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Introduzione

La connessione tra osservazioni cosmologiche e fisica del neutrino rappresenta uno
dei piu’ interessanti e fecondi argomenti della fisica delle astroparticelle.

Esperimenti terrestri hanno dimostrato che i neutrini oscillano e quindi hanno
massa. Tuttavia gli esperimenti sulle oscillazioni non possono misurare il valore
assoluto di tale massa, ma solo la differenza dei quadrati delle masse. In particolare
gli esperimenti sulle oscillazioni dei neutrini atmosferici forniscono solo il modulo
della differenza dei quadrati delle masse tra il secondo e il terzo autostato di massa.
Non conoscendo il segno di questa misura, esistono due possibili gerarchie delle
masse dei neutrini: quella normale e quella invertita. Le due differenze dei quadrati
delle masse misurate implicano in ogni caso l’esistenza di almeno due neutrini dotati
di massa.

A differenza degli esperimenti sulle oscillazioni, la cosmologia misura la somma
delle masse dei neutrini e, attualmente, e’ l’unica strada alternativa agli esperimenti
sul decadimento beta, e supera questi ultimi in accuratezza. Tutto cio’ e’ possibile
perche’ la presenza dei neutrini lascia un segno attraverso il free-streaming nei dati
cosmologici: lo spettro di potenza delle anisotropie della radiazione di fondo cosmico
a microonde (Cosmic Microwave Background, CMB) e lo spettro di potenza delle
fluttuazioni di materia derivante dalle survey di galassie.

Finora abbiamo parlato di tre neutrini (νe, νµ, ντ ), tuttavia questo e’ solo lo
schema del Modello Standard. Precise misure elettrodeboli della risonanza dello Z0

hanno vincolato il numero delle specie di neutrini leggeri attivi con grande precisione,
Nν = 2.9840±0.0082, consistente entro ∼ 2σ con le tre famiglie aspettate in base alle
predizioni del Modello Standard. Invece, il numero effettivo di neutrini termalizzati
e’ stato fissato al valore cosmologico standard Neff = 3.046, che eccede leggermente
l’intero 3 per via del disaccoppiamento non istantaneo: l’annichilazione e+e−, che
avviene circa all’energia del disaccoppiamento dei neutrini (∼ 1 MeV ), fornisce
l’energia in eccesso. Usufruendo degli attuali dati cosmologici, gli effetti di Neff sono
rintracciabili nello spettro delle anisotropie della radiazione cosmica di fondo sia a
livello di ampiezza dei picchi sia a livello di deformazione dei picchi stessi a ` > 600.
Quindi e’ di capitale importanza l’uso dei recenti dati di CMB ad alti multipoli,
provenienti dagli esperimenti South Pole Telescope e Atacama Cosmology Telescope,
al fine di comprovare o escludere la presenza di una componente extra di radiazione:
la radiazione oscura.

Questi ulteriori gradi di liberta’ relativistici possono essere dovuti a neutrini
sterili, che hanno lo stesso effetto degli attivi sugli osservabili cosmologici. Questa
ipotesi da’ luogo ad un’interessante connessione fra cosmologia e fisica del neutrino.
Infatti, recenti risultati da esperimenti Short–Base–Line sulle oscillazioni dei neutrini
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suggeriscono la presenza di neutrini sterili che possono spiegare l’eccesso di radiazione
trovato nella CMB.

Questa tesi e’ volta a fornire limiti sui parametri cosmologici legati alla fisica del
neutrino, ovvero la densita’ totale di materia oscura calda e il numero effettivo di
gradi di liberta’ relativistici, usufruendo dei recenti dati cosmologici. L’obiettivo e’
anche di testare la stabilita’ di questi vincoli in modelli cosmologici non minimali,
variando le nostre assunzioni teoriche a priori riguardo al modello ΛCDM. Infine
questa tesi e’ dedicata allo studio della possibile connessione fra la cosmologia e la
fisica del neutrino alla luce degli ultimi risultati di esperimenti sulle oscillazioni.

La tesi e’ organizzata come segue.
Nel Capitolo 1 introdurremo brevemente il Modello Cosmologico Standard per un

Universo omogeneo ed isotropo in espansione. In particolare calcoleremo le equazioni
di Friedmann e forniremo l’evidenza della materia oscura.

Nel Capitolo 2 introdurremo la teoria delle perturbazioni lineari e ci focalizzeremo
sulla radiazione di fondo cosmica, discutendone i diversi effetti che danno luogo alle
anisotropie e calcolandone lo spettro di potenza. Infine presenteremo lo spettro di
potenza di materia cosi’ come puo’ essere estratto dalle survey di galassie.

Il Capitolo 3 sara’ dedicato ai neutrini: prima di tutto introdurremo i neutrini
dal punto di vista della fisica delle particelle, poi ci concentreremo sul fondo cosmico
di neutrini e discuteremo gli effetti della massa dei neutrini sulle equazioni della
teoria delle perturbazioni lineari e sugli osservabili cosmologici. Infine mostreremo
gli effetti del numero effettivo di gradi di liberta’ relativistici sempre in relazione
agli osservabili cosmologici.

Nel Capitolo 4 spiegheremo i metodi statistici che andremo ad applicare nei
capitoli successivi al fine di estrarre da dati cosmologici informazioni sui parametri
cosmologici legati alla fisica del neutrino.

Nei capitoli successivi verra’ presentato il lavoro che ho condotto durante il
Dottorato di Ricerca.

Nel Capitolo 5 condurremo una ricerca della radiazione oscura, parametrizzan-
dola come numero effettivo di gradi di liberta’ relativistici, Neff , e studiandone
il comportamento dal punto di vista della teoria delle perturbazioni attraverso i
parametri relativi alle perturbazioni dei neutrini: la velocita’ del suono effettiva ed
il parametro di viscosita’. Inoltre verificheremo la presenza di degenerazioni fra i
parametri relativi alle perturbazioni dei neutrini ed altri parametri cosmologici (il
parametro dell’equazione di stato dell’energia oscura e il running dell’indice dello
spettro di potenza di materia), degenerazioni che possono portare a conclusioni
errate riguardo ai valori assunti da tali parametri relativi alle perturbazioni dei
neutrini. Tale verifica sara’ condotta su dati simulati degli esperimenti Planck e
COrE. Infine controlleremo la stabilita’ dei risultati relativi alla radiazione oscura nel
caso di un Universo non piatto e sottolineeremo come tali risultati siano fortemente
dipendenti dall’assunzione di una prior sulla costante di Hubble.

Nel Capitolo 6 ci concentreremo sulla fisica del neutrino come possibile ponte fra
due branche della fisica: la cosmologia e la fisica delle particelle. Useremo sia dati
cosmologici sia dati da esperimenti Short–Base–Line su oscillazioni di neutrino per
verificare la consistenza dei risultati cosmologici sulla massa dei neutrini sterili nel
caso di modelli 3+1 e 3+2.

Nel Capitolo 7 sottolineeremo come i limiti cosmologici sulla massa dei neutrini
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siano fortemente dipendenti dal modello assunto nell’analisi. Stimeremo di quanto tali
risultati cambiano al variare delle nostre assunzioni teoriche rispetto a reionizzazione
e curvatura. In particolare, data l’attuale assenza di informazioni precise riguardo la
storia della reionizzazione cosmica, verificheremo i limiti sulla massa dei neutrini
nell’ottica di uno scenario relativo alla reionizzazione il piu’ generale possibile
utilizzando un approccio basato sulle principal components. Per quanto riguarda la
curvatura, studieremo come i vincoli sulla massa dei neutrini perdano in definizione se
si assume un Universo non piatto. Infine vedremo come l’informazione derivante dallo
spettro di potenza relativo all’effetto Sunyaev Zel’dovich termico possa rompere
la degenerazione fra σ8 (la radice del quadrato della media delle fluttuazioni di
densita’ calcolate su un volume sferico di raggio 8Mpch−1) e la somma delle masse
dei neutrini; come conseguenza, cio’ comportera’ un miglioramento nei vincoli sulla
massa dei neutrini.

Nel Capitolo 8 calcoleremo il contributo degli effetti Sunyaev Zel’dovich e dei
foregrounds alle anisotropie della CMB. Poiche’ il contributo di tali anisotropie
secondarie risulta dominante su piccole scale dove gli effetti della massa dei neutrini
e di un numero non standard di neutrini lasciano un’impronta rilevante, sara’
importante nei futuri esperimenti ad alta precisione avere una chiara rilevazione di
SZ ed una perfetta sottrazione dei foregrounds.
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Introduction

The connection between cosmological observations and neutrino physics is one of
the most interesting and hot topics in astroparticle physics.

Earth based experiments demonstrated that neutrinos oscillate and therefore
have mass. However oscillation experiments cannot measure the absolute mass
value, but only the squared mass differences. In particular the experiments on the
oscillation of atmospheric neutrinos provide only the modulus of the mass squared
difference between the second and the third mass eigenstates. Since we don’t know
the sign of this measure, there are two possible hierarchies: the normal one and the
inverted one. The two measured mass squared differences imply that at least two
neutrinos are massive today.

Unlike the oscillation experiments, cosmology probes the sum of the neutrino
masses and, at the state of art, is the only viable alternative to the beta decay
experiments in this field and exceeds it in accuracy. This is possible because neutrinos
leave key signatures through their free-streaming properties in several cosmological
datasets: the temperature anisotropies power spectrum of the Cosmic Microwave
Background (CMB) and the power spectrum of matter fluctuations which is one of
the basic products of galaxy redshift surveys.

So far we have spoken about three neutrinos (νe, νµ, ντ ), but this is only the
Standard Model scheme. Precision electroweak measurements at the Z0-resonance
pin down the number of light active neutrino species with high accuracy, Nν =
2.9840± 0.0082, consistent within ∼ 2σ with the known three families of the SM.
Instead, the effective number of thermally excited neutrino species has been fixed at
the cosmological standard value of Neff = 3.046, that slightly exceeds the integer 3
because of the non-instant decoupling of neutrinos, so e+e−annihilation, that took
place at the energy of neutrino decoupling (∼ 1MeV ), provides residual neutrino
heating. At the state of art of the current precision of cosmological data, the effects
of Neff influence the Cosmic Microwave Background temperature anisotropy power
spectrum both on the amplitude and the shape at ` > 600. So it is crucial to use the
recent high multipole CMB data from South Pole Telescope and Atacama Cosmology
Telescope experiments, in order to assess or rule out the presence of an extra–Dark
Radiation component.

These extra relativistic degrees of freedom may consist of sterile neutrinos,
which have the same effects on the cosmological observables of the active ones.
This hypothesis gives raise to an interesting interplay between cosmology and
neutrino physics. Actually, recent results from Short–Base–Line neutrino oscillation
experiments suggest the presence of additional sterile neutrinos that can explain the
excess of radiation found in CMB data.



xiv Introduction

The present thesis is aimed to provide constraints on cosmological parameters
related to neutrino physics, namely the total hot dark matter density and the effective
number of relativistic degrees of freedom, from recent cosmological data. The goal is
also to test the robustness of these constraints in non minimal cosmologies, varying
our theoretical assumptions about the ΛCDM model. Finally this thesis is devoted
to study the possible connection between cosmology and neutrino physics in light of
the most updated oscillation experiments results.

The present thesis is organized as follows.
In Chapter 1 we briefly introduce the Cosmological Standard Model for an ex-

panding homogeneous and isotropic Universe. In particular the Friedmann equations
are calculated and the Dark Matter evidence is provided.

In Chapter 2 we introduce the linear perturbation theory and we focus on the
Cosmic Microwave Background, discussing the effects that give rise to its anisotropies
and calculating its power spectrum. Finally the matter power spectrum is presented
as it can be extracted from galaxies surveys.

Chapter 3 is dedicated to neutrinos: first of all we introduce neutrinos from the
point of view of particle physics, then we focus on the Cosmic Neutrino Background
and we discuss the neutrino mass effects on the equations of the linear perturbation
theory and on the cosmological observables. Finally we show the effects of a non
standard effective number of relativistic degrees of freedom.

In Chapter 4 we explain the statistical methods we are going to apply in subse-
quent chapters in order to extract information on cosmological parameters related
to neutrino physics from cosmological data.

In subsequent chapters the work I carried out during my Ph.D is presented.
In Chapter 5 we perform a new search for Dark Radiation, parametrizing it

with an effective number of relativistic degrees of freedom parameter, Neff , and
studying its behavior from the point of view of perturbation theory through the
neutrino perturbation parameters: the effective sound speed and the viscosity
parameter. Moreover we investigate possible misleading degeneracies between the
neutrino perturbation parameters and other cosmological parameters, as the dark
energy equation of state parameter and the running of the scalar spectral index, by
performing mock analyses based on the future experiments Planck and COrE. Finally
we check the stability of the results about Neff if we assume a non-flat Universe
and we underline how these results depend sensitively on the assumption of an HST
prior on the Hubble constant.

In Chapter 6 we look at neutrino physics as a link between cosmology and particle
physics. We make use of both cosmological data and Short–Base–Line experiments
data in order to verify the consistency of the cosmological results on sterile neutrino
mass in a 3+1 and 3+2 schemes, with 1 and 2 massive sterile neutrinos, respectively.

In Chapter 7 we point out that the impressive cosmological bounds on neutrino
masses are model dependent. So we investigate how these constraints change if we
change our theoretical assumptions about reionization and curvature. In particular,
given our lack of knowledge about reionization history, we investigate the bounds
on the neutrino mass in a more general reionization scenario based on a principal
component approach. Concerning curvature, we study how the neutrino mass
bounds are weakened by assuming a non-flat Universe. Finally we will see how the
information on the temperature Sunyaev Zel’dovich power spectrum can break the
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degeneracy between σ8 (the root mean square of density fluctuations on a spherical
volume of 8Mpch−1) and the sum of neutrino masses; as an aftermath, this will lead
to a better constraint on the neutrino mass.

In Chapter 8 we calculate the contribution of Sunyaev Zel’dovich effects and
foregrounds to the CMB anisotropies. Since these secondary anisotropies contribution
is dominant on small angular scales where neutrino mass and non-standard neutrino
number leave key signatures, it will be important to have a clear detection of SZ
and a perfect subtraction of foregrounds in future high precision data.
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Chapter 1

The Cosmological Standard

Model

1.1 The Hubble law
The Universe is isotropic and homogeneous at large scale (more than 100 Mpc) [1, 2].
Combining the isotropy respect to any point in the space with the cosmological
principle that state that there is no preferred direction in the Universe, one obtains
the isotropy respect to any point and this implies the homogeneity.

The spectrum of a galaxy shows some absorption lines produced by the relatively
colder outer layers of the atmosphere. Each line is characterized by a wavelength
different from that observed in the laboratory. This difference defines the redshift

z = (λobs − λem)/λem

where λobs is the observed wavelength and λem is the emitted one equal to the
wavelength that would be observed in the rest frame. This quantity is found to
be greater than zero. In 1929 Hubble plotted the distance of 50 near galaxies
as a function of z and discovered the law z = (H0/c)r, where Ho is a constant,
H0 = 73.8 ± 2.4Km/s/Mpc following the last data release of the Hubble Space
Telescope [3], or H0 = 100h Km/s/Mpc where h = 0.72 ± 0.07. Since the values
of z in Hubble analysis were small, he made use of the classical Doppler effect
formula: z = v/c, where v is the radial velocity of the source. So the Hubble law
becomes: v = H0r. The Universe expands homogeneously and isotropically. This
model can be mathematically described as follows: considering three galaxies in the
positions −→r1 ; −→r2 ; −→r3 , they define a triangle of side r12 = |−→r1 − −→r2 |, r23 = |−→r2 − −→r3 |,
r31 = |−→r3 − −→r1 |. An isotropic and uniform expansion implies that the triangle
doesn’t change its shape and its sides obey to the expansion rules: r12 = a(t)r12(t),
r23 = a(t)r23(t),r31 = a(t)r31(t), where a(t) is called scale factor, it is a function
of the time normalized at 1 at the present time and it is independent on the
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point and on the direction. The scale factor describes how the distances increase
or decrease with time. At any time t an observer placed in galaxy 1 beholds
the other galaxies recede with speed: v12(t) = dr12(y)

dt = ȧr12(t0) = ȧ
ar12(t) and

v31(t) = dr31(t)
dt = ȧr31(t0) = ȧ

aar31(t). An observer in 2 would find the same relation
between the observed receding velocity and the distance. Since these relations can
be applied to any three galaxies, in the Universe it holds that H = ȧ

a . The present
status of receding galaxies implies that in the past they were merged together in an
infinitesimal volume, as predicted by the Big Bang theory.

1.2 The Friedmann-Robertson-Walker metric

In the Minkowsky metric the distance between two events in the four dimensional
space time (assuming the speed of light c = 1) is:

ds2 = ηαβdx
αdxβ with ηαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


where the spatial part is Euclidean. In this kind of Universe subject to gravity and
to the homogeneous and isotropic expansion, the most general metric can be written
as:

ds2 = gµνdx
µdxν

where gµν is the metric tensor. Splitting the temporal, spatial and mix component,
we obtain:

ds2 = g00dt
2 + 2goidxidt− σijdxidxj .

Applying the isotropy, it means no preferred direction goi = 0; moreover, the time
synchronization implies that dτ = √g00dt, so g00 = 1. Because of the isotropy
the spatial metric ds2

3 can be dependent only on |r| and on dx2 + dy2 + dz2 =
dr2 + r2(dθ2 + sin2 θdφ2), where r2(dθ2 + sin2 θdφ2) is the surface element. So we
can rewrite:

ds2
3 = a2(t)λ2(r)

[
dr2 + r2(dθ2 + sin2 θdφ2)

]
,

or ds2
3 = a2(t)

[
λ
′2(r′2)dr′2 + r

′2(dθ2 + sin2 θdφ2)
]
, where r′ = λr and λ′ = λ/(rdλ/dr+

λ). The unknown function λ(r) is obtained by imposing the homogeneity. To do
this we need to look at a spherical hypersurface in a four dimensional Euclidean
space. The spherical four dimensional coordinates are:

x1 = arccosχ sin θ sinφ
x2 = arccosχ cos θ
x3 = arccosχ sin θ cosφ
x4 = arcsinχ.
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The conditions for a three dimensional space to be spherical are: a2 = x2
1+x2

2+x2
3+x2

4,
differentiating this relation: x4dx4 = −(x1dx1 + x2dx2 + x3dx3), so we obtain

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4 = dx2
1 + dx2

2 + dx2
3 + (x1dx1 + x2dx2 + x3dx3)2

x2
4

=

= a2[dχ2 + sin2 χ(dθ2 + sin2 θdφ2)]

that is the same of the above general formula if sinχ = r and dχ = λdr, that means if λ =
1√

1−r2 . For any line element a2 = x2
1 + x2

2 + x2
3 + kx2

4, we obtain ds2
3 = a2[dχ2 +

F (χ)(dθ2 + sin2 θdφ2)], where

F (χ) =


sinχ k = 1
χ k = 0
sinhχ k = −1

and dχ = λdr with λ = 1√
1− r2

.

This homogeneous and isotropic metric is called Friedmann-Robertson-Walker metric
[4] and it turns out to be:

ds2 = dt2 − a2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)
]

The variables r, θ, φ are called the comoving coordinates of the point in the space.
If the expansion of the Universe was perfectly homogeneous and isotropic, these
coordinates would be constant for any point at any time. The constant k is an
adimensional number and in principle can assume any value but these three cases
are considered:

• k=0 spatially flat Universe;

• k>0 positive curvature, close Universe;

• k<0 negative curvature, open Universe.

The Friedmann-Robertson-Walker metric can be rewritten as

ds2 = dt2 − a2(t)
[
dr2 + S2

k(r)dΩ2
]
, (1.1)

where

Sk(r) =


R sin(r/R) (k = +1)
r (k = 0)
R sinh(r/R) (k = −1)

where R is the curvature radius R = 1/k.
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1.3 The relation between the redshift and the scale fac-

tor
The photon path in the space-time is described by a nil four-dimensional geode-
tic. So for any infinitesimal segment of the photon path it holds that ds =
0, that means c2dt2 = a2(t)dr2. Supposing a photon were emitted at time te with
wavelength λe and received at time t0 with wavelength λ0, it would pan out:

c

∫ t0

te

dt

a(t) =
∫ r

0
dr = r.

The next wave would be emitted at te + λe/c and observed at t0 + λ0/c, so

c

∫ t0+λ0/c

te+λe/c

dt

a(t) = r.

Comparing the two equations above one obtains:∫ t0

te

dt

a(t) =
∫ t0+λ0/c

te+λe/c

dt

a(t)

this means that the integral of dt/a(t) between the emitting time and the observing
time is the same for any wave. After subtracting

∫ t0
te+λe/c

dt
a(t) we obtain∫ t0+λ0/c

t0

dt

a(t) =
∫ te+λe/c

te

dt

a(t) .

In the meantime between two subsequent waves the Universe expansion is negligible
so a(t) can be considered constant in the integral:

1
a(t0)

∫ t0+λ0/c

t0
dt = 1

a(te)

∫ te+λe/c

te
dt

or
λe/a(te) = λ0/a(t0).

Using the redshift definition z = (λobs − λem)/λem and assuming a(t0) = 1, we find
the relation between the redshift and the scale factor:

1 + z = a(t0)/a(te) = 1/a(te)

1.4 Distances
The cosmological observables of objects at astronomical distances are: redshift z,
flux f , luminosity L, and, if the object has an extension greater than a light point,
the angular diameter δθ.

The standard candle is an object of known luminosity used to determine the
luminosity distances:

dL =
(
L

4πf

)1/2
.
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In the case of a static Euclidean Universe the luminosity distance would be equal to
the exact distance of the object. In such a Universe the propagation of light would
be described by the law f = L/4πd2. The expansion of the Universe implies that the
observed flux from a source at redshift z decreases of a factor (1 + z)−2. First of all
the expansion of the Universe makes the energy of any photon of the standard candle
decrease. If a photon is emitted with energy Ee = hc/λe when the scale factor is a(te),
it will be observed at a(t0) = 1 with a greater wavelength: λ0 = λe/a(te) = (1 +z)λe.
So the energy is decreased: E0 = hc/λ0 = hc/ [λe(1 + z)] = Ee/(1 + z). Secondly,
the time interval between the photon detections increases because of the Universe
expansion. If two photons are emitted from the same source in the same direction
with a time interval δte, the exact distance between theme is cδte, but at the time of
detection the distance between them will increase up to cδte(1 + z). To sum up, in
an expanding Universe the relation between the luminosity distance and the physical
distance is

dL = Sk(r)(1 + z),

where Sk(r) is defined in the FRW metric (1.1). In the particular case of a spatially
flat Universe it is

dL = dP (t0)(1 + z),

where dp(t0) is the proper distance of the object nowadays and can be calculated by
integrating the radial comoving coordinate over a nil geodetic (the photon path):

dp(t) = a(t)
∫ r

0
dr = a(t)r.

An astronomical object is defined a standard ruler if we know its physical length
l. Supposing you could measure the redshift and the distance between the edges of
a ruler that is perpendicular to the line of sight, if δθ � 1, using the small angles
formula, we would be able to calculate the angular diameter distance

dA = l

δθ
.

Also the angular diameter distance would be equal to the exact distance in a static
Euclidean Universe. In an expanding Universe, using the FRW metric, the distance
between the edges of the standard ruler at the emitting time te is

ds = a(te)Sk(r)dθ.

Assuming ds = l we obtain
l = Sk(r)

δθ

(1 + z) .

So the angular diameter distance pans out to be:

dA = Sk(r)
1 + z

.

Comparing the last expression with the luminosity distance, one finds the following
relation

dA = dL
(1 + z)2 .
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Finally, in a flat Universe it is

dA = dp(t0)
1 + z

= dp(te).

1.5 The energy-momentum tensor
The conservation laws of a homogeneous and isotropic perfect fluid in the restframe
of the center of mass are:

%̇ = 0
∇p = 0

where the energy density % = nmc2 (n is the density of particles with mass m) and
the pressure in the i direction is pi = nmv2

i . We can define the tensor

Tµν = diag(%,−px,−py,−pz) = diag(%,−p,−p,−p) (1.2)

where the isotropy has been assumed in the last equality. The conservation laws can
be summed up into

Tµν,µ = 0.

This relation holds only for two tensors: gµν e uµuν , with uµ ≡ dxµ/ds the four-
velocity and

gµν =


1 0 0 0
0 − 1

a2 0 0
0 0 − 1

a2 0
0 0 0 − 1

a2

 .
The only function of the two tensors and of %, p that becomes equal to 1.2 in

the Minkowskian approximation is

Tµν = (%+ p)uµuν − pgµν . (1.3)

In the restframe respect to the matter it is uµ = (1, 0, 0, 0) and so the tensor
components become:

T 00 = %, T ii = p

a2 , T ≡ Tµµ = %− 3p.

The covariant generalization of the conservation equation is

Tµν;µ = 0 where Tµν;µ = Tµν,µ + ΓµµβT
βν + ΓνµβTµβ (1.4)

where the Γ are the Christoffel symbols defined as: Γαµν = 1
2g
αβ(gνβ,µ+gβµ,ν −gµν,β).

In the FRW metric with k = 0 the Christoffel symbols are all nil except Γij0 =
Γi0j = Hδij and Γ0

ij = aȧδij . As an aftermath in the FRW metric the equation 1.4
in the case ν = 0 gives the continuity equation:

%̇+ 3H(%+ p) = 0. (1.5)
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1.6 The Friedmann equation
The Einstein equation is

Rµν −
1
2gµνR = 8πTµν

where Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓβαµ is the Ricci tensor and R = gµνRµν
is the scalar curvature. In the FRW metric with k = 0 Christoffel symbols are all
nil unless Γij0 = Γi0j = Hδij e Γ0

ij = aȧδij . So it is R00 = −3(Ḣ + H2) = −3 äa and
the trace is R = −6Ḣ − 12H2 − 6ka−2 = − 6

a2 (ȧ2 + aä+ k). Considering the (0, 0)
component and the trace of the Einstein equation:

R00 −
1
2g00R = 8πT00

R = −8πT

using the first equation and the combination of the two, one finds the two Friedmann
equations:

H2 = 8π
3 %− k

a2 (1.6)
ä

a
= −4π

3 (%+ 3p). (1.7)

The two Friedmann equations plus the continuity equation 1.5 describe an expanding
homogeneous and isotropic Universe. Nevertheless the two Friedmann equations and
the continuity equation are not independent: deriving the first Friedmann equation
1.6 and putting it into the continuity equation 1.5 one finds the second Friedmann
equation.

Once we have defined the critical density %c = 3H2

8π and the density parameter
Ω = %/%c, the first Friedmann equation becomes:

1 = Ω− k

a2H2

that shows how a Universe with k = 0 is characterized by a critical density so Ω = 1.
If it is k = +1 we will have Ω > 1, while if it is k = −1 we will have Ω < 1. After
defining the curvature component Ωk ≡ − k

a2H2 , we obtain the relation

1 = Ω(a) + Ωk(a)

that holds at any time.

1.6.1 The relativistic component: radiation

A gas of photons with a distribution which follows the black body law has a pressure
p = 1

3%. Using equation 1.5 we obtain %̇ = −4H% and so

%r ∼ a−4

and using the redshift
%r = %cΩr(1 + z)4.
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The radiation density is diluted as a−3 because of the volume expansion and as a−1

because of the loss of energy due to expansion.
Integrating the Friedmann equation for a spatially flat Universe with a single

component (the radiation), we find the behavior of the scale factor as a function of
time [5]

a ∼ t1/2.

The energy density of a gas of radiation described by a black body spectrum is

%γ = g

2π2

∫
E3dE

eE/T + 1
= gπ2

30 T 4

where g are the relativistic particles degrees of freedom.
Since %γ ∼ a−4, the relation between the temperature and the scale factor is

T ∼ 1
a
.

Since the present photon background temperature is TCMB = 2.725K ≈ 10−13GeV
we obtain %γ = g · 2.5 · 10−34g/cm3.

From the two behavior of matter and radiation %m = %m,0a
−3 and %r = %r,0a

−4,
we can define the equivalence epoch when %r = %m:

ae = %r,0
%m,0

= Ωr

Ωm
.

Since Ωr ≈ 4.3 · 10−5h−2, the equivalence took place at redshift

1 + ze = a−1
e = (4.3 · 10−5)−1Ωmh

2 = 23000Ωmh
2.

If Ωm = 0.3 and h = 0.7, we obtain ze ≈ 3450.

1.6.2 The non-relativistic component: matter

Matter can be considered as a fluid with nil pressure. Actually p = nmv2 (v2 mean
square velocity of the particles) is much smaller than % = nmc2 in the non-relativistic
case. From the continuity equation 1.5 we obtain %̇/% = −3ȧ/a or

%m ∼ a−3 ,that means %m = %0

(
a0
a

)3
.

And using the redshift:

%m = %0(1 + z)3 = %cΩm(1 + z)3

where Ωmatter and %c are the present values.
In the case of a spatially flat Universe k = 0, the first Friedmann equation 1.6

calculated nowadays becomes H2
0 = 8π

3 %0, so(
ȧ

a

)2
= 8π

3 %0a
3
0a
−3 = H2

0a
−3
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where in the last equality has been assumed a0 = 1. After integrating, we obtain
2
3a

3/2 = Ht. The conclusion is that the behavior of the scale factor during the
Matter Dominated Era (MDE) is

a ∼ t2/3.

Finally the present critical density %c,0 = 3H2
0

8πG ≈ 2 ∗ 10−29h2g/cm3 turns out to
be nearly equal to the measured matter density.

1.6.3 The cosmological constant

The present era should be considered dominated by a cosmological constant with
w = −1, or P = −%, so %Λ = const. If ΩΛ > 0 is dominating, the expansion is
neverending and exponential

H2 = H2
0 ΩΛ, so a(t) ∼ exp

(
H0
√

ΩΛt
)
.

Taking into account all these components the Friedmann equation becomes:

H2 = 8π
3
(
%ma

−3 + %ra
−4 + %ka

−2 + %Λ
)

and dividing by H2
0 (

H2

H2
0

)
= (Ωra

−4 + Ωma
−3 + ΩΛ + Ωka

−2). (1.8)

1.6.4 Other components

For any fluid with equation of state

p = w%

the density as a function of the scale factor follows the law

% ∼ a−3(1+w).

In the case of a spatially flat Universe and if the fluid is the dominant component in
the Friedmann equation the scale factor grows as

a ∼ t
2

3(1+w) .

Any other component can be added to the Friedmann equation 1.8 with the
proper dependence on the scale factor. So the most general manner to write the
Friedmann equation is:

ȧ2 = 8πG
3c2

∑
w

%w,0a
−1−3w − kc2

R2
0
.
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1.7 Dark Matter
In the blue band the total luminosity density of the stars within a radius of 100 Mpc
of our Galaxy is j?,B = 1.2× 108LSun,BMpc−3. In order to convert the luminosity
density in a mass density it is necessary to know the mass/luminosity ratio of the
stars. Assuming a normal distribution of the type of stars around the Sun, we
find 〈M/LB〉 ≈ 4MSun/LSun ≈ 170.000kg/watt. In this case the star mass density
in the Universe is %?,0 = 〈M/LB〉 j?,B ≈ 5 × 108MSunMpc−3. Since the present
critical density is defined as %c,0 = 1.4 × 1011MSunMpc−3, the density parameter
of the stars nowadays is Ω? = %?,0

%c,0
≈ 0.004. The contribution of the stars to the

density Ωm ≈ 0.3 necessary for a flat Universe is less than 0.5%. Adding black
holes, interstellar medium gas, white dwarfs and brown dwarfs, we can calculate
the present density parameter for baryons Ωbaryons = 0.04± 0.01. So the majority
of baryonic matter is invisible. Nevertheless the deficit of matter remains. The
consequence is that the majority of the matter is non-baryonic: dark matter (DM)
neither absorbs or emits at any wavelength.

1.7.1 Dark Matter in galaxies

Dark matter can be revealed by observing its gravitational effects on visible matter,
for example in the orbital velocity of stars in spiral galaxies as our Galaxy or M31.
Stars lay on circular orbits around the center of the disk of spiral galaxies. Their
velocity is given by the relation v =

√
GM(r)

r , whereM(r) is the mass within a radius
r. The surface brightness of a spiral galaxy decreases exponentially with distance
I(r) = I0exp

(
− r
RS

)
where the scale length RS is a typically a few kpc (4kpc for

our Galaxy, 6 kpc for M31). At distances of a few scale length the mass remains
constant so the velocity should decrease as v ∝ 1/

√
r. Instead it has been observed

that the velocity of the stars in a spiral galaxy remains constant at large distances.
This gives rise to the hypothesis of the existence of a dark matter halo that makes
the galaxy density parameter reach the value Ωgal ≈ 0.16.

1.7.2 Dark Matter in clusters

In 1930 Zwicky, studying the Coma cluster, discovered that the radial velocity
dispersion was very high (about 1000 Km/s). Stars and gas were not enough massive
to keep the galaxy together at that velocity. The cluster should have contained dark
matter. Supposing cluster are Virial object

W + 2K = 0, K = −1
2W

the mass of the cluster can be calculated as
1
2M

〈
v2
〉

= 1
2α

GM2

rh
, M =

〈
v2〉 rh
αG

,

where rh is the half mass radius and α is a numerical factor around one depending
on the density profile of the cluster. The density parameter of the galaxy clusters is

Ωcluster ≈ 0.2,
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that represents a lower limit of the matter density in the Universe.

1.7.3 CDM vs HDM

The non baryonic Dark Matter can be divided in two categories, depending on
the kinematic behavior. Hot Dark Matter (HDM) is made of particles that are
still relativistic when they decoupled from the thermal bath. The strong velocity
dispersion (free-streaming) of these particles cancels out the density perturbations
of this fluid and affects the perturbation evolution and the growth of structures.
Instead Cold Dark Matter (CDM) is made of particles that are no more relativistic
at decoupling. The features of a Universe containing CDM are very different from
the features of a Universe containing HDM. In a CDM Universe the formation of
structures is hierarchical: first we have the smaller structures (galaxies) and then the
bigger ones (clusters and superclusters) that are younger. On the contrary in a HDM
Universe the older structures are the bigger ones, because the smaller perturbations
were canceled out by free-streaming. The observations of our Universe reveal that
the younger structures are superclusters. This indicates that the majority of the
Dark Matter is CDM. This is the reason why the cosmological standard model
is called Lambda Cold Dark Matter (ΛCDM) model, because it accounts for the
cosmological constant (Lambda) and the Cold Dark Matter. Nevertheless precise
measurements of galaxy distribution at large scales compared with the matter power
spectrum suggest that a portion of the Universe Dark Matter content is made of
HDM.
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Chapter 2

Linear perturbation theory

2.1 Introduction
After photon baryon decoupling, matter perturbations grow because of the gravi-
tational collapse and reach the non linear regime starting from the smaller scales.
However the linear perturbation theory [6] is able to describe the primeval Universe
at any scale and the present Universe at large scales. Moreover the majority of
the cosmological observations concern linear perturbations, and the present cosmo-
logical neutrino mass bounds arise from these kind of observation. Linear theory
takes advantage of the fact that each Fourier mode evolves through an independent
equation. It must be stressed that the decomposition in Fourier modes must be
performed respect to the comoving coordinates of the system: so the quantity 2π

k is
the comoving wavelength of a perturbation with wave vector ~k, while the physical
wavelength is

λ = a(t)2π
k
.

The conformal Friedmann-Robertson-Walker (FRW) metric is

ds2 = a2
[
dτ2 − dr2 − r2

(
dθ2 + sin2 θdφ2

)]
,

where the conformal time τ is related to the usual one through the relation
dt

a(t) = dτ.

The conformal Hubble function is defined as

H = 1
a

da

dτ

which at the usual time is equal to aH.
During the radiation dominated era (RDE) a(t) ∼ t1/2from which

H(t) = 1
a(t)

da(t)
dt
∼ a(t)−2;
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because τ ∼ t1/2, so we get

a(τ) ∼ τ e H(τ) = 1
a(τ)

da(τ)
dτ

∼ τ−1.

During the matter dominated era (MDE) a(t) ∼ t2/3, so

H(t) ∼ a(t)−3/2;

because τ ∼ t1/3, and we get

a(τ) ∼ τ2 e H(τ) ∼ 2τ−1.

The continuity equation for a generic component c is

%̇c + 3H (wc + 1) %c = 0.

The non vanishing Christoffel symbols are Γj0i = Hδji and Γ0
ij = Hδij ; the first

(0,0) component of the Ricci tensor and the curvature obtained are R00 = −3Ḣ and
R = −6a−2

(
Ḣ+H2

)
, respectively. So, in a matter-radiation Universe, the (0,0)

component and the trace of the Einstein equation become

H2 = 8π
3 a2 (%m + %γ) ,

Ḣ = −4π
3 a2 (%tot + 3ptot) ,

that represent the two Friedmann equations.

2.2 The Newtonian Gauge

The most general perturbative metric can be written as gµν = g
(0)
µν + a2g

(1)
µν , where

g(1)
µν =

(
2ψ wi
wi 2φδij + hij

)

where ψ, φ are spatial scalar quantities, wi is a three component vector and hij is a
tensor 3× 3 with trace equal to zero.

If we write the perturbative metric as gαβ = g
(0)
αβ + hαβ, we can see that at the

first order
hµν = −hαβg(0)αµg(0)βν ,

because of the condition gαγgγβ = δβα.
It is straightforward to notice that

∇ · w⊥ = ∇× w‖ = 0,

because the vector wi can be decomposed in a longitudinal component and a
transverse component w = w‖ + w⊥. The longitudinal component can be written
as the gradient of a scalar function w‖ = ∇ws because is irrotational. When we
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derive the 0i components of the Einstein equations we find both longitudinal and
transverse terms on G0i and T0i. The curl of these equations selects only transverse
terms, while the divergence only longitudinal terms. So the two components are
completely decoupled and can be treated separately. Since the density perturbations
δ are scalar quantities, only the longitudinal terms, that can be related to scalar
quantities, are coupled to the density perturbations. Vectorial terms merge with curl
modes, while tensors represent gravitational waves, that couple to matter only for
anisotropic perturbations. Moreover, if at the beginning curl modes (vortices) are
zero, they will remain zero. Instead, if they are different from zero at the beginning,
they will decay as a−1.

