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ABSTRACT

The grand tour is a method for viewing multivariate statistical data
via orthogonal projections onto a sequence of tuo-dimensional subspaces.
The sequence of subspaces is chosen so that it is dense in the set of all

two-dimensional subspaces. Desirable properties of such sequences of
subspaces are considered, and several specific types of sequences are
tested for rapidity of becoming dense. Tabulations are provided of the
minimum tength of a grand tour sequence necessary to achieve various

degrees of denseness in dimensions up to 20.

(Submitted to SIAM J. Scientific and Statistical Computing)

*Work supported by the Department of Energy under contracts DE-
AC03-76S5F00515 and DE-AT03-81-ER10843.



The Grand Tour
A Tool for Viewing Multidimensional Data

1. - Introduction

The familiar "scatterplot™ (of - a finite sample of ordered pairs of
‘variables) can be extraordinarily informative. Thus, it is very tempting
to consider the p-dimensional scatterplot -~ a finite sample of ordered

p-tuples of variables -- and to devise ways to view it.

Even for p=3, ue have no magic pen that draus points in mid-air.
Resorting to computer graphics [FFT], however, will permit us to see the
3-dimensional scatterplot on a display screen just as if the points uwere
drawn in mid-air. With the aid of a graphical input device like a

"trackballi"™, we may even rotate the scatterplot in real time.

For p greater than 3, ue are faced with serious problems. How can
computer graphics technology be used, 1in conjunction with our visual

Vabilities, to better grasp the structure of the p-dimensional data?

A simple answer to this question is to project the data orthogonally
onto some 2-dimensional subspace of p-dimensional Euclidean space, and

then to view the resulting projected image.

A problem immediately arises: Which of the infinitely many
2-dimensional subspaces shall ue choose for viewing? The idea of the
grand tour is to move through a sequence of projections, chosen to be
dense in the set of all projections. As a result, wue can view (or else
have the computer apply some analysis or measurement to) a sequence of

2-dimensional scatterplots which, asymptotically, come arbitrarily close



to all 2-dimensional scatterplots projectable from the biven data.

Historically, the grand tour 1is a descendant of the Andrewus plot
[Andr] uhich dates to 1972. This plot is often realized as a stationary
set of function graphs y=f;(t) where f;(t) = x1/J§-+'xz gint + x3 cost +
Xy sin2t + xg cos2t + ... for the ith data point (X4,X2,X3,...,Xp). This
can, houwever, be interpreted also as a time-sequence {f,(t),...,fy(t)} of
points in R, where at time to Me are viewing the dot-products of all the
" data points with the vector given by (IIJET sintg, costyp, sin2ty,

cos2tg,...).

Then, in 1977, Paul and John Tukey [TT77] presented some further
thoughts on Andreus plots, including an example of a dense curve of
directions in R". They also considered briefly a two-dimensional (not
necessarily dense) version of Andrews plots which they called "ouija"

plots.

Meanwhile, real-time computer graphical visualization of three-
dimensional (or higher) rotation had been achieved when the PRIM-8 system
was. implemented at the Stanford Linear Accelerator Center in the early

1970’s [FFT].
2. Qverview

In order to implement a grand tour on a computer graphics system, it
is necessary to héve an explicitly computable sequence of orthonormal
2-frames (a 2-frame is an orthonormal pair of vectors) in p~dimensional
tuclidean space. The p-dimensional data is then projected, in turn, onto

the 2-plane¥* spanned by each 2-{frame. I1f desired, each projected image



may be displayed on the screen, or else processed somehow by the computer
(or both). MWe list belou some desiderata for this sequence of 2-frames:

Desiderata

A) The sequence of planes should be dense in the space of all planes.
_Precisely, let G2,p stand for the space of unoriented 2-planes through
the origin in Euclidean p-space (a so-called "Grassmannian manifold"™).
Let P4,P2,... be the infinite sequence of 2-planes (spanned by the
infinite sequence of 2-frames generating the grand tour). Then our
condition A says that for every 2-plane P and for every €>0, there
exists an n such that the distance d(P,Pn) from P to P, is less than
€. (Our definition of the distance function d is in Section 4.) Note

that this denseness is not just a desideratum, but part of our

definition of "grand tour®™.

¥NOTE: Unless othernise specified, all "planes™ referred to herein will
be planes through the origin.



B) Qur sequence of planes should become dense in Gi;p rapidly. This
means finding an efficient algorithm to compute the sequence of
2-frames and to project the p-dimensional date onto each pair of
vectors in turn.

C) It would be useful *or tﬁe-sequence of ;]an;s t; be uniformly
distributed in 62,p. That is to say, for each open measurable
subset A of Gz,p: our sequence of planes P4,P2... should pass
through A uwith frequency proportional to the measure of A. We
refer here to the invariant measure p on G62,p (which is uniquely
determined up to a positive constant factor). Precisely, uwe wuant

1 n
lim — ¥ Ia(P{) = u(A),
n> n i=1
where I, is the characteristic function of the set A.

