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1 Introduction

AdS4 vacua of type IIA string theory are examples of flux vacua in which all moduli can

be stabilized at tree level, in a regime where the quantum corrections to the supergravity

approximation are parametrically small. As such they appear phenomenologically promis-

ing and can serve as a starting point for the construction, upon uplifting, of metastable

de Sitter vacua and models of inflation. Another strong motivation for the study of AdS4

vacua is related to the AdS4/CFT3 duality and the recent progress in our understanding

of the world-volume theory of coincident M2 branes [1, 2]. It has been observed, however,

that at the moment there are many more three-dimensional superconformal field theories

than there are examples of AdS4 supergravity vacua in M-theory or IIA supergravity.

All known examples to date of supersymmetric AdS4 vacua of (massive) IIA fall in the

general class of rigid SU(3) solutions (an explanation of the terminology will follow shortly)

given in [3]. This class includes the celebrated Nilsson-Pope N = 6 and N = 1 AdS4×CP
3
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vacua [4–6] as limiting cases,1 the nearly-Kähler vacua of Behrndt-Cvetic [8], as well as the

vacua recently constructed by Tomasiello [9]. Finally, in [10], all previously known vacua,

as well as some new ones, were constructed using left-invariant SU(3) structures on groups

and cosets. On the other hand, the type IIB side has been almost entirely unexplored,

perhaps due to a no-go theorem which forbids IIB AdS4 vacua with SU(3)-structure [11].

It is the purpose of this paper to go beyond the list of solutions in [10] and the analysis

of [11], and take a step towards the construction of more general type II AdS4 vacua.

Supersymmetric solutions of type II supergravity of warped-product form: AdS4 ×w

M6, where M6 is the internal six-dimensional manifold, can be described in terms of two

globally-defined internal spinors θ1,2 specifying the spinor ansatz of the solution. These

two internal spinors must be of equal norm and proportional to the warp factor, as a

consequence of supersymmetry.2 Hence, provided the warp factor is nowhere-vanishing,

both spinors must be nowhere-vanishing. Since with each of the two internal spinors we

can associate an SU(3) structure, we therefore have a global SU(3) × SU(3) structure on

M6. In particular it follows that there is a reduction of the structure group of M6 to

SU(3) or a subgroup thereof.3

The different types of solutions can be classified according to the relative angle of the

two spinors. Here we follow the terminology of [14, 15], according to which we distinguish

the following subcases of SU(3) × SU(3) structure:

• strict SU(3) structure: θ1 and θ2 are parallel everywhere;

• static SU(2) structure: θ1 and θ2 are orthogonal everywhere;

• intermediate SU(2) structure: θ1 and θ2 are at a constant angle, which is neither zero

nor a right angle;

• dynamic SU(3) × SU(3) structure: the angle between θ1 and θ2 varies, possibly be-

coming zero or a right angle at special loci.

It was shown in [16] that there can be no IIA AdS4 ×w M6 vacua of static SU(2)

structure.4 As already mentioned, there is an analogous no-go theorem in IIB forbidding

AdS4×wM6 vacua of strict SU(3) structure. To go beyond the static SU(2) and strict SU(3)

structure cases, we must search for vacua of either dynamic SU(3)×SU(3) or intermediate

SU(2) structure.

The supersymmetry equations of ten-dimensional type II supergravity for a generic

global SU(3)× SU(3)-structure ansatz can be elegantly formulated in the language of gen-

eralized geometry [17]. In searching for explicit examples of supersymmetric solutions,

however, a different approach may be more promising: This is based on the observation

1The fact that the Nilsson-Pope solutions belong to the class of [3] was first pointed out in [7].
2This was first observed in [3] in the special case of rigid SU(3) structure. In the general case of

SU(3) × SU(3) structure it was first shown in the appendix of [12].
3 Contrary to what is sometimes claimed in the literature, supersymmetry need not in general imply

the reduction of the structure group of the internal manifold. One example is compactifications of eleven-

dimensional supergravity to three-dimensional maximally-symmetric space [13].
4This no-go was subsequently generalized in [15] to include left-invariant intermediate SU(2) structure.
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Figure 1. The angle α(x) between the two internal spinors θ1,2 is, in general, a function of the

position x ∈ M6.

that, assuming we do not have a rigid SU(3) structure, the two SU(3) structures corre-

sponding to each of the two internal spinors will generally interesect on a common SU(2)

subgroup. In other words, we can always define a preferred local SU(2) structure on M6.

Furthermore, we can expand all fluxes in terms of irreducible SU(2) modules, upon which

the analysis of the supersymmetry conditions reduces to a set of algebraic equations for

the fluxes and the torsion classes of the local structure.

The direct approach described in the preceding paragraph leads in general to cumber-

some equations which cannot easily be solved, except of course in the case of rigid SU(3)

structure in IIA where several solutions are known by now. In order to make progress

we need to look for further simplifications. In the present paper we propose the following

rather natural ansatz: we demand that the representation-theoretic content of the solution

consist entirely of scalars with respect to the local SU(2) structure. In other words, in

the decomposition of the various fluxes and torsion classes with respect to the local SU(2)

structure, we set to zero all components which are not scalar. In the following we will refer

to this as the scalar ansatz.

Imposing the scalar ansatz leads to considerable simplification, which enables us to ex-

plicitly solve the supersymmetry equations. The final result can be divided into two parts:

(a) the part that constrains the fluxes, and (b) the part that specifies the local SU(2) struc-
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ture of the internal manifold. Part (a) of the solution is given below in eqs. (2.15), (2.16)

for IIA, and eqs. (2.24), (2.25) for IIB. In both cases (2.17), (2.22) hold.

There is no obstruction to solving the equations specified in part (a): they simply

express some of the flux components in terms of a set of free parameters. Moreover, these

equations must be satisfied by all supersymmetric solutions, not only solutions obeying the

scalar ansatz. In other words, they are necessary conditions for a supersymmetric AdS4

vacuum; to our knowledge this is the first time they have been explicitly formulated.

Part (b) of the solution is given below in eq. (2.26), which is common to both IIA and

IIB. Contrary to part (a) of the solution which is unobstructed, not every six-dimensional

manifold will admit a local SU(2) structure obeying (2.26). Therefore, the reformulation

of the supersymmetry equations in the language of the present paper provides a clear

prescription for constructing new supersymmetric type II AdS4 solutions: scan for six-

dimensional manifolds which admit a local SU(2) structure obeying eq. (2.26).

As is well-known, supersymmetry alone is not enough to guarantee that all equations

of motion are satisfied, although it goes a long way. Even in the presence of calibrated

(which in the present context can be taken to mean supersymmetric) sources, there is an

integrability theorem which guarantees that, provided the Bianchi identities are satisfied,5

all remaining equations of motion will be automatically satisfied [18]. In general the Bianchi

identities will indeed include source contributions, which may or may not admit satisfactory

physical interpretation. This analysis has to be performed in addition to the analysis of

the supersymmetry equations.

The remainder of the paper is organized as follows: section 2 introduces the scalar

ansatz and presents the general solution to the supersymmetry equations. Section 3 con-

tains examples of IIA solutions. In particular, section 3.1 contains examples of supersym-

metric IIA solutions with smeared sources. Unfortunately these do no seem to admit a sat-

isfactory physical interpretation. Section 3.2 contains a number of supergravity vacua of the

form AdS4 ×M6, where M6 can be any six-dimensional Einstein-Kähler manifold. These

solutions are shown to be non-supersymmetric, as they violate the necessary conditions of

section 2.1. They are anticipated already by Romans in [19], although their existence is

only mentioned very briefly in that reference (see the comment below eq. (28) of [19]).

Section 4 analyzes in detail the special case of supersymmetric AdS4 solutions of static

SU(2) structure. This case is, in a sense, the analogue of the strict SU(3) case analyzed

in [3], however it had not been systematically analyzed before in the literature. The

complete solution to the supersymmetry equations, subject to the scalar ansatz, is given in

eqs. (4.1)–(4.3) below. Section 4.1 contains two examples of solutions with smeared sources,

which have appeared before in the literature, while section 4.2 contains an example with

partially-localized sources, which to our knowledge is new.