The tensor hij can be written as the sum of three terms with a null trace

hij = h
‖
ij + h⊥ij + hTij ,

where the divergences ∂ih‖ij , ∂ih⊥ij are longitudinal and transverse, respectively, and
hTij is transverse, so

εijk∂i∂kh
‖
ij = 0, ∂i∂jh⊥ij = 0, ∂ihTij = 0.

Since ∂ih‖ij is irrotational, h
‖
ij can be written as a scalar function B

h
‖
ij =

(
∂i∂j −

1
3δij∇

2
)
B.

Instead the perturbations h⊥ij , hTij cannot be derived from a scalar function; the first
is a vector and the second is a tensor; they cause rotational velocity perturbations
and gravitational waves and they are perfectly decoupled from the scalar term.

In conclusion, we have to take into account only the components of wi and hij
that can be derived from scalar quantities. That’s why we build a vector

→
E and a

tensor DijB ≡ Bij − 1
3δijB

,k
,k with a zero trace, from two scalar quantities E and B.

So we obtain

g(1)
µν =

(
2ψ E,i
E,i 2φδij +DijB

)
.

Now we can choose a Gauge we are interested to work in. The Newtonian
(or longitudinal) Gauge implies four conditions on the perturbative metric that
correspond to the four possible coordinate transformations: wi = 0 (from which
E = 0) and B = 0. The result is

ds2 = a2
[
(1 + 2ψ) dτ2 − (1− 2φ) dxidxi

]
.

This choice benefits of the fact that the metric tensor gµν is diagonal. Moreover
ψ represents the gravitational potential so it has a clear physical meaning. The
two scalar potentials ψ and φ are different only when the impulse-energy tensor Tµν
contains longitudinal components.
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2.3 The perturbation equations

The perturbative quantities are

δ = δ%

%
, where δ%

%
≡ %(x)− %̄

%̄

and
∇ivi = θ

where δ is the density perturbation and θ is the velocity divergence, there exists a
couple of δ and θ for each fluid that the Universe is made up of. Now we focus on a
model with only one fluid, it means on an Universe made with only one component.
The equations that must be perturbed are

Tµν;µ = 0

and

Gµν ≡ Rµν −
1
2gµνR = 8πTµν , (assuming G = 1).

The perturbed impulse-energy tensor for a component with equation of state p = w%
where w is a constant is

δTµν(~x, t) = Tµν(~x, t)− T̄µν(t)

So the perturbed components are

δT 0
0 = δ%

δT 1
1 = δT 2

2 = δT 3
3 = −c2

sδ%

δT i0 = −δT 0
i = (1 + w) %vi,

where the sound speed is c2
s = dp

d% .
The perturbed non-zero Christoffel symbols are

δΓ0
ij = −δij

[
2H (φ+ ψ) + φ̇

]
δΓ0

00 = ψ̇

δΓ0
0i = δΓi00 = ψ,i

δΓij0 = −δijφ̇.

The covariant derivative of a tensor Tµν is Tµν;µ = Tµν,µ − ΓανβT βα + ΓαβαT βν , so the
equation Tµν;µ = 0 perturbed for the component ν = 0 and with w = 0 and c2

s = 0
becomes

δTµ0,µ − δΓα0βT βα − Γα0βδT βα + δΓα0αT 0
0 + ΓαβαδT

β
0 = 0,
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where

δTµ0,µ =
(
δ̇%
)

+ %v,i

δΓα0βT βα = %δΓ0
00 = %ψ̇

Γα0βδT βα = Hδ%

δΓα0αT 0
0 = %

(
δΓ0

00 + δΓii0
)

= %
(
ψ̇ − 3φ̇

)
ΓαβαδT

β
0 = 4Hδ%,

so (
δ̇%
)

+ %vi,i − %ψ̇ −Hδ%+ %
(
ψ̇ − 3φ̇

)
+ 4Hδ% = 0⇒(

δ̇%
)

+ %θ − 3%φ̇+ 3Hδ% = 0⇒(
δ̇%
)

%
+ 3Hδ%

%
= −θ + 3φ̇.

After defining the density contrast δ = δ%/% and using the non perturbative conser-
vation equation %̇+ 3H% = 0, we derive the relation

(
δ̇%
)

= %δ̇ + δ%̇ and we obtain
the equation

δ̇ = −θ + 3φ̇ (2.1)

that is the perturbed continuity equation.
The perturbed equation Tµν;µ = 0 in the case of ν = i and with c2

s 6= 0 and w = 0
is

v̇i = −Hvi − a2∇iψ − a2∇ic2
sδ

and the divergence of this equation represents the Euler equation

θ̇ = −Hθ − a2∇2ψ − a2∇2c2
sδ. (2.2)

In the Fourier space it is assumed that the perturbed variables are the sum of plane
waves expikr:

φ =
∫
eikrφkd

3k, ψ =
∫
eikrψkd

3k

and
δ =

∫
eikrδkd

3k, θ =
∫
eikrθkd

3k

where kr ≡ ~k · ~r (in what follows the k index will be omitted). In the linear theory,
the equations remain the same for each wave, but have a different k. Each perturbed
quantity and its derivatives can be written as follows

φ(x, τ)→ eikrφk(τ)
∇φ(x, τ)→ ikeikrφk(τ)

∇2φ(x, τ) ≡ −gij∇i∇jφ(x, τ)→ −
(
k

a

)2
eikrφk(τ).
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For example, the Euler equation 2.2 in the case of w = 0 becomes

θ̇ = −Hθ + k2ψ + k2c2
sδ.

In the same way we find the perturbed Einstein equations:

δG0
0 = 2a−2

{
−3
(
ȧ

a

)2
ψ − 3 ȧ

a
φ̇+∇2φ

}
= 8πδ%

δG0
i = 2a−2∂i

{
ȧ

a
ψ + φ̇

}
= 8π (%̄+ p̄) vi

δGij = −2a−2
{[(

2 ä
a
−
(
ȧ

a

)2
)
ψ + ȧ

a

(
ψ̇ + 2φ̇

)
+ φ̈+ 1

3∇
2 (ψ − φ)

]
δij +

−1
2

(
∂i∂j −

1
3∇

2δij

)
(ψ − φ)

}

= 8π
(
−δpδij + Σi

j

)
where Σi

j ≡ T ij − δijT/3 (Σi
i = 0) is the anisotropic perturbation tensor, and, before

recombination, when photon and baryon are coupled in a single fluid, the dominant
contribution to Σi

j comes from neutrinos.
Using the variables δ ≡ δ%/%, θ the Einstein equations in the Fourier space

become:

−3
(
ȧ

a

)2
ψ − 3 ȧ

a
φ̇− k2φ = 4πa2%δ

k2
(
ȧ

a
ψ + φ̇

)
= 4πa2 (%+ p) θ(

2 ä
a
−
(
ȧ

a

)2
)
ψ + ȧ

a

(
ψ̇ + 2φ̇

)
+ φ̈− k2

3 (ψ − φ) = 4πa2δp

k2(ϕ− ψ) = 12πa2(%+ p)σ

where σ is given by (% + p)σ ≡ −
(
k̂ik̂j − 1

3δij
)

Σi
j . So we obtain the set of linear

perturbation equations for a single perfect (it means Σi
j = 0, so φ = ψ) decoupled

fluid, with equation of state p = w% (in terms of H)

δ̇ = −(w + 1)(θ − 3φ̇) + 3H(w − c2
s)δ

θ̇ = Hθ(3w − 1) + k2
(

c2
s

1 + w
δ + ψ

)
k2
(
φ̇+Hψ

)
= 4π(w + 1)a2θ%

k2φ+ 3H
(
φ̇+ 3Hψ

)
= −4πa2%δ. (2.3)
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2.4 Scales greater than the horizon

In the limit k � H (scales greater than the horizon) the set of equations of
perturbations when w = c2

s (that is true both for radiation and matter) becomes

δ̇ = −(w + 1)
(
θ − 3ψ̇

)
θ̇ = Hθ(3w − 1)

3H
(
ψ̇ +Hψ

)
= −4πa2%δ.

A solution of this system is ψ̇ = 0 because, assuming ψ̇ = 0 and deriving the first
equation, we get

δ̈ = Hδ̇(3w − 1)

that gives δ = const. Concerning the third equation we have 3H2ψ = −4πa2%δ and,
using the Friedmann equation, we find

δ = −2ψ.

So δ = const implies ψ = const. In conclusion, the gravitational potential remains
constant at scales greater than the horizon.

2.5 The Jeans length

In a spatially flat Universe a physical process that begins at ti and propagates at
speed v along a radial geodesic (vdt = a(t)dx) can affect only the wavelength smaller
than the causal horizon that is defined as d(ti, t) = a(t)

∫ t
ti
dx = a(t)

∫ t
ti
vdt′

a(t′) . This
horizon represents the maximum physical distance on which the signal can propagate
between ti and t.

Before decoupling the sound perturbations propagate with a peculiar velocity
c2
s that defines a peculiar length ds(ti, t), called sound horizon. If the sound speed
is constant and if both ti and t are within the same era (RDE or MDE) the sound
horizon is proportional (unless a factor of about unity) to cs/H, that is called Jeans
length. More precisely the Jeans length and wavenumber are:

kJ(t) =
(

4πG%̄(t)a2(t)
c2
s(t)

)1/2

,

λJ(t) = 2π a(t)
kJ(t) = 2π

√
2
3

c2
s

H(t) .

In order to understand the meaning of the numerical factors, we should look at
the perturbation equations in the Newtonian limit at small scales k � H. In the
case of a perfect fluid with a null pressure and a sound speed much smaller than the
speed of light (because of the Newtonian limit) equation 2.3 is the Fourier transform
of the Poisson equation

k2φ = −4πa2%δ = −3
2H

2δ, (2.4)
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where the unperturbed Friedmann equation has been used. By using this in the
equation 2.1 we get

δ̇ = −θ − 9
2
H2

k2 δ

(
2Ḣ
H

+ δ̇

δ

)
' −θ.

So in the Newtonian limit the set of perturbed equations becomes

δ̇ = −θ
θ̇ = −Hθ + c2

sk
2δ + k2φ

k2φ = −3
2H

2δ.

Deriving the first equation we find

δ̈ +Hδ̇ +
(
k2c2

s −
3
2H

2
)
δ = 0, (2.5)

which in the Minkowskian limit (H = 0) this equation represents the wave equation
of a fluid: δ̈+ c2

s∇2δ = 0. This implies that cs is really the sound speed. It is evident
that the perturbations do not grow up if k2c2

s − 3
2H

2 > 0, it means if the physical
scale of the perturbation λ = 2πa/k is smaller than the Jeans length,

λJ = cs

√
π

%
, . (2.6)

The last expression is the same of the definition of the Jeans length if we con-
sider 3

2H
2 = 4πa2% from the Friedmann equation and H = aH. In conclusion,

the perturbation oscillations are dumped on scales smaller than λJ . Physically
speaking, in a sound speed fluid the modes with k > kJ are expected to oscillate
with an angular frequency ω = kcs due to the presence of both gas pressure and
gravitational compression; these modes are Jeans unstable. Instead for the modes
with k < kJ , the pressure cannot compensate the gravitational compression and so
the density perturbations can grow monotonically. These Jeans instability explains
some fundamental aspects of the inhomogeneous Universe: before recombination the
photon-baryon fluid has a sound speed cs ' c/

√
3 and oscillates on scales smaller

than λJ , after recombination, cs and λJ become negligible, kJ grows to infinity and
the structure appear.

Mathematically speaking,

cs =
(
dp

d%

)1/2
= w1/2 assuming c = 1.

For photons cs = 1/
√

3, so λJ ' H−1/a, and the perturbation growth is forbidden
on all scales smaller than the horizon. Before decoupling, baryon have nearly the
same speed as photons, so baryonic perturbations are dumped. After decoupling,
baryonic perturbations grow rapidly, because baryon are free to fall into the potential
wells of the dark matter.
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2.6 The evolution of the perturbations

The gravitational instability consist on the fact that for k � H perturbations
can grow freely. So in the Newtonian limit the equation of the evolution of the
perturbations (2.5) can be written as

δ̈ +Hδ̇ − 3
2H

2δ = 0.

Using the variable α ≡ log a we find

δ′′ +
(H′
H

+ 1
)
δ′ − 3

2δ = 0, (2.7)

where ′ indicates the derivative respect to α.
Dividing the first Friedmann equation by the second for a Universe with more

than one component we get Ḣ
H2 = −1

2
∑
w(1 + 3w). So for a single fluid with

parameter w it is
H′

H
= −1

2 −
3
2w.

Using the last expression the equation 2.7 for matter (w = 0) becomes

δ′′ + 1
2δ
′ − 3

2δ = 0

that is a linear homogeneous differential equation at the second order with constant
coefficients and the solutions are linear combinations of δ = Aemα = Aam with
m± = 1, −3/2. So the growth and the dumping are given by

δ+ = Aa1, δ− = Ba−3/2,

respectively. The second solution becomes more and more negligible respect to
the first one and so can be omitted. In the conformal time we have δ+ ∼ τ2 and
H ∼ 2τ−1 during the MDE, so H2δ+ = Aτ2 2

τ2 = const. From the last equation and
using the Poisson equation k2φ = −3

2H
2δ, it results

φ = const,

that means the gravitational potential is constant during the MDE.

2.7 Two components solution: matter and radiation

The solution we have just obtained is true for matter perturbations during the MDE.
In the RDE we need to add one more fluid. If the perturbations of matter δm, θm
and radiation δγ , θγ are put into the set of equations of perturbations, we will have
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two pairs of conservation equations plus the Einstein equation with two components:

δ̇m = −
(
θm − 3φ̇

)
θ̇m = −Hθm + k2ψ

δ̇γ = −
(
θγ − 3φ̇

)
θ̇γ = k2

(
3c2
s

4 δγ + ψ

)
k2
(
φ̇+Hψ

)
= 4π(1 + w)a2θtot%tot

k2φ+ 3H
(
φ̇+Hψ

)
= −4πa2%totδtot

where %tot = %m + %γ and %totδtot = (δ%tot) = %mδm + %γδγ . In the newtonian limit
we will have

δ̇m = −
(
θm − 3φ̇

)
θ̇m = −Hθm + k2ψ

δ̇γ = −
(
θγ − 3φ̇

)
θ̇γ = k2

(1
4δγ + ψ

)
(c2
s = 1/3 for the radiation component)

k2φ = −4πa2 (%mδm + %γδγ) = −3
2H

2 (Ωm%m + Ωγ%γ) .

After deriving the equations respect to δ̇ we can calculate two coupled equations

δ̈m +Hδ̇m −
3
2H

2 (Ωmδm + Ωγδγ) = 0 (2.8)

δ̈γ + 1
4k

2δγ = 0. (2.9)

In the RDE Ωm ≈ 0 and Ωγ ≈ 1, moreover, the second equation shows that radiation
oscillates rapidly around zero, because it is on scales smaller than the horizon k > H.
Until photons and baryons are merged, they can be considered as a single fluid with
perturbation δγ . The oscillations of this fluid cause the acoustic effect on the cosmic
microwave background. After averaging on the oscillations, and putting 〈δγ〉 ≈ 0,
we get Ωmδm + Ωγδγ ≈ 0, and so

δ̈m +Hδ̇m = 0

that is a differential equation. The solution is δm = const or δm ∼ τ−1. In conclusion
the matter perturbations can’t grow if they cross the horizon during the RDE.

2.8 The present era of the cosmological constant
From recent cosmological data we know that after the MDE has been settled down
an epoch characterized by a cosmological constant Λ as the dominant component
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of the energy of the Universe. The equation of state of this cosmological constant
is w = −1, it means pΛ = −%Λ. The equation 2.8 can be generalized in the case of
matter and cosmological constant:

δ̈m +Hδ̇m −
3
2H

2 (Ωmδm + ΩΛδΛ) = 0.

Assuming Ωm = const and using α ≡ log a, the general solution becomes

m± = 1
4
(
−1±

√
1 + 24Ωm

)
,

so
δm = Aam± .

The last formula shows how the cosmological constant slows down the growth of the
perturbations: as Ωm → 0, m→ 0. The numerical solution is

m = Ω+0.6
m .

It must be stressed that in presence of a cosmological constant it is not true that
H2δ+ is constant, so the gravitational potential is no more constant, but it decreases
proportionally to a scale independent damping factor g(τ) = ψ(τ)/ψ(τm), where τm
is during the MDE. On scales within the Hubble radius during the MDE and the
ΛDE the Poisson equation 2.4 is used to derive the following relationship between
the matter perturbations and the gravitational potential fluctuations

δm = − k2ψ

4πa2%m
.

So δm is proportional to ψ, and this explains why the gravitational potential decrease
reduces the growth of matter perturbations.

2.9 The Cosmic Microwave Background
After the Big Bang, as the temperature of the Universe decreases, the different
species of particles decouple from the thermal equilibrium because their interaction
rate drops down the Hubble parameter H, so their mean free path becomes greater
than the horizon scale (or Hubble distance) c/H. This process causes firstly the
neutrino decoupling at z ≈ 1011, then the formation of the light atomic nuclei at
z ≈ 108, and finally the baryon decoupling at z ≈ 103. In the primordial highly
ionized Universe, matter and radiation are merged in a single fluid and they interact
through Thomson scattering γ + e− → γ + e− with σ ≈ 6.65 · 10−29m2 and the rate
is Γ = c

λ = σnec, where ne is the numerical density of electrons. The characteristic
time associated with this interaction is τ = 1/Γ. Since ne ∼ a−3, τ ∼ a3, and
because of the equilibrium between matter and radiation, τ must be smaller than
the expansion rate H−1. This condition is satisfied during the RDE when 1/H = 2t,
while τ ∼ t3/2. After the equivalence, at redshift 3450, during the MDE a ∼ t2/3

and 1/H = 3t/2, while τ ∼ t2; so decoupling takes place at z ≈ 1100 (about 350000
years after the Big Bang, when the temperature of the Universe is about 3000 K).
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Photons that undergo the last scattering at z = 1100 (Last Scattering Surface,
LSS) form the cosmic background radiation. This radiation at different epochs is
well represented by a black body spectrum at different temperatures I = 2hν3

e
hν
kT −1

.

Nowadays it is T0,γCMB = 2.725± 0.001K, so, since %γ = σT 4 ∼ 1
a4 , Ωr ≈ 4.3 · 10−5.

Each cm3 of the Universe is filled with 411 CMB photons, the mean energy of each
one is Emean = 6.34 · 10−4eV, it corresponds to a wavelength of about 2 mm in the
microwave region.

Half of this black body is slightly redshifted to lower temperature, while the
other part is slightly blueshifted at higher temperature. This effect is called dipole
distortion and is a typical Doppler effect due to the motion of the satellite respect
to the reference framework where the CMB is isotropic. After the subtraction of the
motion of the satellite around the Earth, of the Earth around the Sun (v ≈ 30km/s),
of the Sun around the Galactic Center (v ≈ 220km/s), and of the Galaxy around the
center of mass of the Local Group (v ≈ 80km/s), it will be found that moves in the
direction of the Hydra Constellation with a velocity vLG = 630± 20km/s = 0.0021c.

After the dipole distortion subtraction from the CMB spectrum, it remains the
temperature fluctuations

〈(
δT

T

)2〉1/2

= 1.1 · 10−5

where the average is on alla the possible directions. These fluctuations are very small
(∆T ≈ 30µK, with T ≈ 3K), nevertheless they are very important in determining the
cosmological parameters. These anisotropies represent a picture of the distribution
of matter when the baryons decoupled from photons and recombined themselves
with electrons to build the neutral hydrogen, at redshift 1100 and at temperature
3000K.

In what follows we will assume an instantaneous decoupling, but this is not
completely true, the LSS is not exactly a surface but a shell. If decoupling starts at
τD and ends at τLS , during ∆τ the radiation free streams on scale λD = (λ∆τ)1/2

where λ is the photon mean free path and λD turns out to be shorter than the
thickness of the LSS. As a consequence all the fluctuations on scales smaller than
λD are dumped (Silk-Damping), because there photons can spread freely both from
overdensities and from underdensities. This effect becomes more and more efficient
as it approaches the last scattering instant.

2.9.1 Primary anisotropies

The temperature variation along the line of sight n̂ is

∆T
T

(n̂) =
∫ ∞

0

{[
g(z)

((∆T
T

)
g

+
(∆T
T

)
a

+ ~v · n̂
)]

+ e−τH−1ψ̇

}
dz

where g(z) = e−τ σTnexi1+z (with xi = np
np+nH ionization fraction, and nexi free electron

density) is the visibility function, that can be approximated as a Kronecker delta at
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the time of recombination g(z) ' δ(z − zrec). In this case it becomes

∆T
T

(n̂) =
[(∆T

T

)
g

(zrec) +
(∆T
T

)
a

(zrec) + (~v · n̂) (zrec)
]

+
∫ ∞

0
e−τH−1ψ̇dz

where the first term represents the gravitational effect, the second the adiabatic
effect and the third the Doppler effect. These three effects give raise to the primary
anisotropies, that were produced at the time of recombination and so are multiplied
by the visibility function. The last term is the Integrated Sachs-Wolfe (ISW) effect
that gives rise to the secondary anisotropies produced afterwards along the line of
sight.

The Doppler effect

The Doppler effect is due to the bulk motion (peculiar velocity) during decoupling
(Sunyaev & Zel’dovich 1970).

The gravitational effect

A photon emitted inside a density fluctuation must climb a gravitational potential
well. The perturbative metric for a point dr = dθ = dφ = 0 is

ds2 = a2(1 + 2ψ)dτ2 ≡ a′2dτ2

where a′ ≡ a(1 + ψ) at the first order. Using the relation between the redshift and
the scale factor 1 + z′ = a′−1, we find

dz

z
= −da

a
= −ψ,

so the photons emitted in a gravitational potential well ψ are redshifted of a quantity
−ψ (where ψ is a negative quantity for an overdensity). As a consequence in Fourier
space the temperature drops down of a factor

∆Tk
T

= ψk.

The physical meaning is that an overdensity produces a potential well and photons
lose energy to climb it, so they are redshifted and the region appears colder.

The adiabatic effect

The adiabatic effect is so defined because it implies initial adiabatic conditions,
that means that radiation and matter perturbations are equal in each point. For a
baryon-photon fluid %tot = %γ + %b with %γ ∼ a−4 e %b ∼ a−3, so

δ%γ ∼ −4a−5da = −4%γ
da

a
and δ%b ∼ −3a−4da = −3%b

da

a
,
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and the adiabatic condition turns out to be

δb ≡
δ%b
%b

= 3
4
δ%γ
%γ
≡ 3

4δγ ⇒ δb = 3
4δγ .

So the ratio number of baryons/number of photons is constant, this means δ(nγ/nb) =
0, because nγ ∼ %3/4

γ and nb ∼ %b. Finally the adiabatic condition implies that the
entropy per particle is constant because it is proportional to the number of photons.

Concerning the temperature fluctuations, since %γ ∼ T 4, it comes up

∆T
T

= 1
4δγ = 1

3δm.

At large scales δm and ψ are nearly constant and bounded together by the relation
2.4 δm = −2ψ. So it is

∆T
T

= −2
3ψ.

The physical meaning is that photons from an overdensity are blueshifted and the
region appears hotter.

We can now examine how this effect can determine the CMB temperature
fluctuations. The Euler and the continuity equations can be used to derive the
relation between the temperature fluctuations and the gravitational potentials for
each k mode:

d

dτ

[
(1 +R) Θ̇

]
+ k2

3 Θ = −k
2

3 (1 +R)ψ + d

dτ

[
(1 +R) φ̇

]
, (2.10)

where the variable Θ is defined as

Θ(~x, t) ≡ ∆T
T

(~x, t) = 1
3δm,

and R = 3%b/4%γ . The solution of this equation depends on the epoch, because
the potentials evolve differently in different epochs. In the MDE the potential is
constant and assuming R constant the previous equation becomes

(1 +R)Θ̈ + k2

3 Θ = −k
2

3 (1 +R)ψ, (2.11)

the term on the right is constant, so, using the function g(τ) ≡ k2Θ/3+k2(1+R)ψ/3,
this equation can be written as

g̈ + k2

3(1 +R)g = 0

that is the equation of a harmonic oscillator. The solution is

Θ(τ) = −(1 +R)ψ + C1 cos(kcsτ) + C2 sin(kcsτ)

where C1 and C2 depending on the initial conditions and cs = [3(1 +R)]−1/2 is
the sound speed of the baryon-photon fluid. In equation 2.11 the term k2Θ/3 is
related to the radiation pressure and it counteracts the gravitational collapse of
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the perturbations due to the potential ψ. These two effects reflect the oscillating
behavior of the gas in the potential wells and, as an aftermath, the oscillation of the
temperature fluctuations.

When photons and baryons are still merged in a single relativistic fluid with
w = 1/3 and R = 0, the solution becomes

Θ(τ) = −ψ + C1 cos(kcsτ) + C2 sin(kcsτ).

Assuming initial adiabatic conditions{
Θ̇(0) = 0
Θ(0) = −2

3ψ

the Cauchy problem has the following solution

Θ(τ) = −ψ + 1
3ψ cos(kcsτ).

that oscillates in time for each k mode.
The R = 0 approximation is too strong, so we can assume only R = constant

because the time scale of R variations is of the order of the expansion of the Universe
and it is much greater than the time scale of the temperature fluctuations. In this
case, the solution for initial adiabatic conditions is

Θ(τ) = −(1 +R)ψ + 1
3(1 + 3R)ψ cos(kcsτ).

The oscillation amplitude depends on the factor (1 +R) that is proportional to the
baryon density. This is due to the fact that baryons contribute only to the mass of
the fluid, not to its pressure. Actually the term k2Θ/3 in 2.11 is independent from
R. In conclusion baryons determine the strength of compression and rarefaction of
the fluid within the potential wells, and so the amplitude of the oscillations. This
turns out in the first important dependence of the anisotropies from the cosmological
parameters, in this case Ωb.

The Sachs-Wolfe effect

The Sachs-Wolfe effect (Sachs & Wolfe 1967) is the sum of the gravitational effect
and the adiabatic effect

∆T
T

= ψ − 2
3ψ = 1

3ψ.

Using the Fourier transformer of the Poisson equation 2.4 ψk = −3
2H

2δk/k
2, we

obtain the total Sachs-Wolfe effect

∆Tk
T

= ψk
3 = −H

2

2
δk
k2 = −H

2
o

2
δk,0
k2 , (2.12)

where has been used the fact that δ increases as a ∼ τ2 ∼ H−2, so in the MDE,
as we have already seen, the gravitational potential is constant. We can see that
the gravitational effect is dominant, it means that in an overdensity the CMB is
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intrinsically denser (adiabatic term), but photons must climb a deeper potential well
(gravitational term), and in conclusion the overdensity appears colder.

In the previous paragraph about the adiabatic effect, a solution Θ(τ) has been
obtained from the differential equation arising from the combination of the Euler
equation and the continuity equation with adiabatic initial conditions. Now we
can combine this solution with the gravitational effect in order to obtain the total
Sachs-Wolfe effect on the LSS

∆T
T

(τLS) = [Θ(τ) + ψ]τLS = 1
3ψ cos(kcsτLS).

When the term kcsτLS is a multiple of π the absolute values of the fluctuations are
maxima. Since cs and τLS are fixed, the temperature fluctuation is an oscillating
function of k. For each k mode there is a spatial scale λ ∼ 1/k. The maxima
anisotropies correspond to scales that undergo maximum compression or rarefaction
at the moment of the last scattering. So the fluctuation spectrum, that is the
distribution of power at different scales, is expected to reflect the oscillating behavior
of ∆T/T . Finally the odd peaks (kcsτ = (2n+ 1)π) that correspond to compressions
are higher than the par ones (ψ cos(kcsτ) > 0) that correspond to rarefactions. This
effect is related to a high baryon density.

2.9.2 Secondary anisotropies

After the last scattering, photons and baryons are no longer coupled together.
Photons simply propagate freely along geodetic of the space-time from the last
scattering surface to the observer. The causes of the secondary anisotropies are all
due to gravity.

The Integrated Sachs-Wolfe effect

The Integrated Sachs-Wolfe effect [7] is related to a varying gravitational potential
ψ̇ 6= 0 and its contribution to the anisotropies consists of the variation of the potential
integrated along the photon’s path. We can distinguish two ISW effects, the Early
ISW and the Late ISW, depending on the epoch the effect has been produced in.

The first one comes from the LSS and is mainly due to the presence of neutrinos.
The LSS takes place at redshift zLS = 1100, while the matter-radiation equality
at redshift zrm = 3450. So the scale factor a = 1/(1 + z) and the ratio between
the matter energy density and the radiation energy density Ωm/Ωr ∝ a (that is
equal to 1 at the equivalence) are increased of a factor about 3 between these two
events. As a consequence at the last scattering the matter density parameter Ωm

and the radiation density parameter Ωr are of the same order, so the approximation
Ωtot = Ωm fails. Since the LS is settled down not well within the MDE, the potential
is not constant, but it is ψ̇ < 0 as in the RDE, and this causes the Early ISW effect.

Instead the second effect arises along the line of sight, that’s why in temperature
fluctuation formula this term cannot be multiplied by the visibility function. More
precisely the Late ISW effect is located at the time of the ΛDE (z = 0.3) when the
potential decreases ψ̇ < 0.
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Sunyaev-Zel’dovich effect

Travelling toward us from the LSS, CMB photons pass through the hot ionized
gas contained in clusters of galaxies. The high energy free electrons cause inverse
Compton scattering on CMB photons and this pans out in a distortion of the Planck
spectrum. More precisely the intensity decreases at frequencies below 220 GHz, at
220 GHz the effect is null, and the intensity increases at frequencies above 220 GHz.
This process is called thermal Sunyaev Zel’Dovich effect [8, 9] and is related to the
temperature of the intracluster gas. Instead the kinetic Sunyaev Zel’Dovich effect is
related to the proper motion of the cluster and consists of a Doppler effect. Both
these effects give a contribution to the temperature anisotropies power spectrum at
small scales, where the secondary anisotropies are dominant.

2.9.3 Spherical harmonics

What we have seen so far must be translated in something that can be observed.
To do this we need to project the fluctuations on an ideal celestial sphere, it
means passing from the Fourier space to the spherical harmonics. A function of θ
and φ can be written as f(θ, φ) =

∑
l,m a

m
l Ym,l(θ, φ), where Yl,m are the spherical

harmonics Ym,l = (−1)m
[

2l+1
4π

(l−m)!
(l+m)!

]
eimφPml (cos θ) and Pml (cos θ) are the Legendre

polynomials. In the case of the temperature fluctuations in a given direction n̂ and
for a single Fourier mode we get

∆T
T

(n̂) =
(∆T
T

)
k
ei
~k·n̂D

where D is the distance from the LSS. Using the identity

ei
~k·n̂D = 4π

∑
l,m

iljl(kD)Y ∗lm(k̂)Ylm(n̂),

where jl are the Bessel function, we can rewrite the expression for the temperature
fluctuations with the multipoles `

∆T
T

(n̂) =
∑
lm

aklmYlm(n̂)

with
aklm = 4π

(∆T
T

)
k
iljl(kD)Y ∗lm.

The alm coefficients depend on the Bessel functions that have the maximum for
` = kD, so each k mode contributes essentially to the multipole `k = kD. The
observed anisotropies arise from the overposition of all the k modes alm =

∑
k a

k
lm.

Moreover, by definition it is ∆T
T = T−〈T 〉

〈T 〉 , so 〈∆T/T 〉 = 0 and

〈alm〉 = 0.

These coefficients satisfy the relation

〈a∗l′m′alm〉 = C`δll′mm′
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where it has been defined the angular power spectrum

C` ≡
〈
|alm|2

〉
.

If the field of the temperature fluctuations is Gaussian with nil mean, it will be
completely characterized by its variance, which is C`. Since θ = π/` and a spatial
scale referred to a wavenumber k is subtended by an angle θ = 1/kD, the ` multipoles
are proportional to the Fourier modes k: ` ∝ k.

Practically, it is used the expression〈(∆T
T

)2〉
= 2`+ 1

4π `C`d(log `)

where 2`+1
4π `C` is the contribution to the temperature fluctuations in a logarithmic

interval of multipoles and it is in µK2.

2.9.4 The spectrum

Figure 2.1. The WMAP 7-year temperature power spectrum as reported in [10] , along

with the temperature power spectra from the ACBAR (Reichardt et al. 2009) and QUaD

(Brown et al. 2009) experiments. The solid line shows the best-fitting 6-parameter flat

ΛCDM model to the WMAP data alone.

The temperature anisostropies power spectrum as observed by the WMAP
satellite in its 7 year data release is reported in Figure 2.1. The big error bars at
low multipoles are due to the fact that the theory is statistical, so it is averaged on
more than one Universe, but the experimental observations can be performed only
on our Universe. The smaller the scale the greater the number of objects of such
dimension that can be observed. At low multipoles the scales are nearly as larger as
the Universe, so there is just one object that can be observed.
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The nearly constant behavior at low multipoles is related to the only gravitational
effect, actually this effect is dominant in equation 2.12 at small k. At larger multipoles
the spectrum shows the acoustic oscillations of all those perturbations on scales
smaller than the Jeans scale. At ` ≈ 200 we can notice the peak that defines the
acoustic horizon. This is extremely important from a cosmological point of view
because it demonstrates that the Universe is flat. Actually in an open Universe with
a negative curvature the angular diameter distance of the anisotropies form the LSS
would be greater than in the case of a flat Universe; so a certain k mode would
correspond to a greater multipole ` = kDA. In an open Universe the spectrum would
appear shifted at higher `. Viceversa, a close Universe with a positive curvature
would be characterized by a spectrum shifted to lower `. Instead, in a spatially flat
Universe with nil curvature and Ωm = 0.3 and H0 = 0.72Km/s/Mpc, assuming that
the last scattering took place during the MDE, the horizon at decoupling is

c

H(zLS) = c

H0
√

Ωm (1 + zLS)3/2 ≈ 0.2Mpc

and nowadays the anisotropies angular distance is

DA = dhor(t0)
zLS

≈ 13Mpc,

so they are subtended by an angle

θ = c/H(zLS)
DA

≈ 0.2Mpc
13Mpc = 0.015rad = 1◦

that corresponds to a multipole ` ≈ 200 that is exactly the position where the first
peak is observed. In conclusion the Universe is (nearly) spatially flat with a nil
curvature.

2.10 CMB polarization
CMB polarization arises from the Thomson scattering between photons and electrons
on the baryon-photon fluid quadrupole located on the LSS. The polarized fraction
of temperature anisotropy is small since only those photons that last scattered in
an optically thin region could have a quadrupole anisotropy. The fraction depends
on the duration of the last scattering. For the standard thermal history, it is 10%.
Since temperature anisotropies are at the 10−5 level, the polarized signal is at the
10−6 level.

Polarization is so useful because it can only be generated by Thomson scattering
and so cannot be generated after recombination because the Universe is transparent
for photons. Thus the polarization spectrum of the CMB is a direct snapshot of
conditions on the last scattering surface, while temperature anisotropies can also be
generated between the last scattering and the present. As an aftermath, the first
thing we learn from polarization spectrum is when the last scattering occurred, i.e.
what fraction of photons last scattered at z ≈ 1000 when the Universe recombined,
and what fraction rescattered when the intergalactic medium reionized at zreion & 5
(see Section 7.2.1).
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In Thomson scattering the incident light sets up oscillations of the target electron
in the direction of the electric field E, i.e. the polarization. The scattered radiation
intensity thus peaks in the direction normal to, with the polarization parallel to,
the incident polarization. If the incoming radiation field were isotropic, orthogonal
polarization states from incident direction separated by 90◦ would balance so that the
outgoing radiation would remain unpolarized. Conversely, if the incident radiation
field possesses a quadrupolar variation in intensity or temperature (which possess
intensity peaks at 90◦ = π/2 separations), the result is a linear polarization of the
scattered radiation. A reversal in sign of the temperature fluctuation corresponds to
a 90◦ rotation of the polarization, which reflects the spin-2 nature of polarization.
Given the tight coupling between photons and electrons, the photon distribution
function has a dipole term T1 = n̂ · v, where v is the velocity of the fluid. The
quadrupole moment is generated if there is a gradient in the velocity field across the
mean free path of the photon λp and it is T2 = λpn

inj∂ivj in the rest frame of the
electron.

The quadrupoles due to the velocity gradient in the baryon-photon fluid produce
scalar modes, while tensor modes are related to the gravitational redshift of the
primordial stochastic gravitational waves background caused by the initial accelerated
expansion of the Universe predicted by inflation 1. Scalar modes produce only electric
E-modes, while tensor modes produce both E-modes and magnetic B-modes in the
same quantity. The CMB polarization field can be decomposed in two components:
curl free E-modes coming from the LSS where they are produced both by scalar
and tensor perturbations of the metric, and B-modes produced only by tensor
perturbations due to the crossing of gravitational waves in the primordial plasma.
Moreover E-modes and B-modes are mixed by the gravitational lensing, due to the
presence of large scale structure along the line of sight. This effect converts E-modes
in B-modes and gives the chance to understand the process of large scale structure
formation and, as an aftermath, the neutrino mass that influences this process.

With polarization there are three additional power spectra that can be measured:
E and B autocorrelation plus E and T cross-correlation. These spectra are related
to the parameters of the ΛCDM model, as the temperature power spectrum, and so
they add important additional information on the physics of the Universe.