D) Our sequence of planes should be'continuous, in some sense, if its
projections are to be apprehended by a human observer. Each plane
should be perceptibly close to those planes just before and after
it in the sequence. (This condition is of no importance in many
applications of the grand tour in uwhich no human observin§ occurs.)

E) For human observers, our sequence of planes should be as straight

as possible. That is, 1if we think of the planes as being evenly-

spaced points on a curve in Gz,p,» then we should be able to choose
that curve so that it is almost a geodesic. This is another way of
assuring that the sequence of planes 1is both comprehensible to the
observer, and also that it moves rapidly to new viewms, giving neu

information about the data being projected.

F) The grand tour ought to have a built-in degree of flexibility about



it. This would enable the user to better optim{ée those qualities
(among A) through E), for examplie) wuwhich may be important for the
particular purpose he or she has 1in mind. Flexibility may be

obtained by finding a parametric family of sequences of planes.

o - —-—

~ There should then be some clear relationship betueen the

G)

parameter(s) and the desired properties, so that the wuser can
choose the parameter(s) wisely. It should also be possible to
interactively change parameters after the grand tour has begun.

The sequence of planes should be reconstructible at any Tlater
occasion. In practice, this simply means that either the sequence
of planes is chosen from a parametric family with parameters knoun
to the user, or else there may be a pseudo-random component whose
random number algorithm(s) and seeds(s) are knoun. It is, of
course, desirable that in reconstructing a particular plane of our
sequence, the other planes preceding it need not be computed all

over again.

Remarks

R1. To require bona fide denseness of the infinite séquence of
planes Py>P2... is unnecessary for any real-world
implementation of the grand tour. In particular, if we know in
advance the number L of planes P4,P2,...,PL We Will be using,
we can dispense entirely with the idea of an infinite sequence.
We may also be able to better optimize the seven properties A}
through G) once L is knoun.

R2. If the method for producing the sequence P4,Pz,... 1is based on

some random process, #e uWill generally be able to claim



R3.

R4.

R5.

R6.

properties such as denseness or uniformity as being "almost
sure™ rather than certain. (But this 1is almost surely
sufficient for our purposes!)

There is evidently a tradeoff between rapidity and continuity.

o - -

_This suggests using a curve of points in G2,p, and obtaining a

sequence P4,P2,... by walking along this curve after choosing
an appropriate stepsize. The human observer, of course,
desires continuity. A machine alone, processing many planes,
will rather need rapidity.

To date, the knoun sequences P;,P2,... that are both uniform
and rapid require sequence of pseudo-random numbers to compute
them. Thus to achieve reconstructability the algorithm and
seed value of the pseudo-random sequence must be retained.
Minor violations of uniformity are acceptable for the human
observer. Strict uniformity is needed only when the computer
is determining distributional properties of some statistic of
2-dimensional scatterplots (see Section 5).

In all of the above, ue have emphasized the choice df 2-planes
Py>P2,5... . In practice, houwever, when displaying a
2-dimensional picture we must also choose its rotational
position on the screen. This 1is accomplished by choosing not
just a mere plane P; but rather a pair of orthonormal vectors
(Vi,u;) spanning P; : these are to be identified with the X and
Y directions of the display screen. Even when no display is
required, the computer musj still hold internally a description

of each plane Pj. The "2-frame™ (V;,W;) 1is a convenient form



for this information.

3. Some Specific trand Tours

In
tours.

1.

*Real

this section, ue present three general methods for producing grand
The Torus Method

The N-dimensional torus TN may be defined as the Cartesian product
of N identical unit circles. Equivalently, TN may be thought of as
Euclidean space RN in which all arithmetic is performed modulo one.
Symbolically, TN « RN/(21ZN) uhere ZzN is the integer lattice in RN.
It is well-knoun that dense curves may be found on TN via the
following

Proposition. [HWTN] Let {XA4,...,AN)} be a set of real numbers that
are linearly independent over the integers.* Then the curve

@ : R=> TN via a(t) = (Aqt,...,Ant) has dense image in TN, (Note
that the coordinates A;t are interpreted modulo 2n.)

The special orthogonal group in dimension p, denoted S0(p), is the
set of all orthogonal pxp matrices having determinant = +1. S8(p)
has a topology induced from RP?, the space of all real pxp
matrices, and is in this way a compact manifold of dimension f(p?-
p). S0(p) may equivalently be thought of as the space of all
rotations of the unit sphere in RP. (As such, it is a "Lie group™

[Chev].)

numbers wu4,...,UN are said to be linearly independent over the

ianQers if the only sequence of integers {K4,...,Kny} for which the

equati
N

aon

¥ Ksu; = 0 holds is with all K; = 0.

i=1



We let R;;(8) denote the element of S0(p) wuhich rotates the
standard basis vector &; through an angle 6 towards the standard
basis vector 35 inside the i,j coordinate 2-plane of RP, leaving
fixed the orthogonal complement of this 2-plane.