The appendices A, B, C contain useful relations and many technical details of the re-

sults presented in the main text. Appendix D reviews the relation between six-dimensional

Einstein-Kähler and seven-dimensional Sasaki-Einstein manifolds.

5Here we adopt the terminology of the ‘democratic’ formalism in which the (generalized) Bianchi iden-

tities of the RR fields also include the equations of motion in the traditional sense.

– 4 –



J
H
E
P
0
4
(
2
0
0
9
)
1
1
1

Note added: several months after section 3.2 of the present paper was completed, we

received preprint [20] which has also independently arrived at the solutions presented in

that section.

2 Supersymmetry

In this section we introduce in detail the scalar ansatz referred to in the introduction,

and we present the solution, under this ansatz, to the supersymmetry equations for back-

grounds of the form AdS4 ×w M6. As a corollary we derive a set of necessary conditions

(eqs. (2.15), (2.16) for IIA and eqs. (2.24), (2.25) for IIB) which must hold for any super-

symmetric AdS4 vacuum — not only for vacua obeying the scalar ansatz. To our knowledge

this is the first time these conditions explicitly appear in the literature.

We follow the conventions of [21], which the reader may consult for further details.

We perform a four-plus-six spacetime split, according to which the ten-dimensional metric

takes the warped-product form:

ds2 = e2A(x)ds2
4 + gmndxmdxn , (2.1)

where expA is the warp factor, ds2
4 is the line element of AdS4 and gmn is the internal-

manifold metric. The type IIA supersymmetry parameter is decomposed accordingly as:

ǫi = ζ ⊗ θi + c.c. ; i = 1, 2 , (2.2)

where ǫ1,2 are positive-, negative-chirality ten-dimensional Majorana spinors, and θ1,2

are positive-, negative-chirality six-dimensional complex spinors. ζ is a four-dimensional

positive-chirality Killing spinor obeying:

∇µζ =
1

2
W ∗γµζ∗ , (2.3)

where |W | is the inverse radius of curvature of AdS4. Moreover we are using the democratic

formalism in which the RR fluxes take the form:

F tot = vol4 ∧ F̃ + F , (2.4)

so that the self-duality condition reads F̃ = ⋆6σ(F ), where ⋆6 is the Hodge-star on M6

and σ reverses the order of the indices.

With these ansätze, the supersymmetry equations for type IIA/IIB can be cast in the

form of a set of ‘algebraic’ equations:

0 = /∂Aθ1 −
1

4
eφ /Fθ2 + e−AWθ∗1

0 = /∂Aθ2 −
1

4
eφγ7 /F

†
θ1 + e−AWθ∗2

0 =

(
/∂φ − 2/∂A +

1

2
/H

)
θ1 +

1

8
eφγm /Fγmγ7θ2 − 2e−AWθ∗1

0 =

(
/∂φ − 2/∂A − 1

2
/H

)
θ2 −

1

8
eφγm /F

†
γmθ1 − 2e−AWθ∗2 , (2.5)
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together with a pair of ‘differential’ equations:

0 =

(
∇m +

1

4
/Hm

)
θ1 +

1

8
eφ /Fγmγ7θ2

0 =

(
∇m − 1

4
/Hm

)
θ2 −

1

8
eφ /F

†
γmθ1 , (2.6)

where γ7 is the chirality matrix in six dimensions. Moreover γ7θ1 = θ1 in both IIA/IIB,

while γ7θ2 = −θ2 in IIA and γ7θ2 = θ2 in IIB.

Local SU(2) structure. For the analysis of the supersymmetry it will be useful to work

with a local basis of orthogonal unimodular spinors η1,2, with respect to which we can

parameterize:

θ1 = a η1; θ2 =

{
b η∗2 + c∗η∗1 IIA

b η2 + c η1 IIB
. (2.7)

We can take a, b ∈ R, by making use of the freedom in the definition of the phase of

η1,2, while generally c ∈ C. This is the most general spinor ansatz, and is related to the

‘dielectric spinors’ of [14, 22, 23]. In the context of AdS4 compactifications of IIA, the two

limiting cases b = 0, corresponding to rigid SU(3) structure, and c = 0, corresponding to

static SU(2) structure, were considered in [3, 16] respectively. The most general spinor

ansatz (2.7) has not been analyzed before in this context,6 although it is of course implicit

in the generalized-geometry formulation of [17].

The spinors θ1,2 define a (dynamic, in general) SU(3) × SU(3) structure, whereas the

spinors η1,2 define locally a static SU(2) structure. The particular parametrization of θ1,2

in terms of η1,2 above is chosen to be valid a priori on open patches where θ1 is non-

vanishing.7 However, as already mentioned in the introduction, θ1,2 are nowhere-vanishing

hence this requirement is automatically satisfied (see the discussion immediately below

eq. (2.22)).

Each of the two orthogonal spinors defines an SU(3) structure:

J (r)
mn := iηrγmnη∗r

Ω(r)
mnp := ηrγmnpηr , (2.8)

for r = 1, 2. The local static SU(2) structure (J̃ , ω) is the ‘intersection’ of these two

SU(3) structures. It can be expressed in terms of (J (r),Ω(r),K), where K is a holomorphic

one-form given by

Km := η2γmη1 . (2.9)

6See [24] for certain dynamic SU(3) × SU(3) IIA/IIB ansätze, which however do not seem to lead to

solutions.
7This can be seen by ‘inverting’ (2.7) to get

a = |θ1| ; b =
1

|θ1|

p

|θ1|2|θ2|2 − |θ1 · θ2|2 ; c
∗ =

θ1 · θ2

|θ1|
.
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As can be seen from (2.7), the additional information contained in the one-form (b/a)Km,

which e.g. in IIA is proportional to (θ∗2γmθ1)/|θ1|2, can be thought of as parametrizing the

deviation of the spinor ansatz from the rigid-SU(3) case. Specifically:

J (1) =
i

2
K ∧ K∗ + J̃ ; J (2) =

i

2
K ∧ K∗ − J̃

Ω(1) = −iω ∧ K ; Ω(2) = iω∗ ∧ K , (2.10)

where ιK J̃ , ιKω, ιK∗ω = 0. Moreover we have:

ωmn := iη1γmnη∗2 . (2.11)

To analyze the content of supersymmetry, we will make repeated use of a number of

additional identities satisfied by η1,2 and the various forms introduced above. These can

be found in [16], whose spinor notations and conventions we follow.8

Scalar ansatz. The scalar ansatz proposed in the present paper consists of the following

rather natural simplification: we demand that in the decomposition of the various fluxes

with respect to the local SU(2) structure all components which are not scalar be set to

zero.

Imposing the scalar ansatz, i.e. keeping only the scalars in the tensor decompositions

given in appendix B, leads to considerable simplification upon which the various RR forms

read, in form-notation:

eφF0 = f0

eφF2 =
1

8

(
f2 ω∗ + f3J̃ + 2if1K ∧ K∗

)
+ c.c.

eφF4 =
1

16
g1J̃ ∧ J̃ +

i

96

(
g2 ω∗ + g∗2 ω + 2g3J̃

)
∧ K ∧ K∗

eφF6 = f vol6 , (2.12)

for type IIA, while:

eφF1 = g1K + c.c.

eφF3 =
1

24

(
f1ω

∗ + f2 ω + 2f3J̃
)
∧ K + c.c.

eφF5 = g2 ⋆6K + c.c. , (2.13)

for type IIB. In IIA the scalars f , f0,1,3, g1,3 are real, while f2, g2 are complex. In IIB

all five scalars f1,2,3, g1,2 are complex. Note that in both cases the decompositions are

parameterized by five complex scalar degrees of freedom. The expansion for the NSNS

three-form is the same in both IIA, IIB:

H =
1

24

(
h1ω

∗ + h2 ω + 2h3J̃
)
∧ K + c.c. , (2.14)

where the scalars h1,2,3 are complex.