2.10.1 Statistic of Polarization

The CMB radiation field is characterized by a 2 × 2 intensity tensor Iij and it is
a function of the direction on the sky n that are used to define its components
(ê1, ê2). The Stokes parameters Q and U are defined as Q = (I11 − I22)/4 and
U = I12/2, and the temperature anisotropy is given by T = (I11 + I22)/4 (the
factor 4 relates fluctuations in intensity to those in temperature). Polarization on
CMB maps is pictured with "vectors" of length P =

√
Q2 + U2 that form an angle

α = 1
2 arctan

(
U
Q

)
with ê1. These are not real vectors since they return the same

1The inflation is a process that took place at energies about 1012TeV, 10−36s after the Big Bang,

when the Universe was dominated by a scaler field that produced an accelerating expansion and an

exponential growth of the scale factor
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after a 180 degrees rotation, and so they do not have a direction. In principle
there is a fourth Stokes parameter V that describes circular polarization, but it can
be ignored since this kind of polarization cannot be generated through Thomson
scattering. Q and U transform under rotation of angle ψ as

Q′ = Q cos 2ψ + U sin 2ψ
U ′ = −Q sin 2ψ + U cos 2ψ

where ê′1 = cosψê1 + sinψê2 and ê′2 = − sinψê1 + cosψê2. The Stokes parameters
are not invariant under rotations in the plane perpendicular to n. For this reason
it is more convenient to work with scalar and pseudoscalar polarization fields E(n)
and B(n), which are invariant under rotations. In the small scale limit n is close
to ẑ and we can parametrize the direction in the sky with two–dimensional angle θ
relative to a fixed coordinate system perpendicular to ẑ. So we have, in terms of
Stokes parameters,

E(`) =
∫
d2θ [Q(θ) cos(2φl) + U(θ) sin(2φl)] e−i`·θ

B(`) =
∫
d2θ [U(θ) cos(2φl)−Q(θ) sin(2φl)] e−i`·θ,

where E(`) and B(`) are the two components of the two scalar fields in Fourier
space. To obtain them in real space we can perform a Fourier transform

E(θ) = (2π)−2
∫
d2`e−i`·θE(`)

B(θ) = (2π)−2
∫
d2`e−i`·θB(`).

These two quantities describe completely the polarization field. They can be ex-
pressed directly in terms of real space quantities Q(θ) and U(θ) as

E(θ) = −
∫
d2θ′ω(θ̃)

[
Q(θ′) cos(2φ̃l) + U(θ′) sin(2φ̃l)

]
(2.13)

= −
∫
d2θ′ω(θ̃)Qr(θ′)

B(`) = −
∫
d2θ′ω(θ̃)

[
U(θ′) cos(2φ̃l)−Q(θ′) sin(2φ̃l)

]
= −

∫
d2θ′ω(θ̃)Ur(θ′).

The variables (θ̃, φ̃) are the polar coordinates of the vector θ − θ′ and Qr and Ur
are the Stokes parameters in the polar coordinate system centered at θ. Hence,
if θ is zero, Qr = cos 2φ′Q(θ′) − sin 2φ′U(θ′) and Ur = cos 2φ′U(θ′) − sin 2φ′Q(θ′).
The window is found to be ω(θ) = 1/πθ2 with θ 6= 0 and ω(θ) = 0 with θ = 0. By
construction, E(θ) and B(θ) are rotationally invariant: the Stokes parameters Qr
and Ur do not depend on the coordinate system as they are defined relative to the
θ − θ′ vector, and the weight function ω is also rotationally invariant. The variable
B is a pseudoscalar because it is the average of Ur and it changes sign under parity.
The window extends to infinity and so the quantities E and B are non–local. This
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is not the only possible choice: one can construct versions of E and B from Q and
U that are finite using different types of windows. The structure of polarization
can be tested without measuring the whole sky (as long as the measured field is
contiguous).

Figure 2.2. Polarization patterns that lead to positive and negative values of the E and

B fields. The Stokes parameters are measured in the polar coordinate system centered

at the cross. All four patterns are invariant under rotation but the two patterns that

generate B are not invariant under reflections.

E type polarization is the only pattern that is produced by density perturbations
in this model. Radial polarization pattern is found around the cold spots of E.
This relation comes directly from equation 2.14. To obtain B type polarization
we can rotate all polarization "vectors" by 45◦. Hot and cold spots of the B field
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correspond to places where polarization vectors circulate in opposite directions.
From Figure 2.2 [11] we can see that such polarization pattern is not invariant under
reflections (parity transformation). This is the main distinction between E and B
type of polarization: under parity operation E transforms as a scalar and B as a
pseudoscalar. Scalar perturbations cannot induce B type of polarization because
polarization is invariant under the reflection across the axis determined by the k̂
(direction of Fourier mode) and n (line of sight), because polarization amplitude
only depends on the angle between k̂ and n. Therefore any integration around this
circle will produce only E and B.

2.11 Matter power spectrum

The density fluctuations field δ(~r) is defined in a tridimensional space, but it is
useful to express it through its Fourier component in a large comoving volume V :

δ(~r) = V

(2π)3

∫
δ~ke
−i~k·~rd3k,

where the different components are δ~k = 1
V

∫
δ(~r)ei~k·~rd3r. The Fourier transformer

consists in breaking the function δ(~r) in an infinite number of sin waves each one
with a comoving wave number ~k and a comoving wavelength λ = 2π/k. Each Fourier
component is a complex number and can be written as δ~k = |δ~k|e

iφk .
When |δ~k| � 1, each Fourier component follows the equation 2.8, until the proper

wavelength a(t)2π/k remains greater than the Jeans length and smaller than the
Hubble scale c/H. The phase φk remains constant until the amplitude |δ~k| remains
small. Even after the fluctuations with a small proper wavelength have reached
the amplitude |δ~k| ≈ 1 and have collapsed, the growth of the perturbations with a
greater wavelength is still described by equation 2.8. This implies that we can use
the linear perturbation theory to study the large structure formation even if the
smaller structure (such as galaxies) have been already undergone the collapse.

The mean squared of the Fourier components amplitudes defines the power
spectrum

Pk(tH) =
〈∣∣∣δ~k∣∣∣2〉

where the mean is on all possible direction of the wavenumber ~k and tH means that
the spectrum is calculated at the time of the horizon crossing of the perturbation:
different scales cross the horizon at different times and so the spectrum is not
calculated at the same time for every the perturbations. If the phases φk of the
different Fourier components are uncorrelated, δ(~r) will be a Gaussian field. If
a Gaussian field is homogeneous and isotropic, all its statistical properties are
contained in the power spectrum. In this case the δ values must be calculated using
the Gaussian probability distribution

p(δ) = 1√
2πσ

exp
(
− δ

2σ2

)
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where the standard deviation σ is related to the power spectrum

σ = V

(2π)3

∫
Pkd

3k = V

2π2

∫
Pkk

2dk.

The present observed power spectrum depends on the inflation that predicts
that the power Pk in a volume k−3 at the time tH of the horizon crossing is scale
invariant (independent from k): Pk(tH)

k−3 = A, where A is a constant. This kind of
spectrum

Pk(tH) = Ak−3 (2.14)

is called scale invariant: different scale perturbations share the same amplitude if
calculated at tH . Moreover, since dP = Pkd

3k = Ak−3k2dk = Adk/k = Ad(log k),
the power per logarithmic unit is constant

dP/d(log k) = A.

For the observations is more useful to have the spectrum at a given time tF , for
instance at decoupling, instead that at tH different for each scale. The difference is
that at a given instant the perturbations that have already undergone the horizon
crossing have had the time to grow. Consider a perturbation that has had the horizon
crossing during the MDE when the scale factor is a and H = (2/3)t−1 = a−3/2H0
and k = aH = aa−3/2H0 = a−1/2H0. A perturbation of wavenumber k has the
horizon crossing when a = (k/H0)−2. This perturbation can grow between a and an
arbitrary fixed instant aF as δk ∼ (aF /a) = (k/kF )2 (because it is within the MDE),
if kF is the scale that crosses at aF . So smaller scales cross the horizon before larger
scales and so they have more time to grow. In conclusion a perturbation of scale
k−1 can grow between the time of its horizon crossing and aF of a factor (k/kF )2.
So we have that

δk(tF ) = (k/kF )2δk(tH),
Pk(tF ) = (k/kF )4Pk(tH).

Using equation 2.14, on scales that undergo the horizon crossing after the equivalence,
the spectrum is the Harrison Zel’Dovich

Pk(tF ) = Ak.

Smaller scale perturbation cross the horizon during the RDE and so they can’t grow.
Their spectrum remains the initial one Pk ∼ k−3 until the equivalence. After the
equivalence, perturbations within the horizon grow all at the same rate for any k,
so the shape of the spectrum doesn’t change and it is proportional to k on large
spatial scales and to k−3 on small spatial scales. Figure 2.3 [12] shows that the
maximum power is located at the scale that has undergone the horizon crossing
at the equivalence keq. To sum up, we can say that we assume an initial Harrison
Zel’Dovich power spectrum modified by a transfer function T (k) such that T 2(k) = 1
for k � keq and T 2(k) = k−4 for k � keq.

It must be stressed that the power spectrum observed in the visible matter
through the galaxies surveys P ∗k is not the perturbation power spectrum. The visible
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Figure 2.3. Cosmological constraints on the current matter power spectrum P (k). The

solid curve shows the theoretical prediction for a flat ΛCDM model with Ωm = 0.28,

Hubble parameter h = 0.72 and baryon fraction Ωb/Ωm = 0.16. The dashed curve shows

that replacing 7% of the cold dark matter by neutrinos, corresponding to a neutrino

mass sum
∑
mν = 1eV, suppresses small scale power by about a factor two [12].
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matter spectrum is obtained by a galaxies catalogue with angular positions and
redshifts, this produces a fluctuations field δ(x) = (%(x)− %0) /%0 where %(x) is that
galaxies density number and %0 its mean on the volume V . Then we take the Fourier
transformer δk = V −1 ∫ δ(x)eikxd3x and we calculate the power spectrum defined
as P ∗k = |δk|2 where the mean is over all the possible directions of k. Another way
to calculate the spectrum is based on the relation between the spectrum and the
galaxy correlation function ξ(r):

P ∗k =
∫
ξ(r)eikxd3x = 2π

∫
ξ(r)sin(kr)

kr
r2dr,

where has been assumed an isotropic correlation depending only on the absolute
value of r. Finally the galaxy spectrum is considered proportional to the perturbation
spectrum through a bias factor b:

P ∗k = b2Pk.

The theory we have just seen about the spectrum assumes that it is a mathe-
matical object continuous and defined in each point. Practically the observations
give only a sample of the galaxy distribution, so we need to introduce a window
function W . The top-hat window function is equal to V −1 inside a spherical volume
of radius R and zero otherwise. In the Fourier space it is

Wk = 3sin(kr)− kr cos(kr)
(kr)3 .

The observed spectrum arises from the convolution of Pk with Wk. Nevertheless
only the statistical properties of the spectrum not its convolution can be derived
from observations. The variance of the field (the mean squared fluctuations on a
spherical volume of radius R) are

σ2
R =

∫
Pk(k)Wk(kr)d3k.

Starting from this expression, we can define a fundamental quantity in the power
spectrum measurements: the σ8 parameter that is the root mean squared of the
fluctuations over a volume of radius 8h−1Mpc (where h = Ho/(100km/s/Mpc) = 0.72
adimensional) for a density field passed through a top-hat window. For linear density
perturbations it is σ8 ≈ 1.



39

Chapter 3

Neutrino effects in Cosmology

3.1 Neutrinos
The first hint for the existence of neutrinos was noticed in the neutron beta decay:
n → p + e− + νe; the energy spectrum of the electron was different from the one
expected in a two bodies decay with only two lines. In 1933 Fermi suggested the
hypothesis of the emission of a light neutral particle during the process.

Neutrinos are fermions (spin 1/2), more precisely neutrinos are neutral leptons.
By the early 1990s precision electroweak measurements of the Z0 neutral boson

decay Branching Ratio (BR) at Large Electron Proton collider pin down the number
of light active neutrino species with high accuracy, Nν = 2.9840 ± 0.0082 [13],
consistent within ∼ 2σ with the known three families of the Standard Model (νe, νµ,
ντ ). Actually the BR in the invisible channels is three times the BR in one of the
visible leptonic channels (e+e− and µ+µ−). These are active neutrino that means
neutrino which undergo weak interactions.

Following the Pontecorvo hypothesis (1957), earth based experiments demon-
strated that neutrinos oscillate and therefore have mass. Assuming that only two
neutrinos (νe and νµ) are involved in the oscillation, the oscillation probability is
related to the neutrino mass through this formula

Pνe→νµ = sin2(2θ) sin2 π
L

Lv
where Lv = 2.48 E

∆m2 .

The value of L represents the distance travelled by neutrino from the source to the
detector, and it is expressed in km if E is in GeV and ∆m2 is in eV2. Varying L one
can find the minimum or the maximum oscillation probability. However oscillation
experiments cannot measure the absolute mass value, but only the mass square
differences. In particular experiments on the oscillation of atmospheric neutrinos
provide only the modulus of the mass square difference between the second and the
third mass eigenstates. Since we don’t know the sign of this measure, there are two
possible hierarchies (see Figure 3.1: the normal one (∆m2

23 positive) [14]

|∆m2
23| ≈ 2.55+0.06

−0.09 × 10−3eV2 (1σ range)



40 3. Neutrino effects in Cosmology

∆m 2

atm

∆m 2

sun

∆m 2

sun

∆m 2

atm

1

1

2

2

3

3

m m

NORMAL INVERTED

Figure 3.1. The two neutrino schemes allowed: normal hierarchy (NH) and inverted

hierarchy (IH).

and the inverted one (∆m2
23 negative) [14]

|∆m2
23| ≈ 2.43+0.07

−0.06 × 10−3eV2 (1σ range).

Instead the experiments on solar neutrino oscillations and on neutrinos from reactor
provide [14]

∆m2
12 ≈ 7.62+0.19

−0.19 × 10−5eV2 (1σ range).

The two mass square differences imply that at least two neutrinos are massive.

3.1.1 Sterile Neutrinos

The number of massive neutrinos states might be larger than the number of elec-
troweak flavors. These extra neutrinos must be sterile, i.e. neutrinos who do not
undergo weak interactions, in order to not violate the LEP results. Therefore they
must be singlets of the Standard Model gauge group and so they are insensitive to
weak interactions, except those induced by mixing with active neutrinos.

Following [15], in sterile neutrino oscillation models, under the assumptions of
CPT invariance and negligible matter effects, the probability for a neutrino produced
with flavor α and energy E, to be detected as a neutrino of flavor β after traveling a
distance L, is given by:

P (να → νβ) = δαβ − 4
∑
i>j R(U∗αiUβiUαjU∗βj) sin2 xij +

2
∑
i>j I(U∗αiUβiUαjU∗βj) sin 2xij (3.1)

where R and I indicate the real and imaginary parts of the product of mixing
matrix elements, respectively; α, β ≡ e, µ, τ , or s, (s being the sterile flavor); i, j =
1, . . . , 3+n (n being the number of sterile neutrino species); and xij ≡ 1.27∆m2

ijL/E.
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In defining xij , we take the neutrino mass splitting ∆m2
ij ≡ m2

i −m2
j in eV2, the

neutrino baseline L in km, and the neutrino energy E in GeV. For antineutrinos,
the oscillation probability is obtained from Eq. 3.1 by replacing the mixing matrix
U with its complex-conjugate matrix. Therefore, if the mixing matrix is not real,
neutrino and antineutrino oscillation probabilities can differ. For 3+n neutrino
species, there are, in general, 2 + n independent mass splittings, (3 + n)(2 + n)/2
independent moduli of parameters in the unitary mixing matrix, and (2+n)(1+n)/2
Dirac CP-violating phases that may be observed in oscillations. In SBL neutrino
experiments that are sensitive only to νµ → ν6µ, νe → ν6e, and νµ → νe transitions,
the set of observable parameters is reduced considerably. In this case, the number
of observable parameters is restricted to n independent mass splittings, 2n moduli
of mixing matrix parameters, and n− 1 CP-violating phases. Therefore, for (3+2)
sterile neutrino models (n = 2 case), for example, there are two independent mass
splittings, ∆m2

41 and ∆m2
51, both defined to be greater than zero, four moduli of

mixing matrix parameters |Ue4|, |Uµ4|, |Ue5|, |Uµ5|, and one CP-violating phase.
The convention used for the CP-phase is:

φ45 = arg(U∗µ5Ue5Uµ4U
∗
e4). (3.2)

In that case, the general oscillation formula in Eq. 3.1 becomes:

P (να → να) = 1− 4[(1− |Uα4|2 − |Uα5|2) ·
(|Uα4|2 sin2 x41 + |Uα5|2 sin2 x51) +

|Uα4|2|Uα5|2 sin2 x54] (3.3)

and

P (να → νβ 6=α) = 4|Uα4|2|Uβ4|2 sin2 x41 +
4|Uα5|2|Uβ5|2 sin2 x51 +

8|Uα5||Uβ5||Uα4||Uβ4| sin x41 sin x51 cos(x54 − φ45) (3.4)

The formulas for antineutrino oscillations are obtained by substituting φ45 → −φ45.
For the case of (3+1) sterile neutrino models (n = 1 case), the corresponding
oscillation probabilities are obtained from Eqs. 3.3 and 3.4 by setting x51 = x54 = 0
and |Uα5| = 0. Note that, under the above assumptions, no CP violation is allowed
for (3+1) models.

Recently hints for the existence of sterile neutrinos come from Short Base
Line experiments, like MiniBooNE (Mini Booster Neutrino Experiment). The
MiniBooNE experiment was designed to perform a search for νµ → νe oscillations
in a region of ∆m2 and sin2 2θ very different from that allowed by standard, three-
neutrino oscillations, as determined by solar and atmospheric neutrino experiments.
This search was motivated by the LSND (Liquid Scintillator Neutrino Detector)
experimental observation of an excess of νe events in a νµ beam which was found
compatible with two-neutrino oscillations at ∆m2 ∼ 1 eV 2 and sin2 2θ < 1. If
confirmed, such oscillation signature could be attributed to the existence of a light,
mostly-sterile neutrino, containing small admixtures of weak neutrino eigenstates,
produced by oscillations of the active ones. In addition to a search for νµ → νe
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oscillations, MiniBooNE has also performed a search for νµ → νe oscillations,
which provides a test of the LSND two-neutrino oscillation interpretation that is
independent of CP or CPT violation assumptions. Neutrino and antineutrino data
from LSND and MiniBooNE could be explained by (3+2) models with 3 active
neutrinos plus two additional massive sterile neutrinos, requiring a large CP violation
[15]. Otherwise the (3+1) models could fit the data only if Non Standard Interactions
are allowed.

3.2 The Cosmic Neutrino Background

Neutrinos were produced in the primeval plasma by frequent weak interactions
p+ e− → n+ νe. When they were still in thermal equilibrium, they had a Fermi-
Dirac momentum distribution at temperature T :

feq(p) =
[
ep/T + 1

]−1
.

When the Universe cooled down, the weak interactions rate Γν went down the
expansion rate H and neutrinos decoupled from the plasma. The mean value of the
weak interaction rate is

Γν = 〈σνnνv〉 = 〈σνnν〉 , assuming v ' c and c = 1

where σν ∝ G2
F p

2 ' G2
Fk

2
BT

2 is the cross section of the electron-neutrino interactions
with G2

F = 1.15 · 10−5GeV−2 Fermi constant and nν ' k3
BT

3 neutrinos numerical
density with kB = 1.381 · 10−23J/K = 8.619 · 10−5eV/K. In order to estimate the
temperature which the decoupling took place at, we match the mean value of the
weak interaction rate with the expansion rate

H =
√

8πε
3M2

P

' k2
BT

2

1019GeV ,

where ε is the total energy density and MP is the Planck mass. So it results

Γ
H

=
(
kBT

1MeV

)3
,

and the neutrino decoupling temperature is Tdec ≈ 1MeV (approximately one second
after the Big Bang).

At this energy electrons and protons are in thermal equilibrium because the elec-
tron mass is 0.511 MeV, so there is equilibrium between electron-positron annihilation
and pairs production:

γγ ←→ e+e−,

so at kBT ≈ 1MeV electrons and positrons has nearly the same number density
of photons. When the temperature further drops down, photons have no more
the energy to produce pairs and the reaction proceeds only in the direction of
the annihilation and this causes an increase in photons. The cross section of the



3.2 The Cosmic Neutrino Background 43

annihilation that produces neutrinos is smaller, so the annihilations produce only an
excess in photons not in neutrinos.

If the decoupling process can be considered instantaneous, the momentum
spectrum remains the same, because the momentum and the temperature are equally
redshifted by the Universe expansion; in other words, after decoupling the neutrino
number density remains constant in a comoving volume. Neutrinos with a mass of
about one eV are relativistic at decoupling, this is the reason why the momentum
distribution is independent from the neutrino mass even after decoupling and the
neutrino energy doesn’t appear in the exponent of fe(p).

In order to estimate the temperature ratio between the neutrino background and
the photon background, we take into account that after decoupling the annihilations
produced the photon excess but didn’t transfer entropy to neutrinos. The entropy
density of a sea of relativistic particles is s = 2π2

45 g
∗T 3, where g∗ is the number

of degrees of freedom: photons have two degrees of freedom (the two polarization
states), electrons and positrons have two degrees of freedom (spin up and spin down)
each one. Each degree of freedom has a multiplying factor, which for bosons is 1
and for fermions is 7/8. Before the first annihilation it was g∗ = 2× 7/8(electron) +
2 × 7/8(positrons) + 2(photons)=11/2, but then g∗ = 2. If the electron-positron
annihilations happens at constant entropy and produces only photons, by imposing
the entropy conservation, we obtain the final result

Tγ
Tν

=
(11

4

)1/3
≈ 1.4.

If the present photons background temperature is Tγ = 2.725K, the cosmic neutrino
background temperature will turn out to be Tν = 1.95K. The numerical density
per cm3 of neutrinos and antineutrinos for each flavor is nν = 3

11nγ , nν = 113.
Remembering that the energy density is proportional to the fourth power of the
temperature, the neutrino physical density is:

Ων = 3× 7
8 × (4/11)4/3 Ωr = 0.68Ωr = 1.68× 10−5h−2.

This relation is true if neutrinos behave as relativistic particles, that is if their rest
mass is negligible respect to their kinetic energy. The kinetic energy per particle
is 3kBT ' 5 × 10−4eV, the neutrino energy density formula we have just seen is
verified only if the mass of all flavor is smaller than this value. If the mass is greater
than this value, nowadays neutrinos will be non-relativistic.

The light neutrino regime implies that the neutrino mass is much smaller than
the plasma energy kBT ' 1MeV at decoupling and so they don’t have had influence
on the decoupling process. In this case the cosmic neutrino density is similar to the
one we have just derived, but in the energy part there is the rest mass instead of
the kinetic term:

Ων = 1.68× 10−5h−2

3
mνc

2

5× 10−4eV = mνc
2

93.1h2eV .

If neutrinos have mass we can write

Ων =
∑
mνc

2

93.1h2eV ,
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where the sum is over all neutrino flavors with mνc
2 � 1MeV. The present contribu-

tion of the neutrino species to the mass density is

Ωνh
2 = Nνmν

93.1eV . (3.5)

Just by putting Ων ≤ 1 we can already find a cosmological upper limit on the sum of
neutrino masses mν ≤ 47eV

Nν
. Light neutrinos can explain the observed dark matter

density Ωdm ' 0.3 if the neutrino mass is mνc
2 ' 14eV. This kind of neutrino is far

from the present limits. Anyway it is not a good candidate for dark matter because
it remains relativistic until the last phases of the evolution of the Universe and so
hampers the galaxies formation. Actually, considering the thermal energy of the
neutrinos 3kBT , the redshift of the non-relativistic transition is

1 + znr '
mνc

2

3kBT
;

for example a good neutrino candidate for the dark matter with a 10eV mass
undergoes the non-relativistic transition at znr ' 20.000.

3.3 Free-streaming

Sound waves can’t propagate in a collisionless fluid, nevertheless, single particles
stream with a peculiar velocity (for neutrinos it corresponds to the thermal one vth).
It is therefore possible to define a horizon that represents the typical distance on
which the particles travel between the time ti and the time t. During the radiation
dominated epoch and the matter dominated epoch, for t� ti, this horizon tends
asymptotically to vth/H. So a free-streaming length can be defined, as the Jeans
length, but with vth instead of cs

kFS =
(

4πG%(t)a2(t)
v2
th(t)

)1/2

, λFS(t) = 2π a(t)
kFS(t) = 2π

√
2
3
vth(t)
H(t) .

As long as neutrinos are relativistic, they travel at light speed and their free-streaming
length is equal to the Hubble radius. When they become non-relativistic, their
thermal velocity decreases

vth ≡
〈p〉
m
' 3Tν

m
= 3Tν0

m

(
a0
a

)
' 150(1 + z)

(1eV
m

)
km/s,

where the present neutrino temperature is Tν0 = (4/11)1/3Tγ0 with Tγ0 = 2.725K.
During the matter dominated era, the free-streaming length and wavenumber are

λFS(t) = 7.7 1 + z√
ΩΛ + Ωm(1 + z)3

(1eV
m

)
h−1Mpc

kFS(t) = 0.82
√

ΩΛ + Ωm(1 + z)3

(1 + z)2

(
m

1eV

)
hMpc−1.
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So, after the non relativistic transition and during the matter dominated era, the free-
streaming length keep growing, but only at the rate (aH)−1 ∝ t1/3, it means more
slowly then the scale factor a ∝ t2/3. Moreover, the comoving free-streaming length
λFS/a nowadays decreases as

(
a2H

)−1 ∝ t−1/3; as a consequence, for those neutrinos
who undergo the non-relativistic transition during the matter dominated epoch, the
comoving free-streaming wavenumber has reached a minimum knr at the time of the
transition, it means when m = 〈p〉 = 3Tν and (a0/a) = (1 + z) = 2.0× 103(m/1eV).
This minimum value is

knr ' 0.018Ω1/2
m

(
m

1eV

)1/2
hMpc−1.

The physical effect of the free-streaming is to damp the neutrinos density perturbation
at small scales: neutrinos can’t be bounded in regions smaller than the free-streaming
length. On scales larger than the free-streaming length, the neutrino velocity can be
considered negligible, and, after the non relativistic transition, neutrino perturbations
behave as the cold dark matter perturbations. In particular, free-streaming has no
effect on modes k < knr.

3.4 The phases space

The phases space is described by six parameters: three positions xi and their
conjugate momenta Pi, i.e. the spatial part of the quadrimomentum, for a mass m
particle Pi = mUi, where Ui = dxi/

√
ds2. The relationship between the conjugate

momenta and the proper momenta, measured by an observer from a fixed point in
the spatial coordinates, is Pi = a(1− φ)pi. Assuming no metric perturbations, Pi
would remain constant, while pi would decrease with the expansion as a−1.

The particle distribution provides the number of particles in a volume dx1dx2dx3dP1dP2dP3
of the phase space

f(xi, Pj , τ)dx1dx2dx3dP1dP2dP3 = dN,

where f is a scalar function and it is invariant under canonical transformations of
the coordinates. The zero order distribution is the Fermi-Dirac for fermions (+ sign)
and the Bose-Einstein for bosons (-sign):

f0 = f0(ε) = gs
h3

1
eε/kBT0 ± 1

,

where ε = a
(
p2 +m2)1/2 =

(
P 2 + a2m2)1/2, T0 = aT is the temperature of the

particles nowadays and the factor gs is the number of spin degrees of freedom.
Obviously neutrinos have the Fermi-Dirac distribution.

In order to eliminate the metric perturbations in the definition of the momenta,
Pi can be replaced by qi ≡ api that can be seen as the proper momentum corrected
by the effect of the homogeneous expansion. So the comoving trimomentum qi can
be written using its modulus and its direction as qi = qn̂i, where n̂in̂i = δijn̂

in̂j = 1.
So the phase space variables change and f(xi, Pj , τ) is replaced by f(xi, q, n̂j , τ).
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Notice that since qi are not the conjugate momenta, d3xd3q is not the phase space
volume element and fd3xd3q is not the number of particles. From the relations
PµP

µ = m2 and Pi = (1−φ)qi, we can get P0 = (1+ψ)ε. In the CDM+HDM models,
both massless and massive neutrinos were ultra-relativistic at decoupling, so in the
Fermi-Dirac distribution ε can be simply replaced by q. In a homogeneous Universe
the neutrino phase space distribution would be isotropic f(xi, Pj , τ) = f0(P, τ) and
the energy-momentum tensor would be diagonal with the isotropic pressure terms

T 0
0 = %̄ν = 4π

a4

∫
q2dqεf0(q),

T ii = −p̄ν = − 4π
3a4

∫
q2dq

q2

ε
f0(q).

Spatial metric perturbations produce variations in the neutrino phase space dis-
tribution depending on time, position and momentum. This will turn out in an
anisotropic stress σ in the perturbated energy-momentum tensor δTµν , so it would
be written as (

%̄+ P̄
)
σ ≡ −

(
k̂ik̂j −

1
3δij

)
Σi
j ,

where Σi
j ≡ T ij − δijT kk /3.

Using the quadrimomentum components and the distribution function, the
general expression for the energy-momentum tensor is:

Tµν =
∫
dP1dP2dP3(−g)−1/2PµPν

P 0 f(xi, Pj , τ), (3.6)

where g is the determinant of gµν . It is useful to rewrite the determinant as a zero
degree term plus a perturbed term that takes into account the anisotropies, it means
a function Ψ� 1 in the new variables q and ni:

f(xi, Pj , τ) = f0(q)
[
1 + Ψ(xi, q, n̂j , τ)

]
, con Pj = (1−Ψ) qj . (3.7)

Now the anisotropic stress appears at the first order. Using the relations
∫
dΩn̂in̂j =

4πδij/3 and
∫
dΩn̂i =

∫
dΩn̂in̂jn̂k = 0, the equation 3.6 at the first order in the

perturbations becomes:

T 0
0 = a−4

∫
q2dqdΩ

√
q2 + a2m2f0(q) (1 + Ψ) , (3.8)

T 0
i = a−4

∫
q2dqdΩqn̂if0(q)Ψ, (3.9)

T ij = −a−4
∫
q2dqdΩ q2n̂in̂j√

q2 + a2m2 f0(q) (1 + Ψ) , (3.10)

where (−g)−1/2 = a−4(1− ψ + 3φ) and dP1dP2dP3 = (1− 3φ)q2dqdΩ.

3.5 The Vlasov equation
The Vlasov equation (or collisionless Boltzman equation [16]) expresses the conser-
vation of the number of particles along the path lines inside the phase space. Using
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the variables xi, q, n̂j , τ , it is:

Df

dτ
= ∂f

∂τ
+ dxi

dτ

∂f

δxi
+ dq

dτ

∂f

∂q
+ dn̂i
dτ

∂f

∂n̂i
= 0.

The function f can be expanded as in 3.7 keeping only the first order perturbation
terms. At the zero degree dxi/dτ = P i/P 0 = −Pi/P0 = −qi/ε. From the geodetic
equation P 0Ṗ 0 + Γ0

µνP
µP ν = 0, we get dq/dτ = qφ̇+ εn̂i∂iψ at the first order. More-

over at the zero degree we have dn̂i/dτ = 0, because with no metric perturbations
the momenta have fixed direction. So the Vlasov equation results to be

f0Ψ̇− qi
ε
f0∂iΨ +

(
qφ̇+ εn̂i∂iψ

) ∂f0
∂q

= 0,

and in the Fourier space (after dividing by f0)

Ψ̇− iq
ε

(
~k · n̂

)
Ψ = −

(
φ̇+ i

ε

q

(
~k · n̂

)
ψ

)
∂ ln f0
∂ ln q .

The last equation describes how the neutrino phase space distribution reflects the
metric perturbations.

3.6 Neutrino perturbations during the relativistic regime
When neutrinos are ultra-relativistic (ε = q), the Vlasov equation becomes:

Ψ̇− i
(
~k · n̂

)
Ψ = −

(
φ̇+ i

(
~k · n̂

)
ψ
) ∂ ln f0
∂ ln q .

The momentum q does not appear in the homogeneous equation, while the zero
degree term has a fixed dependence on q once the distribution has been fixed.
This reflects the fact that in a given point and in a given direction neutrinos are
equally blueshifted and redshifted, so their spectrum remains a black body with
a temperature variation δTν(xi, q.n̂j , τ) in a given point and in a given direction
expressed by

f(xi, q, n̂j , τ) =
(

exp
[

q

a (Tν + δTν)

]
+ 1

)−1

= f0(q) + ∂f0(q)
∂Tν

δTν(xi, n̂j , τ).

Since f0 is a function of q/aTν , we find ∂f0/∂Tν = −(q/Tν)∂f0/∂q and

f(xi, q, n̂j , τ) = f0(q)− ∂f0(q)
∂ ln q

δTν
Tν

(xi, n̂j , τ).

This result can be considered as the phase space perturbation Ψ and so

Ψ(xi, q, n̂j , τ) = −∂ ln f0(q)
∂ ln q

δTν
Tν

(xi, n̂j , τ).
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The conclusion is that the presence of ∂ ln f0/∂ ln q in the Vlasov equation implies
that the spectrum remains a Planck spectrum.

For massless neutrinos the unperturbed energy density and the pressure are
%̄ν = −3p̄ν = T 0

0 = −T ii ; using equation 3.10

%̄ν = −3p̄ν = a−4
∫
q2dqdΩqf0(q).

The perturbations for energy density δ%ν , pressure δpν , energy flux δT 0
iν and stress

tensor Σi
jν = T ijν + pνδij (the subscript ν stands for massless neutrinos) are given by

δ%ν = 3δpν = a−4
∫
q2dqdΩqf0(q)Ψ,

δT 0
iν = a−4

∫
q2dqdΩqn̂if0(q)Ψ,

Σi
jν = −a−4

∫
q2dqdΩq

(
n̂in̂j −

1
3δij

)
f0(q)Ψ.

At zero degree the unperturbed energy flux and stress tensor are nil. In order to
reduce the number of variables, we can integrate in q the neutrino distribution
function and define the quantity:

Fν(~k, n̂j , τ) ≡
∫
q2dqqf0(q)Ψ∫
q2dqqf0(q) .

After integrating the Vlasov equation in q2dqqf0(q) and dividing by
∫
q2dqqf0(q),

we obtain the following collisionless Boltzman equation for massless neutrinos:

Ḟν − i
(
~k · n̂

)
Fν = 4

(
φ̇+ i

(
~k · n̂

)
ψ
)
.

The number of variables can be further reduced by noticing that the equation
depends on the direction n̂ only through the angle ~k · n̂, this is a consequence of the
isotropy of the background. As an aftermath we can expand the perturbations in
series of Legendre polynomials respect to this angle:

Fν(~k, n̂, τ) =
∞∑
l=0

(−i)l(2l + 1)Fνl(~k, τ)Pl(k̂ · n̂).

The perturbed quantities can be written as a function of the new variable and its
expansion:

δν = 1
4π

∫
dΩFν(~k, n̂, τ) = Fν0,

θν = 3i
16π

∫
dΩ
(
~k · n̂

)
Fν(~k, n̂, τ) = 3

4kFν1,

σν = 3
16π

∫
dΩ
[(
~k · n̂

)2
− 1

3

]
Fν(~k, n̂, τ) = −1

2Fν2,

the density contrast is given by the monopole term, the velocity gradient is the dipole
term and the anisotropic stress is the quadrupole term. Using the orthonormality
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of the Legendre polynomials, the recursive relation (l + 1)Pl+1 = (2l + 1)Pl − lPl−1
and the Vlasov equation, we find

δ̇ν = 4
3θν + 4φ̇,

θ̇ν = −k
2

4 δν − k
2σν − k2ψ,

Ḟνl = k

2l + 1
[
(l + 1)Fν(l+1) − lFν(l−1)

]
, l ≥ 2.

This set of equations describes the evolution of massless neutrinos distribution within
the phase space. Notice that the first two equations are related , respectively, to the
continuity equation and the Euler equation.

Assuming adiabatic initial condition during the RDE (δν = δγ), on scales greater
than the horizon the neutrino distribution is static with local density and temperature
perturbations proportional to the metric fluctuations. Using the first two perturbed
Einstein equations in Fourier space, with little algebra we can find:

δν = δγ = −2ψ = 4δTν
Tν

, θν = θγ = −1
2k

2τψ.

After the Hubble crossing, it means on scales smaller than the free-streaming scale,
the different multipoles are populated one by one with a peak at τ ' l/k.

In order to compare the evolution of neutrinos and photons before recombination,
we combine the Euler equation and the continuity equation in a second order
equation:

δ̈ν = −1
3k

2δν −
4
3k

2ψ + 4φ̈− 4
3k

2σν .

With no σ this equation would be similar to those of photons before recombination.
The physical meaning of the different terms is the following: −1

3k
2δν is the force

arising from the relativistic pressure, −4
3k

2ψ is the gravitational force, 4φ̈ stands
for the expansion effect: a local growth of φ is equivalent to a local decrease of the
scale factor and so an increase in the temperature and density of the black body.
The neutrino anisotropic stress becomes important within the Hubble radius and
acts as the viscosity force of a fluid. The neutrino overdensities δν do not oscillate
and are damped. As shown in Figure 3.2, the photon density contrast oscillates
between the horizon crossing and the equivalence, while the neutrino density contrast
is suddenly damped after the first oscillation. After the recombination δν and δγ
remain constant, they don’t take part in the gravitational collapse because of the
free-streaming and of the relativistic pressure. Notice that after decoupling, photons
are free-streamed as relativistic neutrinos and δγ approaches −4ψ.

The homogeneous part of the relativistic Vlasov equation is:

Ψ(~k, n̂, q, τ) = −δTν
Tν

(
~k · n̂

)
ei(~k·n̂)τ ∂ ln f0

∂ ln q .

It reflects the free propagation through plane waves of the temperature perturbations:
the free-streaming. In the basis of Fνl(~k, τ) this implies that Fνl(~k, τ) ∝ jl(kτ),
where jl(kτ) are the first type Bessel spherical functions, so the contribution to δν is
proportional to sin(kτ)/kτ ; this contribution goes to zero after the horizon crossing
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Figure 3.2. [17] The evolution of density perturbations in massless neutrinos compared

with the evolution of density perturbations for photons, as a function of the scale factor

and the Fourier wave number. The model is with three massless neutrinos. The time

increases from left to right.

of the perturbations. Taking into account also the inhomogeneous solution, the
global solution decreases during the RDE, because φ and ψ decrease. Instead during
the MDE φ and ψ are constant, and the global solution is Ψ = ψ∂ ln f0/∂ ln q. In
the basis of Fνl the global solution for δν is

δν = −4ψ(k) + α(k) sin(kτ)/(kτ), τ > τeq,

where the constant α(k) can be obtained by comparing this solution and the RDE
one. The first term is the steady state where the relativistic pressure counterbalances
the gravitational force in any potential well.

To sum up, during the relativistic regime the effects of free-streaming and
relativistic pressure lead to a suppression of the neutrino density contrast within
the Hubble radius: during the RDE δν is more or less nil, while δb and δγ oscillate;
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during the MDE it remains constant, while δb increases.

