq. (E.17a) shall read:
3 _
aEM - ‘YEM - A
Eq. {(E.17b) shall read:
BB - ... ~ 0.003

EM

should be deleted.



Fig. 1.

Fig, 2.

FIGURE CAPTIONS

Gluon-gluon interactions to @(as).

Two-gluon interaction diagrams in Coulomb gauge:
{a) one-gluon exchange, (b) four-gluon interactionm,
{¢) Coulomb interaction, {(d) and {e) gluon-gluon
annihilation into a transverse and Coulomb gluon

respectively,
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