8Unlike in [16], in the present paper we do not use superspace conventions for the forms.
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2.1 IIA solution

Plugging the expressions for the form fields (2.12), (2.14) into the algebraic suspersymmetry

equations (2.5) above and projecting onto the singlet of the local SU(2) structure, we obtain

the following solution:

f = −3 Im
( c

a
W
)

e−A

c

b
g2 = g3 − 6if3 − 48i Im

(
c

a
We−A − b

a
K · ∂A

)

g1 = 8f0 −
2

3
g3 − 32 Re

(
c

a
We−A +

b

a
K · ∂A

)

f1 = −1

2
f3 − Im

(
c

a
We−A − 4b

a
K · ∂A

)

c

b
f2 = f3 +

i

6
g3 + 8i Re

(
c

a
We−A +

b

a
K · ∂A

)
− 8ia

b
K∗ · ∂A

a

b
h3 =

3

2
f3 − 6Im

( c

a
W
)

e−A − 12iRe
( c

a
W
)

e−A

+ 6if0 −
i

4
g3 +

6ia

b
K∗ · ∂(3A − φ) − 12ib

a
K∗ · ∂A

c∗

a
h2 = − i

4
g3 − 18i Re

( c

a
W
)

e−A − i|c|2
ab

Imh3 +
b

a
Reh3

+
6ia

b
ReK · ∂(3A − φ) − 6ib

a
K∗ · ∂(3A − φ)

h1 = h∗
2 −

2ic∗

b
Imh3 −

12c∗

b
ImK · ∂(3A − φ)

Imc K · ∂A = 0 ,

(2.15)

where we have chosen the inverse AdS4 radius W , the dilaton and warp factor φ, A, and

the scalars f0, f3, g3 (see eq. (2.12)) as independent variables. Moreover we have defined

K · ∂ := Km∂m, so that K · ∂S = LKS. (We use the same notation both for the one-

form Kmdxm and the vector Km(∂/∂xm) obtained by raising the covariant index with

the unique metric compatible with the SU(3) × SU(3) structure). The Romans mass is in

general nonzero and enters the above equations via f0 := eφF0.

The equations above must hold for any supersymmetric IIA AdS4 vacuum — not only

for vacua obeying the scalar ansatz. To our knowledge, this is the first time they appear

explicitly in the literature. In addition to these equations one would in general have a num-

ber of non-scalar equations, i.e. those which are obtained by projecting the supersymmetry

equations onto irreducible representations which are not singlets under the local SU(2)

structure. In the present case, these will turn out to be equivalent to (2.16), (2.26) below,

as a consequence of the scalar ansatz.

In addition to the equations above, the fact that η1,2 are unimodular imposes the

constraints: ∂(η†i ηi) = 0, for i = 1, 2. There is one more constraint, ∂(η†1η2) = 0, which is

a consequence of the orthogonality of η1,2. Using the differential equations (2.6), it can be

– 8 –
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seen that these three constraints are equivalent to the following:

bWe−A =
c∗

2
ReK · ∂

(
log

c∗

a
+ 3A − φ

)

0 = ImK · ∂
(

log
c∗

a
+ 3A − φ

)

a = constant × e
1

2
A ,

(2.16)

together with:

dS =
1

2
K∗ (K · ∂S) +

1

2
K (K∗ · ∂S) , (2.17)

where S(x) is any one of the scalars A, φ, a, b, c, and x is the coordinate of M6.

Before we proceed, let us make a couple of comments about eqs. (2.16), (2.17). It

follows from the first two lines of (2.16) that:

ReK W =
a

2b
e−2A+φd

(
e2A−φθ1 · θ2

)
, (2.18)

where we have taken footnote 7 into account together with (2.17) and the last line of (2.16).

The no-go theorem of [16] then follows immediately from the above, since θ1 ⊥ θ2 implies

K 6= 0 and W = 0. The more general no-go of [15] also follows similarly. Moreover, as

was remarked in that reference, the way to circumvent the no-go would be to allow for

e2A−φθ1 · θ2 to vary over the internal manifold.

To gain insight into the meaning of equation (2.17), note that, as explained in more

detail in [16], K can be used to define an almost product structure on M6. Consequently,

the internal metric can locally be cast in the form:

ds2
6 =

4∑

i,j=1

g̃ij(x)dxi ⊗ dxj + K ⊗ K∗ , (2.19)

where

ReK = Φ(x)

(
dx5 +

4∑

i=1

Ai(x)dxi

)
; ImK = Ψ(x)

(
dx6 +

4∑

i=1

Bi(x)dxi

)
. (2.20)

Since g̃ij , Φ, Ψ, Ai, Bi depend in general on all coordinates of M6, it follows that (2.19) is

not in general a fibration. Condition (2.17) can then locally be rewritten as:

∂

∂xi
S = 0 ; i = 1, . . . , 4 . (2.21)

Finally, in order to allow for AdS4 solutions, W 6= 0, it turns out that a, b, c must

satisfy the following relation:

a2 = b2 + |c|2 . (2.22)

Equivalently, the measures of the two spinors θ1,2 must be equal:

|θ1|2 = |θ2|2 . (2.23)

– 9 –
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As already mentioned in the introduction, it follows from (2.22), or equivalently (2.23),

and the last equation in (2.16) that θ1,2 must be nowhere-vanishing. We therefore have a

globally well-defined SU(3) × SU(3) structure on M6.

It is straightforward to verify that the results of [16] are recovered in the c → 0 limit,

which corresponds to the static SU(2) case. The limit b → 0, which corresponds to the

strict SU(3) case [3], can also be taken but is slightly more subtle, as in this limit the

irreducible representations which appear in the tensor decompositions of the various fields,

have to be taken with respect to the SU(3) structure.

2.2 IIB solution

Proceeding similarly to the IIA case, taking eqs. (2.13), (2.14) into account, the algebraic

supersymmetry equations (2.5) can be solved to give:

f1 = 12i

{
c

b
(g1 + ig2) +

c

a
W ∗e−A +

(
2a

b
− b

a

)
K∗ · ∂A

}

f2 = 12i

{
− c

a
W ∗e−A +

b

a
K∗ · ∂A

}

f3 = 12i

{
1

2
(g1 + ig2) +

b

a
W ∗e−A − c

a
K∗ · ∂A

}

h1 = 12i

{(
a

b
− b

2a

)
(g1 − ig2) − W ∗e−A +

c

b
K∗ · ∂ (2A − φ)

}

h2 = 12i

{
b

2a
(g1 − ig2) − W ∗e−A

}

h3 = 6i
{
− c

a
(g1 − ig2) + K∗ · ∂ (2A − φ)

}

Re c = 0 .

(2.24)

Note that the solution leaves the complex scalars g1, g2 unconstrained. Moreover, the

constraints ∂(η†i ηj) = 0 imply:

bWe−A =
c

3
K · ∂

(
φ − 4A − log

|c|
a

)
+

2ia

3
g∗2

a = constant × e
1

2
A .

(2.25)

The equations above must hold for any supersymmetric IIB AdS4 vacuum — not only

for vacua obeying the scalar ansatz. To our knowledge, this is the first time they appear

explicitly in the literature. In addition, eqs. (2.17), (2.22) hold in the present case as well.

2.3 Local SU(2) structure

The local SU(2) structure of the internal manifold, encoded in the action of the exterior

differential on (K, J̃ , ω), can be read off using the differential supersymmetry equations (2.6)

as explained in appendix C. More specifically, for both IIA and IIB we can give the following
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compact expressions:

dK =K∗ ∧ K

{
1

2
(K∗)1 −

1

2
(K)∗1 − (K∗K)2 + (KK)∗2

}

+ ω {−4(ω)2} + ω∗
{

2(J̃)1

}
+ J̃

{
−2(J̃)2 − 4(ω)1

}

dJ̃ =K ∧ ω
{
−2(K∗K)∗1 − i(J̃)∗1

}
+ K ∧ ω∗ {−2(KK)1 − 2i(ω)∗2}

+ K ∧ J̃
{

2i(ω)∗1 − i(J̃)∗2

}
+ c.c.

dω =K ∧ J̃ {4(KK)1 + 4i(ω)∗2} + K∗ ∧ J̃
{

4(K∗K)1 − 2i(J̃)1

}

+ K ∧ ω

{
1

2
(K)1 −

1

2
(K∗)∗1 − (K∗K)∗2 + (KK)2 − 2i(J̃)∗2

}

+ K∗ ∧ ω

{
1

2
(K∗)1 −

1

2
(K)∗1 + (K∗K)2 − (KK)∗2 − 4i(ω)1

}
,

(2.26)

which can be derived from (C.7), (C.8), (C.9) with the use of (C.17). All coefficients on

the right-hand sides above are known and are explicitly given in eqs. (C.3)–(C.6). Since

the geometry is determined by the local SU(2) structure, eq. (2.26) fixes the geometry in

terms of the flux parameters.