3.7 Neutrino perturbations during the non-relativistic

regime

Also massive neutrinos obey to the collisionless Boltzman equation. Nevertheless
the massive neutrinos distribution function is more complicated because of the mass.
The unperturbed energy density and pressure of massless neutrinos are:

%̄h = a−4
∫
q2dqdΩεf0(q),

p̄h = −1
3a
−4
∫
q2dqdΩq

2

ε
f0(q),

where the index h stands for HDM and ε =
√
q2 + a2m2

ν . Instead the perturbed
quantities are:

δ%h = a−4
∫
q2dqdΩεf0(q)Ψ,

δph = 1
3a
−4
∫
q2dqdΩq

2

ε
f0(q)Ψ,

δT 0
ih = a−4

∫
q2dqdΩqn̂if0(q)Ψ,

Σi
jh = −a−4

∫
q2dqdΩq

2

ε

(
n̂in̂j −

1
3δij

)
f0(q)Ψ.

The comoving energy ε(q, τ) depends on both the time and the momentum, so we
cannot cancel the dependence on q by integrating, as we have done in the case of
massless neutrinos. We can expand Ψ in Legendre series:

Ψ(~k, n̂, q, τ) =
∞∑
l=0

(−i)l(2l + 1)Ψl(~k, q, τ)Pl(k̂ · n̂).

So the perturbed quantities (energy density, pressure, energy flux and anisotropic
stress) in the Fourier space are:

δ%h = 4πa−4
∫
q2dqεf0(q)Ψo,

δph = 4π
3 a−4

∫
q2dq

q2

ε
f0(q)Ψ0,

(%̄h + p̄h) θh = 4πka−4
∫
q2dqqf0(q)Ψ1,

(%̄h + p̄h)σh = −8π
3 a−4

∫
q2dq

q2

ε
f0(q)Ψ2.
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Figure 3.3. Evolution of neutrino isotropic pressure perturbations δph and of the anisotropic

stress σh in units of the density perturbation, compared with the evolution of the

parameter w of the equation of state. The modes are k = 0.1hMpc−1 and undergo the

Hubble crossing when a/a0 = 2.5 × 10−5). The thin lines refer to massless neutrinos

for which w = 1/3. Thick lines refer to neutrinos with m = 0.1 eV that have the non-

relativistic transition at a/a0 = 5× 10−3. After the non-relativistic transition, pressure

perturbation and anisotropic stress are negligible respect to the density perturbations.

The Vlasov equation becomes:

Ψ̇0 = qk

ε
Ψ1 − φ̇

∂ ln fo
∂ ln q ,

Ψ̇1 = qk

3ε (Ψ2 − 2Ψ0) + εk

3qψ
∂ ln f0
∂ ln q ,

Ψ̇l = qk

(2l + 1)ε [(l + 1)Ψl+1 − lΨl−1] , l ≥ 2.

When neutrinos of a given family are inside the non relativistic regime (it means
when the momenta verify q � ε ' am) the above expressions of the perturbed
quantities show that both δph and (%̄h + p̄h)σh are suppressed respect to δ%h (as
shown in Figure 3.3).

As expected the Euler equation and the continuity equation become more and
more similar to those of ordinary matter:

δ̇h = −θh + 3φ̇,

θ̇h = − ȧ
a
θh + k2ψ.
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As in the case of cold dark matter (and baryons after recombination), this leads to a
second order equation for the evolution of perturbations

δ̈h + ȧ

a
δ̇h = −k2ψ + 3

(
φ̈+ ȧ

a
φ̇

)
.

Neutrinos become non relativistic during the MDE when φ and ψ are nearly constant
and a ∝ τ2. In this case the solution of the above equation is:

δh = A ln τ +B − (kτ)2

6 ψ

= Ã ln a+ B̃ − 2
3

(
k

aH

)2
ψ,

where A and B (or Ã and B̃) are constant of integration. The last term is the
solution of the homogeneous equation and grows as τ2 as well as the scale factor.
This solution has a simple physical explanation:

• k > knr

The modes that are inside the Hubble radius at the time of the non-relativistic
transition have a density contrast δh much smaller than δcdm because of the
free-streaming, but grows faster than δcdm because of the term Ã ln a. When
the first and the third term of the solution become equal, δh approaches the
following behavior

δh → −
2
3

(
k

aH

)2
ψ ∝ a,

that is the solution of the Poisson equation in a Universe matter dominated.
So in an infinite time δh will be equal to δcdm at any scale. After decoupling
baryons have the same behavior, but, since baryons have no free-streaming, δb
suddenly reach δcdm. Instead neutrinos with masses around 1 eV or smaller
are still far from reaching this asymptotic value, unless for scales close to knr;
on smaller scales δh remains smaller than δcdm ' δb.

• k > knr

The modes that are outside the Hubble radius at the time of the non-relativistic
transition have a density contrast that is independent on time and are of the
same order of δcdm. After the horizon crossing the solution becomes

δh → −
2
3

(
k

aH

)2
ψ ∝ a,

and reaches δcdm.

To sum up, drawing the three behavior at an instant close to the end of the
MDE, the expected scenario would be δh = δcdm = δb for a0H0 < k < knr while for
k > knr the ratio δh/δcdm = δh/δb would be smaller than one and decreasing to zero
as k increases to infinite. These conclusions are nearly unchanged during the present
cosmological constant dominated era. All these characteristics discussed so far are
well depicted in Figure 3.4.
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Figure 3.4. Evolution of metric perturbations and density perturbations as a function

of the scale factor for modes in the range 10−3hMpc−1 < k < 1hMpc−1 (from the top

panel to the bottom panel) in case of two cosmological models: ΛCDM (on the left

panels) with three massless neutrinos and ΛMDM (on the right) with three neutrinos

sharing the same mass 0.46 eV. Both models consider Ωm = 0.3 and ΩΛ = 0.7 and

k3/2ψ = −10−5 as initial condition.



3.8 Massive neutrinos and the suppression of matter perturbations growth 55

The matter power spectrum nowadays and at any time after the non-relativistic
transition is

P (k) =
{
〈δcdm〉 k < knr

[1− Ων/Ωm]2
〈
δ2
cdm

〉
k � knr

(3.11)

where Ωm = Ωcdm + Ωb + Ων .

3.8 Massive neutrinos and the suppression of matter

perturbations growth

During the MDE φ and ψ are constant and so, using the Poisson equation k2φ =
−4πδ%, within the Hubble radius the density contrast δcdm = δb grows as

[
a2 (%̄cdm + %̄b)

]−1,
it means linearly with the scale factor δcdm ∝ a.

During the MDE on scales smaller then the free-streaming scale the neutrino
perturbations δν do not contribute to the gravitational clustering. Since neutrinos
have free-streaming δν � δcdm, and since %̄ν < %̄cdm one finds δ%̄ν � δ%̄cdm: neutrinos
are negligible in the Poisson equation. On the contrary neutrinos take part in the
background expansion through the Friedmann equation. Physically speaking the
clustering cannot counterbalance the expansion and the expansion slightly exceeds
the clustering. As a consequence, φ and ψ slightly decay and δcdm increases more
slowly than the scale factor.

In order to estimate the intensity of this effect, one considers the following
equation:

δ̈cdm + ȧ

a
δ̇cdm = −k2ψ + 3

(
φ̈+ ȧ

a
φ̇

)
.

Within the Hubble radius the zero degree term is dominated by the comoving
gradient −k2ψ if the anisotropic stress is negligible. This gradient is given by the
Poisson equation, so, replacing it, we obtain

δ̈cdm + ȧ

a
δ̇cdm = 4πa2δ%,

where δ% is the total density perturbation. During the MDE with no neutrinos,
should be δcdm = δb, the global density perturbation should be δ% = (%̄cdm + %̄b) δcdm,
the expansion rate should be 3 (ȧ/a)2 = 8πa2 (%̄cdm + %̄b) ∝ a−1, the scale factor
a ∝ τ2, and the above equation should be

δ̈cdm + 2
τ
δ̇cdm −

6
τ2 δcdm = 0,

with two solutions δcdm ∝ τ2 and δcdm ∝ τ−3; not considering the decreasing solution,
the final solution is δcdm ∝ a.

Now we move to the case of massive neutrinos, during the MDE and on scales
k � knr. The neutrino perturbation δ%ν does not contribute to the Poisson equation
δ% = (%̄cdm + %̄b) δcdm, instead the neutrino background density contributes to the
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expansion rate: 3 (ȧ/a)2 = 8πa2 (%̄cdm + %̄b + %̄ν). Assuming %ν dominated by non
relativistic neutrinos, the slope would be about a−3, and the number

fν ≡
%ν

(%cdm + %b + %ν) = Ων

Ωm

would remain approximatively constant. The evolution equation can be rewritten as

δ̈cdm + 2
τ
δ̇cdm −

6
τ2 (1− fν) δcdm = 0.

Looking for solutions like δcdm ∝ τ2p, we find two roots

p± = −1±
√

1 + 24 (1− fν)
4 ,

so the increasing solution for the CDM density contrast is

δcdm ∝ ap+ ' a1− 3
5fν ,

where we have assumed fν � 1. As expected, the growth of δcdm is reduced because
one of the component of the Universe takes part to the expansion rate but is not
involved in the gravitational clustering. The Poisson equation

−k2φ ∝ ap+−1 ' a−
3
5fν

shows how during the MDE the gravitational potential decreases for the same reason.
In conclusion, at the end of the MDE and during the present cosmological

constant dominated era, as already seen in the case of no neutrinos, ψ decreases
as g(a) and δcdm increases as ag(a) (where the damping factor is normalized to 1
g(a) = 1 for a� aΛ). The combined effect of neutrinos and cosmological constant
on the growth of δcdm can be approximated as

δcdm ∝ [ag(a)]p+ ' [ag(a)]1−
3
5fν . (3.12)

3.9 Neutrino mass effects on matter power spectrum
In order to understand the effects of neutrinos on matter power spectrum we focus
on the difference between the ΛCDM model and ΛMDM (Lambda Mixed1 Dark
Matter) model, respectively with massless neutrinos and with massive neutrinos.

1. k < knr (large scales)
Neutrino perturbations are not affected by free-streaming and in the non rela-
tivistic regime are practically indistinguishable from the CDM perturbations.
In particular within the Hubble radius neutrinos take part on the Poisson
equation with δν = δcdm, and so the density contrast grows as a. Once Ωm has
been fixed, this branch of the matter power spectrum is neither affected by
the value of fν nor by the value of the neutrino mass.

1Cold Dark Matter plus Hot Dark Matter related to massive neutrinos.
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2. k � knr and k � keq (small scales)
The two spectra are very different. First of all the radiation-matter equiv-
alence does not take place at the same value of the scale factor, because
(aeq/a0) = Ωr/ (Ωr + Ωcdm) = (1− fν)−1 Ωr/Ωm, where Ωr contains the den-
sities of photons and three massless neutrinos. Since the two models share
the same values of Ωm and Ωr, the ratio between the two values of the scale
factor at the equivalence is afνeq/afν=0

eq = (1− fν)−1. At the equivalence and at
any time before the non relativistic transition, the two models are equivalent,
unless for a shift in the scale factor of the quantity we have just seen above.
So the identity

δfνcdm [a] = δfν=0
cdm [(1− fν) a] (3.13)

holds until a ≤ anr. Suddenly after the instant of a = anr, in the model with
massive neutrinos the mechanism described in the last section is activated
and the growth of the matter perturbations is reduced. As shown in Fig. 3.5,
the presence of neutrino masses leads to an attenuation of the linear matter
power spectrum on small scales. Assuming fν independent on time for a ≥ anr,
the growth of CDM perturbations will follow equation 3.12 and will increase
exponentially with the scale factor

δfνcdm [a0] =
(
a0g(a0)
anr

)1− 3
5fν

δfνcdm [anr] .

The case of massless neutrinos follows the behavior of massive neutrinos until
a = (1− fν) anr, it means until the scale factor reaches the value of the non
relativistic transition for massive neutrinos, shifted backwards by the factor
given in 3.13. At this moment the exponential growth of δfν=0

cdm as a function
of the scale factor takes the exponent

(
1− 3

5fν
)
. This exponent increases to

one, so δfν=0
cdm becomes a linear function of a. One can write

δfν=0
cdm [a0] '

(
a0g(a0)

(1− fν) anr

)
δfν=0
cdm [(1− fν) anr] ,

but this expression slightly overestimates the growth of perturbations in the
case of massless neutrinos, because it assumes that after the instant of a = anr
the slope becomes suddenly linear. Numerical results show a slightly slow
growth

δfν=0
cdm [a0] '

(
a0g(a0)

(1− fν)1/2 anr

)
δfν=0
cdm [(1− fν) anr] .

Using this result, we can calculate the ratio between the present values of δcdm
in the two models

δfνcdm [a0]
δfν=0
cdm [a0]

= (1− fν)1/2
(
a0g(a0)
anr

)− 3
5fν

.

Moreover from equation 3.11, the ratio between the matter power spectra of
the two models can be calculated:

P (k)fν
P (k)fν=0 = (1− fν)3

(
a0g(a0)
anr

)− 6
5fν

.
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Figure 3.5. Ratio of the matter power spectrum including three degenerate massive

neutrinos with density fraction fν to that with three massless neutrinos. The parameters

(ωm, ΩΛ) = (0.147, 0.70) are kept fixed, and from top to bottom the curves correspond

to fν = 0.01, 0.02, 0.03, . . . , 0.10. The individual masses mν range from 0.046 eV to 0.46

eV, and the scale knr from 2.1× 10−3hMpc−1 to 6.7× 10−3hMpc−1 as shown on the

top of the figure. keq is approximately equal to 1.5× 10−2hMpc−1.

Replacing (ao/anr) with 2000mν/1eV and assuming that all the neutrino
families Nν share the same mass mν , one can write mν as (ων/Nν) 93.1eV,
where ων = h2Ων . The result depends only on fν , Nν , ωm(ωm = h2Ωm),ΩΛ
and it is

P (k)fν
P (k)fν=0 = (1− fν)3

(
1.9× 105g(a0)ωmfν/Nν

)− 6
5fν .

Figure 3.5 shows the ratio of the matter power spectrum for ΛMDM over that
of ΛCDM, for different values of fν , but for fixed parameters (ωm, ΩΛ). Here
the ΛMDM model has three degenerate massive neutrinos. As expected from
the analytical results, this ratio is a step-like function, equal to one for k < knr
and to a constant for k � keq. The value of the small-scale suppression factor
is plotted in Figure 3.6 as a function of fν and of the number Nν of degenerate
massive neutrinos, for fixed (ωm, ΩΛ). The semi-analytical expression is a
found to be a good approximation of the exact numerical results. Finally,
considering fν < 0.07, we find a linear expression:

P (k)fν
P (k)fν=0 ' −8fν .

In conclusion the combined effect of equivalence shift and reduction of CDM
fluctuation growth during the MDE turn out in a damping of the perturbations at
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Figure 3.6. Ratio between the matter power spectrum in the case of massless neutrinos

and the matter power spectrum in the case of massive neutrinos, as a function of

the neutrino density fν . The initial conditions are the scale k = 5h Mpc−1 and the

parameters (ωm,ΩΛ) = (0.147, 0.7). The cases Nν = 1 and Nν = 3 degenerate in mass

are considered. The numerical results are compared with the linear approximation of

the analytical expression.

small scales for k > knr, as can be seen in Figure 3.7. The reason is that relativistic
neutrinos represent a radiation component at decoupling and so they cause a delay
in the equivalence. This is important because the perturbation growth becomes
strong only during the MDE. So, because of the equivalence delay, the small scales,
that cross the horizon before the equivalence, grow slowly for a longer time and in
the matter power spectrum the small scale perturbations are suppressed. On the
other side, the large scale perturbations, that in any case will cross the horizon after
the equivalence, independently on neutrinos, are not affected by the equivalence
delay and so there is no suppression in the matter power spectrum.

3.10 Neutrino mass effects on CMB

The strongest neutrino mass effect on CMB is related to the equivalence delay. Since
neutrinos are still relativistic at decoupling they must be considered as a radiation
component at the equivalence, so %b + %cdm = %γ + %ν . From this equation we obtain

aeq = ωr
ωb + ωcdm

,
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Figure 3.7. Matter power spectrum P (k) for three models: the neutrinoless ΛCDM model

with no neutrinos, a more realistic ΛCDM model with three massless neutrinos (fν ' 0),

and finally a ΛMDM model with three massive degenerate neutrinos and a total density

fraction fν = 0.1. In all models, the values of (ωb, ωm, ΩΛ, As, n, τ) have been kept

fixed.

where ωr is the present radiation density assuming neutrinos remained massless and
is related to the equation:

%r =
[
1 + 7

8

( 4
11

)4/3
Neff

]
%γ ,

where Neff is the effective number of relativistic degrees of freedom. If fν increases
aeq increases proportionally to [1− fν ]−1: the equivalence is delayed.

The equivalence delay related to the higher radiation content due to the presence
of neutrinos causes an enhancement of the early Integrated Sachs Wolfe (ISW) effect
(see section 2.9.2), because decoupling is not well settled down during the MDE
but happens when the gravitational potential is still varying as in the RDE. This
effect results in an increase of the perturbation peaks at low multipole ` / 200.
If a certain scale oscillates more time during the time scale of potential variation,
the average of positive and negative contributions is nil. If at Last Scattering the
potential varies with a characteristic time scale τLS , the perturbation scales evolving
with the same time are k−1 = τLScs, that is approximately the dimension of the
horizon at that epoch. Since the relation between multipoles and scales is l ∝ kdLS
where dLS is the Last Scattering surface distance, scales k = (τLScs)−1 correspond to
multipoles l ≈ 200, that is the first peak. So the early ISW effect and the subsequent
enhancement of the peaks are more pronounced around the first peak, as can be
seen in Figure 3.8.
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Figure 3.8. CMB temperature anisotropy spectrum CTl for three models: the neutrinoless

ΛCDM model with no neutrinos, a more realistic ΛCDM model with three massless

neutrinos (fν ' 0), and finally a ΛMDM model with three massive degenerate neutrinos

and a total density fraction fν = 0.1. In all models, the values of (ωb, ωm, ΩΛ, As, n, τ)

have been kept fixed.

Besides the early ISW, the potential variation directly affects CMB anisotropies.
The oscillations follow the equation 2.10

d

dτ

[
(1 +R) Θ̇

]
+ k2

3 Θ = −k
2

3 (1 +R)ψ − d

dτ

[
(1 +R) φ̇

]
.

in the case constant potentials. But when the potentials are varying the last term
is dominant and produces the enhancement of the peaks located at the scales that
cross the horizon before the equivalence. Since the equivalence takes place at redshift
zeq ≈ 24000h2Ωm (with Ωr = 4.13 × 10−5h−2), the scales affected are such that
k > keq ≈ (14Mpc)−1h2Ωm.

3.11 The effective number of relativistic degrees of free-

dom

In a standard physics scenario the particles contributing to the total value of
the relativistic degrees of freedom g∗ ' 10.75 are electrons, three neutrinos (and
their antiparticles), and photons. Any extra relativistic degrees of freedom can be
parameterized in terms of an excess with respect to the standard effective neutrino
number Neff = 3. More precisely it is Neff ' 3.046 after accounting for QED
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corrections and non-instantaneous decoupling of neutrinos that means that neutrinos
are still in thermal contact with the primordial plasma when the electron-positron
annihilations start, and so neutrinos carry out a portion of the energy released by
these processes. The effective number of relativistic degrees of freedom appears in
the total radiation energy density:

%r =
[
1 + 7

8

( 4
11

)4/3
Neff

]
%γ ,

where ργ is the energy density of photons.
A first effect of Neff is related to the primordial helium abundance YP . Changing

Neff affects the freeze-out temperature Tfreeze during Big Bang Nucleosynthesis
(BBN) 2 and therefore the final neutron to proton ratio nn/np [18]. Larger Neff
means earlier freeze-out, larger nn/np, and larger Yp. However, as shown in [19],
one should be careful when comparing the effective number of relativistic degrees
of freedom at the times of BBN and Last Scattering, since they may be related to
different physics. This is because the energy density in relativistic species may change
from the time of BBN (T ∼ MeV) to the time of LS (T ∼ eV). For instance, if one of
the active neutrinos has a mass in the range eV < m < MeV and decays into sterile
particles such as other neutrinos etc. with lifetime t(BBN) < τ < t(LS), then the
effective number of relativistic degrees of freedom at LS would be different from the
number at BBN. Such a massive active neutrino is disfavored by experimental results
on neutrino oscillations that seem to indicate a mass lighter than 1 eV. One could
instead consider sterile neutrinos mixed with active ones which could be produced
in the early Universe by scattering, and subsequently decay. The mixing angle must
then be large enough to thermalize the sterile neutrinos. One finds that such a
sterile neutrino must have a mass of a few MeV, otherwise with a KeV mass the
decay time would be longer than the age of the Universe and so it would certainly
not have decayed at t(LS).

The effect of Neff on cosmological observables (e.g. CMB anisotropy power
spectrum and galaxy power spectrum) is mainly related to the dependence of Neff
on the epoch of matter-radiation equality aeq. In particular, as it has been shown
in the previous paragraph for massive neutrinos, for what concern the CMB, an
increase in aeq changes the extent of the early Integrated Sachs Wolfe effect. The
relation between aeq and Neff is given by equating energy densities:

ρrad = ρm ⇐⇒ aeq = 1 + 0.227Neff
40484 Ωm h2 .

2The Big bang Nucleosynthesis starts with the merging of neutrons and protons in deuterium,

and proceeds through subsequent merging to the formation of the heavier nuclei, until each free

neutron is bounded on an atomic nuclei. Since the deuterium binding energy is greater than the

hydrogen ionization energy of a factor BD/Q = 1.6× 105, the deuterium production is activated at

temperature 1.6× 105 times greater than the recombination temperature Trec = 3740K, it means at

Tnuc ≈ 6× 108K, at time tnuc ≈ 300s. The nucleosynthesis is dismissed at time t ' τn ≈ 10min,

when the temperature was T ≈ 4× 108K.
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This shows a linear relationship for aeq(Neff), which transfers to the baryon to photon
ratio at equality [20]:

Req = 3ρb
4ργ

∣∣∣
aeq

,

= 30496 Ωb h
2 a
∣∣∣
aeq

,

= 1 + 0.227Neff
1.3276

Ωb

Ωm
.

The presence of baryons in the relativistic cosmic fluid slows down the sound speed
according to the definition,

cs ≡ 1/
√

3(1 +R) , (3.14)

and so this quantity is also affected at equality by the effective neutrino number.
This reflects in the size of sound horizon at a generic time τ [20]:

rs ≡
∫ τ

0
dτ ′ cs(τ ′) ,

=
∫ a

0

da

a2H
cs(a) ,

≈ 2
3keq

√
6
Req

ln
{√

1 +R +
√
R+Req

1 +
√
Req

}
,

= 6.612× 10−3

H0
√

ΩmΩbh2
ln
{√

1 +R +
√
R+Req

1 +
√
Req

}
. (3.15)

The last equations come from assuming the Universe is matter dominated during
recombination. As can be seen, the sound horizon depends on Neff through Req.

In [21] the authors claim that changing the number of allowed neutrinos makes an
increasing difference at high ` that is not related to early ISW effect. In contrast, using
qualitative arguments, they demonstrate that this difference is predominantly due to
increased Silk Damping, caused by the increased expansion rate. As already explained
in section 2.9, temperature anisotropies on scales smaller than the photon diffusion
length are damped by the diffusion, a phenomenon known as Silk damping. Diffusion
causes the drop in power toward high ` and makes the power spectrum sensitive
to the angular scale of the diffusion length, τd. To second order in λmfp/λ, where
λmfp is the photon means free path, the temperature fluctuations are suppressed by
exp[−(2rd/λ)2] where the mean squared diffusion distance at recombination is

r2
d = (2π)2

∫ a∗

0

da

a3σTneH

[
R2 + 6

15(1 +R)
6(1 +R2)

]

where ne is the number density of free electrons, σT is the Thompson cross-section,
a∗ is the scale factor at recombination and the factor in square brackets is due
to the directional and polarization dependence of Thompson scattering. If we
approximate a∗ as independent on H, then rd ∝ 1/

√
H. This is expected for a

random walk process:the distance increases as the square root of time. Increasing H
(which happens when we increase Neff) leads to smaller rd which would decrease the
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Figure 3.9. Top panel: WMAP and SPT power spectrum measurements, and theoretical

power spectra normalized at ` = 200. The black central curve is for the best-fit ΛCDM

+ Neff model assuming BBN consistency. The other model curves are for Neff varying

from 2 to 6 with ρb, θs and zEQ held fixed. Larger Neff corresponds to lower power.

Bottom panel: Same as above except normalized at ` = 400 where the ISW contribution

is negligible. We see most of the variation remains [21].

amount of damping. Nevertheless to keep the angular size of the sound horizon θs
(θs = rs/DA) fixed at the observed value, the angular diameter distance DA must
also decrease as 1/H. Since DA decreases by more than would be necessary to keep
θd fixed, θd increases, which means the damping is increased, as can be seen in
Figure 3.9.
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Chapter 4

Statistical methods in

Cosmology

4.1 Inference methods in cosmology and Bayes theorem

In cosmology linear perturbation theory is a stochastic theory. For a given model
with parameters pi the theory predicts its probability. The likelihood L(dn, pi) is
defined as the probability to observe data dn given a model with parameters pi.
Nevertheless the likelihood can be used to solve the inverse problem that is to
estimate how likely is a theoretical model once the experimental data are given, or
to infer the confidence intervals on pi from the data.

The Bayesian method is based on a theoretical model characterized by N free
parameters pi and N priors P (pi) that represent our knowledge of the parameters
before the experimental data. These priors can be simply flat probability distribution
in the interval of physically possible values of the parameters. For instance in the
case of fν , it is reasonable to define P (fν) = 1 in the interval 0 < fν < 1 and
P (fν) = 0 otherwise. Priors can also depend on data from previous experiments.
For instance, if the Hubble constant is one of the free parameters, its prior can be
obtained from the results of the Hubble Space Telescope Key Project and it can be
defined as a gaussian with central value 73.8 Km/s/Mpc and standard deviation
σ = 2.4 Km/s/Mpc [3]. Given the likelihood L(dn, pi) and the prior P (pi) we can
calculate the posterior of any parameter pi taking into account the data.

Now we move to the case of CMB probability function. If the theory provides
the value of the temperature T in each point of the sky, each measure will be the
sum of a constant signal T and noise that follows a Gaussian distribution with nil
mean and variance σ2

T (standard deviation σT ). So the free parameters of the theory
are two: T and σT . If only one measure d is available, the probability to get d from



66 4. Statistical methods in Cosmology

the theory would be

P [d|T, σT ] ≡ L (d;T, σT ) = 1√
2πσ2

T

exp
{
−(d− T )2

2σ2
T

}
.

In the case of Nm independent measures the total probability function is the product
of each probability function

P [{di} |T, σT ] ≡ L ({di} ;T, σT ) = 1(√
2πσ2

T

)Nm exp
{
−
∑Nm
i=1 (di − T )2

2σ2
T

}
.

Notice that, even if the data have a Gaussian distribution, the probability function
is Gaussian only respect to T , but not respect to σ2

T . In order to evaluate the
parameters we need the posterior P [T, σT | {di}], while so far we have only the
likelihood P [{di} |T, σT ]. The relation between these two quantities is given by

P [B ∩A] = P [B|A]P [A] = P [A|B]P [B] ;

and from the last equality we get the Bayes theorem:

P [B|A] = P [A|B]P [B]
P [A] .

In the case of CMB it is:

P [T, σT | {di}] = P [{di} |T, σT ]P [T, σT ]
P [{di}]

.

Since the denominator does not depend on T nor on σT , it does not affect the width
of the probability function nor the position of the peak in the parameter space, so it
is negligible. If we make the conservative assumption of a flat prior P [T, σT ], we
obtain

L ∝ P [T, σT | {di}] ,

where the proportionality constant is independent on the parameters and so not
important. The best fit values of the parameters are located where the probability
function has a peak, so they can be found by differentiating L respect to each
parameter. The derivative respect to T is

∂L
∂T

=
∑Nm
j=1 (dj − T )

σ2
T

(√
2πσ2

T

)Nm exp
{
−
∑Nm
i=1 (di − T )2

2σ2
T

}
,

putting it equal to zero one finds

Nm∑
i=1

(di − T ) = 0,
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so the maximum of the probability function is located where

T = T̄ = 1
Nm

Nm∑
i=1

di,

that represents the expected value. Similar for σ2
T the derivative is

∂L
∂σ2

T

= L
{
−Nm

2σ2
T

+
∑Nm
i=1 (di − T )2

2σ4
T

}

putting it equal to zero one finds the most likely value of the variance

σ2
T =

∑Nm
i=1

(
di − T̄

)2

Nm
.

The error related to these best fit values is proportional to the width of the probability
function. The width can be calculated assuming that L is Gaussian respect to the
parameters, that means lnL is quadratic respect to the parameters. The variance
(the square of the error) of a Gaussian distribution is minus the inverse of two times
the quadratic coefficient. With simple algebra it results

lnL(T ) = lnL(T̄ ) + 1
2
∂2 lnL
∂T 2

∣∣∣∣∣
T=T̄

(T − T̄ )2

= lnL(T̄ )− Nm

2σ2
T

(T − T̄ )2,

so the width of the probability function is σT /N1/2
m . This value represents the 1σ

error in the evaluation of T . Notice that the uncertainty on the evaluation of T is
not equal to σT . The probability function can be rewritten using the best fit values
of the parameters:

L = 1√
2πCN

exp

−
(
T − T̄

)2

2CN

 , (4.1)

where the variance due to the noise is

CN = σ2
T

Nm
.

This probability function has exactly the same maximum and width of the previous
one.

This analysis implies the existence of a theory that predicts the exact value of
the temperature in each point of the sky; such a theory does not exist, and we have
only a distribution of the temperature from which we can calculate T in each pixel.
In the case of a Gaussian distribution the probability that the temperature lies in
the interval T and T + dT is

P (T )dT = 1√
2πCS

exp
{
−T 2

2CS

}
dT,
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where CS is the expected variance due only to the signal, independent on the noise.
In order to have the probability function one has to calculate the convolution between
this "a priori" probability and the likelihood 4.1, where T̄ is now replaced by the
estimated value of the temperature ∆. So we have

P [∆|CS ] =
∑
t

P [∆|T ]P [T |CS ] ,

that means the likelihood is the integral over all possible values of the temperature.
This is called marginalization and the results is

L =
∫ +∞

−∞

dT√
2πCS

exp
{
−T 2

2CS

}
1√

2πCN
exp

{
−(∆− T )2

2CN

}
.

The argument of the exponential can be rewritten as

− T 2C

2CSCN
+ ∆T
CN
− ∆2

2CN
= − C

2CSCN

[
T − CS∆

C

]2
+ CS∆2

2CCN
− ∆2

2CN
where C = CS + CN is the covariance matrix. Changing the integration variable
from T to x = T − CS∆/C, and after integrating, the result is

L = 1√
2πCN

exp
{
−∆2

2C

}∫ +∞

−∞

dx√
2πCS

exp
{
− Cx2

2CSCN

}

= 1√
2πC

exp
{
−∆2

2C

}
.

This is the likelihood for an experiment with just one pixel. As expected, the
measured temperatures lie along a Gaussian distribution with the variance given by
the sum of the variance due to the noise and the one due to the signal.

In the case of NP pixels it is

L = 1
(2π)NP /2 (detC)1/2 exp

{
−1

2∆C−1∆
}
,

where now ∆ is an array of data of the NP measures and the total covariance matrix
C is NP ×NP and is symmetric (so it has NP (NP + 1)/2 elements). If C is diagonal
and proportional to the identity (that means the elements on diagonal are equal), it
is

L = 1
(2π)NP /2 (CS + CN )NP /2

exp
{
−1

2

∑NP
i=1 ∆2

i

CS + CN

}
.

In this case the CS values are those who maximize the likelihood. Differentiating
respect to CS one obtains

∂L
∂CS

= L
{
− NP

2(CS + CN ) +
∑NP
i=1 ∆2

i

2(CS + CN )2

}

and putting it equal to zero one finds the value of CS that gives the maximum

CS = 1
NP

NP∑
i=1

∆2
i − CN .
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In order to estimate the signal of a CMB experiment we can calculate the variance
of the data (the first term on the right in the previous equation) and compares it
with the mean noise per pixel (the second term on the right). If the data have a
variance greater than the noise, the signal is simply the difference.

One can also calculate the error on CS in the same way:

∂2 lnL
∂C2

S

=
{

NP

2(CS + CN )2 −
∑NP
i=1 ∆2

i

(CS + CN )3

}
,

at the likelihood peak
∑NP
i=1 ∆2

i can be replaced by NP (CS + CN ), so

σCS =
√

2
NP

(CS + CN ).

The last equation is a simplified formula useful to calculate the precision of a
given experiment in determining the cosmological parameters. The general formula
provides the errors on C`

σC` =
√

2
(2`+ 1)f (C` + CN,`).

The only difference respect to the simplified version is that the number of pixels (or
the number of independent measures) is replaced by (2`+ 1)f , where f is the sky
coverage fraction of the experiment.

This is the Bayesian method provide confidence intervals: a c.i. I at n% is defined
as the interval where the cumulative is equal to n% that is

∫
I P (pi)dpi = n/100 and

where each point P (pi) is greater than its value outside I. It must be underlined that
once a model is fixed, the Bayesian method provides always confidence intervals of
the parameters, no matter how wrong the model could be and if it is consistent with
the data. So the Bayesian method is strongly dependent on the input model. That’s
why we have to take into account the χ2 that evaluates the consistency between the
model and the data.

4.2 Monte Carlo Markov Chains
Monte Carlo methods are algorithms based on random sampling. An important sub-
class of Monte Carlo methods are Monte Carlo Markov Chains (MCMC) methods
that are Markov process, i.e. the next sample depends on the present one, but not on
the previous ones. The sequence of steps is called Chain and each step corresponds
to some particular value of the parameters for which the likelihood is evaluated.

It is an efficient way to sample the likelihood surface (target distribution) if the
parameter space is very large, as in the cosmological analyses, and using a grid
becomes time consuming.

The aim of MCMC methods is to simulate posterior distribution. In particular
one simulates sampling the posterior distribution P (α|x), of a set of parameter α
given event x, obtained via Bayes Theorem

P (α|x) = P (x|α)P (α)∫
P (x|α)P (α)dα,
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where P (x|α) is the likelihood of event x given the model parameters α and P (α) is
the prior probability density; α denotes a set of cosmological parameters and event
x is the set of observed Ĉ`.

It works as follows [22, 23]:

1. Start with a set of cosmological parameters {α1}, compute the C1
` and the

likelihood L1 = L(C1th
` |Ĉ`).

2. Take a random step in parameter space starting from the present one to obtain
a new set of cosmological parameters {α2}. The distribution of the steps is
called proposal distribution and is taken to be Gaussian in each direction i
with r.m.s. given by σi. We will refer below to σi as the "step size", that is
important to optimize the chain efficiency.

3. Compute the C2th
` for the new set of cosmological parameters and their likeli-

hood L2.

4. (a) Accept the new step as a new point in the chain if it complies with the
Metropolis-Hastings algorithm where the probability of acceptance is

p(acceptance) = min[1,L2/L1].

Then go to step 2 after substitution {α1} → {α2}.
(b) If the condition is not verified, draw a random number x from a uniform

distribution from 0 to 1. If x ≥ L2/L1, do not accept the new step and
repeat the previous point in the chain1 and return to step 2. If x < L2/L1,
accept the new step as in 4.(a).

5. Repeat from step 2 until the convergence test (see below) is verified.

After an initial "burn-in" in a starting low probability region, further samples
can be thought as coming from the stationary distribution. So if this initial part of
the chains is discarded in the post-analysis, the chain will have no dependence on
the starting location.

The choice of the step size is crucial to improve the chain efficiency and speed
up convergence. If the step size is too big, the acceptance rate will be very small; if
the step size is too small the acceptance rate will be high but the chain will exhibit
poor mixing, that is the coverage of all the target distribution. Both situations will
lead to slow convergence.

The classic convergence test is the Gelman-Rubin criterion [24]. This method
not only tests convergence but can also diagnose poor mixing. The idea is that there
are two ways to estimate the mean of the parameters - either treat the combined
chains as a single chain, or look at the means of each chain. If the chains have
converged these should agree within some tolerance. Let us consider M chains
starting at well-separated points in parameter space; each has 2N elements, of which
we consider only the last N : {yji } where i = 1, ..., N and j = 1, ...M , i.e. y denotes a

1The MCMC gives to each point in parameter space a weight proportional to the number of

steps the chain has spent at that particular location.
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chain element (a point in parameter space) the index i runs over the elements in the
chain, the index j runs over the different chains. The mean of the chain is defined as

ȳi = 1
N

N∑
i=1

yji ,

and the mean of the distribution is

ȳ = 1
NM

NM∑
ij=1

yji .

The variance between chains is defined as

Bn = 1
M − 1

M∑
j=1

(ȳj − ȳ)2,

and the average variance within a chain as

W = 1
M(N − 1)

∑
ij

(yji − ȳ
j)2.

Under convergence Bn and W should agree. The quantity

R̂ =
N−1
N W +Bn(1 + 1

M )
W

is the ratio of two estimates of the variance in the target distribution and so it should
approach unity as convergence is achieved. The numerator of the variance is an
estimate of the variance that is unbiased if the distribution is stationary, otherwise
is an overestimate. The denominator is an underestimate of the variance of the
target distribution if the individual sequences did not have time to converge. The
convergence of the Markov chain is then monitored by recording the quantity R̂
for all the parameters and running the simulation until the values for R̂ are always
< 1.01.

A widely used tool for Monte Carlo Markov Chain analysis in cosmology is the
publicly available package CosmoMC [25], that allows to sample several cosmological
parameters spaces analyzing basically any kind of cosmological data. The calculation
of theoretical observable is done through camb [26] (Code for Anisotropies in the
Microwave background) software. The code allows for different sampling algorithms
and different convergence tests. However the most used ones and the ones we are
going to use in the analysis shown in subsequent chapters are the Metropolis-Hastings
sampling algorithm and the Gelman-Rubin convergence test.