We let 62,p denote the space of all 2-planes in RP. MKe also let
Vz2,p denote the space of all ordered pairs of orthonoermal vectors
in RP. (V2,p is topologized as a subset of RP x RP and is
compact.) MWe have the natural continuous surjections w : S0(p) =
Vzopand p : Va,p > G62,p given by w(Q) = (Q€y, Qez) for any
Q € SO(p), and p(V,d) = the 2-plane spanned by V and ¥, for any
(V,U) € Vz,p.

We are now ready to describe explicitly the torus method.

1. Let N = }(p2-p) and think of the coordinates of TN as being
indexed by all pairs i,j with 1 ¢ i ¢ j ¢ p.

2. Define amap f : TN » S0(p) via

F(X1,25...5%Xp-1,p) T Re2(Xq,2) °...° Rp-1q,p(Xp-1,p).

In words: ¥ is the product of coordinate-plane rotations through

angles determined by the toral coordinates. [Note: each xjij; is

only well-defined modulo 2w, but since R;;(6 + 27) = R;5;(8), f

is well-defined.]

3. We claim that f 1is a surjection. This fact was 1in essence
discovered by L. Euler [MMCM]; the angles {x;j} are referred to
as "Euler angles.™

4. Choose real numbers A3,...,AN and a stepsize STEP such that the
numbers {2w,STEP-A4,...,STEP-Ay} are linearly independent over

the integers. Use Aq,...,AN to define the curve a:R > TN via



a(t) = (A4t,...>Ant) as in Proposition 1. fhus, we know that
the image a(R) of « is dense in TN,
We conclude, therefore, that fea:R - S0(p) has dense image

f(a(R)) in SO(p).

— - -

6. The discrete sequence {foa(K-STEP), K=1,2,...} must therefore

also be dense in SO0(p).

. Finally, we define our sequence of 2-frames (Vy,wk) as (Vk,uk) =

nofoa(K-STEP), K=1,2,... . By 6 above, this sequence must be
dense in V;,p.

We define our sequence of 2-planes P4,P2,... as, of course,

Pk = p(Vk,Wk) = pemofoa(K-STEP).

It follows from 7 above that this sequence is dense in 62, p.
This concludes our description of how to compute a grand tour by

the torus method.

Remarks

R1.

The number N, the dimension of the torus used here, can be
reduced from (pZ-p) to 2p-3 (see Appendix). The resulting
sequence of orthogonal matrices will no longer bé dense in
S0(p) but will be dense when pushed via w and p into Vz,, and
62,p- . This reduction achieves a considerable savings in
computation time.

The sequence given by 2x = (K-STEP-Aq,...,K-STEP-AN)eTN s
uniformly distributed on TN,  But the maps ¥, W, and p do not
respect volumes. Thus, the sequences of 2-frames {(Vk,Hk)} and
planes {Px} are not uniformly distributed. This remark applies

equally to the 2p-3 version in the Appendix.
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R3. The parameter STEP may be varied before, or>éven during, each
run of the grand tour. The effect of increasing the size of
STEP is to trade confinuity for rapidity. More accurately,
this is true for some range of values 0 ¢ STEP ¢ M, after which

_there is very little noticeable effect of STEP on either
continuity (which is totally lost) or rapidity (uhich is at a
maximal level).

R4. Although it is convenient to fix the values of A4,...,AN and
vary STEP, it is in fact the vector X = (STEP-A4,...,STEP-ay)
in the torus TN which determines the characteristics of the
grand tour, torus method. If the total number L of planes to
be used is known, then Korobov [MCTP] has determined vectors X
which behave optimally vis-a-vis the distribution of the
sequence X, 2°X, 3:X,... in TN, It seems likely that Korobov
coefficients uwill give rise to sequences of 2-frames and
2-planes wuwhich become dense rapidly, but their use is
restricted to occasions wuhen L is known in advance.
Alternatively, some easy-to-compute values of X seém to work
very uwell. For example, two choices are

a) Let Ak = JpK =  the square root of the Kth prime
(p1=2,p2=3,...). Let STEP = almost any irrational positive
real.

b) Let Ag = eX mod 1 (e=2.71828...) and again let STEP = almost

_ any irrational positive real.