Note that the local SU(2) structure can also be specified either by the triplet (K, J (1),

Ω(1)), or, equivalently, (K,J (2),Ω(2)). In the former case (2.26) would have to be replaced

by the epression for dK (the first of the equations above) together with the expression for

the torsion classes, given in (C.19), for the SU(3) structure corresponding to (J (1),Ω(1)).

As already remarked below (2.9), the additional information contained in the one-form

(b/a)K can be thought of as parametrizing the deviation of the spinor ansatz from the

rigid-SU(3) case.

In summary: for a supersymmetric background of the form AdS4 × M6, the internal

manifold M6 is specified by a local SU(2) structure (K, J̃ , ω) obeying (2.26); the fluxes are

given by (2.15), (2.16) in IIA, and by (2.24), (2.25) in IIB; in both cases (2.17), (2.22)

hold.

3 IIA examples

The reformulation of the supersymmetry equations in the present language readily sug-

gests a strategy for a systematic search for solutions: Given an SU(3)-structure manifold

M6 choose a family of triplets (Kλ, J̃λ, ωλ) on it, where λ parameterizes the family; im-

pose eqs. (2.26) in order to restrict λ; if a solution exists on M6, read off the fluxes

using (2.15), (2.16). The following examples will illustrate this method for type IIA. In the

next section we will consider the case of static SU(2) structure in IIB.

3.1 Examples with smeared sources

The following is a simple solution of the supersymmetry equations. Let us demand that dω

should not contain any K∧ J̃, K∗∧ J̃ terms. This can be seen from (2.26) to automatically

– 11 –



J
H
E
P
0
4
(
2
0
0
9
)
1
1
1

imply that dJ̃ contains only K ∧ J̃ , K∗ ∧ J̃ terms. In addition, we demand that dK be

proportional to K∗ ∧ K. We will also assume that Imc 6= 0. As we can see from (2.15),

this implies K · ∂A = 0. Taking the constraints (2.16) into account, the aforementioned

conditions imply:

f0 =
4b2 + 5|c|2

2ab
C ; f1 = 0 ; f2 =

2ic∗

a
C ; f3 = 0

g1 =
12a2 + 4b2

ab
C ; g2 =

36c∗

a
C ; g3 =

36|c|2
ab

C

h1 = 0 ; h2 = −12ic

b
C; h3 = 6iC

Im(cW ) = 0 ; ImK · ∂φ = 0 ; ReK · ∂φ = C ; a, b, c, A = constant ,

(3.1)

where we have introduced the real constant C := −(2b/c∗)e−AW . It readily follows from

the above that we have an intermediate SU(2) structure.

In form notation the fluxes read:

H =
i

2
C
(
J̃ − c

b
ω∗
)
∧ K + c.c.

eφF0 =
4b2 + 5|c|2

2ab
C ; eφF2 = − ic

4a
C∗ω + c.c.

eφF4 =
3a2 + b2

4ab
CJ̃ ∧ J̃ +

3i

4a

( |c|2
b

CJ̃ + Re(cC∗ω)

)
K ∧ K∗ . (3.2)

Furthermore, we can compute the local structure from (2.26):

dReK = 0 ; d
(
eφImK

)
= 0

d
(
e−φω

)
= 0 ; d

(
e−φJ̃

)
= 0 . (3.3)

The above relations imply that K can be written as K = dϕ + ie−φdχ for some local

coordinates ϕ, χ. It then follows from (3.1) that the dilaton is given by

φ = C(ϕ − ϕ0) , (3.4)

for some constant ϕ0. Moreover, as can be seen from (C.10), the two-forms
(
e−φω

)
,
(
e−φJ̃

)

define a four-dimensional Calabi-Yau manifold, i.e. a K3 surface. The metric of the six-

dimensional internal manifold can therefore be written as:

ds2
6 = eφds2

K3 + dϕ2 + e−2φdχ2 , (3.5)

where ds2
K3 is the mertic of the K3 surface. Note that ϕ, χ parameterize a two-dimensional

hyperbolic space H2.

Although the supersymmetry equations can be solved in the way described above,

it is not difficult to see that the sourceless Bianchi identities cannot be satisfied for all

form fields. In particular, negative-tension (non-localized) sources must be added, which is

physically unsatisfactory. Although we will not list the details here, similar solutions of the
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supersymmetry equations (but not of the sourceless Bianchi identities) can be achieved by

taking the internal manifold to be a nilmanifold. It is possible that performing a systematic

scan of the nilmanifolds, something which we have not done, would yield supersymmetric

solutions which also satisfy the sourceless Bianchi identities.

Constant warp factor, dilaton. In the case of constant dilaton and warp factor, a

simple way to solve (2.16), (2.22) is by making the following ansatz:

b = a cos ϕ; c = aeiδ sinϕ; W = |W |e−iδ ; φ, A, a, δ = constant , (3.6)

where we have parameterized:

ReK =
eA

2|W |dϕ + A , (3.7)

for some co-ordinate ϕ and a one-form A such that ι∂/∂ϕA = 0. In order to see that (3.6)

is indeed a solution of (2.16), (2.22), note that (3.7) implies ReK · ∂ = 2|W |e−A∂/∂ϕ.

3.2 Examples without sources

We will now consider a certain class of IIA compactifications of the form AdS4 × M6,

where M6 can be any Einstein-Kähler manifold. We will allow for non-zero Romans mass,

therefore these compactifications do not, in general, admit an eleven-dimensional lift. These

solutions were anticipated by Romans in [19] (see also [25]), although their existence was

only mentioned very briefly in that reference (cf. the comment below eq. (28) of [19]).

For non-vanishing Romans mass these solutions will be shown, at the end of the present

section, to be non-supersymmetric, as they do not obey the necessary supersymmetry

conditions of section 2.1. On the other hand, for vanishing Romans mass we have an en-

hancement of supersymmetry, and the solutions fall within the class of the supersymmetric

solutions of [3]. Using the known results, summarized in section D, relating six-dimensional

Einstein-Kähler manifolds to seven-dimensional Sasaki-Einstein manifolds, for vanishing

Romans mass these solutions lift to the well-known supersymmetric M-theory solutions of

Freund-Rubin type of the form AdS4 ×M7, where M7 is Sasaki-Einstein.

We take the ten-dimensional metric to be of the form:

ds2 = ds2(AdS4) + ds2(M6) , (3.8)

i.e. a direct (not warped) product AdS4 ×M6. Moreover, we take the NSNS three-form to

vanish, H = 0, and the dilaton to be constant. The RR fields are given by:

F0 = α; F2 = βJ ; F4 =
1

2
γJ2; F6 =

1

6
δJ3 , (3.9)

where J is the Kähler form on M6, and α, . . . , δ ∈ R. After imposing the self-duality

condition, see below eq. (2.4), the RR fluxes can be written more conventionally as:

F tot
0 = α; F tot

2 = βJ ; F tot
4 =

1

2
γJ2 + δ vol4 . (3.10)
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The following calculations are very similar to section 11.4 of [21], so here we will simply

state the results.

The NSNS Bianchi identity, dH = 0, is trivially satisfied for this ansatz. Similarly, the

generalized Bianchi identities for the RR fields, dHF = 0, (which in the conventional type

II supergravity formulation correspond to both the Bianchi identities and the equations of

motion) are also automatically satisfied by virtue of the closure of the Kähler form, dJ = 0.

It remains to examine the NS-sector equations of motion. The H-field equation of motion

reduces to

αβ + 2βγ + γδ = 0 . (3.11)

The dilaton equation reads:

|W |2 − 5

8
ω2 = 0 , (3.12)

where W ∈ C, ω ∈ R are related to the curvature of AdS4, M6 via

Rµν = −3gµν |W |2, Rmn =
5

4
ω2gmn , (3.13)

respectively. Finally, the external and internal Einstein equations read:

|W |2 − 1

12
(α2 + 3β2 + 3γ2 + δ2) = 0 (3.14)

and

5ω2 + α2 + β2 − γ2 − δ2 = 0 , (3.15)

respectively.