4.3 Model selection and Bayesian evidence
It has been shown that in Bayesian inference best fit parameters and confidence
intervals depend on the underlying model, i.e. what set of parameters are allowed
to vary. The problem of model selection is concerned about determining which
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combination of parameters gives the preferred fit to the data. The goal is to make
an objective comparison of different models which may have a different number of
parameters. Typically the introduction of extra parameters will yield an improved fit
to the data set, so a simple comparison of the maximum likelihood value will always
favor the model with more parameters, regardless of whether the extra parameters
are relevant.

The Bayesian method to select between models is to consider the bayesian
evidence ratio. We denote two competing models by M and M ′. We assume the M ′
is a simpler model, which has fewer (n < n) parameters in it. We further assume
that it is nested in model M , i.e. the n′ parameters of model M ′ are common to M ,
which has p = n− n′ extra parameters in it. These parameters are fixed to fiducial
values in M ′. We denote by x the data vector, and by θ and θ′ the parameters
vectors (of length n and n′). The posterior probability, i.e. the probability of the
model given the data, of each model comes from Bayes theorem:

p(M |x) = p(x|M)p(M)
p(x)

and similarly for M ′. By marginalization p(x|M), known as the Evidence, is

p(x|M) =
∫
dθp(x|θM)p(θ|M),

which should be interpreted as a multidimensional integration. Hence the posterior
relative probabilities of the two models, regardless of what their parameters are, is

p(M ′|x)
p(M |x) = p(M ′)

p(M)

∫
dθ′p(x|θ′M ′)p(θ′|M ′)∫
dθp(x|θM)p(θ|M) .

With non-committal priors on the models, p(M ′) = p(M), this ratio simplifies to
the ratio of evidences, called Bayes factor,

B ≡
∫
dθ′p(x|θ′M ′)p(θ′|M ′)∫
dθp(x|θM)p(θ|M) .

Note that, as we have anticipated, if M ′ is nested the complicated model M will
inevitably lead to a higher likelihood (or at least as high), but the evidence will
favor the simpler model if the fit is nearly good, through the smaller prior volume.
We assume uniform (and hence separable) priors in each parameter, over ranges ∆θ
(or ∆θ′) hence p(θ|M) = (∆θ1...∆θn)−1 and

B =
∫
dθ′p(x|θ′M ′)p(θ′|M ′)∫
dθp(x|θM)p(θ|M)

∆θ1...∆θn
∆θ′1...∆θ′n

.

In the nested case the ratio of prior hypervolumes simplifies to
∆θ1...∆θn
∆θ′1...∆θ′n

= ∆θn′+1...∆θn′+p,

where p = n− n′ is the number of extra parameters in the more complicated model.
Bayes factors are usually interpreted against the Jeffreys scale for the strength

of evidence given in Table 4.1. This is an empirically calibrated scale [27], with
thresholds at values of the odds of about 3 : 1,12 : 1 and 150 : 1, representing weak,
moderate and strong evidence, respectively.
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Table 4.1. Empirical scale for evaluating the strength of evidence when comparing two

models, the so-called "Jeffreys scale". The probability column refers to the posterior

probability of the favored model, assuming non-committal priors on the two competing

models, i.e. p(M ′) = p(M) = 1/2 and that the two models exhaust the model space,

p(M ′|x) + p(M |x) = 1

| lnB01| Odds Probability Strength of evidence

< 1.0 . 3 : 1 < 0.750 Inconclusive

1.0 ∼ 3 0.750 Weak evidence

2.5 ∼ 12 : 1 0.923 Moderate evidence

5.0 ∼ 150 : 1 0.993 Strong evidence

4.4 Parameters estimation

The parameters of the basic ΛCDM model are: the physical baryon density, ωb ≡
Ωbh

2; the physical cold dark matter density, ωc ≡ Ωch
2; the dark energy density

in units of the critical density, ΩΛ; the amplitude of the primordial spectrum at a
certain pivot scale, As; the power law spectral index of primordial density (scalar)
perturbations, ns; the reionization optical depth, τ . The parameters derived from
these six fit parameters are: the age of the Universe, t0; the Hubble constant,
H0 = 100hkm s−1 Mpc−1; the amplitude of density fluctuations in linear theory on
8h−1Mpc scale, σ8. The ΛCDM parameters best fit to the 7-year WMAP data are
given in Table 4.2.

In subsequent chapters we will consider non-minimal cosmological models. In
previous chapter we have already seen the ΛMDM (Lambda Mixed Dark Matter)
model with massive neutrinos. In particular we will examine the constraints on
parameters related to non-standard physics, by allowing the effective neutrino number
and the neutrino mass to vary. Furthermore we will also allow for a non standard
parametrization of the reionization process and for a non-flat (Ωk 6= 0) Universe.

4.4.1 One dimensional and two dimensional posterior

In all the analyses of this thesis we compute the likelihood function in the n-
dimensional cosmological parameter space (with n parameters), and multiply it by
the prior probability distribution functions to derive the n-dimensional posterior
probability density distribution function. Marginalizing this over all but one (n− 1)
of the cosmological parameters gives the one-dimensional posterior probability
distribution function for the parameter of interest. This one-dimensional distribution
function is used to determine the most likely value of the parameter, as well as limits
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Table 4.2. Six parameters ΛCDM fit of 7-year WMAP data [28].

Parameter 7-year Fit

Fit parameters

102Ωbh
2 2.258+0.057

−0.056

Ωch
2 0.1109± 0.0056

ΩΛ 0.734± 0.029

As (2.43± 0.11)× 10−9

ns 0.963± 0.014

τ 0.088± 0.015

Derived parameters

t0 13.75± 0.13 Gyr

H0 71.0± 2.5 km/s/Mpc

σ8 0.801± 0.030

on it. Marginalizing over only n− 2 of the cosmological parameters, we derive the
two-dimensional posterior probability density distribution function P (x, y) where
x and y are the two parameters of interest. This is used to derive the constraint
contours in the two-dimensional x–y parameter space.
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Chapter 5

Neutrino Number: Dark

Radiation

5.1 Introduction

One of the major theoretical predictions of the standard scenario is the existence of a
relativistic energy component (see Section 3.11 and e.g. [29]), beside CMB photons,
with a current energy density given by :

ρrad =
[
1 + 7

8

( 4
11

)4/3
Neff

]
ργ ,

where ργ is the energy density of the CMB photons background at temperature
Tγ = 2.728K and Neff is in principle a free parameter, defined as the effective number
of relativistic degrees of freedom. Assuming standard electroweak interactions, three
active massless neutrinos and including the (small) effect of neutrino flavor oscillations
the expected value is Neff = 3.046 with a deviation from Neff = 3 that takes into
account effects from the non-instantaneous neutrino decoupling from the primordial
photon-baryon plasma (see e.g. [30]).

In recent years, thanks to the continuous experimental advancements, the value
of Neff has been increasingly constrained from cosmology ([19], [31], [32], [33], [34],
[10], [35], [36], [37], [38], [3], [21]), ruling out Neff = 0 at high significance.

However, especially after the new ACT [39] and SPT [40] CMB results, the data
seem to suggest values higher than the "standard" one, with Neff ∼ 4− 5 (see e.g.
[35], [36], [3], [21], [41]) in tension with the expected standard value at about two
standard deviations.

The number of relativistic degrees of freedom obviously depends on the decoupling
process of the neutrino background from the primordial plasma. However, a value
of Neff = 4 is difficult to explain in the three neutrino framework since non-standard
neutrino decoupling is expected to maximally increase this value up to Neff ∼ 3.12
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(see e.g. [42]). A possible explanation could be the existence of a fourth (or fifth)
sterile neutrino. The hypothesis of extra neutrino flavor is interesting since recent
results from short-baseline neutrino oscillation data from LSND [43] and MiniBooNE
[44, 45] experiments are consistent with a possible fourth (or fifth) sterile neutrino
specie (see [35, 36] and references therein). Moreover, a larger value for Neff ∼ 4 could
arise from a completely different physics, related to axions (see e.g. [46, 47, 48]),
gravity waves ([49]), decaying particles (see e.g. [50, 51, 52]), extra dimensions
[53, 54, 55, 56] and dark energy (see e.g. [57, 58] and references therein).

As a matter of fact, any physical mechanism able to produce extra "dark"
radiation produces the same effects on the background expansion of additional
neutrinos, yielding a larger value for Neff from observations.

Since there is a large number of models that could enhance Neff it is clearly
important to investigate the possible ways to discriminate among them. If Dark
Radiation is made of relativistic particles as sterile neutrinos it should behave as
neutrinos also from the point of view of perturbation theory, i.e. if we consider the
set of equations that describes perturbations in massless neutrino in the Newtonian
Gauge (the one used in the CAMB package [26]) (following the definition presented in
[59, 60]):

δ̇ν = ȧ

a
(1− 3c2

eff)
(
δν + 3 ȧ

a

qν
k

)
− k

(
qν + 2

3k ḣ
)
,

q̇ν = kc2
eff

(
δν + 3 ȧ

a

qν
k

)
− ȧ

a
qν −

2
3kπν ,

π̇ν = 3c2
vis

(2
5qν + 8

15σ
)
− 3

5kFν,3,

2l + 1
k

Ḟν,l − lFν,l−1 = −(l + 1)Fν,l+1, l ≥ 3 ,

it should have an effective sound speed c2
eff and a viscosity parameter c2

vis such that
c2

eff = c2
vis = 1/3. Here the dot indicates the derivative respect to conformal time τ ,

a is the scale factor, k is the wavenumber, δν is the neutrino density contrast, qν
is the neutrino velocity perturbation, πν is the neutrino anisotropic stress, Fν,` are
higher order moments of the neutrino distribution function, finally σ is the shear.

Varying c2
vis modifies the ability for neutrinos to free-stream out of a gravitational

potential well. When c2
vis = 0 the Cosmic neutrino Background (CNB) becomes a

perfect fluid and is capable of supporting undamped acoustic oscillations, shown in
red, dot-dashed on the left-hand panel of Figure 5.1 [41]. An increased c2

vis leads
to an overdamping of the perturbations, shown in blue, dashed in the left-hand
panel of Figure 5.1. Free streaming of relativistic neutrino will indeed produce
anisotropies in the neutrino background yielding a value of c2

vis = 1/3 while a smaller
value would indicate possible non standard interactions (see e.g. [61, 62, 63]). A
value of c2

vis different from zero, as expected in the standard scenario, has been
detected in [64] and confirmed in subsequent papers [65, 66]. More recently, the
analysis of [41] confirmed the presence of anisotropies from current cosmological data.
Changing c2

eff allows for a neutrino pressure perturbation which is non-adiabatic,
i.e., (δp − δρ/3)/ρ̄ = (c2

eff − 1/3)δrestν , where δrestν is the density perturbation in
a frame where the neutrino velocity perturbation qν = 0. When c2

eff is small the
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CNB is partially able to overcome its internal pressure support and nearly cluster.
Actually, a value of c2

eff < 1/3 (c2
eff > 1/3) leads to a decreased (increased) pressure

of the CNB in its restframe, which in turn causes the amplitude of the neutrino
perturbation increase (decrease), as seen on the right panel of Figure 5.1 in the red,
dot-dashed (blue, dashed) curve. Figure 5.2 [41] shows how the CMB temperature
power spectrum is modified i this parametrization. Note that an increase (decrease)
in c2

eff leads to an increase (decrease) in the neutrino sound horizon. Moreover
an increase (decrease) in c2

eff leads to an increase (decrease) in the scale at which
neutrino perturbations affect CMB. Recently the analysis of [41] suggested the
presence of a lower value for the effective sound speed with c2

eff = 1/3 ruled out at
more than two standard deviations.

Figure 5.1. The evolution of the neutrino density perturbation in its rest frame for a mode

k = 0.1hMpc−1 as a function of the scale factor a, or the conformal time τ [41]. The

black solid curve gives the evolution for the standard case, i.e., when c2vis = c2eff = 1/3.

The left-hand panel shows the evolution when c2vis = 0 (red, dot-dashed) and c2vis = 1

(blue, dashed) with c2eff = 1/3. The right-hand panel shows the evolution when c2eff = 0.1

(red, dot-dashed) and c2eff = 0.8 (blue, dashed) with c2vis = 1/3. The bottom panels show

the corresponding evolution of the newtonian potential, ΦN .
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Figure 5.2. Modifications to the CMB temperature power spectrum, CTT` , as both c2vis (top

panel) and c2eff (bottom panel) are varied [41]: the black solid curve gives the evolution of

the standard case: the top panel shows CTT` when c2vis = 0 (red, dot-dashed) and c2vis = 1

(blue, dashed); the bottom panel shows c2eff = 0.2 (red, dot-dashed) and c2eff = 0.7 (blue,

dashed). The large angular scale measurements are from the 7-year WMAP release [10]

and on small angular scales from ACT [67].

5.2 Analysis Method

We perform a MCMC [25] analysis combining the following CMB datasets: WMAP7
[10], ACBAR [68], ACT [39], and SPT [40], and we analyze datasets using out to
lmax = 3000. We also include information on dark matter clustering from the galaxy
power spectrum extracted from the SDSS-DR7 luminous red galaxy sample [69].
Finally, we impose a prior on the Hubble parameter based on the last Hubble Space
Telescope observations [3].

The analysis method we adopt is based on the publicly available Monte Carlo
Markov Chain package CosmoMC [25] with a convergence diagnostic done through the
Gelman and Rubin statistic. We sample the following six-dimensional standard set
of cosmological parameters, adopting flat priors on them: the baryon and cold dark
matter densities Ωb and Ωc, the ratio of the sound horizon to the angular diameter
distance at decoupling θs, the optical depth to reionization τ , the scalar spectral
index nS , and the overall normalization of the spectrum AS at k = 0.002Mpc−1. We
consider purely adiabatic initial conditions and we impose spatial flatness. We vary
the effective number of relativistic degrees of freedom Neff , the effective sound speed
c2

eff , and the viscosity parameter c2
vis. In some cases, we consider only variations in

the extra dark radiation component NS
ν = Neff − 3.046, varying the perturbation

parameters c2
vis and c2

eff only for this extra component and assuming c2
eff = c2

vis = 1/3
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for the standard 3 neutrino component.
In our analysis we always fix the primordial Helium abundance to the observed

value Yp = 0.24. This procedure is different from the one adopted, for example, in
[40], where the Yp parameter is varied assuming Big Bang Nucleosynthesis for each
values of Neff and Ωb in the chain. Since the cosmological epoch and the energy
scales probed by BBN are dramatically different from the ones probed by CMB and
large scale structure we prefer to do not assume standard BBN in our analysis and
to leave the primordial Helium abundance as fixed to a value consistent with current
observations.

We account for foregrounds contributions including three extra amplitudes: the
SZ amplitude ASZ , the amplitude of clustered point sources AC , and the amplitude
of Poisson distributed point sources AP . We marginalize the contribution from point
sources only for the ACT and SPT data, based on the templates provided by [40].
We quote only one joint amplitude parameter for each component (clustered and
Poisson distributed). Instead, the SZ amplitude is obtained fitting the WMAP data
with the WMAP own template, while for SPT and ACT it is calculated using the
[70] SZ template at 148 GHz. Again, this is different from the analysis performed
in [40] where no SZ contribution was considered for the WMAP data. For further
information about how to deal with secondary anisotropies in CMB analyses see
Section 8.

5.3 Results

As stated in the previous section, we perform two different analyses. In the first
analysis we vary the amplitude of the whole relativistic contribution changing Neff
and the corresponding perturbation parameters c2

vis and c2
eff . In the second analysis

we assume the existence of a standard neutrino background and vary only the extra
component NS

ν = Neff−3.046 considering only in this extra component the variations
in c2

vis and c2
eff .

5.3.1 Varying the number of relativistic degrees of freedom Neff .

In Table 5.1 we report the constraints on the cosmological parameters varying Neff
with and without variations in perturbation theory. We consider two cases: first
we run our analysis fixing the perturbation parameters to the standard values, i.e.
c2

eff = c2
vis = 1/3, then we let those parameters to vary freely.

As we can see from the results in the left column of Table 5.1, the WMAP7+ACT+
SPT+DR7+H0 analysis is clearly suggesting the presence for Dark Radiation with
Neff = 4.08+0.71

−0.68 at 95% c.l.. When considering variations in the perturbation
parameters (right column) the constraint is somewhat shifted towards smaller values
with Neff = 3.89+0.70

−0.70. The constraint on the sound speed, c2
eff = 0.312±0.026 is fully

consistent with the expectations of a free streaming component. Anisotropies in the
neutrino background are detected at high statistical significance with c2

vis = 0.29+0.21
−0.16

improving previous constraints presented in [64].
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Figure 5.3. 68% and 95% c.l. constraints for the degeneracy between Neff and the Hubble

constant H0, the age of the universe t0, and the amplitude of mass fluctuations σ8.

It is interesting to consider the possible degeneracies between Neff and other
"indirect" (i.e. not considered as primary parameters in MCMC runs) model parame-
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Table 5.1. MCMC estimation of the cosmological parameters assuming Neff relativistic

neutrinos. Upper bounds at 95% c.l. are reported for foregrounds parameters. We quote

the one-dimensional marginalized 68% and 95% c.l. for the neutrino parameters.

Ωbh
2 0.02229± 0.00038 0.02206± 0.00081

Ωch
2 0.1333± 0.0086 0.1313± 0.0094

τ 0.082± 0.012 0.083± 0.014

H0 74.3± 2.2 74.2± 2.1

ns 0.977± 0.011 0.972± 0.021

log(1010As) 3.195± 0.035 3.196± 0.035

ASZ < 1.2 < 1.4

AC [µK2] < 14.3 < 14.6

AP [µK2] < 25.2 < 24.7

Neff 4.08+0.18+0.71
−0.18−0.68 3.89+0.19+0.70

−0.19−0.70

c2
eff 1/3 0.312+0.008+0.026

−0.007−0.026

c2
vis 1/3 0.29+0.04+0.21

−0.06−0.16

χ2
min 7594.2 7591.5

ters. In Figure 5.3 we therefore plot the 2D likelihood constraints on Neff versus the
Hubble constant H0, the age of the universe t0 and the amplitude of r.m.s. mass
fluctuations on spheres of 8Mpch−1, σ8.

As we can see from the three panels in the figure, there is a clear degeneracy
between Neff and those three parameters. Namely, an extra radiation component
will bring the cosmological constraints (respect to the standard 3 neutrino case) to
higher values of the Hubble constant and of σ8 and to lower values of the age of
the universe t0. These degeneracies have been already discussed in the literature
(see e.g. [71]) and could be useful to estimate the effect of additional datasets on
our result. The 3% determination of the Hubble constant from the analysis of [3]
plays a key role in our analysis in shifting the constraints towards larger values of
Neff . If future analyses will point towards lower values of the Hubble constant, this
will make the standard 3 neutrino case more consistent with observations. If future
observations will point towards values of the age of the universe significantly larger
than 13 Gyrs, this will be against an extra dark radiation component, since it prefers
t0 ∼ 12.5Gyrs. Clearly, adding cluster mass function data as presented in [72] and
that points towards lower values of σ8 renders the standard Neff = 3.046 case more
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consistent with observations. A future and precise determination of σ8 from clusters
or Lyman-α surveys could be crucial in ruling out dark radiation.

5.3.2 Varying only the excess in the relativistic component NS
ν and

assuming 3 standard neutrinos.
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Figure 5.4. 68% and 95% c.l. constraints for the degeneracy between neutrinos parameters.

Red contours refer to model (A) in Table 5.2, while blue contours show model (B).

In Table 5.2 we report the constraints considering only an excess NS
ν in the



5.3 Results 83

number of relativistic degrees of freedom over a standard 3 neutrinos background.

Table 5.2. MCMC estimation of the cosmological parameters considering an extra com-

ponent NS
ν and assuming a standard background of 3 relativistic neutrinos. The

perturbation parameters refer to the extra component. Both 68% and 95% confidence

levels for the neutrino parameters are reported. Upper bounds are at 95% c.l. .

Model : varying c2
eff , c2

vis c2
eff = 1/3, varying c2

vis

(A) (B)

Ωbh
2 0.02177± 0.00066 0.02262± 0.00049

Ωch
2 0.135± 0.010 0.143± 0.010

τ 0.086± 0.013 0.084± 0.013

H0 72.8± 2.1 73.7± 2.2

ns 0.989± 0.014 0.978± 0.014

log(1010As) 3.178± 0.035 3.192± 0.035

ASZ < 1.6 < 1.4

AC [µK2] < 15.0 < 15.0

AP [µK2] < 24.8 < 24.8

NS
ν 1.10+0.19+0.79

−0.23−0.72 1.46+0.21+0.76
−0.21−0.74

c2
eff 0.24+0.03+0.08

−0.02−0.13 1/3

c2
vis < 0.91 < 0.74

χ2
min 7590.5 7592.0

As we can see for the results in the table, the evidence for an extra background
is solid with NS

ν = 1.46+0.76
−0.74 at 95% c.l. when only variations in the c2

vis component
are considered, while the constraint is NS

ν = 1.10+0.79
−0.72 when also variations in

c2
eff are considered. Again, the data provide a good determination for c2

eff with
c2

eff = 0.24+0.08
−0.13 at 95% c.l., in marginal agreement at about 2σ with the standard

c2
eff = 1/3 value. This lower value of c2

eff , also found in [41], could hint for a dark
radiation component with a varying equation of state, ruling out a a massless sterile
neutrino. It will be certainly interesting to investigate if this signal remains in future
analyses. No significant constraint is obtained on c2

vis.
In Figure 5.4 we show the degeneracy between the parameters NS

ν , c2
eff , and c2

vis
by plotting the 2D likelihood contours between them. As we can see a degeneracy is
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present between c2
eff and NS

ν : models with lower values of NS
ν are more compatible

with c2
eff = 0 since the effect of c2

eff on the CMB spectrum is smaller. No apparent
degeneracy is present between c2

vis and the remaining parameters since c2
vis is weakly

constrained by current data.
Since oscillation experiments have clearly established that neutrino are massive,

it is interesting to perform a similar analysis but letting the 3 neutrino standard
background with c2

eff = c2
vis = 1/3 to be massive, and varying the parameter Σmν

that consider the sum of masses of the 3 active neutrinos. The extra dark radiation
component is assumed massless and we treat the perturbations in it as in the previous
sections. In Table 5.3 we report the results of this analysis.

Table 5.3. MCMC estimation of the cosmological parameters considering Nν = 3.04 massive

neutrinos. Values and 68% - 95% errors for the neutrino parameters are reported. Upper

bounds are at 95% c.l. .

Ωbh
2 0.02174± 0.00063

Ωch
2 0.135± 0.011

τ 0.087± 0.014

H0 72.7± 2.1

ns 0.989± 0.015

log(1010As) 3.179± 0.036

ASZ < 1.6

AC [µK2] < 15.9

AP [µK2] < 26.1∑
mν [eV] < 0.79

NS
ν 1.12+0.21+0.86

−0.26−0.74

c2
eff 0.241+0.03+0.09

−0.02−0.12

c2
vis < 0.92

χ2
min 7590.7

As we can see, when masses in the active neutrinos are considered, there is a
slightly stronger evidence for the extra background with NS

ν = 1.12+0.86
−0.74. This is

can be explained by the degeneracy present between
∑
mν and NS

ν , well known in
the literature (see e.g. [35]) and clearly shown in Figure 5.5 where we report the 2D
marginalized contours in the plane

∑
mν −NS

ν .
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5.3.3 Profile likelihood analysis
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Figure 5.6. Maximum Likelihood ratio LNeff/Lmax for Neff . The dashed lines represent

the 68% and 95% c.l. for a Gaussian likelihood (LNeff/Lmax = 0.6065 and LNeff/Lmax =

0.135) respectively.

Recently, in [73], a model-independent analysis for the extra relativistic degrees of
freedom in cosmological data has been performed claiming no statistically significant
evidence for it. This simple analysis consists in extracting the maximum likelihood
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value L as a function of Neff over the parameter space sampled in the chains,
with a bin width of 0.5 and constructing a profile likelihood ratio by considering
ln(LNeff/Lmax) as a function of Neff ; where Lmax is the maximum likelihood in the
entire chains.

Here we perform a similar analysis, using however a smaller bin width of 0.05 and
considering the case where the whole number of relativistic degrees of freedom Neff
is varied while c2

vis = c2
eff = 1/3. The resulting likelihood ratio LNeff/Lmax, plotted

in Figure 5.6, clearly indicates a preference for a dark radiation component finding
that the best fit model has Neff = 3.88 with a ∆χ2 = 14.56 respect to the best fit
model with Neff = 3.046.

We should however point out that the ratio LNeff/Lmax presented in Figure
5.6 is rather noisy. Bayesian methods such as MCMC are indeed known to be
inaccurate for this purpose (see for example the discussion in [74, 75]). Other
methods more appropriate for a frequentist analysis have been presented, for example,
in [76, 77, 78, 34, 79].

5.4 Future Planck and COrE CMB data analysis

Now we generate mock CMB data for a cosmology with dark radiation perturbation
parameters different from their standard values and then we fit these simulated data
via the usual MCMC analysis to an extended non minimal cosmology with standard
dark radiation parameters, but varying both the constant and the time varying dark
energy equation of state, or the scalar spectral index and its running.

We generate a mock data set for the ongoing Planck [80] CMB experiment, with
c2

vis different from its standard value and with w = −1 and ns = 0.96. Then we
fit these mock data using a MCMC analysis to different extensions of the minimal
cosmological model in which the dark radiation is standard. The three possible
extensions we consider are: (a) a ΛCDM model with a running spectral index nrun,
(b) the wCDM model in which we include the possibility of a dark energy equation
of state parameter w different from −1, and (c) the w(a)CDM model in which we
assume an equation of state evolving with redshift. The reconstructed values of the
dark energy equation of state and of the running spectral index will be, in general,
different from the values used in the mocks and, in the case of the dark energy
equation of state w, different from the value expected within the ΛCDM model.
We shall also explore the impact of future CMB data from the COrE mission [81],
performing an equivalent forecast to the one we present here for Planck.

In the following we shall present the reconstructed values of ns, nrun, w, w0 and
wa which will result from a fit of Planck and COrE mock data (generated with non
standard values for the dark radiation perturbation parameters, c2

vis = 0.1) to a
cosmology with a standard value for the dark radiation parameter c2

vis = 1/3 but
with a running spectral index or a time varying dark energy component. We do not
consider here c2

eff 6= 1/3 due to the tighter current bounds on this parameter, when
compared to the current constraints on c2

vis.
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Table 5.4. Constraints on the cosmological parameters for each of the Plank and COrE

mock data sets described in the text. We report the mean and the standard deviation

of the posterior distribution. We have set c2eff = 1/3 and c2vis = 0.1 in the mock data

sets used as fiducial models. Then, we have fitted these data to a model with canonical

values for the dark radiation perturbation parameters, i.e. c2eff = 1/3 and c2vis = 1/1.

ΛCDM + nrun (Planck) ΛCDM + nrun (COrE) wCDM (Planck) wCDM (COrE) w(a)CDM (Planck) w(a)CDM (COrE)

w -1 -1 −0.70± 0.05 −0.63± 0.05 — —

Neff 3.04 3.04 3.04 3.04 3.04 3.04

ns 1.002± 0.004 0.999± 0.002 1.007± 0.004 1.004± 0.002 1.007± 0.004 1.007± 0.002

nrun −0.035± 0.005 −0.038± 0.003 0 0 0 0

w0 — — — — −1.19± 0.10 −0.99± 0.05

wa — — — — 0.77± 0.23 0.88± 0.06

5.4.1 ΛCDM + nrun

For this scenario we consider the following set of parameters:

{ωb, ωc, θs, τ, ns, log[1010As], nrun} .

In general, the spectrum of the scalar perturbations is not exactly a power law but
it varies with scale. Therefore one must consider the scale dependent running of the
spectral index nrun = dns/d ln k. Following [82], the power spectrum for the scalar
perturbations reads

P (k) ≡ Askn(k) ∝
(
k

k0

)ns + ln(k/k0)(dn/d ln k) + ···
,

being k0 = 0.05 Mpc−1 the pivot scale. The correlation between ns and nrun is shown
in Figure 5.7. As stated in [83], the parameter that is constrained by cosmological
data is the effective spectral index n′ = ns + ln(k/k0)(dn/d ln k). This is the reason
for the circular allowed regions in the ns − nrun plane. The first and second columns
of Table 5.4 show that, if a cosmology with nrun = 0 but with non standard dark
radiation perturbation parameters (c2

vis = 0.1) is fitted to a cosmology with standard
dark radiation parameters but with nrun 6= 0, the reconstructed value of the running
spectral index will differ from zero at a high statistical significance.

Finally, for the case of the simulated cosmology here with c2
vis < 1/3, the

reconstructed value of ns is consistent with a Harrison-Zel’dovich scale invariant
primordial power spectrum within one sigma. Setting the properties of dark radiation
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Figure 5.7. 68% and 95% CL allowed regions in the ns − nrun plane from MCMC fits of

Planck (blue regions) and COrE (red regions) CMB mock data.

is therefore mandatory since it is highly correlated with the spectral index of
the spectrum of primordial perturbations, key to distinguish among the different
inflationary models.

5.4.2 wCDM

Here we consider a cosmological model including a dark energy fluid characterized
by a constant equation of state parameter w (the ratio of the pressure to energy
density of the dark energy fluid) as a free parameter. We consider the following set
of parameters:

{ωb, ωc, θs, τ, ns, log[1010As], w} .
As stated in [36], there exists a degeneracy between the number of the extra dark
radiation species and the dark energy equation of state. A value of w > −1 shifts
the positions of the CMB acoustic peaks to lower multipoles `; this effect could be
compensated by a decrease of c2

vis or by an increase of Neff . As we have already seen
in Section 3.11, one of the main effects of a Neff > 3.04 comes from the change of the
epoch of the radiation matter equality, and consequently, from the shift of the CMB
acoustic peaks, see Section 3.11 and Ref. [21] for a detailed study. The position of
the acoustic peaks is given by the so-called acoustic scale θs, which reads

θs = rs
DA

,

where DA and rs are the comoving angular diameter distance to the last scattering
surface and the sound horizon at the recombination epoch zrec, respectively. Although
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DA almost remains the same for different values of Neff , rs becomes smaller when
Neff is increased (see after Figure 5.10). Thus the positions of the acoustic peaks
are shifted to higher multipoles (smaller angular scales) by increasing the value
of Neff [84]. A dark energy component with w > −1 will decrease the comoving
angular diameter distance to the last scattering surface DA, shifting the positions
of the CMB acoustic peaks to larger angular scales, i.e. to lower multipoles `,
compensating, therefore, the effect induced by an increase of Neff . The reconstructed
MCMC values for w (see the third and fourth columns of Table 5.4) are larger than
the value used in the input cosmology w = −1, excluding the ΛCDM scenario with
high significance. A dark radiation component which deviates from its standard
behavior could therefore be confused with the presence of a dark energy fluid with
w 6= −1.
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Figure 5.8. Same as Figure 5.7 but in the w − ns plane.

5.4.3 w(a)CDM model

We also consider models of the dark energy in which the equation of state of the
dark energy component varies with time. We use a parameterization that has been
extensively explored in the literature [85, 86, 87, 88]:

w(a) = w0 + wa(1− a) ,

where w0 is the equation of state parameter at present, while wa = −2dw/d ln a|a=1/2 [86,
89]. We consider the following set of parameters:

{ωb, ωc, θs, τ, ns, log[1010As], w0, wa} .
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The fifth and sixth columns of Table 5.4 show the reconstructed values of w0 and wa
after fitting the Plank and COrE mock data generated with a non standard viscosity
parameter c2

vis = 0.1 but with w = −1 to a cosmology with standard dark radiation
but with the time varying dark energy equation of state w(a) used here. The
correlation between w0 and wa is shown in Figure 5.9. The reconstructed values that
we find for Planck (COrE) mock data are w0 = −1.19± 0.10 and wa = 0.77± 0.23
(w0 = −0.99± 0.05 and wa = 0.88± 0.06) at 68 % CL, values which are consistent
with the current constraints on these two dark energy parameters, see Ref. [10].
Therefore it is crucial to unravel the nature of the dark radiation component since if
it turns out to be non standard, future cosmological data might be misinterpreted
as a time varying dark energy fluid.

5.5 The impact of assuming flatness on Neff

As we have already seen in Section 3.11, a larger neutrino number increases the
early ISW as the neutrino mass. Moreover changing the neutrino effective number
essentially changes the expansion rate H at recombination. So it changes the
size of sound horizon at recombination as well (rs ∝ 1/H) and the damping at
recombination (rd ∝ 1/sqrtH). If these distances vary according to H then they
also vary according to any parameter correlated with H. If we allow for an open
universe with nonzero curvature the effective neutrino number is slightly reduced.
The theory confirms this because θs = rs/DA is constrained by observation which
means if Neff is reduced and Ωk > 0 then rs and DA both increase (see Figure 5.10).
However, if the parameter space favors a closed universe then there will appear to
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be a higher number of effective neutrinos. This is one of the primary reasons for
expecting correlation between Neff and Ωk.
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Figure 5.10. A demonstration of how the sound horizon rs changes with the effective

neutrino number Neff under the matter dominated approximation.

For this analysis we use the same method of Section 5.2, but here the CMB
anysotropy datasets are combined with Baryonic Acoustic Oscillation (BAO) data of
Percival [90], instead of SDSS-DR7. We also performed a run without high multipole
datasets (SPT and ACT), in order to test the impact of these recent data. Moreover
we have a slightly different parameter space: we let Neff varying, but we do not
account for neutrino perturbation parameters (c2

eff and c2
vis). Instead we consider

the spatial curvature Ωk.
Figure 5.11 demonstrates the correlation between Ωk and Neff , which agrees with

the prediction. Interestingly, the effect of the additional CMB datasets (ACT and
SPT) increases the correlation between these parameters with respect to WMAP
7-year data alone. This may be due in part to the considerable improvement in Neff
whereas the uncertainty in the curvature is not noticeably improved by the addition
of small scale anisotropy measurements. These results suggest that an open universe
with fewer neutrinos would look similar to a flat universe with more neutrinos. We
also note that when including Neff as a free parameter in the ΛCDM+Ωk model,
the 1σ constraint of Ωk = −0.0023+0.0054

−0.0056 found in Ref. [10] does not deteriorate
significantly for the same combination of datasets (i.e. WMAP+BAO+H0). This is
due to the presence of the BAO data and the H0 prior in the analysis, since both
probes are sensitive to the geometry of the Universe. Therefore, BAO and H0 help
to break the degeneracy between Neff and Ωk.

Table 5.5 provides a summary of parameter values for runs where Ωk and Neff
vary. Here we find Neff = 4.03±0.45 and 103Ωk = −4.46±5.24 at the 68% confidence
level. Therefore, even when Ωk is allowed to vary, Neff = 3 is still disfavored with ∼
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Table 5.5. Summary of constraints while varying Ωk and Neff . All datasets include BAO

and H0 for improved parameter constraints. Errors are at the 68% CL. See Figure 5.11.

Parameter WMAP7+Neff+Ωk . . .+ACT+SPT

100Ωbh
2 2.26± 0.056 2.27± 0.045

Ωch
2 0.136± 0.0169 0.129± 0.00915

ΩΛ 0.721± 0.0179 0.723± 0.0158

ns 0.9837± 0.0157 0.9863± 0.0147

τ 0.0887± 0.0148 0.0894± 0.0149

H0 (km/s/Mpc) 74.88± 3.40 73.44± 2.03

Neff 4.61± 0.96 4.03± 0.45

103 Ωk −4.45± 5.85 −4.46± 5.24
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95% confidence.

5.6 The impact of a new median statistics H0 prior

We have seen that dark radiation can predict a larger value for Neff . It is therefore
crucial to carefully investigate this result, to see if it can be strengthened or weakened
by, for example, considering a slightly different choice of data. As it has been shown
(see Figure 5.3 and discussion, and Ref. [21]) that Neff is degenerate with the value
of the Hubble constant H0. Assuming a prior on the value of the Hubble constant is
therefore a key step in the determination of Neff from the data. The prior on the
Hubble constant used in most recent analyses, labeled HST, is a Gaussian one based
on the results of Ref. [3] with H0 = 73.8± 2.4km/s/Mpc, including systematics.

While this 3% determination of H0 is certainly impressive, one might wonder if
a slightly different Hubble constant prior could change the preference for Neff > 3.
There are several indications that a different Hubble constant prior could be more
appropriate. For instance, a number of measurements result in a significantly lower
value of H0; e.g., the Ref. [91] summary value is H0 = 62.3 ± 4km/s/Mpc. In
addition, a standard analysis, under the assumption of Neff = 3.046, of CMB data
alone is able (in a flat universe) to constrain the Hubble constant. Recently such
analyses yield H0 ∼ 70km/s/Mpc, more than one standard deviation away from
the HST value. For example, the analysis of ACT and WMAP7 data in Ref. [39]
gives H0 = 69.7 ± 2.5km/s/Mpc. Clearly, there is also observational evidence for
a significantly smaller value of H0 than the HST estimate. Furthermore, it is
possible that using a prior with a lower value of H0 could result in a Neff determined
from CMB anisotropy and other large-scale data that is consistent with the other
cosmological Neff determinations.

There are many measurements of H0, over 550.1 Most recent estimates lie in
the interval 60–75km/s/Mpc, with error bars on some individual estimates probably
being too small, since these measurements are mutually inconsistent (this is likely a
consequence of underestimated systematic errors in some cases). Clearly, what is
needed is a convincing summary observational estimate of H0.2 To date, the best
technique for deriving such a summary estimate — that does not make use of the
error bars of the individual measurements — is the median statistics technique; Ref.
[95] includes a detailed description of this technique.

The median statistics technique has been used to analyse a number of cosmo-
logical data sets. These include Type Ia supernova apparent magnitude data, to
show that the current cosmological expansion is accelerating, [95, 96, 97]; CMB
temperature anisotropy data, in one of the first analyses to show that these data were
consistent with flat spatial hypersurfaces, [98]; and, collections of measurements of
the cosmological clustered mass density, in one of the earliest analyses to show that
this makes up around 25–30% of the current epoch cosmological energy budget, [99].

1 See cfa-www.harvard.edu/∼huchra/.
2 And not just for the case at hand, but for many different cosmological parameter analyses, see,

e.g., Refs. [92, 93, 94].
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These successes support the idea that a median statistics estimate of the Hubble
constant provides an accurate summary estimate.