The full set of supergravity equations of motion above can be seen to admit three

infinite classes of solutions. In each of these three classes, the constants |W |, ω can be

solved for in terms of the real parameters α, . . . , δ using (3.12), (3.14). Moreover we have:

First solution:

β = γ = 0 ; δ = ±
√

5α . (3.16)

Second solution:

α = ± 7

5
√

5
β ; γ = ± 1√

5
β ; δ = −17

5
β . (3.17)

Third solution: β2 ≥ 3γ2 and

α = γ
−2β2 ±

√
(β2 − 3γ2)(9β2 + 5γ2)

β2 − 5γ2
; δ2 = 5α2 + 9β2 + 3γ2 . (3.18)

The Nilsson-Pope ‘Hopf-fibration’ solution [4] is a subset of the third solution above,

and is obtained upon setting the Romans mass to zero, α = 0. In this case we obtain:

Hopf-fibration solution:

α = γ = 0 ; δ = ±3β . (3.19)

Comparing with (3.10) we see that this solution corresponds to a Freund-Rubin ansatz,

F tot
4 ∝ vol4, with F tot

0 = 0 and F tot
2 ∝ J .
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Supersymmetry. Let us now consider the supersymmetry of the solutions above. Im-

posing H = 0 in addition to eqs. (2.15) implies:

eφF0 = −Re
( c

a
W
)

e−A ; g2 = −72b

a
We−A . (3.20)

Since φ, A, F0 are constant, it follows from the above that c/a is constant. If b 6= 0, the

first equation in (2.16) then implies that W = 0 and consequently AdS4 decompactifies to

flat Minkowski space. If on the other hand b = 0, the situation reduces to the rigid SU(3)

case, as follows from eq. (3.5). The solution then falls within the class of supersymmetric

AdS4 solutions of [3], from which it follows that supersymmetry enforces F0 = 0.

In summary: for nonzero Romans mass, the solutions presented in this section are not

supersymmetric, as they violate the necessary conditions of section 2.1. For vanishing

Romans mass there is an enhancement of supersymmetry, and these solutions fall within

the class of the supersymmetric solutions of [3].

4 Static SU(2) structure in IIB

It has been known for some time that static SU(2)-structure compactifications to AdS4

are not allowed in IIA [16]. There is a IIB counterpart of this no-go, forbidding strict

SU(3)-structure compactifications to AdS4 in IIB [11]. However, static SU(2)-structure

compactifications to AdS4 are allowed in IIB. In this case we have a = ±b, c = 0, cf.

eq. (2.7), and eqs. (2.24), (2.25) simplify considerably to:

f1 = f2 = ±12iK∗ · ∂A

f3 = 6i(g1 + ig2) ± 12iW ∗e−A

h1 = h2 = ±6i(g1 − ig2) − 12iW ∗e−A

h3 = 6iK∗ · ∂ (2A − φ)

(4.1)

and

g2 = ±3i

2
W ∗e−A ; a = ±b = constant × e

1

2
A , (4.2)

respectively. The SU(2) structure, which can be read off off (2.26), (C.5), (C.6), can be

put in the form:

dK0 = −2W Imω0

dJ̃0 = ∓g0K0 ∧ Reω0 + c.c.

dω0 = ±g0K0 ∧ J̃0 + c.c. ,

(4.3)

where we have set:

K0 := e3A−φK ; J̃0 := e2A−φJ̃ ; ω0 := e2A−φω ; g0 :=
1

2
eφ−3A

(
g1 ∓

5

2
W ∗e−A

)
.

(4.4)
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Consistency requires that d2 should annihilate K0, J̃0, ω0, which is guaranteed provided

g0 is ‘holomorphic’ (cf. the discussion around eq. (2.19)):

dg0 =
1

2
K(K∗ · ∂g0) . (4.5)

A special solution of the above is g0 = constant.

Constant warp factor, dilaton. A further simplification to eqs. (4.1)–(4.3) would be

to assume constant dilaton and warp factor. Setting φ = A = 0 and demanding that g1 be

holomorphic, i.e. that it should satisfy the analogue of (4.5), it is now straightforward to

examine the Bianchi identities and equations of motion for all the form fields. Imposing

dH = 0 (i.e. demanding the absence of NS5 brane sources) implies:

Re(g1W ) =
1

3

(
|g1|2 +

5

4
|W |2

)
, (4.6)

as follows from (2.14), (4.3). Moreover we find a source (D7 branes/O7 planes) for the

Bianchi identity of F1:

dF1 = −4

3

(
|g1|2 +

5

4
|W |2

)
Im ω . (4.7)

The source above corresponds to net orientifold charge. Note that demanding the absence

of D7/O7 sets the cosmological constant to zero.

In addition there is a potential source (D5 branes/O5 planes), which vanishes for

special values of g1, for the Bianchi identity of F3:

dF3 + H ∧ F1 = i

(
|g1|2 −

5

4
|W |2

)
Re ω ∧ K ∧ K∗ . (4.8)

There is a net orientifold charge for |g1| ≥
√

5/2|W |. All other Bianchi’s and equations

of motion for the form-fields are automatically satisfied. It is then guaranteed by the

integrability theorem of [18], which generalizes the theorems of [3, 26] to include calibrated

sources, that all remaining equations of motion are automatically satisfied.

4.1 Examples with smeared sources

In the following we will discuss two examples of supersymmetric IIB AdS4 compactifications

solving eqs. (4.1)–(4.3). Both of these examples, which have been mentioned before in the

literature, contain sources smeared in the internal space.

Nilmanifold 5.1. This example, where we take the internal six-dimentional manifold

to be the nilmanifold 5.1, was first mentioned in [27] and further examined in [15]. The

nilmanifold 5.1 can be defined by specifying a coframe ei, i = 1, . . . , 6, such that:

dei = 0, i = 1, . . . , 5 ; de6 = e12 + e34 , (4.9)

where eij := ei ∧ ej . Let us set A, φ = 0 for simplicity. Moreover, assuming a = +b, let us

take

g1 =
5

2
W ∗ , (4.10)
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so that g0 = 0, by virtue of (4.4). Eqs. (4.3) are then satisfied, provided we identify:

K = −2We6 + ie5

J̃ = e13 − e24

ω = (ie1 + e3) ∧ (ie4 + e2) . (4.11)

This solution contains (smeared) O5/O7 sources, as can be seen by computing the right-

hand-sides of eqs. (4.7), (4.8) above taking (4.10) into account.

T1,1×S1. In this example, which was first mentioned in [10], we take the internal six-

dimentional manifold to be the product T 1,1 × S1. The total six-dimensional manifold

admits a coset structure, decribed in section 4.6 of ref. [10], to which the reader is referred

for further details.9 As in the previous case, we can describe the internal manifold by

specifying a coframe ei, i = 1, . . . , 6. The action of the exterior differential on the coframe

is determined by the structure constants of the coset. As before, let us set A, φ = 0.

Eqs. (4.3) are then satisfied, provided we identify:

K = 2We3 + ie6

J̃ = −e14 + e25

ω = −i(ie1 + e4) ∧ (ie2 − e5) . (4.12)

In addition we must take g0 = −1/2W ∈ R, so that:

g1 = − 1

W
+

5

2
W . (4.13)

As in the previous example, this solution contains (smeared) O5/O7 sources. It also gener-

ally contains (smeared) NS5-brane sources, which vanish for the special value: W = ±1/
√

2,

as can be seen from (4.6), (4.13).

4.2 Examples with partially localized sources

Taking the limit to four-dimensional Minkowski space (W → 0), we will now discuss a class

of supersymmetric IIB warped compactifications solving eqs. (4.1), (4.3). These examples

contain spacetime-filling NS5 and/or D5 branes partially localized in the internal space.

Let us take g1 = g2 = 0, so that W = 0, in which case the external space becomes

R
1,3. It follows from (4.3) that the two-forms

(
e2A−φω

)
,
(
e2A−φJ̃

)
are closed, and therefore

define a four-dimensional Calabi-Yau manifold, i.e. a K3 surface. It also follows from (4.3)

that the one-form
(
e3A−φK

)
is closed. We can therefore take it to be equal to Dz := dz+A,

where A is a flat connection on K3, and z is a complex coordinate of a T 2.

The metric of the six-dimensional internal manifold can therefore be written as:

ds2
6 = e2φ−6A|Dz|2 + eφ−2Ads2

K3 , (4.14)

9The present case corresponds to the b = 0 embedding described in eqs. (4.36,4.37) of ref. [10].
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where ds2
K3 is the metric of the K3 surface. Moreover, the non-zero fluxes can be read off

off (2.13), (2.14):

F3 = − i

2

∂

∂z

(
e−2A

)
Reω0 ∧Dz + c.c.

H = − i

2

∂

∂z

(
eφ−2A

)
J̃0 ∧ Dz + c.c. .

(4.15)

As is now straightforward to compute, there will, in general, be source-terms in the Bianchi

identities for the above form-fields, signalling the presence of NS5 and/or D5 branes. Indeed

we find:

dF3 =
i

2

∂2

∂z∂z∗
(
e−2A

)
Reω0 ∧ Dz ∧ (Dz)∗ + c.c.

dH =
i

2

∂2

∂z∂z∗

(
eφ−2A

)
J̃0 ∧ Dz ∧ (Dz)∗ + c.c. .

(4.16)

Taking the functions e−2A, eφ−2A to be harmonic on T 2 ensures that the source-terms on

the right-hand sides above are localized on T 2.

To complete the discussion of these solutions, one can also show that all remaining

Bianchi identities and equations of motion for the form fields are satisfied for the system

of fluxes given in (4.15). As already remarked, the integrability theorem of [18] then

guarantees that all remaining equations of motion will be automatically satisfied.

5 Conclusions

The scalar ansatz introduced in the present paper allowed us to explicitly solve the super-

symmetry equations of type II supergravity. The ‘algebraic part’ of the solution is given

by eqs. (2.15), (2.16) for IIA, and eqs. (2.24), (2.25) for IIB. Moreover, these are necessary

conditions which every supersymmetric AdS4 solution should obey — not only the solu-

tions satisfying the scalar ansatz. In addition, eqs. (2.17), (2.22) must be imposed in both

cases.

As already pointed out in the introduction, the algebraic part of the solution is unob-

structed, as it simply expresses certain flux components in terms of a set of free parameters.

The ‘differential part’ of the solution is given in eq. (2.26), and specifies the local SU(2)

structure of the internal manifold. The main message of the present paper is therefore that:

in order to construct new supersymmetric AdS4 compactifications of type II supergravity,

it suffices to find six-dimensional manifolds which admit a local SU(2) structure obeying

eq. (2.26). A natural direction for further study would be to systematically scan different

classes of manifolds for that purpose.

Solutions of the supersymmetry equations will in general contain sources. The source

content of a solution is revealed by studying the Bianchi identities of the form fields. As

we have seen in the examples presented here, the sources present in a solution may or may

not admit a satisfactory physical interpretation. At least one need not worry about the

remaining equations of motion: thanks to the integrability theorem of [18], we know that

these will be automatically satisfied.
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The case of AdS4 compactifications of IIB on manifolds of static SU(2) structure is,

in some sense, the analogue of the well-known strict-SU(3) case in IIA. Nevertheless, it

had not been systematically studied before. In section 4 we examined this case in detail.

In particular, eqs. (4.1), (4.2) are necessary conditions that every supersymmetric AdS4

solution of static SU(2) structure should obey. The examples of solutions presented in

section 4.1, had already appeared in the literature in [10, 27], whereas to our knowledge

the example of section 4.2 is new. The latter is obtained in the limit of four-dimensional

Minkowski space, and contains partially localized NS5- and D5-branes. It is perhaps worth

noting that this example does not fall into the GKP class [29].

The nonsupersymmetric solutions presented in section 3.2 were anticipated by Romans

already in [19], although they only received a brief mention in that reference. As we have

seen, these solutions naturally fall into three disctinct classes, eqs. (3.16)–(3.18), the last of

which can be thought of as a deformation of the Nilsson-Pope solution. The CFT3 dual of

the latter class was recently considered in [20]. It would be interesting to examine whether

a CFT3 dual can also be constructed for the other two classes.

A Useful relations

In this section we list the following relations which are useful in deriving the supersymmetry

conditions of section 2.1. For a more complete list the reader may consult [16].

Hη∗1 = − i

3
h2η1 −

i

6
h3Kmγmη∗1

Hη∗2 =
i

3
h3η1 −

i

6
h1Kmγmη∗1 (A.1)

Hmη1 =
i

6
(h3Km + h∗

3K
∗
m)η1 +

1

12
(2h∗

2J̃mn − h∗
3ωmn − ih1KmKn − ih∗

2K
∗
mKn)γnη∗1

Hmη2 =
i

6
(h2Km + h∗

1K
∗
m)η1 +

1

12
(−2h∗

3J̃mn − h∗
1ωmn + ih3KmKn + ih∗

3K
∗
mKn)γnη∗1

(A.2)

and

eφFη1 =

{
f0 −

1

8
g1 −

1

12
g3 + i

(
f + f1 +

1

2
f3

)}
η1 +

(
− i

4
f2 +

1

24
g2

)
Kmγmη∗1

eφFη2 =

(
i

2
f∗
2 − 1

12
g∗2

)
η1 −

1

2

{
f0 −

1

8
g1 +

1

12
g3 + i

(
f + f1 −

1

2
f3

)}
Kmγmη∗1

(A.3)

eφFγmη∗1 =

(
− i

2
f∗
2 +

1

12
g∗2

)
K∗

mη1

+

{(
f1 − f +

i

8
g1 + if0

)
J̃mn +

1

2

(
if + if1 −

i

2
f3 −

1

8
g1 +

1

12
g3 + f0

)
K∗

mKn

}
γnη∗1

eφFγmη∗2 =

(
if + if1 +

i

2
f3 −

1

8
g1 −

1

12
g3 + f0

)
K∗

mη1

+
1

2

{(
f1 − f +

i

8
g1 + if0

)
ωmn +

(
− i

2
f2 +

1

12
g2

)
K∗

mKn

}
γnη∗1 , (A.4)
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for type IIA, while:

eφFη1 = − i

3
f∗
2η∗1 +

(
g∗1 − ig∗2 +

i

6
f∗
3

)
K∗

mγmη1

eφFη2 = −2

(
g∗1 − ig∗2 − i

6
f∗
3

)
η∗1 +

i

6
f∗
1 K∗

mγmη1 (A.5)

eφFγmη1 = 2

(
g1 + ig2 +

i

6
f3

)
Kmη1 +

{
(g∗2 − ig∗1)ωmn − i

6
f1KmKn

}
γnη∗1

eφFγmη2 =
i

3
f2Kmη1 −

{
2(g∗2 − ig∗1)J̃mn +

(
g1 + ig2 −

i

6
f3

)
KmKn

}
γnη∗1 , (A.6)

for type IIB.

The relations above can be put in a slightly different form, which is sometimes more

convenient, by making use of the identites:

γmη1 = − i

2
ωmnγnη2 + Kmη∗2

= −iJ̃mnγnη1 + Kmη∗2 (A.7)

and

γmη2 = − i

2
ω∗

mnγnη1 − Kmη∗1

= iJ̃mnγnη2 − Kmη∗1 , (A.8)

which follow from the formulæ of [16]. Taking the above into account we rewrite (A.1), (A.2)

equivalently as:

Hη1 =
i

3
(−h∗

2η
∗
1 + h∗

3η
∗
2)

Hη2 =
i

3
(h∗

3η
∗
1 + h∗

1η
∗
2) (A.9)

and

Hmη1 =
i

6
(h3Kmη1 + h1Kmη2 − h∗

2γmη∗1 + h∗
3γmη∗2)

Hmη2 =
i

6
(h2Kmη1 − h3Kmη2 + h∗

3γmη∗1 + h∗
1γmη∗2) , (A.10)

and similarly for (A.3)–(A.6).

B Tensor decompositions

For the tensor decompositions of the various fields with respect to the local SU(2) structure

we follow closely [16], to which the reader is referred for further details. In the case of the

scalar ansatz the various formulæ simplify considerably, and are listed in eqs. (2.12)–(2.14).