The median statistics technique has been used thrice to analyse Huchra’s list (at
three different epochs). From an analysis of 331 measurements (up to the middle of
1999), Ref. [95] found an median statistics summary H0 = 67km/s/Mpc; from 461
measurements (up to the middle of 2003), and from 553 measurements (up to early
2011), Refs. [100, 101] both found a median statistics summary H0 = 68km/s/Mpc.
While the estimated statistical error bar (given by the scatter in the central H0
values) has decreased as the sample size has increased, the larger (and dominant)
systematic error bar (estimated from the scatter in the summary values of H0
determined by different techniques) has changed much less.

For our analyses here we estimate H0 using the method of Ref. [101] but now
excluding from the Huchra list of 553 measurements the 16 H0 measurements derived
from CMB data assuming Neff = 3.046. We exclude these 16 CMB measurements as
we want an external and independent prior on H0 to use in our analysis of the latest
CMB datasets. From a median statistics analysis of the 537 non-CMB measurements
we find H0 = 68± 2.8km/s/Mpc (one standard deviation error), identical to that
found in Ref. [101] from an analysis of the 553 measurements. In what follows we
refer to the Gaussian prior based on this value as the median statistics (MS) H0
prior. Our goal here is to discuss the implications of assuming the MS prior for H0,
instead of the usual HST prior, for current CMB and large-scale structure parameter
inference. We focus much of our attention on the value of Neff and the evidence for
dark radiation, but we also consider how the MS prior changes the estimated value
of other parameters, including the dark energy equation of state parameter w and
the spectral index of primordial fluctuations ns.

5.6.1 Analysis Method

Here the analysis is very similar to the one presented in section 5.2, with three
changes: (i) we consider two different H0 priors: the median statistics (MS) prior
of H0 = 68 ± 2.8km/s/Mpc as well as, for comparison, the HST prior [3] used
in previous analyses; (ii) we consider an extended case where we assume massive
neutrinos, we enlarge our parameter space varying the total mass of neutrinos

∑
mν ;

(iii) we allow the Helium abundance Yp to vary consistently with standard BBN
following Ref. [40]. This means that each theoretical CMB angular spectrum is
computed assuming a value for Yp derived by BBN nucleosynthesis from the input
values of Ωbh

2 and Neff of the theoretical model considered. The small uncertainty on
Yp derived from the experimental errors on the neutron half-life produces negligible
changes in the CMB angular spectra so we ignore it. In a latter case we also vary
Yp as a free parameter. In addition, where indicated, we also present constraints on
the dark energy equation of state parameter w (the ratio of the pressure to energy
density of the dark energy fluid), assumed to be redshift independent, although
the corresponding dark energy density is time dependent.3 We consider massless
neutrinos, adiabatic initial conditions, and a spatially-flat universe.

3 This is the widely-used wCDM parametrization of dark energy. It is not a complete parametriza-

tion, as it cannot describe the evolution of spatial inhomogeneities, nor is it an accurate approximation
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5.6.2 Results

Neutrinos

Table 5.6. Cosmological parameter values and 68% confidence level errors assuming Neff

relativistic neutrinos or Neff = 3.046 massive neutrinos. 95% c.l. upper bounds are listed

for the sum of neutrino masses and foregrounds parameters. We also list the derived

Hubble constant, the non-relativistic matter density parameter Ωm = Ωc + Ωb, and σ8,

the amplitude of density inhomogeneities averaged over spheres of radius 8h−1 Mpc,

where h is the Hubble constant in units of 100km/s/Mpc.

Parameters No Prior HST Prior MS Prior

73.8± 2.4km/s/Mpc 68± 2.8km/s/Mpc

Ωbh
2 0.02258± 0.00050 0.02248± 0.00039 0.02210± 0.00037 0.02211± 0.00040 0.02188± 0.00036

Ωch
2 0.134± 0.010 0.1317± 0.0080 0.1142± 0.0029 0.1256± 0.0080 0.1181± 0.0032

θs 1.0395± 0.0016 1.0397± 0.0016 1.0415± 0.0014 1.0400± 0.0017 1.0409± 0.0014

τ 0.085± 0.014 0.084± 0.013 0.083± 0.013 0.080± 0.013 0.081± 0.014

ns 0.984± 0.017 0.979± 0.012 0.9659± 0.0091 0.964± 0.012 0.9536± 0.0090

Neff 4.14± 0.57 3.98± 0.37 3.046 3.52± 0.39 3.046∑
mν [eV] 0.0 0.0 < 0.36 0.0 < 0.60

H0[km/s/Mpc] 75.2± 3.6 74.2± 2.0 69.3± 1.4 70.9± 2.1 66.8± 1.8

log(1010As) 3.183± 0.043 3.191± 0.035 3.205± 0.034 3.219± 0.036 3.226± 0.034

Ωm 0.277± 0.019 0.280± 0.016 0.284± 0.017 0.294± 0.017 0.315± 0.024

σ8 0.882± 0.033 0.876± 0.028 0.782± 0.032 0.857± 0.028 0.757± 0.043

ASZ < 1.4 < 1.3 < 0.97 < 1.1 < 0.96

AC [µK2] < 14.5 < 14.7 < 12.8 < 14.1 < 13.1

AP [µK2] < 24.9 < 25.5 < 26.6 < 26.1 < 26.6

χ2
min 7593.4 7593.2 7592.0 7594.8 7595.1

Table 5.6 and Figure 5.12 show that the H0 prior plays a crucial role in deter-
mining constraints on Neff from the data. With the HST H0 prior we find a central
Neff value that is 2.5σ larger than 3.046, while the median statistics prior results in

of more physically motivated time-varying dark energy models, [102, 103]. It is preferable to use a

consistent and physically motivated dark energy model, e.g., that proposed in Refs. [104, 105], for

such an analysis, but this is a much more involved undertaking, so instead we patch up the wCDM

parametrization by assuming that the acoustic spatial inhomogeneities travel at the speed of light.

This extended wCDM parametrization should provide reasonable (qualitative) indications of what

might be expected in a consistent, physically-motivated model of time-varying dark energy.
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Figure 5.12. Constraints in the Neff-H0 plane. Elliptical two-dimensional posterior

probability distribution function contours show the 68% and 95% c.l. limits. Red

contours and regions (closer to the upper right corner) assume the HST prior with

H0 = 73.4 ± 2.4km/s/Mpc, while blue contours and regions (closer to the lower left

corner) are obtained using the median statistics prior with H0 = 68 ± 2.8km/s/Mpc.

The dotted black vertical line corresponds to Neff = 3.046.

an Neff that is consistent with 3.046 (being only 1.2σ larger).
The HST prior is therefore at least partially responsible for the current indication

for dark radiation. However, as we can see from the central values of H0 and Neff
obtained when a flat prior on H0 is assumed, the CMB anisotropy and large-scale
structure data considered here prefers a larger value of Neff (being 1.9σ larger than
3.046) and a somewhat larger value of H0. This is clear also from the χ2

min values of
the best fit that are higher when the median statistics H0 prior is assumed, compared
to the case of the HST prior (see the last line of Table 5.6).

The H0 prior is crucial also in the determination of the
∑
mν limits if we instead

limit ourselves to the case of 3, standard, massive neutrinos. In Table 5.6, columns
3 and 5, we quote the cosmological parameters and the upper limits on

∑
mν in

case of the HST and of the MS prior. As we can see, the upper limit on
∑
mν is

considerably weaker when the MS prior is considered, with the 95% c.l. upper limit
moving from

∑
mν < 0.36 eV in the case of the HST prior to

∑
mν < 0.60 eV in

the case of the MS prior. This can be clearly explained by the CMB degeneracy
between H0 and

∑
mν as illustrate in Figure 5.13. Namely, lower values of the

Hubble parameter are in better agreement with current CMB data when
∑
mν is

increased. Dataset preferring higher values for H0 will therefore provide stronger
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constraints on
∑
mν when combined with the CMB data.
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Figure 5.13. Constraints in the
∑
mν-H0 plane. Elliptical two-dimensional posterior

probability distribution function contours show the 68% and 95% c.l. limits. Red

contours and regions (closer to the upper left corner) assume the HST prior with

H0 = 73.4± 2.4km/s/Mpc, while blue contours and regions (closer to the lower right

corner) are obtained using the median statistics prior with H0 = 68± 2.8km/s/Mpc.

Beside the Neff–H0 degeneracy, it is interesting to note that there also is a
degeneracy between Neff and ns. When the HST prior is assumed, ns is 1.8σ below
1, while for the median statistics case it is 3σ below unity.

In Figure 5.14 we show the contours in the two-dimensional Ωm–σ8 parameter
space, for the two Gaussian H0 priors. Here σ8 is the amplitude of density inho-
mogeneities averaged over spheres of radius 8h−1 Mpc. In this figure we also show
the fit to the central value and the two standard deviation limits of the constraint
from the normalization of the galaxy cluster mass function from Ref. [106], i.e.,
σ8 = (0.25/Ωm)0.47[0.813 ± 0.013 ± 0.024]. Here the first error bar represents the
statistical, and the second the systematic, error (see their Sec. 10). We derive the
2σ cluster constraints shown in Figure 5.13 by adding these errors in quadrature
and then doubling.

From Figure 5.14 we see that both H0 priors give results that are not far off from
what the measured normalization of the cluster mass function demands. Qualitatively,
the HST H0 prior is more consistent with the cluster data if Ωm ∼ 0.25, near the
low end of current indications, see, e.g., Ref. [99], while the median statistics case
prefers a larger Ωm ∼ 0.27, more consistent with current measurements, see, e.g.,
Ref. [99].
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Figure 5.14. Constraints in the Ωm–σ8 plane. Elliptical two-dimensional posterior probabil-

ity density function contours show the 68% and 95% confidence level limits. Red contours

(closer to the upper left corner) assume the HST prior with H0 = 73.8± 2.4km/s/Mpc;

blue contours (closer to the lower right corner) are obtained with the median statistics

prior where H0 = 68± 2.8km/s/Mpc. The green region (in the lower left corner) demar-

cates the central value and 2σ limits from the cluster mass function normalization data,

[106].

Helium mass abundance

One assumption made in the previous paragraph is that the Helium abundance is
varied consistently with BBN. Current CMB data produce only weak constraints
on this quantity and allowing Yp to vary freely would make the standard case of
Neff = 3.046 in better agreement with data due to an anti-correlation between Neff
and Yp in CMB data (see, for example, the discussion in [107]). In order to check
the impact of the H0 priors in this case, we have performed two analysis varying the
Helium abundance Yp and Neff . The results are reported in Table 5.7.

As we can see, when Yp is allowed to vary, the standard case of Neff is more
consistent with current data in both cases. In the case of the MS prior we have
Neff = 2.75± 0.46 that is perfectly consistent with the expectations of the standard
scenario. However the value obtained for the Helium abundance is probably too
high in the case of the MS prior: Yp = 0.334 ± 0.033 that is about two standard
deviations away from the conservative experimental bound of Yp < 0.2631 obtained
from an analysis of direct measurements in [108].

The larger helium abundance obtained in the case of the MS prior respect to
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Table 5.7. Cosmological parameter values derived assuming a varying Yp. Errors are at

68% c.l. while upper bounds at 95% c.l. are reported for foregrounds parameters.

Parameters HST Prior MS Prior

Ωbh
2 0.02274± 0.00042 0.02246± 0.00043

Ωch
2 0.1246± 0.0091 0.1138± 0.0085

θs 1.0429± 0.0027 1.0454± 0.0029

τ 0.087± 0.014 0.085± 0.014

ns 0.986± 0.013 0.972± 0.013

Neff 3.52± 0.48 2.75± 0.46

H0[km/s/Mpc] 72.7± 2.2 68.2± 2.3

Yp 0.310± 0.034 0.334± 0.033

log(1010As) 3.175±0.037 3.197± 0.036

Ωm 0.279± 0.015 0.293± 0.016

σ8 0.872± 0.029 0.847± 0.029

ASZ < 1.7 < 1.6

AC [µK2] < 15.4 < 15.3

AP [µK2] < 23.1 < 23.4

χ2
min 7592.0 7590.4

the HST prior can be clearly seen from the direction of the degeneracies in the 2D
contours plots in Figure 5.15. Namely, a lower Neff prefers an higher Yp and a lower
prior for H0 shifts the constraints towards lower Neff and higher values for Yp.

wCDM

The standard ΛCDM cosmological model has some conceptual problems that are
partially alleviated in some models in which the dark energy density varies slowly
in time (and so weakly in space), [104, 105]. Furthermore, as we have already
underlined many times, observational constraints on cosmological parameters are
model dependent, i.e., the observational estimate of a cosmological parameter,
e.g., Neff , depends on the cosmological model used to analyse the data. It is
therefore of interest to examine the observational cosmological constraints on Neff
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Figure 5.15. Constraints in the Yp - Neff plane (top) and Yp -H0 (bottom). Elliptical

two-dimensional posterior probability distribution function contours show the 68% and

95% c.l. limits. Red contours and regions (closer to the upper left corner) assume the HST

prior with H0 = 73.4±2.4km/s/Mpc, while blue contours and regions (closer to the lower

right corner) are obtained using the median statistics prior with H0 = 68±2.8km/s/Mpc.

in a cosmological model in which the dark energy density varies in time, such as
that of Ref. [104, 105]. However, to get an indication of what could be expected
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Table 5.8. Cosmological parameter values derived assuming the wCDM parametrization of

time-evolving dark energy. Errors are at 68% c.l. while upper bounds at 95% c.l. are

reported for foregrounds parameters.

Parameters HST Prior MS Prior

Ωbh
2 0.02200± 0.00040 0.02290± 0.0054 0.02206± 0.00040 0.02279± 0.00053

Ωch
2 0.1162± 0.0039 0.1347± 0.0085 0.1141± 0.0040 0.1291± 0.0084

θs 1.0414± 0.0015 1.0396± 0.0016 1.0414± 0.0015 1.0400± 0.0016

τ 0.080± 0.013 0.089± 0.015 0.081± 0.013 0.089± 0.015

ns 0.956± 0.010 0.997± 0.019 0.959± 0.011 0.993± 0.019

Neff 3.046 4.42± 0.54 3.046 4.16± 0.53

H0[km/s/Mpc] 72.1± 2.4 72.8± 2.3 66.7± 2.6 68.0± 2.4

w −1.09± 0.10 −0.86± 0.11 −0.90± 0.10 −0.76± 0.10

log(1010As) 3.223± 0.039 3.150± 0.050 3.210± 0.041 3.149± 0.051

Ωm 0.267± 0.018 0.298± 0.022 0.307± 0.226 0.329± 0.025

σ8 0.856± 0.044 0.831± 0.047 0.790± 0.046 0.775± 0.047

ASZ < 0.94 < 1.5 < 0.95 < 1.4

AC [µK2] < 13.0 < 15.0 < 13.0 < 14.9

AP [µK2] < 27.0 < 23.9 < 26.7 < 24.7

χ2
min 7598.1 7592.7 7595.1 7592.1

from such an analysis, we determine the observational constraints on Neff in a
cosmological model in which the time-evolving dark energy density is parametrized
by the wCDM parametrization (made complete by assuming that the acoustic spatial
inhomogeneities propagate at the speed of light) described above. Table 5.8 shows
the observational constraints derived under these assumptions.

From Table 5.8 we see that the MS prior changes the best fit w in the standard
case with Neff = 3.046 to w ∼ −0.9, with w = −1 off by one standard deviation.
When both w and Neff are allowed to vary freely the geometrical degeneracy with H0
makes the HST and MS H0 priors much less effective. In this case the evidence for
dark radiation is again significant: for the MS H0 prior case we find Neff = 4.16±0.53,
and a dark energy equation of state parameter w = −0.76± 0.10, i.e., excluding a
cosmological constant at more than two standard deviations. A scale-invariant HZ
primordial spectrum with ns = 1 is fully consistent with both priors. While some
of these values indicate significant tensions with the standard ΛCDM model, it is
important to keep in mind the strong degeneracies between Neff , H0 and w, as well
as the fact that the wCDM parametrization used in the analysis has been arbitrarily
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Table 5.9. Similar constraints as in Table 5.8, but now also including the SNeIa data in

the analysis.

Parameters HST Prior + SNeIa MS Prior + SNeIa

Ωbh
2 0.02203± 0.00038 0.02260± 0.00046 0.02190± 0.00038 0.02230± 0.00046

Ωch
2 0.1156± 0.0037 0.1317± 0.0079 0.1157± 0.0038 0.1249± 0.0077

θs 1.0414± 0.0015 1.0400± 0.0016 1.0411± 0.0015 1.0401± 0.0016

τ 0.081± 0.013 0.086± 0.014 0.080± 0.013 0.083± 0.014

ns 0.957± 0.010 0.985± 0.015 0.956± 0.010 0.972± 0.016

Neff 3.046 4.08± 0.43 3.046 3.63± 0.42

H0[km/s/Mpc] 71.0± 1.6 74.0± 2.0 68.8± 1.6 70.6± 2.1

w −1.050± 0.069 −0.967± 0.075 −0.989± 0.070 −0.946± 0.076

log(1010As) 3.222± 0.038 3.178± 0.043 3.221± 0.038 3.198± 0.044

Ωm 0.273± 0.014 0.282± 0.015 0.291± 0.015 0.295± 0.016

σ8 0.843± 0.035 0.863± 0.038 0.823± 0.036 0.836± 0.038

ASZ < 0.94 < 1.3 < 0.94 < 1.2

AC [µK2] 13.0 14.8 < 13.1 < 14.0

AP [µK2] 27.0 24.8 < 27.0 < 26.0

χ2
min 8128.4 8124.0 8126.2 8125.6

completed to allow for an accounting of the evolution of density inhomogeneities.
In order to try to break these degeneracies, and derive more reliable constraints

on the parameters, we perform a new analysis that also include the SDSS supernova
Type Ia (SNeIa) apparent magnitude data, [109]. From Table 5.9 we see that the
inclusion of the SNeIa data bring the results back to the previous dichotomy: the
HST prior clearly shows a preference for Neff > 3.046 while the MS prior results in
a value of Neff that is in much better agreement with the standard scenario. The
constraints on the equation of state are w = −0.967± 0.075 for the HST prior and
w = −0.946 ± 0.076 for the MS prior. The HZ spectrum with ns = 1 is again in
tension with the observations for the MS H0 prior at a little less than two standard
deviations.
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Chapter 6

Sterile Neutrinos: Cosmology

and SBL

6.1 Introduction

As we have seen in previous Chapters, recent cosmological data have provided a
clear evidence (more than 5 standard deviations) for the existence of the primordial
neutrino background and have strongly constrained the absolute neutrino mass scale
(see e.g. Ref. [110]). On the other hand, neutrino oscillations experiments have not
only firmly established that neutrino are massive and mixed particles (for reviews,
see e.g. Refs. [111, 112, 113]), but have also provided precise measurements of
the three-neutrino mixing parameters (see the recent global fits in Refs. [14, 114]).
Moreover, with the continuous experimental improvements, a clear interplay between
neutrino physics and cosmology is emerging.

However, the measurements of CMB anisotropies made by the ACT (Atacama
Cosmology Telescope) [39] and SPT (South Pole Telescope) [40] experiments, when
combined with the measurements of the Hubble constant H0 and galaxy clustering
data, have provided interesting hints for an extra relativistic weakly interacting
component, coined dark radiation (see previous Chapter). Parameterizing this energy
component with the effective number of neutrino species Neff , the recent data bound
it to Neff = 4.08±0.8 at 95% C.L. (see Section 5.3 and Ref. [21, 115, 41, 79]) whereas
the standard prediction for only three active neutrino species is Neff = 3.046 [30].
While this result should be taken with some grain of salt, since it is derived from a
combination of cosmological data and some tension does exist between the data (see
Section 5.6 and Ref. [116]) it is anyway interesting since a fourth, or fifth, neutrino
species seems also suggested by short–baseline (SBL) oscillation experiments.

As we have seen in section 3.1, models with one additional ∼ 1 eV massive
sterile neutrino, i.e. the so called (3+1) models, were introduced to explain LSND
SBL antineutrino data [43] by means of neutrino oscillations. A much better
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fit to SBL appearance data and, to a lesser extent, to disappearance data, is
provided by models with two sterile neutrinos (3+2) [117, 118] which can also
explain both the MiniBooNE neutrino [44] and antineutrino data [45] if CP violation
is allowed [15]. CP violation can even occur in (3+1) scenarios with only one relevant
mass squared difference in presence of non standard neutrino interactions (NSI).
Therefore, the (3+1) NSI model can also nicely explain current data [119]. To sum
up the appearance and disappearance data of LSND, MiniBooNE and several other
SBL experiments can be explained by the mixing of the three active neutrinos with
one or two additional sterile neutrinos in the so-called 3+1 and 3+2 models (see
Refs. [120, 121, 122, 123, 124, 125]).

So the cosmological extra relativistic degrees of freedom may consist of sterile
neutrinos (it means neutrinos which don’t undergo weak interactions). In a cosmolog-
ical framework it is important to point out that, if sterile neutrinos exist, their mass
influences cosmological observables in an analogous way to that of active neutrinos,
it means by changing the epoch of equivalence and by suppressing perturbations via
free-streaming.

Here we aimed to determine the masses of the sterile neutrinos in 3+1 and 3+2
models using data from SBL experiments and recent cosmological data and check
if the results are mutually compatible. Finally, we combine the bounds from the
two different analyses to have a joint probability for the masses of sterile neutrinos.
Previous analyses discussing the interplay between SBL and cosmological data may
be found in Refs. [126, 18, 36, 35]. We also notice here that bounds on extra–
radiation from Big Bang Nucleosynthesis (BBN) [108, 18, 35, 127] may be quite
severe, pointing toward a more constrained value for Neff than what is implied by
CMB data. Recent analyses on BBN constraints are indicating a favored value of
Neff smaller than 4 [108]. This result would imply that the 3+2 scheme might be
already considered as disfavored by BBN data.

6.2 Current Cosmological Constraints

Here we summarize the cosmological constraints from current data on the active
neutrino masses and on the sterile neutrino thermal abundance and masses. We have
modified the Boltzmann CAMB code [26] incorporating the extra massive sterile
neutrino parameters and extracted cosmological parameters from current data using
a Monte Carlo Markov Chain (MCMC) analysis based on the publicly available
MCMC package CosmoMC[25]. We consider here a flat ΛCDM scenario plus three
(Nνs) active (sterile) massive neutrino species, described by a set of cosmological
parameters

{ωb, ωc, θs, τ, ns, log[1010As],mν ,mνs , Nνs} , (6.1)

where ωb ≡ Ωbh
2 and ωc ≡ Ωch

2 are the physical baryon and cold dark matter
densities, θs is the ratio between the sound horizon and the angular diameter
distance at decoupling, τ is the optical depth, ns is the scalar spectral index, As is
the amplitude of the primordial spectrum 1, mν is the active neutrino mass, mνs

1The pivot scale assumed in this study corresponds to k0 = 0.05 Mpc−1.
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is the sterile neutrino mass and Nνs is the number of thermalized sterile neutrino
species. We assume that both active and sterile neutrinos have degenerate mass
spectra (mν and mνs are the individual masses, not the sum of the masses). The
flat priors assumed on these cosmological parameters are shown in Table 6.1.

Table 6.1. Flat priors for the cosmological parameters considered here.

Parameter Prior

Ωbh
2 0.005-0.1

Ωch
2 0.01-0.99

θs 0.5-10

τ 0.01-0.8

ns 0.5-1.5

ln (1010As) 2.7-4

mνs [eV] 0-3

mν [eV] 0-3

Nνs 0-6

Here our basic data set is the seven–year WMAP data [10, 28] (temperature and
polarization) with the routine for computing the likelihood supplied by the WMAP
team. We consider two cases: we first analyze the WMAP data together with the
luminous red galaxy clustering results from SDSSII (Sloan Digital Sky Survey) [69]
and with a prior on the Hubble constant from HST (Hubble Space Telescope) [128],
referring to it as the “run1” case. We then include to these data sets Supernova Ia
Union Compilation 2 data [129], and we will refer to this case as “run2”. In addition,
we also add to the previous data sets the BBN measurements of the 4He abundance,
considering separately helium fractions of Y 1

p = 0.2561± 0.0108 (see Ref. [130]) and
of Y 2

p = 0.2565 ± 0.0010 (stat.) ±0.0050 (syst.) from Ref. [131]. Finally, we also
consider the Deuterium abundance measurements log(D/H) = −4.56± 0.04 from
Ref. [132].

It is important to clarify that CMB anisotropies also depend on the value of
Yp but since Yp is constrained loosely by current CMB/LSS data, it is consistent
to fix it to value Yp = 0.24 in the CMB runs and to consider it as an independent
parameter constrained by BBN observations.

Given a cosmological model, we predict the theoretical primordial abundance of
Yp and log(D/H) by making use of the public available PArthENoPE BBN code
(see [133]).

Since running cosmomc and getting at the same time the theoretical predic-
tions from Parthenope for BBN would be exceedingly time-consuming we perform
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importance sampling obtaining the predicted values for Yp and log(D/H) with an
interpolation routine using a grid of Parthenope predictions for each (ωb, Nνs), as in
[134].

Table 6.2. 1D marginalized bounds on the active and sterile neutrino parameters using the

two combinations of data sets described in the text (r1 refers to “run 1” and r2 refers to

“run 2”, respectively).

Parameter 68% CL(r1) 95% CL(r1) 68% CL (r2) 95% CL (r2)

Nνs < 2.5 < 4.1 < 2.0 < 3.2

mν [eV] < 0.13 < 0.30 < 0.10 < 0.20

mνs [eV] < 0.22 < 0.46 < 0.20 < 0.50

Table 6.3. 1D marginalized 95% CL bounds on Nνs
, mνs

and mν after combining the

results of “run 2” with those coming from different measurements of BBN light element

abundances.

Y 1
p [130] Y 2

p [131] Y 1
p +D [132] Y 2

p +D [132]

Nνs < 2.3 < 1.7 < 1.7 < 1.4

mν [eV] < 0.17 < 0.15 < 0.15 < 0.15

mνs [eV] < 0.62 < 0.67 < 0.69 < 0.68

Table 6.2 shows the 1D marginalized bounds on Nνs , mνs andmν arising from the
two different analyses performed here on cosmological data sets. The marginalized
limits have been computed setting a lower limit of 0 in all the three neutrino
parameters here explored. The bounds obtained on the parameters associated to
the dark matter candidates considered here are consistent with those obtained in
Ref. [47] after taking into account the differences in the thermal abundances of sterile
neutrinos and QCD thermal axions. When we marginalize over all the cosmological
parameters, see Table 6.2, the 95% CL upper bound for Nνs is 4.1 (3.2) using “run1”
(“run2”) data sets. Therefore, current cosmological data does not exclude at the
95% CL the existence of ∼ 2 sterile neutrino species with sub-eV masses plus three
sub-eV active massive neutrinos. It would be interesting to further explore if a model
with sterile neutrinos is preferred over the model with only three active neutrinos
(see next Section). The results here are also in very good agreement with those of
Ref. [35] even if in the former analysis the two species, i.e. the active and sterile
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neutrino states, were not considered to be massive at the same time.
Table 6.3 shows the 95% 1D marginalized bounds on Nνs , mνs and mν arising

when different combinations of BBN light element abundances measurements are
combined with “run 2” results. Note that when measurements of the 4He abundance
are added to CMB, galaxy clustering and SNIa data, the 95% CL upper limit on Nνs

is 2.3 (1.7) if Y 1
p = 0.2561±0.0108 (Y 2

p = 0.2565±0.0010±0.0050) is assumed. Since
the number of sterile species after adding BBN constraints is smaller than before,
the sterile (active) neutrino masses can get slightly larger (smaller) values, since
BBN data is insensitive to the dark matter density in the form of massive neutrinos
at late times. The combination of Helium and Deuterium abundance measurements
compromises the viability of (3+2) models, leading to Nνs < 1.7− 1.4 at the 95%
CL. However, the two sterile states might not have thermal properties at decoupling
and evade BBN constraints. A complete analysis including sterile neutrino mixing
parameters and recent reactor neutrino oscillation results [135] is mandatory.

Figure 6.1, top panel, depicts the 68% and 95% CL allowed contours in the mν–
Nνs plane. The blue (red) contours denote the allowed regions by “run1” (“run2”)
data sets. Notice that there exists a degeneracy between these two quantities. This
degeneracy is similar to the one found by the authors of Ref. [35]. When the mass
energy density in the form of massive neutrinos is increased, the number of extra
relativistic species must also be increased to compensate the effect. This will be the
case for massless sterile species. In this analysis, the degeneracy is milder respect to
those of Figure 5.5 and [35], since sterile neutrinos are massive and therefore they
behave as an additional dark matter component at late times. The degeneracy will
show up when the active neutrinos have relatively large masses, since, in that case,
a tiny amount of sterile neutrino masses will be allowed. The sterile states will then
behave as relativistic particles at the decoupling era and will compensate the effect
of a large active neutrino mass.

Figure 6.1, middle panel, depicts the 68% and 95% CL allowed contours in
the mν–mνs plane. There exists a very strong anticorrelation between these two
quantities, since both contribute to the dark matter energy density at late times
and therefore if the mass of the sterile neutrino states grows, the mass of the active
ones must decrease. The situation is analogous to that of QCD thermal axions and
massive (active) neutrinos, see Ref. [47].

The bottom panel of Figure 6.1 depicts the 68% and 95% CL allowed contours
in the Nνs–mνs plane. In this case, the larger the sterile neutrino mass is, the lower
its thermal abundance must be, as expected.

6.3 Neutrino oscillations analysis

The short–baseline neutrino oscillation analysis is performed following Refs. [121,
122, 123].

We consider 3+1 and 3+2 neutrino spectra in which νe, νµ, ντ are mainly mixed
with ν1, ν2, ν3, whose masses are much smaller than 1 eV and there are one or two
additional massive neutrinos, ν4 and ν5, which are mainly sterile and have masses of
the order of 1 eV. Short-baseline oscillations are generated by the large squared-mass
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Figure 6.1. The top, middle and bottom panels show the 68% and 95% CL constraints on

the plane mν-Nνs
, mν-mνs

and mνs
-Nνs

, respectively. The blue (red) contours denote

the allowed regions by “run1” (“run2”) data sets, see text for details. The masses of the

sterile and active neutrinos are both in eV units.

differences ∆m2
41 and ∆m2

51, with:

∆m2
51 ≥ ∆m2

41 � ∆m2
31 � ∆m2

21 . (6.2)

The small squared–mass differences ∆m2
21 and ∆m2

31 which generate, respectively,
solar and atmospheric neutrino oscillations (see Refs.[111, 112, 113]) have negligible
effects in SBL oscillations and are ignored in the following. The two heavy neutrino
masses m4 and m5 which are probed by cosmological data are simply connected to



6.3 Neutrino oscillations analysis 109

Table 6.4. Values of χ2
min, number of degrees of freedom (NDF), goodness–of–fit (GoF)

and best–fit values of the mixing parameters obtained in our 3+1 and 3+2 fits of

short–baseline oscillation data.

3+1 3+2

χ2
min 142.1 134.1

NDF 138 134

GoF 39% 48%

∆m2
41 [eV2] 1.62 0.89

|Ue4|2 0.035 0.018

|Uµ4|2 0.0086 0.015

∆m2
51 [eV2] 1.61

|Ue5|2 0.022

|Uµ5|2 0.0047

η 1.57π

the squared–mass differences relevant for SBL oscillations by:

m4 '
√

∆m2
41 , m5 '

√
∆m2

51 . (6.3)

We fit the data set of short-baseline neutrino oscillation experiments corre-
sponding to the GLO–HIG analysis in Ref. [123], in which the low-energy Mini-
BooNE neutrino [136] and antineutrino [137, 138, 139] data corresponding to the
so-called "MiniBooNE low–energy anomaly" are not considered, since they induce
a strong tension between appearance and disappearance data (see the discussions
in Refs. [122, 123]). We made the following two improvements with respect to the
analysis presented in Ref. [123]:

1. We used the reactor neutrino fluxes presented in the recent White Paper on
light sterile neutrinos [140], which update Refs. [141, 142]. The new fluxes
are about 1.3% larger than those we used before, which were taken from the
reactor antineutrino anomaly publication [135].

2. We replaced the KamLAND bound on |Ue4|2 with a more powerful constraint
obtained from solar neutrino data [143, 144, 145]. Taking into account the
recent measurement of |Ue3|2 in the Daya Bay [146] and RENO [147] reactor
neutrino experiments (|Ue3|2 = sin2 ϑ13 = 0.025 ± 0.004), from Figure 1 of
Ref. [145] we inferred the approximate upper bound |Ue4|2 = sin2 ϑ14 ≤ 0.02
at 1σ (see Ref. [148]).
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In our analysis of SBL neutrino oscillation data we apply first the standard
χ2 method. The minimum value of χ2, the number of degrees of freedom, the
goodness–of–fit and the corresponding best–fit values of the oscillation parameters
are presented in Table 6.4. The results concerning the 3+1 and 3+2 fits are similar
to those reported, respectively, in Ref. [123] for the GLO–HIG case and Ref. [121],
with small variations due to the consideration of different data sets. From Table 6.4
we can see that in both the 3+1 and 3+2 frameworks the global goodness–of–fit is
satisfactory.

The allowed regions of ∆m2
41 versus the effective SBL oscillation amplitudes

sin2 2ϑeµ, sin2 2ϑee and sin2 2ϑµµ (with sin2 2ϑαβ = 4|Uα4|2|Uβ4|2) are shown in
Figure 6.2. These regions are relevant, respectively, for (−)

νµ �
(−)
νe,

(−)
νe →

(−)
νe and

(−)
νµ →

(−)
νµ oscillation experiments. They are more similar to those shown in Figure

3 of Ref. [123] than the region presented in Ref. [148], because the larger reactor
antineutrino fluxes used in this analysis increase the reactor antineutrino anomaly,
leading to a larger value of |Ue4|2, which tends to cancel the effect of the solar
neutrino constraint.

The allowed regions in the ∆m2
41-∆m2

51 plane obtained in the 3+2 analysis
are shown in Figure 6.3. One can see that the allowed regions are similar to
those presented in Figure 9 of Ref. [121], with small variations due to the different
considered data sets.

Since we want to perform a combined analysis of SBL oscillation data and
cosmological data and the cosmological analysis is performed with the Bayesian
method, we have also analyzed the SBL oscillation data with a Bayesian approach.
We assumed the sampling distribution of the data D:

p(D|θM ,M) ∝ e−χ2(D,θM )/2 , (6.4)

where M is the model (M = 3 + 1 or M = 3 + 2), θM is the corresponding set of
oscillation parameters (listed in Table 6.4) and χ2(D, θM ) is the corresponding χ2

function. The sampling probability is the likelihood when considered as a function of
the parameters of the model. In each of the two models, we calculated the posterior
probability distribution of the oscillation parameters using Bayes’ theorem:

p(θM |D,M) = p(D|θM ,M)p(θM |M)
p(D|M) , (6.5)

where p(D|M) is easily calculated as a normalization constant. We assumed a flat
prior distribution in the logarithmic space of the oscillation parameters, except
for the CP–violating phase η in the 3+2 spectrum (see Ref. [121]) for which we
used a linear scale in the interval [0, 2π]. For log(∆m2

41/eV2) and log(∆m2
51/eV2)

we considered the range [−1, 1]. For log |Ue4|2, log |Uµ4|2, log |Ue5|2, log |Uµ5|2 we
considered the range [−4, 0].

Since we are interested in combining the results of the analysis of SBL oscillation
data with that of the cosmological data, where the only shared parameters are
the neutrino masses in Eq.(6.3), we calculated the marginal posterior probability
distributions of the squared–mass differences by integrating the posterior probability
distribution over the other oscillation parameters taking into account the scale of
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Figure 6.2. Allowed regions in the sin2 2ϑeµ–∆m2
41, sin2 2ϑee–∆m2

41 and sin2 2ϑµµ–∆m2
41

planes obtained from the global fit of short–baseline neutrino oscillation data in the 3+1

scheme using the standard χ2 method. The best-fit point is indicated by a cross (see

Table. 6.4).

the flat prior. For example, in the 3+1 model:

p(log ∆m2
41|D, 3 + 1) =

∫
d log |Ue4|2 d log |Uµ4|2

× p(log(∆m2
41), log |Ue4|2, log |Uµ4|2|D, 3 + 1) . (6.6)

In this way, we obtained the posterior probability distribution of ∆m2
41 in the 3+1

spectrum plotted in Figure 6.4 (thick green line exhibiting several sharp peaks)
and the allowed regions in the ∆m2

41–∆m2
51 of the 3+2 spectrum shown in Figure

6.5. Comparing with Figure 6.3, one can see that the Bayesian allowed regions
are wider than those obtained with the χ2 method. The difference is due to the
different method of marginalization with respect to the other mixing parameters
(mixing angles and CP–violating phase): in the χ2 method one considers only the
minimum of the χ2 in the range of each marginalized parameter, whereas in the
Bayesian method one must integrate the posterior probability density over the
marginalized parameter space. Since the data do not constrain much the values
of the marginalized parameters (see Figures 10–12 of Ref. [121]), the Bayesian
integration gives significantly different results from the χ2 marginalization. The
allowed vertical bands with constant value of ∆m2

41 are due to the fact that one
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using the standard χ2 method. The best-fit point is indicated by a cross (see Table. 6.4).

can have a comparable fit for any value of ∆m2
51 and negligible |Ue5| and |Uµ5|,

which is effectively equivalent to a 3+1 framework. The same applies to the allowed
horizontal bands with constant value of ∆m2

51.

6.4 Cosmological analysis

In order to match cosmology with SBL analysis, here the cosmological analysis is
performed in two different steps: first by analyzing CMB–only data and then by
further adding data from large scale structure and priors on the Hubble parameter.
The CMB analysis is performed by employing the following datasets: WMAP7 [10],
ACT [39] and SPT [40]. The large scale structure analysis makes use of information
on dark matter clustering from the matter power spectrum extracted from the
SDSS–DR7 luminous red galaxy sample [69]. Finally, the Hubble parameter prior
we use is based on the latest Hubble Space Telescope observations [3].

We analyze datasets up to `max = 3000. The analysis method we adopt is based
on the publicly available Markov Chain Monte Carlo (MCMC) package CosmoMC
[25] with a convergence diagnostic done through the Gelman and Rubin statistic.