In terms of the local SU(2) structure, the form fields decompose in general as follows.

Two-form

eφFmn = fmn + f[mKn] + f∗
[mK∗

n] + if1K[mK∗
n] , (B.1)
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with

Kifim = Kifi = K∗ifi = 0 , (B.2)

where f1 is real. We further decompose

fmn = f̃mn +
1

8
ωmnf2 +

1

8
ω∗

mnf∗
2 +

1

4
J̃mnf3 , (B.3)

where f̃mn is (1, 1) and traceless with respect to J̃mn, i.e. it transforms in the 3 of SU(2).

The scalar f2 is complex whereas f3 is real. Moreover,

fm = −1

4
ωm

if̃1i −
1

4
ω∗

m
if̃2i, (B.4)

where (Π−)m
nf̃1n = (Π+)m

nf̃2n = 0. i.e. f̃1i transforms in the 2 of SU(2) whereas f̃2i

transforms in the 2̄.

Three-form

Hmnp = hmnp + h[mnKp] + h∗
[mnK∗

p] + ih[mKnK∗
p] , (B.5)

with

Kihimn = Kihim = K∗ihim = Kihi = 0 , (B.6)

where hm is real and hmn is complex. We further decompose

hmnp = − 3

32
ω∗

[mnωp]
ih̃1i −

3

32
ω[mnω∗

p]
ih̃∗

1i, (B.7)

where (Π−)m
nh̃1n = 0. Moreover

hmn = h̃mn +
1

8
ωmnh1 +

1

8
ω∗

mnh2 +
1

4
J̃mnh3 , (B.8)

where h̃mn is complex and (1, 1) and traceless with respect to ωmn. The scalars h1,2,3 are

complex. Finally,

hm = −1

4
ωm

ih̃2i −
1

4
ω∗

m
ih̃∗

2i, (B.9)

where (Π−)m
nh̃2n = 0.

Four-form

eφFmnpq = gmnpq + g[mnpKq] + g∗[mnpK
∗
q] + ig[mnKpK

∗
q] , (B.10)

with

Kigimnp = Kigimn = K∗igimn = Kigim = 0 , (B.11)

where gmnpq, gmn are real and gmnp is complex. We further decompose

gmnpq =
3

8
ω[mnωpq]g1, (B.12)
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where the scalar g1 is real. Moreover

gmnp = − 3

32
ω∗

[mnωp]
ig̃1i −

3

32
ω[mnω∗

p]
ig̃2i, (B.13)

where (Π−)m
ng̃1n = (Π+)m

ng̃2n = 0. Finally,

gmn = g̃mn +
1

8
ωmng2 +

1

8
ω∗

mng∗2 +
1

4
J̃mng3 , (B.14)

where g̃mn is real and it is traceless with respect to ωmn. The scalar g2 is complex whereas

g3 is real.

Six-form

eφFmnpqrs = fεmnpqrs . (B.15)

For the tensor decompositions in IIB one proceeds in an analogous fashion.

C Local SU(2) structure

This appendix contains details of the derivation of eqs. (2.26). Moreover, at the end of the

section we give the torsion classes of the SU(3) structure specified by (J (1),Ω(1)). A similar

computation could be used to derive the torsion classes of the SU(3) structure specified by

(J (2),Ω(2)).

Plugging the tensor decompositions (2.12)–(2.14) into the differential equations (2.6),

taking the formulæ in appendix A into account, we obtain:

∇mη1 = − ∂m log a η1

+ {Km(K)1 + K∗
m(K∗)1} η1

+
{
J̃mn(J̃)1 + ωmn(ω)1 + K∗

mKn(K∗K)1 + KmKn(KK)1

}
γnη∗1 (C.1)

and

∇mη2 =
c

b
∂m log

a

c
η1 − ∂m log b η2

+ {Km(K)2 + K∗
m(K∗)2} η1

+
{

J̃mn(J̃)2 + ωmn(ω)2 + K∗
mKn(K∗K)2 + KmKn(KK)2

}
γnη∗1 , (C.2)

where

(K)1 := − i

24
h3

(K∗)1 := − i

24
h∗

3 +
b

8a

(
if + if1 +

i

2
f3 −

1

8
g1 −

1

12
g3 + f0

)
+

c∗

8a

(
− i

2
f∗
2 +

1

12
g∗2

)

(J̃)1 := − 1

24
h∗

2 +
c∗

8a

(
f1 − f + if0 +

i

8
g1

)

(ω)1 :=
1

48
h∗

3 +
b

16a

(
f1 − f + if0 +

i

8
g1

)

(K∗K)1 := +
i

48
h∗

2 +
b

8a

(
− i

4
f2 +

1

24
g2

)
+

c∗

16a

(
if + if1 −

i

2
f3 −

1

8
g1 +

1

12
g3 + f0

)

(KK)1 :=
i

48
h1 (C.3)
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and

(K)2 :=
i

24
h2 +

ic

12b
h3

(K∗)2 :=
i

24
h∗

1 +
ic

12b
h∗

3 −
c

8a

(
if + if1 +

i

2
f3 −

1

8
g1 −

1

12
g3 + f0

)

+
|c|2
8ab

(
i

2
f∗
2 − 1

12
g∗2

)
− a

8b

(
i

2
f∗
2 +

1

12
g∗2

)

(J̃)2 :=
c

12b
h∗

2 −
1

24
h∗

3 −
|c|2
8ab

(
f1 − f + if0 +

i

8
g1

)
− a

8b

(
f − f1 + if0 +

i

8
g1

)

(ω)2 := − 1

48
h∗

1 −
c

24b
h∗

3 −
c

16a

(
f1 − f + if0 +

i

8
g1

)

(K∗K)2 :=
i

48
h∗

3−
ic

24b
h∗

2−
c

8a

(
− i

4
f2+

1

24
g2

)
− |c|2

16ab

(
if + if1−

i

2
f3−

1

8
g1+

1

12
g3+ f0

)

+
a

16b

(
if + if1 −

i

2
f3 +

1

8
g1 −

1

12
g3 − f0

)

(KK)2 := − ic

24b
h1 +

i

48
h3 (C.4)

for type IIA. Similarly for IIB we have:

(K)1 := − i

24
h3 −

ib

24a
f2 −

c

4a

(
g1 + ig2 +

i

6
f3

)

(K∗)1 := − i

24
h∗

3

(J̃)1 := − 1

24
h∗

2 +
b

4a
(g∗2 − ig∗1)

(ω)1 :=
1

48
h∗

3 −
c

8a
(g∗2 − ig∗1)

(K∗K)1 :=
i

48
h∗

2

(KK)1 :=
i

48
h1 +

b

8a

(
g1 + ig2 −

i

6
f3

)
+

ic

48a
f1 (C.5)

and

(K)2 :=
i

24
h2 +

ic

12b
h3 +

ic

24a
f2 +

c2 + a2

4ab
(g1 + ig2) +

i(c2 − a2)

24ab
f3

(K∗)2 :=
i

24
h∗

1 +
ic

12b
h∗

3

(J̃)2 :=
c

12b
h∗

2 −
1

24
h∗

3 −
c

4a
(g∗2 − ig∗1)

(ω)2 := − 1

48
h∗

1 −
c

24b
h∗

3 +
c2 + a2

8ab
(g∗2 − ig∗1)

(K∗K)2 :=
i

48
h∗

3 −
ic

24b
h∗

2

(KK)2 := − ic

24b
h1 +

i

48
h3 −

c

8a

(
g1 + ig2 −

i

6
f3

)
− i(c2 − a2)

48ab
f1 . (C.6)
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It is now straightforward to read off the action of the exterior differential on the local

structure. Plugging eqs. (C.1), (C.2) into the definitions (2.8), (2.9), (2.11), taking (2.10)

into account, we find:

dK =K∗ ∧ K

{
(K∗)1 − 2(K∗K)2 −

1

2
K · ∂ log(ab)

}

+ ω {−4(ω)2} + ω∗
{
2(J̃)1

}
+ J̃

{
−2(J̃)2 − 4(ω)1

}
. (C.7)

dJ̃ =K ∧ ω
{
−2(K∗K)∗1 − i(J̃)∗1

}
+ K ∧ ω∗ {−2(KK)1 − 2i(ω)∗2}

+ K ∧ J̃
{

(K)1 + (K∗)∗1 + 2i(ω)∗1 − i(J̃)∗2 − K∗ · ∂ log a
}

+ c.c . (C.8)

dω =K ∧ J̃

{
2(KK)1 + (K∗)∗2 + 4i(ω)∗2 −

c∗

2b
K∗ · ∂ log

c∗

a

}

+ K∗ ∧ J̃

{
2(K∗K)1 + (K)∗2 − 2i(J̃)1 −

c∗

2b
K · ∂ log

c∗

a

}

+ K ∧ ω

{
(K)1 − 2(K∗K)∗2 − 2i(J̃)∗2 −

1

2
K∗ · ∂ log(ab)

}

+ K∗ ∧ ω

{
(K∗)1 − 2(KK)∗2 − 4i(ω)1 −

1

2
K · ∂ log(ab)

}
. (C.9)

The content of the three equations above is exactly equivalent to the content of the spinorial

equations (C.1), (C.2). Moreover we have:

dJ (1) =K ∧ ω
{
−2(K∗K)∗1 − 2i(J̃)∗1

}
+ K ∧ ω∗ {−2(KK)1}

+ K ∧ J̃ {(K)1 + (K∗)∗1 + 4i(ω)∗1 − K∗ · ∂ log a} + c.c . (C.10)

dΩ(1) =K∗ ∧ K ∧ J̃
{
−4i(K∗K)1 − 2(J̃)1

}

+ K∗ ∧ Ω(1) {2(K∗)1 − 4i(ω)1 − K · ∂ log a} + J̃ ∧ J̃
{
−4i(J̃)1

}
. (C.11)

dJ (2) =K ∧ ω
{

(K)2 −
c

2b
K∗ · ∂ log

c

a

}
+ K ∧ ω∗

{
(K∗)∗2 + 4i(ω)∗2 −

c∗

2b
K∗ · ∂ log

c∗

a

}

+ K ∧ J̃
{
2(KK)2 + 2(K∗K)∗2 + 2i(J̃)∗2 + K∗ · ∂ log b

}
+ c.c . (C.12)

dΩ(2) =K∗ ∧ K ∧ J̃

{
2i(K∗)2 + 4(ω)2 −

ic

b
K · ∂ log

c

a

}

+ K∗ ∧ K ∧ ω∗
{
−4i(K∗K)2 − 2(J̃)2 − iK · ∂ log b

}
+ J̃ ∧ J̃ {−8i(ω)2} . (C.13)

It is also useful to define:

Ω̃mnp := η2γmnpη1 , (C.14)

so that:

Ω̃ = iJ̃ ∧ K . (C.15)
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We find:

dΩ̃ =K∗ ∧ K ∧ J̃

{
i(K∗)1 − 2i(K∗K)2 + 2(ω)1 − (J̃)2 −

i

2
K · ∂ log(ab)

}

+ K∗ ∧ Ω(1)
{
(K∗)2 − 2i(ω)2 −

c

2b
K · ∂ log

c

a

}

+ J̃ ∧ J̃
{
−4i(ω)1 − 2i(J̃)2

}
+ K∗ ∧ K ∧ ω∗

{
−2i(K∗K)1 − (J̃)1

}
. (C.16)

One can perform several consistency checks of these expressions. For example, dΩ(1) can be

computed in two different ways: either directly by plugging eq. (C.1) into definition (2.8),

or by plugging the expressions for dω, dK above into dΩ(1) = −idω ∧ K − iω ∧ dK, which

follows from eq. (2.10). In order to perform these consistency checks, it is useful to take

the following equations into account:

(K)1 + (K∗)∗1 = K∗ · ∂ log a

(K∗K)2 + (KK)∗2 = −1

2
K · ∂ log b

(K∗)2 − 2(KK)∗1 =
c

2b
K · ∂ log

c

a

(K)2 − 2(K∗K)∗1 =
c

2b
K∗ · ∂ log

c

a

d log
|c|
a

= − b2

|c|2 d log
b

a
. (C.17)

The first four equations above can be shown to be equivalent to LK(η†i ηj) = LK∗(η†i ηj) = 0,

for i, j = 1, 2, once (C.1), (C.2) are taken into account. The last relation follows from (2.22).

Alternatively, eqs. (C.17) can be derived directly from the solution (2.15), (2.22) and the

constraints (2.16) in IIA, and similarly in IIB.

Torsion classes. As discussed in some detail in section 2, each of the two spinors θ1,2 can

be used to define an SU(3) structure on M6. On the other hand, for an SU(3)-structure

manifold, the torsion classes are defined via:

dJ =
3i

4
(W1Ω

∗ −W∗
1Ω) + W3 + W4 ∧ J

dΩ = W1J ∧ J + W2 ∧ J + W∗
5 ∧ Ω . (C.18)

In particular, the torsion classes corresponding to the SU(3) structure (J (1),Ω(1)) can be

read off by comparing the above with (C.10), (C.11), taking (C.17) into account:

W1 = −8i

3

{
(J̃)1 + i(K∗K)1

}

W2 = −4i

3

(
J (1) − 3i

2
K ∧ K∗

){
(J̃)1 − 2i(K∗K)1

}

W3 = K ∧ ω∗ {−2(KK)1} + c.c.

W4 = K {4i(ω)∗1} + c.c.

W5 = K {(K∗)∗1 − (K)1 + 4i(ω)∗1} .

(C.19)
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M Hol(C(M7)) N
Weak G2 Spin(7) 1

Sasaki-Einstein SU(4) 2

tri-Sasaki Sp(2) 3

S7 1 8

Table 1. List of seven-dimensional Einstein manifolds M7, the holonomy of the corresponding

eight-dimensional cones and the number of preserved supersymmetries in four dimensions.

We see that W5 is proportional to K. Moreover, in the IIA case, taking (2.15), (C.3) into

account we find that W4 is exact: W4 = d(φ − 3A). Therefore W4 can be removed by a

conformal rescaling of the internal metric: ds2
6 → e3A−φds2

6.

D Sasaki-Einstein

There is a well-known class of eleven-dimensional supergravity solutions of the form AdS4×
M7, where M7 is a seven-dimensional Einstein manifold. Specifically, the eleven - dimen-

sional metric is given by

ds2 = ds2(AdS4) + ds2(M7) , (D.1)

while the four-form flux is of Freund-Rubin type: G4 ∝ vol4, where vol4 is the volume form

of AdS4. In addition, the manifold M7 has the property that the cone over it, C(M7),

is an eight-dimensional manifold of special holonomy. The supersymmetry preserved by

the solution depends on the holonomy of C(M7). Table 1 lists the type of the seven-

dimensional Einstein manifold M7, the holonomy of the cone over it, Hol(C(M7)), as well

as the number of preserved supersymmetries, N , in four dimensions.

We will now specialize to the case where Hol(C(M7)) is a subgroup of SU(4), i.e.

the eight-dimensional cone is Calabi-Yau. Equivalently, we will take M7 to be Sasaki-

Einstein (which includes the S7 and the tri-Sasaki as special cases). The manifold M7 can

then be thought of as the total space of a fibre bundle with connection one-form A on a

six-dimensional base-space M6,

ds2(M7) = (dy + A)2 + ds2(M6) , (D.2)

where ds2(M6) is a local Kähler-Einstein metric and y is the coordinate on the fibre. The

Killing vector ∂y is the so-called ‘Reeb vector’. If the orbits of the Reeb vector are closed

and the U(1) action is free, M7 is regular and M6 is globally a manifold. One can define

a local SU(3) structure on M6 specified by a Kähler form J and a complex three-form Ω,

such that dA = 2J and dΩ = 4iA∧Ω. Note, however, that globally the structure group of

M6 is not SU(3) but rather U(3), since Ω is not globally defined in general.

A useful property of odd-dimensional, simply-connected Sasaki-Einstein manifolds is

that they admit at least two Killing spinors. In the seven-dimensional case, it was shown

in [28] that, under certain regularity assumptions, the converse is also true: any pair of
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(real) Killing spinors defines a Sasaki-Einstein structure on M7. Moreover, there is a one-

to-one correspondence between triplets of Killing spinors and tri-Sasaki structures on M7.
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