We sample the following six–dimensional standard set of cosmological parameters,
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adopting flat priors on them: the baryon and cold dark matter densities Ωbh
2

and Ωch
2, the ratio of the sound horizon to the angular diameter distance at

decoupling θs, the optical depth to reionization τ , the scalar spectral index nS
and the overall normalization of the spectrum AS . We account for foregrounds
contributions including three extra amplitudes: the SZ amplitude, the amplitude
of clustered point sources, and the amplitude of Poisson distributed point–sources
(see Section 8). We consider purely adiabatic initial conditions and we impose
spatial flatness. Here both active and sterile neutrinos are assumed to be fully
thermalized. Sterile neutrino thermalization [149, 150, 151, 152, 153] is realized
through oscillations and occurs if the mass splittings and mixing angles with active
neutrinos are not too small. An approximate condition is that the relevant squared-
mass separation ∆m2 and effective mixing sin θ satisfy the following requirement
[152]:

∆m2 sin4 θ > 3× 10−6 eV2 . (6.7)

For the 3+1 case, this condition is always fulfilled, as can be seen in Figure 6.3. In
the 3+2 case, the situation is more complex, since the allowed regions from the SBL
analysis may extend to the case where one of the two additional neutrinos has very
small values of the mixing angle and/or the mass splitting, as is shown in the analysis
of Ref. [121]. The situation where one of the two sterile neutrinos decouples (and the
3+1 scheme is actually recovered as a limit) is a possible solution for the 3+2 case.
Table 6.4 above and Ref. [121] show that for the best fit parameters the values of
the mass splittings and effective mixing angles are sufficient to ensure thermalization
of both states in the 3+2 case; when the parameters are moved toward the edges of
the their allowed ranges, Eq. (6.7) may not be satisfied for both sterile states and
full thermalization of one of the two extra–neutrinos may not occur and a dedicated
analysis of the thermalization process would be required. In our analysis we assume
that full thermalization always occurs in the allowed parameter space. Clearly, a
partial or non–standard thermalization could lead to completely different constraints
on the sterile neutrino mass [149, 150, 151, 152]. In particular, Ref. [152] shows that
in the non thermal case the cosmological energy density in sterile neutrinos does not
monotonically increase with the mass and it is constrained to be less then 0.003 at
95% C.L. for masses > 1 eV; as an aftermath, in the matter power spectrum the
suppression due to free–streaming is smaller at higher masses. This effect can relax
the constraints on the sterile neutrino masses around 1 eV.

The aim is to specifically test 3+1 and 3+2 neutrino mass models, by means of a
joint analysis of both cosmological and SBL experiments data. Therefore, contrary
to the typical approach (see e.g. Ref. [35, 36, 154]), in the cosmological analysis we
do not let the effective number of relativistic degrees of freedom Neff to vary as a
free parameter, instead we fix it at the values Neff = 3 + 1 or Neff = 3 + 2 for the
3+1 and 3+2 schemes, respectively. This is consistent with the assumptions done in
the oscillation analysis and with the hypothesis of cosmological full thermalization
of all neutrino states (including the sterile ones; see the recent discussions in Refs.
[149, 150]). Consistently to the analysis of Section 6.3, we fix the three active
neutrinos to be massless and we allow the sterile neutrinos to have masses which vary
as additional free parameters. Since we are interested to sample the joint sensitivity
of cosmological and SBL neutrino data on the sterile–neutrinos mass parameters, in
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Table 6.5. MCMC estimation of the cosmological parameters from the analysis of CMB–

only data and from CMB data plus matter power spectrum information (SDSS) and a

prior on H0 (HST), in the case of three massless active neutrinos and one massive sterile

neutrino (3+1 scheme) and assuming 3 massless active neutrinos plus 2 massive sterile

neutrinos (3+2 scheme). Neutrino mass upper bounds are reported at the 95% C.L.,

unless for the 3+2 CMB+SDSS+HST case where we quote the best–fit value together

with the 68% (95%) C.L. interval.

3+1 CMB only 3+2 CMB only 3+1 CMB+SDSS+HST 3+2 CMB+SDSS+HST

Ωbh2 0.0224± 0.0004 0.0226± 0.0004 0.0224± 0.0004 0.0226± 0.0004

Ωch2 0.135± 0.007 0.156± 0.009 0.133± 0.004 0.156± 0.004

τ 0.085± 0.014 0.087± 0.015 0.084± 0.014 0.086± 0.014

H0 71.5± 3.6 73.6± 4.4 73.1± 1.6 74.6± 2.0

ns 0.970± 0.015 0.985± 0.016 0.977± 0.010 0.990± 0.010

log(1010As) 3.21± 0.05 3.20± 0.05 3.19± 0.04 3.19± 0.04

Σm (eV ) < 2.88 < 2.48 < 0.73 0.58+0.12 (+0.45)
−0.13 (−0.42)

χ2
min 7529.5 7532.2 7578.5 7581.1

the cosmological analysis we do not employ the neutrino mass fraction fν (as it is
usually done), but instead we sample directly log ∆m2

41 and log ∆m2
51. This implies

a flat prior on those parameters.
Before attempting a joint analysis with the SBL data, which have been presented

in the previous Section, we report in Table 6.5 the constraints on the cosmological
parameters using CMB–only data and CMB data plus SDSS information together
with the HST prior, and assuming: a 3+1 model with three massless active neutrinos
and one massive sterile neutrino; a 3+2 model with three massless active neutrinos
plus two massive sterile neutrinos. The 95% C.L. mass bounds on the sterile neutrinos
is 2.88 eV for the 3+1 scheme, while for the 3+2 model the bound on the sum of
the masses of the two additional sterile neutrinos is 2.48 eV, both of them share
a 2σ upper limit of about 1.24 eV, when CMB–only data are used. These bounds
drastically improve when also SDSS data and the HST prior are included in the
analysis (see Ref. [155]), reaching the value of 0.73 eV for the 3+1 case and about 1
eV for the 3+2 case. Both the 3+1 and 3+2 schemes are statistically well acceptable,
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Figure 6.4. Marginal posterior probabilities obtained with a Bayesian analysis for ∆m2
41

in the 3+1 scheme. The thick [green] solid line exhibiting several sharp peaks (the same

in the two panels) refers to the analysis of the short–baseline oscillation data alone.

The blue line exhibiting a broad peak stands for the analysis of the cosmological data

alone: CMB-only data for the left panel, CMB data implemented with SDSS and HST

information for the right panel. In all cases, the shaded regions refer to the 95% coverage

of the probability distribution.

with no noticeable preference in the minimal χ2. The only visible (and expected)
difference between the 3+1 and 3+2 schemes is that 2 additional neutrinos require
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a larger value of the dark matter abundance Ωch
2, to compensate a delay of the

equivalence time, which would instead be induced by the presence of an additional
light degree of freedom in the 3+2 case [18]. The correction due to non degeneracy
between the mass of the first and the second sterile neutrino in the 3+2 model
is of the order of precision of present numerical codes and so undetectable using
only the present cosmological data (CMB and matter power spectra). Moreover
the degeneracies with other cosmological parameters makes the detection of the
neutrino mass differences impossible at the state of art (see Ref. [156]). Figure
6.4 shows the marginal posterior probability of the cosmological Bayesian analysis
for the 3+1 case, compared with the results of the SBL study. The blue line
exhibiting a broad peak stands for the analysis of the cosmological data alone and
the left panel refers to CMB-only data, while the right panel refers to the CMB
data implemented with SDSS and HST information. The two panels of the figure
show how the inclusion of SDSS and HST information is relevant to set the more
stringent constraint on the cosmological upper bound on the neutrino mass. The
shaded regions refer to the 95% C.L. coverage of the probability distribution, from
which the bounds on m4 of Table 6.5 are derived. When compared with the SBL
analysis and its 95% C.L. mass intervals (three slightly discontinued ranges in the
interval 0.93 eV < m4 < 1.45 eV and a higher mass range 2.29 eV < m4 < 2.59 eV),
with a best fit at m4 = 1.27 eV, we notice that CMB–only and SBL oscillation data
are well compatible among them, with a significant overlap of the corresponding
95% C.L. regions. The 95% C.L. cosmological upper bound m4 < 2.88 eV disfavors
the higher mass SBL solution, while is perfectly compatible with the lower SBL
mass ranges. The combination of the cosmological and SBL datasets will therefore
produce a clean allowed interval, as shown in the next Section. Instead, when SDSS
and HST information are included in the analysis, SBL oscillations and cosmological
data are in tension, with no overlapping 95% C.L. The analysis for the 3+2 scheme
is shown in Figure 6.5, where C.L. regions in the ∆m2

41–∆m2
51 plane are reported.

The SBL allowed regions clearly show a preference for at least a non–zero neutrino
mass (m5 with our choice of hierarchy in neutrino masses) and a global preference
for m4 = 0.95 eV and m5 = 1.27 eV. The cosmological data instead provide upper
limits on both sterile neutrino masses, with no clear preference for non–zero values.
CMB–only data (left panel) are well compatible with SBL results, with the 95% C.L.
upper bound of the cosmological analysis consistent with the corresponding 95%
C.L. regions of the SBL analysis and its global best–fit point (m4 = 0.95 eV and
m5 = 1.27 eV). Also in the 3+2 case, the inclusion of SDSS and HST data produces
tension between SBL and cosmological analyses, as is manifest in the right panel of
Figure 6.5, where only a partial overlap at the 3σ C.L. is present. Figure 6.5 clearly
shows that the whole set of cosmological data will be instrumental in significantly
reducing the degeneracy of the allowed solutions of the SBL analysis when the joint
analysis will be attempted in the next Section.
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6.5 Combined analysis
The combined analysis of the SBL oscillation data and the cosmological observations
has been performed by merging the corresponding posterior probabilities. Since the
only relevant parameters common to both sectors are the sterile neutrino masses
m4 '

√
∆m2

41 and m5 '
√

∆m2
51 we can define a marginal posterior probability

for the joint analysis by directly multiplying the SBL and cosmological marginal
posterior probabilities relative to the parameter of interest. For example, in the 3+1
case, denoting by DC and DS the cosmological and SBL data we have2:

p(log ∆m2
41|DC+S, 3 + 1) ∝ (6.8)

p(log ∆m2
41|DC, 3 + 1) × p(log ∆m2

41|DS, 3 + 1) ,

where the SBL probability is the one defined in Eq. (6.6) and the cosmological
probability is the one used in the analysis of the previous section and obtained
through CosmoMC.

The combined analysis for the 3+1 scheme is shown in Figure 6.6. As usual, the
left panels refers to the case of CMB–only data in the cosmological sector, while the
right panel adds SDSS and HST datasets. The horizontal dashed lines identify the
credible intervals at 68.27%, 90.00%, 95.45%, 99.00% and 99.73% C.L. In the case of
CMB–only data, the inclusion of the cosmological information to the SBL analysis
disfavors the higher mass SBL solution around 2.4 eV but maintains the lower mass
95% C.L. allowed intervals (0.90 eV < m4 < 1.46 eV) and (2.27 eV < m4 < 2.51 eV)
and the best–fit solution (m4 = 1.27 eV). When SDSS and HST information is added
to the analysis, the allowed interval of the global analysis shifts down to lower values
of the sterile neutrino mass, due to the more stringent bound from the cosmological
sector. The 95% C.L. mass range becomes 0.85 eV < m4 < 1.18 eV, and the best fit
shifts down to m4 = 0.93 eV.

The combined analysis for the 3+2 scheme is shown in Figure 6.7, again for the
case of CMB–only data (left panel) and for the further inclusion of SDSS and HST
data (right panel). The global results are that at least one sterile neutrino needs
to be massive, with a mass of the order of 1 eV (m5 with our choice of hierarchy),
while the second sterile neutrino can be massless. The marginalized 95% intervals
for the two neutrino masses are: m4 < 2.51 eV and 0.86 eV < m5 < 3.16 eV when
CMB–only data are considered; m4 < 0.70 eV and 0.67 eV < m5 < 1.35 eV for the
full analysis which includes also SDSS and HST.

2 Since we assumed a flat prior for θ = log ∆m2
41 in both the SBL and cosmological analyses,

using Bayes’ theorem (6.5) we have p(θ|DC+S) ∝ p(DC+S|θ) = p(DC|θ)p(DS|θ) ∝ p(θ|DC)p(θ|DS).
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Figure 6.5. Allowed regions in the ∆m2
41-∆m2

51 plane obtained with a Bayesian analysis.

The “boxy” regions (the same in the two panels) refer to the global analysis of the

short–baseline oscillation data and are relative to the following confidence levels (from

the innermost to the outermost region): 68.27% (red), 90.00% (light blue), 95.45%

(green), 99.00% (brown) and 99.73% (dark blue). The arc–shaped solid lines refer to the

analysis of the cosmological data: the left panel stands for the CMB–only dataset, while

the right panel refers to the inclusion of the SDSS information and HST prior to the

CMB data. The different lines refer to the following confidence levels (from the lower

curve to the upper curve, in each panel): 68.27% , 90.00%, 95.45%, 99.00% and 99.73% .
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Figure 6.6. Marginal posterior probabilities obtained with a Bayesian analysis for ∆m2
41

in the 3+1 scheme, for the joint analysis of cosmological and short–baseline data. Left

panel: the cosmological analysis employs CMB–only data. Right panel: the cosmological

analysis adds SDSS and HST information to the CMB data. The horizontal dashed lines

identify (from the lower curve to the upper curve, in each panel) the credible intervals

at 68.27%, 90.00%, 95.45%, 99.00% and 99.73% C.L.
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Figure 6.7. Allowed regions in the ∆m2
41–∆m2

51 plane obtained with a Bayesian approach,

for the joint analysis of short–baseline and cosmological data. The different regions (as in

Figure 6.5) refer to the following confidence levels (from the innermost to the outermost

region): 68.27% (red), 90.00% (light blue), 95.45% (green), 99.00% (brown) and 99.73%

(dark blue). Left panel: SBL data plus the CMB–only dataset. Right panel: SBL data

plus CMB, SDSS and HST data; in this case only 68.27% (red), 95.45% (green) and

99.73% (dark blue) C.L. are reported.
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Chapter 7

Neutrino Mass and Priors:

Reionization and Curvature

7.1 Introduction

Precision observation of CMB and large scale structure of galaxies can be used to
probe neutrino mass with greater precision than current laboratory experiments. The
most recent data release from WMAP after seven years of observations presented a
bound on the total neutrino mass of Σmν < 1.3eV at the 95% c.l. [10, 28]. This bound
is approximately a factor five better than the current laboratory experimental upper
limit inferred from a combination of beta-decay experiments and neutrino oscillation
data (see e.g. [157]). The CMB bound on neutrino masses is also considered the
most conservative limit from cosmology. Indeed, including information from galaxy
clustering and luminosity distance data, the constraint can be further improved to
Σmν < 0.55eV at 95% c.l. [10], while a limit of Σmν < 0.28eV at 95% c.l. can be
obtained by including redshift-dependent halo bias-mass relations [158].

But cosmological results (see bayesian analysis) are very model dependent. It is
however important to be aware of the theoretical modelling behind the constraint
based on cosmological measurements. A model of structure formation based on
dark matter, adiabatic primordial fluctuations and dark energy is assumed and the
removal of one of these assumptions can in principle affect the CMB limit. So it is
important to investigate the changes in neutrino mass bounds if we use different
theoretical assumptions.

We investigate another possible theoretical caveat that could affect the CMB
bound on the sum of the neutrino masses, i.e. the modelling of the reionization
epoch. It is often assumed in the current cosmological data analysis that reionization
is a sudden event at redshift z = zre, i.e. this process is usually described by a single
parameter with the free electron fraction xe increasing from ∼ 10−4 up to 1 for
redshifts z < zre (∼ 1.08 for z < 3 when taking into account Helium reionization).
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While this scenario can properly describe several reionization scenarios, it can’t
obviously describe more complex reionization scenarios as for example double or
not-monotone reionization. Given our current ignorance about the thermal history of
the universe at redshifts z ≥ 6 it is important to consider all the possible reionization
scenarios allowed by data when deriving the most conservative constraint on a
cosmological parameter such as the sum of the neutrino masses. We indeed assume
a more general reionization model following the principal components method
suggested by Mortonson and Hu [159] and we derive constraints on the neutrino
mass in this different theoretical framework.

7.2 Reionization
The primeval plasma was highly ionized. After decoupling electrons and protons
recombined themselves in neutral hydrogen. So the Universe became neutral and it
started the Dark Age that finished when the first luminous object turned on. They
emitted photoionizing photons and so they activated reionization [160].

The observational evidence of the present ionized Universe is the Gunn-Peterson
effect. The Gunn-Peterson trough [161] is a feature of the spectra of the quasars
due to the presence of neutral hydrogen in the intergalactic medium. The trough
is characterized by suppression of electromagnetic emission from the quasar at
wavelengths smaller than the wavelength of Lyman-alpha line at the redshift of the
emitted light. The effect is observed only in the spectra of the quasars at redshift
greater than 6. This means that at z < 6 the Universe is highly ionized.

7.2.1 Reionization effects on CMB

For the temperature spectrum the main effect of reionization is an erasure of the
primary anisotropies (from recombination) as exp(−2τreion) where

τreion = cσT

∫
dtne(1 + z)3

is the optical depth nowadays of CMB photons due to Thomson scattering (σT is the
Thomson cross section) with free electron (ne is the electron density). This occurs
below the scale of the horizon at last scattering since only on these scales there
has been enough time to convert the originally isotropic temperature fluctuations
into anisotropies [162]. This uniform reduction of power at small scales has the
same effect as a change in the overall normalization. Moreover there is a degeneracy
between τreion and others cosmological parameters: the scalar spectral index (ns)
and the amplitude of r.m.s. mass fluctuations on spheres of 8Mpch−1 (σ8). This
degeneracy is due to the fact that the reionization damping can be compensated by
an increase in the dark matter density fluctuations. If reionization takes place at
redshift between 20 and 5 the difference in the power spectrum is confined to large
angles (` < 30). Here the observations are limited by "cosmic variance": the fact
that we only have one sample of the sky and hence only 2`+ 1 samples of any given
multipole. So cosmic variance is the dominating source of uncertainty on the low-`
temperature spectrum.
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The same is not true for the polarization spectrum where the reionization signal
is not cosmic variance limited. CMB photons cannot spread on large scales ` < 30
before recombination ended. So the polarization signal is expected to be zero at
low multipole. The peak at low multipole shown in Figure 7.1 is clearly due to the
rescattering of CMB photons during reionization.
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Figure 7.1. Temperature, polarization, and temperature-polarization cross correlation

predictions and sensitivity of MAP for a fiducial model Ω0 = 1, ΩB = 0.1, h = 0.5 cold

dark matter. While the reionized model (purple τ = 0.1) is impossible to distinguish

from the fiducial model from temperature anisotropies alone, its effect on polarization

is clearly visible at low `. Dashed lines for the temperature-polarization correlation

represent anticorrelation [162].

Here we would like to point out that, even if we knew the reionization history of
the Universe, there is no direct correspondence between the behavior of the fraction
of ionized hydrogen at certain redshift and its effect on the E-mode polarization
spectrum. For instance, a sudden reionization model produces only one single peak
al ` < 10, while models with a partial reionization at higher redshift produce a
less high peak, but also a bump at 10 < ` < 30 (see Figure 7.2). Moreover we do
not know the thermal history of the Universe. For these reasons it is important to
analyze cosmological data in the framework of a more general reionization scenario,
independent on a particular reionization history.
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Figure 7.2. E-mode polarization angular power spectra and ionization histories (inset) for

a nearly-instantaneous reionization model with optical depth τ = 0.105 (thick curves)

and an extended, double reionization history with τ = 0.090 (thin). Points with error

bars represent the 3-year WMAP data from Page et al. (2006) [163].

7.3 Principal Components
We adopt the method, developed in Ref. [159], based on principal components that
provide a complete basis for describing the effects of reionization on large-scale E-
mode polarization. Following Ref. [159], one can parametrize the reionization history
as a free function of redshift by decomposing xe(z) into its principal components:

xe(z) = xfe (z) +
∑
µ

mµSµ(z),

where the principal components, Sµ(z), are the eigenfunctions of the Fisher matrix
that describes the dependence of the polarization spectra on xe(z) (again, see
Ref. [159]), mµ are the amplitudes of the principal components for a particular
reionization history, and xfe (z) is the WMAP fiducial model at which the Fisher
matrix is computed and from which the principal components are obtained. In what
follows we use the publicly available Sµ(z) functions and varied the amplitudes mµ

for µ = 1, ..., 5 for the first five eigenfunctions. The first 5 modes provide all the
information about reionization that are relevant in the E-mode polarization spectrum
at large scales where the reionization signal is expected. The eigenfunctions are
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computed in 95 bins from redshift zmin = 6 to redshift zmax = 30 with xe(z) = 1.08
for z < 3, xe(z) = 1.0 for 3 ≤ z < 6 and xe(z) = 10−4 for z ≥ 30. Hereafter we refer
to this method as the MH (Mortonson-Hu) case.

7.4 Analysis method
We have then modified the Boltzmann CAMB code [26] incorporating the generalized
MH reionization scenario as in [159] and extracted cosmological parameters from
current data using a Monte Carlo Markov Chain (MCMC) analysis based on the
publicly available MCMC package CosmoMC [25].

We consider here a flat ΛCDM universe described by a set of cosmological
parameters

{ωb, ωc, ων , θs, ns, log[1010As]}, (7.1)

where ωb ≡ Ωbh
2 and ωc ≡ Ωch

2 are the physical baryon and cold dark matter
densities relative to the critical density, ων is the physical energy density in massive
neutrinos, θs is the ratio of the sound horizon to the angular diameter distance at
decoupling, As is the amplitude of the primordial spectrum, and ns is the scalar
spectral index. We assume 3 degenerate, massive neutrinos with the same mass (see
formula 3.5):

mν = 30.8eV× ων
In what follows we will use as standard parameter the value Σmν = 3mν .

The extra parameters needed to describe the reionization are the five amplitudes
of the eigenfunctions for the MH case and one single common parameter, the optical
depth τ , for the sudden reionization case.

Our basic data set is the seven–year WMAP data [10] (temperature and po-
larization) with the routine for computing the likelihood supplied by the WMAP
team.

7.5 Results
In Table 7.1 we compare the constraints on several cosmological parameters in the
case of standard or MH reionization scenario. As we can see from the table, the
CMB constraint on the neutrino mass is weakened by ∼ 40% when a more general
reionization scenario is considered. This is not simply due to an increase in the
parameter space but also due to degeneracies present between the cosmological
parameters. Considering the MH reionization scenario renders values of the spectral
index ns in better agreement with the Harrison-Zel’dovich ns = 1 value (see [164]).
This changes the relative amplitude of the peaks in the CMB angular spectrum and
makes models with higher neutrino mass more consistent with the WMAP data.
Introducing a neutrino mass has indeed the effect of decreasing the gravitational
potential at recombination, increasing the small scale CMB anisotropy1. This can
be counterbalanced by decreasing the value of the spectral index ns as clearly

1The effect of neutrino mass on CMB lensing for the WMAP data is negligible.
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Table 7.1. 95% c.l. errors on cosmological parameters in the case of sudden reionization

and MH reionization. The upper limit on the neutrino mass is relaxed by ∼ 43%.

Parameter WMAP7 WMAP7

(Sudden Reionization) (MH Reionization)

Ωbh2 0.0221+0.0012
−0.0012 0.0226+0.0015

−0.0014

Ωch2 0.117+0.013
−0.013 0.115+0.017

−0.017

θs 1.038+0.005
−0.005 1.039+0.006

−0.005

ns 0.955+0.032
−0.033 0.975+0.0448

−0.0434

H0 65.7+7.6
−8.2 66.0+10.2

−9.0

ΩΛ 0.674+0.091
−0.134 0.675+0.112

−0.148

Σmν < 1.15eV < 1.66eV
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Figure 7.3. Constraints on the Σmν vs ns plane. The filled contours assume MH

reionization while the empty contours assume standard, sudden, reionization.

shown by the anti-correlation in the ns-Σmν plane. A general reionization scenario
brings higher values of n in agreement with observations, immediately resulting in a
better compatibility of larger neutrino masses. It is worth noticing that while in
the standard reionization scenario HZ spectra are excluded at about two standard
deviations when massive neutrinos are included in the analysis, in the MH case the
ns = 1 spectra are well consistent with the data and inside the 1σ c.l. also with
Σmν ∼ 0.5eV.

In Figure 7.3 we show the constraints on the Σmν vs ns plane, while in Figure
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Figure 7.5. Constraints on the Σmν vs Ωm plane. The filled contours assume MH

reionization while the empty contours assume standard, sudden, reionization.

7.4 we show the constraints on the Σmν vs σ8 plane. The filled contours assume MH
reionization while the empty contours assume standard, sudden, reionization. As
we can see, MH reionization allows for values of the spectral index n closer to 1 (as
already pointed out in [164]), for a larger neutrino mass and for a lower σ8 amplitude.
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Figure 7.6. Constraints on the Σmν vs Ωbh
2 plane. The filled contours assume MH

reionization while the empty contours assume standard, sudden, reionization.

It is interesting to note that a neutrino mass can in principle accommodate lower
values of σ8 with CMB data. When MH reionization is assumed even lower values
of σ8 are consistent with CMB data. A low value of σ8 ∼ 0.77 is preferred by the
recent detection of diffuse Sunyaev-Zel’dovich effect by the South Pole Telescope
[165] experiment.

Moreover, correlations exist with the matter density Ωm, as we show in Figure
7.5 and (even if less pronounced) with the baryon physical density Ωbh

2 as we show
in Figure 7.6.

7.6 The impact of assuming flatness on ∑
mν

The flatness assumption can represent another source of possible misleading results
about neutrino mass in cosmological model dependent analysis.

As in the previous case we make use of CosmoMC. But in this case our analysis
combines the following CMB anisotropy dataset: not only WMAP 7-year [10] as in
the previous analysis, but also the high ` data SPT [40], and ACT [39]. Including
BAO+H0 simply means we are using the baryon acoustic oscillation (BAO) data
of Percival et al. [90] and impose a prior on the Hubble parameter based on the
last Hubble Space Telescope observations [3]. We integrate spectral data out to
`max = 3000. We sample from the following parameters: the baryon Ωbh

2, cold
dark matter Ωch

2, and dark ΩΛ energy densities, the scalar spectral index ns, the
optical depth to reionization τ , the Hubble parameter H0, and the amplitude of
SZ spectrum ASZ , which contribution is non negligible if the integration is out
` ≈ 2000. We also consider the effective neutrino number Neff , spatial curvature Ωk,
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and the sum of neutrino masses
∑
mν , but in this case we assume a standard sudden

reionization scenario.
Table 7.2 shows the results from WMAP+BAO+H0 in the first column and

the result of adding the high multipole dataset in the final column for a standard
ΛCDM scenario with three massive degenerate neutrinos. Although the constraint
greatly improves the two sigma limit for the masses, this is not enough to favor
either the standard or inverted hierarchy. However, this is not a surprise because
none of the dataset are sensitive enough on their own. Forthcoming data from
the Planck experiment and other future experiments will likely improve the mass
constraint [166].

Table 7.2. Summary of the constraint on the sum of the neutrino masses. All dataset

include BAO and H0 for improved parameter constraints. Errors are at the 68% CL

except for
∑
mν , which is quoted as a 95% upper limit.

Parameter WMAP7+BAO+H0 . . .+ACT+SPT

100Ωbh
2 2.26± 0.053 2.23± 0.038

Ωch
2 0.112± 0.0036 0.111± 0.0029

ΩΛ 0.719± 0.0182 0.726± 0.0154

ns 0.968± 0.0124 0.963± 0.0092

τ 0.0897± 0.015 0.0873± 0.014

H0 (km/s/Mpc) 69.2± 1.6 69.9± 1.37∑
mν < 0.57 eV < 0.45 eV

Finally we investigate the effect of assuming flatness while determining an upper
bound on

∑
mν . We investigate two models. The first assumes three degenerate

massive neutrinos, while the second allows for additional relativistic species accounted
by ∆Neff > 0. We define the correlation coefficient ρij as the ratio of the off-diagonal
term of the covariance matrix σij to the 1σ errors σiσj , so that for two parameters
denoted by i and j we have ρij = σij/σiσj . Figure 7.7 shows that

∑
mν and Ωk are

strongly correlated with a correlation coefficient of ρΩk
∑

mν
= 0.78 for both models

(∆Neff = 0 and ∆Neff > 0). Furthermore, the degeneracy considerably increases the
uncertainty in the sum of the neutrino masses. In fact, with Ωk 6= 0 the 95% upper
limit on

∑
mν more than doubles with respect to the flat case: with

∑
mν < 0.95

eV for the model assuming only three massive neutrinos and
∑
mν < 1.19 eV for

∆Neff > 0. The strong correlation between curvature and mass is expected because
massive neutrinos with mν < 0.3 eV are still relativistic until recombination so they
act as an additional radiative component. As a consequence the presence of such
massive neutrinos shifts the time of matter-radiation equality aeq. In this case lower
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Figure 7.7. Comparison of the correlation between Ωk and
∑
mν under the two ∆Neff

models. The model with three massive neutrinos is shown in blue while the model

with additional relativistic species is in red. Intervals are given at the 68% and 95%

confidence levels and markers indicate the locations of the marginalized values. Dataset

include WMAP7+ACT+SPT+BAO+H0. The addition of curvature allows
∑
mν to be

more than twice the previous constraint.

mass neutrinos roughly correspond to higher Neff . Neutrinos also leave an imprint
on the CMB through the early Integrated Sachs-Wolfe effect (c.f. Section 2.9.2
and Refs. [17, 167]) which changes the position of acoustic peaks. This effect can
be compensated by a change in the geometry of the Universe, which weakens the
constraints on both

∑
mν and Ωk. See Table 7.3 for a summary of cosmological

parameters when curvature and massive neutrinos are considered.

7.7 Neutrino Mass and the Sunyaev Zel’dovich effect
A measurement of the temperature Sunyaev Zel’dovich (tSZ) (see Section 2.9.2)
power spectrum (for more details on how to take into account tSZ and, in general,
secondary anisotropies and foreground in CMB analysis see Section 8) can be used
to determine the sum of neutrino masses by breaking the degeneracy between σ8
and neutrino mass (see Figure 7.4) that exists with the CMB data alone. The
CMB data alone are consistent with high neutrino masses which slows the growth of
structure. If the sum of neutrino masses was around 1eV and σ8 ' 0.6 the measured
tSZ power would in fact be higher than that predicted by Sehgal model [168]. The
X-ray constraints, σ8 ' 0.8, which is independent of the tSZ modeling, rules out this
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Table 7.3. Summary of the constraint on the sum of the neutrino masses when Ωk 6= 0.

∆Neff is an additional relativistic contribution after considering 3.046 massive neutrinos.

Dataset include WMAP7+ACT+SPT+BAO+H0. Errors are at the 68% CL except for∑
mν , which is quoted as a 95% upper limit.

Parameter ∆Neff = 0 ∆Neff > 0

100Ωbh
2 2.24± 0.043 2.26± 0.049

Ωch
2 0.118± 0.0063 0.134± 0.0105

ΩΛ 0.711± 0.0216 0.703± 0.0239

ns 0.967± 0.011 0.982± 0.015

τ 0.0864± 0.0144 0.0890± 0.0145

H0 (km/s/Mpc) 70.6± 1.62 73.1± 2.03

103 Ωk 7.52± 7.74 3.46± 8.69∑
mν < 0.95 eV < 1.19 eV

∆Neff 0 0.995± 0.430

line of argument.
Using CMB dataset of WMAP 7-year [10, 28] and SPT [40], plus BAO data [90]

and a prior on H0 [3], neutrino masses are highly degenerate with σ8 as shown in
Figure 7.8 of paper [169]. Higher neutrino masses lead to lower σ8 since massive
neutrinos slow the growth of structure below the neutrino free-streaming length.
As reported in [169], introducing massive neutrinos weakens the CMB+H0+BAO
constraints on σ8 from σ8 = 0.812± 0.018 to σ8 = 0.756± 0.044. The sum of the
neutrino mass is constrained to be less than 0.52eV at 95% CL.

The tSZ power spectrum presents an independent probe of σ8

DtSZ ∝
(

h

0.71

)1.7 ( σ8
0.80

)8.3 ( Ωb

0.044

)2.8
.

This breaks the Σmν degeneracy and thereby improves the neutrino mass deter-
mination. Models that predict more tSZ power require a lower σ8 to match the
observed tSZ power spectrum. As can be seen in Figure 7.8, lower σ8 values favor
larger neutrino masses.

With massive neutrinos and no modeling uncertainty, adding the tSZ information
reduces the uncertainty on σ8 by a factor of 2-3. The median σ8 moves up slightly
to σ8 = 0.776 ± 0.019 with the Shaw model [170] and to σ8 = 0.732 ± 0.017 with
the Sehgal model [168] . In this optimistic scenario, author of paper [169] find
Σmν = 0.15 ± 0.09eV or Σmν = 0.29 ± 0.10eV for the Shaw and Sehgal models,
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respectively. Note that the X-ray σ8 measurement mentioned earlier is in tension
with the preferred σ8 of the Sehgal model. With a more realistic 50% modeling
uncertainty on the Shaw model, the constraint is σ8 = 0.768 ± 0.031. With this
modeling uncertainty, the Sehgal and Shaw model results are consistent at ∼ 0.5σ.
The upper limit on Σmν is reduced from 0.52eV to 0.40eV at 95% CL with the
addition of tSZ information.

Figure 7.8. 2D likelihood for σ8 and mν . The filled contours show the 1σ, 2σ and 3σ

constraints for the CMB+BAO+H0 data. The black solid lines show the constraints

with the addition of the tSZ information assuming 50% theory prior.
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Chapter 8

Sunyaev Zel’dovich effect and

foregrounds

8.1 Introduction

The observation of CMB anisotropies is affected by several systematics and secondary
effects due to the fact that the CMB is not the only source of emission in the
microwave frequencies and to the formation of structures between the observer
and the last scattering surface (see Section 2.9.2 and [171, 172, 173, 174]). The
great accuracy of future data requires a compelling description of these effects, in
order to separate the different contributions to the anisotropies and to distinguish
primordial and secondary effects (see [175]). The observable used to extract most
of the cosmological information from the CMB is the angular power spectrum C`.
Secondary effects or unresolved foregrounds provide a contribution to the observed
C`. In order to obtain an unbiased determination of the cosmological parameters
from CMB maps it is necessary to correctly describe possible contaminations. On
the other hand, both contaminants and secondary effects themselves contain certain
cosmological and astrophysical information, especially on the formation of structure
at late-times and the large-scale structure of the Universe, so that the separation of
these components from primordial CMB fluctuations becomes an important science
goal on its own. The Galactic emission and radio point sources are typical examples
of foreground contamination in CMB maps. While the bright sources detected in
maps can be removed with a suitable mask before the estimation of the angular
power spectrum, unresolved point sources will contribute to the total anisotropy
power spectrum C`.

The Sunyaev-Zel’dovich (SZ) effect (see Section 2.9.2 and [8]), caused by the
Compton scattering of the CMB photons by the electrons in the Universe, is a
well-known secondary anisotropy studied by a variety of experiments. The SZ effect
contains cosmological information, since the angular power spectrum of secondary
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temperature anisotropy arising from SZ scattering depends on both the gas distri-
bution in galaxy clusters and on the amplitude of the matter density fluctuations
σ8 (see Section 7.7 and [176, 177, 178, 179]). Since the SZ thermal effect has a
unique spectral signature relative to the CMB thermal spectrum, the SZ signal
can be distinguished from primary CMB anisotropies and other foregrounds using
observations at multiple frequencies across the SZ null at ∼ 217 GHz ([180]). Such
a separation, however, is not feasible with kinetic SZ effect associated with peculiar
motions of the electrons scattering the CMB ([8]) as the signal has the same spectrum
as that of the CMB. Even for the SZ thermal effect, in realistic experiments, the main
obstacles that limit a clear detection of the thermal signal comes from uncertainties
in the modeling of the kinetic contribution and the difficulty of separating SZ effects
from clustered point sources.

The contribution of unresolved point sources and SZ effect is best seen on small
angular scales where they dominate the total CMB angular power spectrum. The
use of data at these small angular scales is hence becoming decisive in the analysis
of CMB data. Here we analyze large ` data (up to ` ∼ 9000) from the South Pole
Telescope (SPT) at 150 and 220 GHz ([181]) and from Atacama Cosmology Telescope
(ACT) ([39, 67]) at 150 GHz combined with Wilkinson Microwave Anisotropy Probe
(WMAP) data after 7 years of observation ([10]) to put constraints on the two SZ
effects.

In previous studies significant limitations came from uncertainties associated with
clustering of dusty star-forming galaxies (DSFG) that contribute to high-frequency
CMB data. Such clustering has now been measured with both Herschel ([182]) and
Planck ([183]) experiments. In the context of CMB studies, Herschel measurements
are most useful as they probe the DSFG clustering down to sub-arcminute angular
scales at scales well matched to arcminute scale CMB experiments while Planck
measurements are limited to scales greater than 5′ or ` < 2000. Here we describe
the clustering of unresolved point sources we used the same template of [182], where
the authors reported a detection of both the linear clustering and the non-linear
clustering at a few arcminute scales, corresponding to ` ∼ 4000.

In what follows we perform a Monte Carlo Markov Chain (MCMC) analysis
constraining both the thermal and the kinetic terms of the SZ effect together with
the the Poisson and clustering corrections due to unresolved point sources, including
radio sources at lower frequencies such as 150 GHz.

8.2 Parametrizing SZ effect and foregrounds

In this Section we briefly describe the adopted parametrizations and templates for
the Sunyaev-Zel’dovich effect, unresolved extragalactic point source foregrounds and
lensing.

8.2.1 Sunyaev-Zel’dovich thermal and kinetic effect.

As we have already discussed in Section 2.9.2, the SZ effect has two different
contributions, one from the thermal motion of the electrons (thermal SZ effect - tSZ )
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and one from the bulk motion of the electrons relative to the CMB (kinetic SZ -
kSZ ). The former contribution has a distinct frequency dependence, while the kSZ
effect causes only a Doppler shift of the incident CMB spectrum retaining the black
body shape. The total SZ signal in a generic direction n̂ is then given by (see for
example Section 2 in [39]):

∆T SZ(ν) = f(x)
f(x0)∆T tSZ

0 (n̂) + ∆T kSZ(n̂) , (8.1)

with x = hν/kBTCMB and f(x) = 2− x/2 tanh(x/2). Here ∆T tSZ0 is the expected
thermal contribution at frequency ν0. From f(x) it can easily seen that the thermal
SZ effect vanishes at ∼ 218 GHz. We model the SZ contributions to the anisotropy
angular power spectrum, relative to a template power spectrum, as

DSZ,ij
` = AtSZ

f(νi)
f(ν0)

f(νj)
f(ν0)D

tSZ
0,` +AkSZD

kSZ
0,` , (8.2)

where D` = `(` + 1)C`/2π and Di
0,` is the template spectrum for either thermal

or kinetic SZ. Here we consider the SZ templates from [70], computed by tracing
through a dark matter simulation and processed to include gas in dark matter halos
and in the filamentary intergalactic medium. The thermal SZ template describes the
power from tSZ temperature fluctuations from all clusters for a Universe normalized
with amplitude of matter fluctuations σ8 = 0.8. In particular we use the ’standard’
model of [70], that was first described in [168], and assuming a σ8 scaling given by
DtSZ

0,` ∝ (σ8/0.8)8.1 as found in [70]. For these templates the reference values at
` = 3000 are DtSZ

0,`=3000 ' 8.9µK2 and DkSZ
0,`=3000 ' 2.1µK2

8.2.2 Foregrounds from unresolved extragalactic point sources.

The foregrounds contribution to the CMB power spectrum at arcminute angular
scales arises essentially from unresolved extragalactic point sources. These sources
provide two contributions, a Poisson term due to the random discrete distribution and
a clustering term accounting for the large-scale distribution of the sources. We as-
sume the Poisson term as constant in C`, modeling it as DPoiss

` = APoissD
Poiss
0,`

where DPoiss
0,` = (`/3000)2. The clustered term can be similarly expressed as

Dclust,ij
` = Aclust(νi, νj)Dclust

0,` , where Dclust
0,` is the point sources clustering template

and Aclust(νi, νj) encodes the frequency scaling (see Section 8.3 for further details).
Contribution to point sources comes from radio point sources and dusty star-forming
galaxies (DSFG). At 220 GHz the main point source contribution is mainly DSFGs
while at 150 GHz the point sources are primarily radio sources with a synchrotron
spectrum. We therefore neglect the clustering of radio sources and assume that the
contribution from radio sources is essentially described only by a Poisson behavior.
For clustered DSFGs we adopt the template from [182] where the authors reported
a detection of both the linear clustering and the excess of clustering associated with
the 1-halo term at arcminute scales. Those data are from the Herschel Multi-tiered
Extra-galactic survey (HerMES) ([184]), taken with the Spectral and Photometric
Imaging Receiver (SPIRE) onboard the Herschel Space Observatory ([185]).
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8.2.3 CMB Lensing

It is well known that gravitational lensing of CMB anisotropies by large-scale
structure tends to increase the power at small angular scales (see [186] for a recent
review). A proper calculation of this effect is hence necessary in order to prevent an
incorrect estimate of the foregrounds and SZ parameters. The calculation of lensed
CMB spectra out to ` = 9000 is prohibitively expensive in computational time.
Instead, we approximate the impact of lensing by adding a fixed lensing template
Dlens
` computed by running camb ([26]) with and without the lensing option and

taking the difference between these spectra. In this run the cosmological parameters
of the ΛCDM model are fixed at the best fit values WMAP7. In [181] it has been
estimated that the error due to this approximation is less than 0.5µK2 at ` > 3000
and is hence negligible with respect to secondary and foregrounds contributions.
The lensing contribution is clearly frequency independent.

8.3 Analysis Method and data
We place constraints on the cosmological parameters and on the SZ and foregrounds
parameters using the 7-years WMAP data in combination with the SPT data at 150
GHz and at 220 GHz, and the ACT data at 148 GHz. The SPT and ACT datasets
are necessary to analyze the smaller scales of the power spectrum where point sources
and SZ are dominant. For the SPT data we select the single frequency 15 × 15
blocks from the full 45× 45 covariance matrix provided by the SPT collaboration
(see [181]), neglecting the correlation between different frequencies.

We use a 6-parameter flat-ΛCDM cosmological model to describe primary CMB
anisotropies and reionization: the baryon and dark matter physical energy densities
Ωbh

2, Ωch
2, the reionization optical depth τ , the ratio of the sound horizon to the

angular diameter distance at the decoupling θs, the amplitude of the curvature
perturbation As (with flat prior on logAs) and the spectral index ns; these two last
parameters are both defined at the pivot scale k0 = 0.002 hMpc−1. In addition to
the standard cosmological parameters we include the SZ and foreground parameters
described in the previous section. We perform a Monte Carlo Markov Chain analysis
based on the publicly available package CosmoMC ([25]) suitably modified to account
for the additional parameters, with a convergence diagnostic based on the Gelman
and Rubin statistics. When estimating parameters with point sources and SZ
included, the total CMB anisotropy spectra are three, one for each frequency plus
the cross-correlation term, because of the frequency dependence of the secondary
anisotropies.

In order to study the stability of our results on the assumed parametrization, we
perform three different analysis, both with 6 additional parameters describing SZ
effect and foregrounds, but considering different parametrizations.

8.3.1 First case: "run1".

In the first case, that we define as "run1" in what follows, we consider the SZ effect
parameters AtSZ and AkSZ, the Poissonian contribution A150

Poiss and A220
Poiss and the
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Poisson contribution for the 150×220 GHz cross-correlation AXPoiss. The use of
the AXPoiss extra parameter for the cross correlation of Poisson point source can be
justified from the possibility that the contribution at one single frequency comes
from more than one point source population and that the two channels are not fully
correlated. This possibility has not been considered in previous analyses and is
therefore important to evaluate the impact of this assumption. Finally we consider a
single clustered point sources parameter, Aclust, scaling the contribution at different
frequencies using the relation of [187]:

Iν = 8.80× 10−5 (ν/ν0)Pν (13.6K) ,

with ν0 = 100cm−1, following recent results from Planck ([183]). In what follows we
refer to this scaling as "Gispert" scaling.

In summary, the spectra in "run1" are defined as:

D`(150) = Dlens
` +AtSZD

tSZ
0,` +AkSZD

kSZ
0,`

+AclustD
clust150
0,` +A150

PoissD
Poiss
0,`

D`(220) = Dlens
` +AkSZD

kSZ
0,`

+AclustD
clust220
0,` +A220

PoissD
Poiss
0,`

D`(150× 220) = Dlens
` +AkSZD

kSZ
0,`

+AclustD
clustcross
0,` +Across

PoissD
Poiss
0,`

The thermal SZ effect is negligible at 220 GHz. The contribution of the thermal
SZ effect to the cross-correlated power spectrum may not vanish in presence of a
spatial correlation between IR sources and the clusters that cause the thermal SZ.
Nevertheless as showed in [181] the effect of this correlation is negligible for the
SPT data (see par. 7.4 in [181] for further details). We hence do not consider this
contribution when fitting the data.

8.3.2 Second case: "run2".

In the second analysis, to which in what follows we refer as "run2", we assume full
correlation between the Poisson point sources signal at 150 and 220 GHz as done in
previous analyses, i.e. we fix the cross amplitude of Poisson point sources at the
square root of the product of the amplitudes at 150 and 220, AXPoiss =

√
A150

PoissA
220
Poiss.

Moreover, we don’t scale the clustered point sources template and we use instead
two different parameters for 150 and 220 GHz. This second analysis is more similar
to the one presented in [181], however we point out that while here we consider
the amplitudes at different frequencies as free parameters, [181] considered the
amplitudes at one single frequency and one common frequency spectral index for
clustered and point sources as free parameters.

In this second case the foreground spectra are defined as:
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D`(150) = Dlens
`,150 +AtSZD

tSZ
0,` +AkSZD

kSZ
0,`

+Aclust150D
clust
0,` +A150

PoissD
Poiss
0,`

D`(220) = Dlens
`,220 +AkSZD

kSZ
0,`

+Aclust220D
clust
0,` +A220

PoissD
Poiss
0,`

D`(150× 220) = Dlens
`,X +AkSZD

kSZ
0,`

+
√
Aclust150Aclust220D

clust
0,`

+
√
APoiss150APoiss220D

cross
0,`

8.3.3 Third case: "run3".

Finally we combine 150 GHz data of SPT and ACT, using separate parameters
for ACT and SPT both for clustered and Poisson point sources, to account for the
different masking thresholds of the point sources. In this case we have:

D`(150) = Dlens
`,150 +AtSZD

tSZ
0,` +AkSZD

kSZ
0,`

+AclustACTD
clust
0,` +A150

PoissACTD
Poiss
0,`

+AclustSPTD
clust
0,` +A150

PoissSPTD
Poiss
0,`

8.4 Results

In Table 8.1 we report the mean values of the cosmological parameters and their
68% C.L. uncertainty from SPT data at 150 and 220 GHz for the "run1" and "run2"
analyses, while in Table 8.2 we list the mean values of the cosmological parameters
and their 68% C.L. uncertainty from ACT data ("run3") combined with SPT data
at 150 GHz. In order to facilitate the comparison with other works present in the
literature we also translate the constraints on the foregrounds amplitudes in to the
foreground power spectrum at ` = 3000, D`=3000. Since a significant correlation
exists between thermal and kinetic SZ and since the kinetic SZ is predicted to be
small, we also perform an analysis by fixing DkSZ

`=3000 = 2µK2.
We find that for the “run1” case the thermal SZ anisotropy amplitude isDtSZ

`=3000 =
2.2± 1.5µK2 . While a ∼ 1σ indication for SZ is present our result is less significant
than the one reported by [181] with DtSZ

`=3000 = 3.2 ± 1.3µK2 i.e. with a thermal
SZ detection at at more than two standard deviations. The result on the kinetic
SZ component are compatible, with DkSZ

`=3000 = 2.7± 1.9µK2 at 68% c.l. from our
analysis to be compared with DkSZ

`=3000 = 2.4± 2.0µK2 from [181].
Although the point sources and SZ parameters do not show significant degen-

eracies with cosmological parameters (see also [188]), a strong correlation exists
between AtSZ and AkSZ and to a smaller extent between AtSZ,kSZ and Aclust. This
can be seen in Figure 8.1 where we show the 2 − D likelihood constraints in the
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Table 8.1. Mean values and 68% error bars from SPT data at 150 and 220 GHz. Run1

case is with only one DSFG clustering amplitude allowed to vary and frequency scaling

fixed from [187], consistent with Planck ([183]). Run2 case is with two DSFG clustering

amplitudes allowed to vary, without frequency scaling.

WMAP7+ WMAP7+ WMAP7+ WMAP7+

SPT (run1, kSZ free ) SPT (run1) SPT(run2, kSZ free) SPT (run2)

102Ωbh
2 2.267± 0.049 2.268± 0.051 2.264± 0.049 2.269± 0.049

Ωch
2 0.113± 0.005 0.113± 0.004 0.1126± 0.0052 0.1127± 0.0052

τ 0.090± 0.015 0.089± 0.015 0.089± 0.015 0.090± 0.014

ns 0.973± 0.013 0.973± 0.013 0.972± 0.013 0.972± 0.012

log(1010As) 3.18± 0.04 3.18± 0.04 3.18± 0.045 3.18± 0.04

Ωm 0.278± 0.028 0.279± 0.029 0.276± 0.029 0.276± 0.028

σ8 0.823± 0.028 0.825± 0.028 0.820± 0.0272 0.821± 0.026

AtSZ 0.24± 0.17 0.25± 0.16 0.33± 0.23 0.52± 0.22

AkSZ 1.3± 0.9 [1] 2.7± 1.4 [1]

Aclust 1.05± 0.19 1.08± 0.14 − −

Aclust150 − − 0.44± 0.27 0.66± 0.26

Aclust220 − − 8.2± 1.7 8.7± 1.5

DtSZ
`3000(µK2) 2.2± 1.5 2.3± 1.4 2.9± 2.0 4.7± 2.0

DkSZ
`3000(µK2) 2.7± 1.9 [2.05] 5.5± 3.0 [2.05]

Dclust150
`3000 (µK2) 6.05± 1.06 6.26± 0.82 2.51± 1.60 3.81± 1.53

Dclust220
`3000 (µK2) 39.11± 6.79 40.63± 5.08 47.33± 9.78 50.47± 9.17

DPoiss150
`3000 (µK2) 10.03± 0.67 10.1± 0.7 10.38± 0.63 10.33± 0.67

DPoiss220
`3000 (µK2) 79.5± 4.8 80± 5 77.89± 4.49 76.5± 4.0

DPoisscross
`3000 (µK2) 26.8± 1.4 26.8± 1.4 − −

plane DkSZ
`=3000 − DtSZ

l=3000 for the "run2" and "run3" case. Fixing the kSZ term
slightly improves the detection for the thermal SZ with DtSZ

`=3000 = 2.3 ± 1.4µK2

in “run1” but still with less significance than the one in [181] where a value of
DtSZ
`=3000 = 3.5± 1.0µK2 is reported.
Based on the degeneracy direction of Figure 8.1, we constrain the sum of the

SZ effects at ` = 3000 to be D`=3000
tSZ + 0.5D`=3000

kSZ = 3.5± 1.8 µK2 to be compared
4.5± 1.0 µK2 of [181] . These amplitudes are consistent but, again, the significance
of the detection is worse than [181] who found this sum to be 4.5± 1.0 µK2.
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Table 8.2. Mean values and 68% error bars from ACT data combined with SPT data at

150 GHz

WMAP7+ WMAP7+

SPT+ACT (kSZ free ) SPT+ACT

102Ωbh
2 2.232± 0.047 2.234± 0.046

Ωch
2 0.1121± 0.0050 0.1124± 0.0053

τ 0.086± 0.014 0.086± 0.015

ns 0.964± 0.012 0.964± 0.012

log(1010As) 3.20± 0.043 3.19± 0.04

Ωm 0.274± 0.027 0.275± 0.028

σ8 0.812± 0.0255 0.813± 0.027

AtSZ 0.34± 0.25 0.38± 0.24

AkSZ 1.6± 1.1 [1]

Aclustact 0.66± 0.56 0.75± 0.59

Aclustspt 0.66± 0.43 0.77± 0.41

DtSZ
`3000(µK2) 3.1± 2.3 3.5± 2.2

DkSZ
`3000(µK2) 3.2± 2.3 [2]

Dclustact
`3000 (µK2) 3.9± 3.2 4.2± 3.2

DPoissact
`3000 (µK2) 13.4± 2.4 13.5± 2.5

Dclustspt
`3000 (µK2) 3.8± 2.5 4.5± 2.4

DPoissspt
`3000 (µK2) 10.2± 0.8 10.2± 0.8

The small discrepancy with the results presented in [181] comes essentially from
the different parametrization used. Adopting a more similar parametrization as in
the case of "run2" we found DtSZ

`=3000 = 2.9 ± 2.0µK2, DkSZ
`=3000 = 5.5 ± 3.0µK2 at

68% c.l., D`=3000
tSZ + 0.5D`=3000

kSZ = 5.6± 2.6 µK2, yielding a detection for the thermal
SZ with higher significance. In case of fixed kSZ we obtain DtSZ

`=3000 = 4.7± 2.0µK2,
again a more significant detection in better agreement with [181].

The different assumptions in the frequency scaling of the clustered point sources
component in "run1" and "run2" is the main explanation for the difference in the
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Figure 8.1. Joint two-dimensional posterior probability contours showing 68% and 95%

C.L. constraints on Dksz
`=3000 and DtSZ

`=3000 from ACT 150 GHz data (red) and SPT all

frequencies data (blue) for the run2 case.

results. In “run1”, taking into account Gispert scaling ([187]), we find Dclust220
`=3000 =

39.11±6.79µK2, while in “run2”, when the amplitude of the clustering point sources
is allowed to vary, we have Dclust220

`=3000 = 47.33 ± 9.78µK2, that is more consistent
with the corresponding value of Dclust220

`=3000 = 57± 9 reported in [181]. A small tension
therefore exists between the Gispert scaling and the data at 220 GHz, resulting
also in a worse determination of the thermal SZ signal. The use of a different
parametrization of the point source (just amplitudes in our case while [181] varies
one amplitude and one spectral index per component) can explain the remaining
differences.

Also with regard to the Poisson point sources component at 150 GHz, our results
show a discrepancy compared to those from [181], both in “run1” and “run2”. At 150
GHz we find DPoiss150

`=3000 = 10.03±0.67µK2 in “run1” and DPoiss150
`=3000 = 10.38±0.63µK2

in “run2”, while the value in [181] is DPoiss150
`=3000 = 7.4 ± 0.6µK2. At 220 GHz we

find a better agreement with DPoiss220
l=3000 = 79.5± 4.8µK2 in “run1” and DPoiss220

`=3000 =
77.89 ± 4.49µK2 in “run2”, while the value in [181] is DPoiss220

`=3000 = 71 ± 5µK2.
The difference is explained in straightforward terms if we take in account that
in [181] radio galaxies are included in their “baseline model” with an amplitude
Dr
`=3000 = 1.28µK2 with a 15% uncertainty. Clustering of radio galaxies is negligible,

so this radio galaxies term is a Poisson like term of the form ∝ `2. Adding this
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component, our Poisson amplitudes are consistent with those reported by [181]
within 1σ. In “run1” at 150 GHz we find DPoiss150

`=3000 = 10.03±0.67µK2, while in [181]
the correspondent total Poisson contribution at ` = 3000 is about (8.68± 0.69)µK2.

We can therefore conclude that the current results presented in the literature on
the amplitude of the secondary anisotropies should be considered with great care
since there is a clear dependence on the parametrization used, on the frequency
scaling adopted and on the assumed templates. We stress that, a part for small
discrepancies imputable to differences in the parameterization, all our results for the
SZ amplitudes from the analysis of SPT data both for our "run1" and "run2" cases,
are substantially consistent with the analysis of the same data made by [181], even
if we are finding less tight constraints. Our results hence compare in the same way
to the recent predictions of tSZ power made by the models of [170], [70] and [189]
confirming that these models overestimate the power of the tSZ signal, as already
found in [181].

In Figure 8.2 we show the recent CIB power spectra data of the Planck col-
laboration ([183]) at 217 GHz and small angular scale CMB power spectrum data
from SPT, at 220 GHz, with a comparison to scaled measurements from [182]. The
Herschel model is shown in terms of the 1-halo and 2-halo contributions to the
total power spectrum. For reference, we also show the model used by [190] at 220
GHz to describe the clustering of DSFGs, which overestimated the power at tens of
arcminute angular scales and above relative to Herschel and Planck DSFG clustering
measurements. [190] used a linear model to analyze their data. At small angular
scales non-linear effects are not negligible and using a linear model to interpret the
data may lead to a wrong determination of the bias and hence to an overestimation
of the power at larger angular scales (see also discussion in [183]). Instead our model
shows a good fit of both Planck and SPT CIB.

In Figure 8.3 we show the best fit models for each component compared with
the SPT and WMAP7 data. In the “run1”, when only one amplitude of clustered
DSFGs is allowed to vary when fitting the all frequencies SPT data combined with
WMAP7 data, we find that Aclust = 1.05± 0.19. This suggests that the combination
of [182] model and the frequency scaling for the mean CIB is a good fit of the DSFG
clustering at lower CMB frequencies. Higher precision CMB power spectra at 150,
220 and 350 GHz and a direct cross-correlation of Herschel-SPIRE maps against the
CMB will be necessary to study if fluctuations scale with frequency as the mean
CIB intensity and to improve overall constraints on secondary anisotropies.
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Figure 8.2. Planck DSFG clustering data (red points) at 217 GHz and SPT data at 220

GHz (white points) compared with the combination (solid black line) of the Poisson

term (green line) and clustering term (red) of unresolved point sources by scaling the

best-fit model to measurements made with Herschel at 350 µm to 217 GHz using the

frequency scaling of [187]. We show the 1-halo (pink) and 2-halo (orange) contributions

to the clustering term following [182]. The dashed lines are the 220 GHz SPT DSFG

power spectrum components from [190], which resulted in an overestimate of Planck

DSFG clustering at ` < 3000.
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Figure 8.3. Contribution to the angular anisotropy power spectrum from point sources

and from SZ effect for the best fit model of the WMAP7+SPT analysis. Left panel is

150 GHz, middle 220 GHz and right panel shows the cross spectra. kSZ term is the

orange solid line and the tSZ term at 150 GHz is the purple line. Green lines are the

Poisson terms and blue lines are the clustering contributions. The black lines are the

total best fit power spectra. Black dots are SPT data and red squares are WMAP7 data.

The bottom panels show the residual relative to the total model, including primordial

CMB and best-fit secondary anisotropy amplitudes.
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Conclusions

At the state of art cosmology can constraint only two quantities related to neutrino
physics: the effective number of relativistic degrees of freedom Neff and the total
hot dark matter density Ωνh

2. The goal of this thesis is to put new constraints on
these parameters from recent cosmological data in the framework of a non minimal
cosmological model and also in light of Short–Base–Line results. Here we summarize
the main results obtained in the work performed during my Ph.D and presented in
this thesis.

As far as concern the effective number of relativistic degrees of freedom Neff ,
we performed a new search for an extra–dark radiation. We have shown that the
cosmological data we considered are clearly suggesting the presence of an extra
dark radiation component with Neff = 4.08+0.71

−0.68 at 95% c.l. . Performing an
analysis on its effective sound speed c2

eff and viscosity c2
vis parameters, we found

c2
eff = 0.312± 0.026 and c2

vis = 0.29+0.21
−0.16 at 95% c.l., consistent with the expectations

of a relativistic free streaming component (c2
eff=c2

vis=1/3). Assuming the presence of 3
standard relativistic neutrinos we constrain the extra dark radiation component with
NS
ν = 1.10+0.79

−0.72 and c2
eff = 0.24+0.08

−0.13 at 95% c.l. while c2
vis is practically unconstrained.

Assuming a mass in the 3 neutrino component we obtain further indications for the
dark radiation component with NS

ν = 1.12+0.86
−0.74 at 95% c.l. . From these results we

conclude that dark radiation currently represents one of the most relevant anomaly
for the Λ-CDM scenario.

We have also shown that there is a correlation between Neff and Ωk that gets
stronger when high multipole dataset are added. If CMB data were to favor open
models then the neutrino number would decrease. However, even when Ωk is allowed
to vary, Neff = 3.046 is still disfavored by the data with 95% confidence.

This dark radiation will be severely constrained in the very near future by the
Planck satellite data, where a precision on Neff of about ∆Neff ∼ 0.2 is expected (see
e.g. [191] and [192]) only from CMB data. For this reason we have generated mock
CMB data for the ongoing Planck experiment and the future COrE mission with
non standard values for the dark radiation perturbation parameters. Then, we have
fitted these data to a canonical dark radiation scenario with c2

vis = c2
eff = 1/3 but

with a running spectral index or with a dark energy component with w 6= −1, finding
that non standard values for the dark radiation perturbation parameters may be
misinterpreted as a scale invariant power spectrum of primordial fluctuations or as
cosmologies with a running spectral index or a time varying dark energy component
with high significance.

We have also emphasized the important role played by the HST H0 prior in
establishing the statistical evidence for the existence of this dark radiation. We



146 8. Conclusions

have shown that with a new median statistics H0 prior derived from 537 non-CMB
H0 measurements, there is no significant evidence for Neff > 3.046, consistent with
the indications from other cosmological data. And it is probably not unreasonable
to believe that the converse might also be true: with other cosmological data not
inconsistent with Neff = 3.046, consistency of the smaller-scale CMB anisotropy data
with the predictions of the ΛCDM model apparently demands H0 ∼ 68km/s/Mpc.

We have tried to check if these cosmological hints for extra–dark radiation have
a counterpart in neutrino physics. Actually this dark radiation can be composed of
one or two sterile neutrinos, which may correspond to those in 3+1 or 3+2 models
which have been invoked for the explanation of Short–Baseline (SBL) neutrino
oscillation anomalies. We have performed analyses of the cosmological and SBL
data in the frameworks of both the 3+1 and 3+2 models. Then we have compared
the results obtained with the same Bayesian method, to figure out if the indications
of cosmological and SBL data are compatible. The results of our analysis show
that the cosmological and SBL data give compatible results when the cosmological
analysis takes into account only CMB data. But if the information on the matter
power spectrum coming from galaxies surveys are also considered there is a tension
between the sterile neutrino masses needed to have SBL neutrino oscillations and
the cosmological upper limit on the sum of the masses. The combined analysis
of cosmological and SBL data gives an allowed region for m4 in the 3+1 scheme
around 1 eV. In the 3+2 scheme, the cosmological data reduce the allowance of the
second massive sterile neutrino given by SBL data, leading to a combined fit which
prefers the case of only one massive sterile neutrino at the scale of about 1 eV. In
conclusion, our analysis shows that cosmological data are marginally compatible
with the existence of one massive sterile neutrino with a mass of about 1 eV, which
can explain the anomalies observed in SBL neutrino oscillation experiments. The
case of massive sterile neutrinos is less tolerated by cosmological data and in any
case the second sterile neutrino must have a mass smaller than about 0.6 eV.

Concerning the total hot dark matter density we have seen that priors are very
important in Bayesian cosmological analyses and can highly influence cosmological
results. For instance, the details of the reionization process in the late universe
are not very well known. In the absence of a precise, full redshift evolution of the
ionization fraction during the reionization period, a simple parametrization, with
a single parameter zr, has become the standard reionization scheme in numerical
analyses. However, more general reionization scenarios are certainly plausible and
their impact on the cosmological constraints should be carefully explored. We have
investigated the stability of the CMB constraints on neutrino masses in generalized
reionization scenarios using a model independent analysis performed through the
Principal Components. We have found that a more general treatment of reionization
could potentially weaken the current CMB upper limit on

∑
mν by ∼ 40%.

Furthermore, the constraints on the sum of neutrino masses are weakened by
degeneracy with the curvature parameter Ωk. In this case we have shown that the
mass uncertainty more than doubles when Ωk is allowed to vary.

Future data expected from the Planck [80] satellite on large angular scale CMB
polarization and on small scale anisotropies will help in clarifying the thermal history
of the Universe and in ruling out exotic reionization scenarios or non-flat Universe
that are still in agreement with present-day observations.
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Finally looking at the strong degeneracy between σ8 and
∑
mν we have seen

how the measured tSZ power can be used to better constraint σ8 and therefore the
sum of neutrino masses. With a conservative 50% model uncertainty, the tSZ power
spectrum reduces the σ8 uncertainty by 30% and tightens the upper limit on the
total neutrino masses from 0.52eV to 0.40eV.

Finally, given the great accuracy of future data it will be necessary to have an
accurate description of SZ effects and foregrounds in order to separate the different
contributions to anisotropies and so obtain an unbiased determination of cosmological
parameters related to neutrino physics. For this reason we have provided a new
analysis of the foreground contribution to the CMB data making use of the ACT and
SPT high multipole data. The foreground contribution from Poisson point sources
at 220 and 150 GHz is detected with very high significance (at more than ∼ 15
standard deviations) with no particular dependence on the parametrization used.
The contribution from clustered point sources is also well detected at 220 GHz. We
have found that current CMB data favors a larger contribution at this frequency
than the one expected by the Gispert frequency scaling once the data is normalized
at 150 GHz. The thermal SZ component is detected at a level slightly above the
two standard deviations. However a different parametrization of the components
and the assumption of the Gispert scaling could bring this detection to about one
standard deviation. The correlation with the kinetic SZ term is present in the data
despite the multi-frequency approach. More data at more frequencies are clearly
needed to establish a strong detection of the SZ term. We have firmly established
the power spectrum of DSFGs that dominate the arcminute scale CMB anisotropies
at 220 GHz and higher frequencies. This comes from the recent Herschel results
combined with Planck-confirmed frequency spectrum for the CIB mean intensity. In
future, additional improvements will come from directly cross-correlating the CMB
maps against high-resolution CIB maps from Herschel; for this a Herschel-SPIRE
survey at the same large areas as CMB surveys will become useful ([193]).
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Conclusioni

Attualmente la cosmologia puo’ vincolare solo due quantita’ relative alla fisica del
neutrino: il numero effettivo di gradi di libera’ relativistici Neff e la densita’ totale
di materia oscura Ωνh

2. L’obiettivo di questa tesi e’ di porre nuovi vincoli su
tali parametri usufruendo dei recenti dati cosmologici nell’ottica di un modello
cosmologico non minimale ed anche alla luce dei risultati da esperimenti Short–Base–
Line su oscillazioni di neutrino.

Per quanto concerne il numero effettivo di gradi di liberta’ relativistici Neff ,
abbiamo condotto un’innovativa ricerca di un eccesso di radiazione oscura. Abbiamo
mostrato come i dati cosmologici considerati indichino con chiarezza la presenza di
una componentre extra di radiazione oscura con Neff = 4.08+0.71

−0.68 al 95% c.l. . Da
un’analisi sui parametri relativi alla velocita’ effettiva del suono c2

eff e alla viscosita’
c2

vis sono stati ricavati i valori c2
eff = 0.312 ± 0.026 e c2

vis = 0.29+0.21
−0.16 al 95% c.l.,

consistenti con i valori attesi per una componente relativistica caratterizzata da free-
streaming (c2

eff=c2
vis=1/3). Inoltre assumendo tre neutrini standard, abbiamo posto

dei vincoli sulla sola componente in eccesso di radiazione oscura NS
ν = 1.10+0.79

−0.72 con
c2

eff = 0.24+0.08
−0.13 al 95% c.l. mentre c2

vis e’ praticamente non vincolato. Infine abbiamo
conferito una massa ai tre neutrini standard e abbiamo cosi’ ottenuto un’ulteriore
indicazione riguardo alla componente relativistica in eccesso NS

ν = 1.12+0.86
−0.74 al

95% c.l. . Da questi risultati abbiamo potuto concludere che la radiazione oscura
rappresenta attualmente una delle piu’ rilevanti anomalie del modello ΛCDM.

Abbiamo anche mostrato la correlazione esistente tra Neff e Ωk, correlazione che
diventa piu’ evidente qualora si tenga conto dei dati ad alti multipoli. Se i dati
di CMB favorissero modelli di Universo aperti il numero di neutrini diminuirebbe.
Tuttavia, anche lasciando il parametro di curvatura variabile, il valore standard
Neff = 3.046 risulta comunque sfavorito dai dati al 95%.

Tale radiazione oscura verra’ ulteriormente caratterizzata nel prossimo futuro
dal satellite Planck che fornira’ una precisione su Neff di ∆Neff ∼ 0.2 (vedi [191] e
[192]) da soli dati di CMB. Per questo motivo abbiamo generato dei dati di CMB
fittizi basandoci sulle caratteristiche sperimentali del satellite Planck e sulla futura
missione COrE, usando valori non standard dei parametri delle perturbazioni della
radiazione oscura. Abbiamo fittato questi dati nel caso di uno scenario in cui la
radiazione oscura e’ caratterizzata da c2

vis = c2
eff = 1/3 (standard), ma in cui e’

presente anche un indice spettrale variabile o una componente di energia oscura
con w 6= −1. Abbiamo riscontrato che valori non standard dei parametri delle
perturbazioni di radiazione oscura possono essere erroneamente interpretati come
uno spettro di potenza primordiale delle perturbazioni invariante di scala o come
dei modelli cosmologici con un indice spettrale variabile o con una componente di
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energia oscura variabile nel tempo.
Abbiamo inoltre enfatizzato il ruolo fondamentale che gioca la prior su H0

da HST nello stabilire l’evidenza statistica della presenza di radiazione oscura.
Abbiamo anche mostrato che, utilizzando una nuova prior su H0 derivante dalla
media statistica su 537 misure di H0 indipendenti da dati di CMB non vi e’ alcuna
evidenza significativa di Neff > 3.046, il che’ e’ consistente con altri dati cosmologici.
Allo stesso modo questo risultato avvalora anche l’ipotesi inversa: con altri dati
cosmologici non consistenti con Neff = 3.046, l’accordo fra i dati di CMB a piccole
scale e le predizioni del modello ΛCDM richiede H0 ∼ 68km/s/Mpc.

Abbiamo tentato di verificare se queste indicazioni cosmologiche di una com-
ponentre in eccesso di radiazione oscura avessero una controparte nella fisica del
neutrino. Effettivamente questa radiazione oscura puo’ essere composta da uno o
due neutrini sterili, che possono corrispondere a quelli invocati nei modelli 3+1 e 3+2
per spiegare le anomalie degli esperimenti Short–Base–Line (SBL). Abbiamo quindi
analizzato dati sia cosmologici sia SBL nel contesto dei modelli 3+1 e 3+2. Abbiamo
comparato i risultati ottenuti con il medesimo metodo Bayesiano, per dedurre se le
indicazioni cosmologiche e i dati SBL sono compatibili. I risultati della nostra analisi
mostrano che i dati cosmologici e i dati SBL danno risultati compatibili qualora
l’analisi cosmologica prenda in considerazione solo dati di CMB. Se si aggiungono
anche le informazioni sullo spettro di potenza di materia provenienti da survey di
galassie vi e’ disaccordo tra i valori delle masse dei neutrini sterili necessari per
spiegare le oscillazioni degli esperimenti SBL e il limite superiore sulla somma delle
masse ricavato dalla cosmologia. L’analisi combinata di dati cosmologici e dati SBL
fornisce una regione permessa per m4 nello schema 3+1 intorno a 1 eV. Nello schema
3+2, i dati cosmologici riducono la regione permessa da dati SBL per la massa
del secondo neutrino sterile, determinando una preferenza del fit combinato per il
caso di un solo neutrino massivo con massa intorno a 1 eV. In conclusione questa
nostra analisi mostra che i dati cosmologici sono solo parzialmente compatibili con
l’esistenza di un neutrino sterile massivo con una massa intorno a 1 eV, neutrino che
potrebbe spiegare le anomalie osservate nelle oscillazioni dagli esperimenti SBL. Il
caso di neutrini sterili massivi e’ meno compatibile con i dati cosmologici e in ogni
caso il secondo neutrino sterile dovrebbe avere una massa inferiore a circa 0.6 eV.

Per quanto concerne la densita’ totale di materia oscura calda abbiamo visto che
le assunzioni a priori giocano un ruolo fondamentale nelle analisi Bayesiane quali sono
quelle cosmologiche e possono pesantemente influenzarne i risultati. Per esempio, i
dettagli del processo di reionizzazione nelle ultime fasi di evoluzione dell’Universo
risultano ancora essere in gran parte ignoti. In assenza di una precisa conoscenza
dell’evoluzione della frazione di idrogeno ionizzato durante il periodo di reionizzazione,
l’uso di un singolo parametro, il redshift di reionizzazione zr, e’ diventato lo schema
piu’ usato nelle analisi numeriche. Tuttavia scenari piu’ generali di reionizzazione
sono altrettanto plausibili e il loro impatto sui vincoli cosmologici dovrebbe essere
accuratamente studiato. A tal proposito abbiamo analizzato la stabilita’ dei vincoli
da CMB sulla massa dei neutrini in uno scenario cosmologico generalizzato usando
un metodo indipendente dal modello e basato sulle Principal Components. Abbiamo
riscontrato che una trattazione piu’ generale della reionizzazione puo’ rilassare gli
attuali limiti superiori da CMB su

∑
mν di ∼ 40%.

Inoltre, i vincoli sulla somma delle masse dei neutrini possono essre indeboliti
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anche dalla degenerazione con il parametro di curvatura Ωk. In questo caso e’ stato
mostrato che l’incertezza sulla massa raddoppia quando il parametro Ωk e’ variabile.

I dati futuri aspettati dal satellite Planck [80] sulla polarizzazione della CMB a
grandi scale angolari e sulle anisotropie a piccole scale aiuteranno a chiarire la storia
termica dell’Universo e ad escludere possibili scenari non standard di reionizzazione
o Universi non piatti che sono ancora in accordo con le attuali osservazioni.

Infine concentrandoci sulla forte degenerazione fra σ8 e
∑
mν , abbiamo visto che

la misura del tSZ puo’ essere usata per meglio vincolare σ8 e quindi la somma delle
masse dei neutrini. Con un 50% di incertezza sul modello, lo spettro di potenza
del tSZ riduce l’incertezza su σ8 del 30% e porta il limite superiore sulla massa dei
neutrini da 0.52eV a 0.40eV.

In ultima analisi, data l’accuratezza dei futuri dati sara’ necessario avere una
precisa descrizione degli effetti SZ e dei foreground al fine di separare i diversi
contributi alle anisotropie e di ottenere quindi una determinazione dei parametri
cosmologici relativi alla fisica del neutrino scevra da contributi spuri. Per questo
motivo abbiamo analizzato il contributo dei foreground ai dati di CMB usando i
dati ad alti multipoli di ACT e SPT. Il contributo dei foreground dovuto a sorgenti
puntiformi con distribuzione Poissoniana a 220 e 150 GHz e’ rilevato in maniera
significativa (a piu’ di ∼ 15 deviazioni standard) e non e’ stata rilevata alcuna
dipendenza dalla parametrizzazione usata. Il contributo dalle sorgenti puntiformi in
fase di clustering e’ anch’esso ben distinguibile a 220 GHz. Gli attuali dati di CMB
sembrano suggerire un contributo a questa frequenza maggiore di quello trovato
con lo scaling delle frequenze fornito da Gispert una volta che i dati sono stati
normalizzati a 150 GHz. La componente di SZ termico e’ rilevata ad un livello
di confidenza leggermente al di sotto delle due deviazioni standard. Tuttavia una
diversa parametrizzazione delle componenti e l’assunzione dello scaling di Gispert
possono portare tale evidenza a circa una deviazione standard. La correlazione con
il termine cinetico dell’SZ rimane presente nei dati nonostante l’approccio di analisi
su piu’ frequenze. Maggiori dati a diverse frequenze sono necessari per stabilire una
chiara evidenza del termine di SZ. Tuttavia questa analisi ha stabilito lo spettro
di potenza delle galassie con polvere in fase di formazione stellare a 220 GHz e a
piu’ alte frequenze. Questo e’ stato reso possibile dai recenti risultati di Herschel
combinati con lo spettro dell’intensita’ media del fondo cosmico infrarosso confermato
da Planck. Nel futuro ulteriori miglioramenti verranno dalla cross-correlazione delle
mappe di CMB con le mappe del fondo cosmico infrarosso di Herschel; per questo e’
auspicabile una survey Herschel-SPIRE sulle stesse aree delle mappe di CMB ([193]).
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