I1.At-Random Method

In this method, each 2-frame is chosen independently, from the
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"uniform” distribution on V2, . This distribution is more
accurately termed the ™invariant™ measure on V3, because it is
characterized up to constant factor by 1its invariance under the
action of S0(p) on Vz,p. That is, if QeS0(p) and A—Fvvz,p) then ue
~ have for the invariant measure m,

m(A) = m{(QV, Q| (V,d)eA}

To pick the sequence {{Vk,ux)} of 2-frames, ue use the "rejection”

method as follous:

1. Generate a sequence of pseudorandom numbers Xx4,Xz2... in the unit
interval.

2. Set yq = 2x4-1, y2 = 2x2-1,..

3. Assume ue have already used the random numbers y4,...,¥n (at the
start n=0). Set z2; = yn+si for i=1,...,p.

4. Test for 0 ¢ 224 + ... + 2%, ¢ 1.0. 1¥ not, return to Step 3
and try again.

5. Go through step 3 again until a second set of p numbers are
found (call them uy4,...,up this time) with 0 C u2y + ... + u?, ¢
1.0. |

6. Letting Z = (24,...,2p) and U = (uq,...,up), apply the Gram-
Schmidt procedure to obtain an orthonormal pair of vectors
v = 2/]12|| and

U - UV

ﬁK= .
e - @-viovel |

These constitute the next 2-frame (Vk,Wk) of our sequence. It
is easy to verify that despite the apparent asymmetry in the use

of the Gram-Schmidt procedure, (Vk,wk) is in fact selected at
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random from the invariant distribution.

7. 1t tollous immediately that the corresponding sequence of planes
Pk = (Vk,HWg> may be‘thought of as being selected from the
corresponding invariant distribution on 63, p.

~ Remarks
R1. The at-random method has in its favor the extreme ease of
concept and computation. It is too discontinuous (totaliy) for
movie viewing. (This is, of course, no problem if the vieuer
prefers to see only a sequence of still pictures.)

R2. The at-random method will produce, almost surely, a uniformly

distributed sequence.

=

There is no flexibility in the at-random method.
R4. The at-random method becomes dense about as fast as the torus
method with large stepsize.
IITI.Random-Walk Method
The random-ualk method was devised in an attempt to unite the
flexibility of the torus method with the guaranteed uniform
distribution of the at-random method. We describe. here tuo
methods, the plan random walk and the smoother random walk.
A. The Plain Random Walk
Let @ denote a measure on SO0(p) satistying the follouing
condition:
Condition D: The support of p (i.e., the complement of the
union of all open p-null sets) generates a dense subgroup of
S0(p). Then uwe obtain a sequence of orthogonal matrices

Qg € SO0(p) as follous:
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1. Set Q¢ = Ip, the identity matrix

2. For K=1,2,... wue let g4,92... be selected i.i.d.,
according to the law p, from S0(p).

3. For K=1,2,... we set Qx = gk°Qx-1
To nou obtain our 2-frames and 2-planes, uwe proceed as
usual.

4. (Vg uKk) = w(Qg) = (Qge4,Qxez)

5. Pk = p(Vk,uk) = (Qxe1,Qxe2>. (&5 is the ith canonical

basis vector in RP.)

Remarks

Rt.

As a concrete example of an appropriate measure p, ue take a
discrete u concentrated on the finite set of rotations
supp(pn) = {R;;(A53) | 1€i<j¢p}, wuhere {A;; | 1<i¢isp} U {1}
is a set of real numbers linearly independent over the
integers. We simply set

2

r(R;i;(A55)) =
pZ-p

for all i,j with 1€i¢i¢p. We shall denote p by U{kijtkij)}.
By our discussion of the torus method, it is eay to see that
supp(p) generates a dense subgroup of SO0(p). Thus, Condition
D is satisfied by .

As long as p22, Condition D guarantees that the distribution
of Qg (the position of the random walk at time K) approaches
the invariant distribution on S0(p). Precisely,

Tim u*" = invariant measure
n->w

where p*" denotes the nth convolution power of p with itsel¥,
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and the limit is understood in the sense ofAheak convergence
[MAGL].  (Note: the invariant measure on S0(p) 1is what is
sometimes referred to as the Haar measure.)

The random walk achieves its flexibility through the available
choice of measures p satisfying Condition D. By using such a
measure with supp(p) lying close to I, we may maintain a slou

rate of change in the sequences of rotations, 2-frames, and

2-planes, and thus a high degree of continuity.

R4. The use of a measure U{R;3(A;3)}, as described in R1 above,

has the following drawback. Regardless of the choice of
parameters A5, 1 £ i ¢ j £ p, the resulting random walk will
be as unstraight as can be. Thus, the human viewer may
experience disorientation in attempting to followu the
resulting sequence of scatterplots. To remedy this, we hereby
propose the use of the following type of measure p.
The Smoother Random MWalk

For convenience, uWe first introduce the size of an orthogonal

matrix MeS0(p) as follous:

size(M) = max {angle (V,MV)}
v#l

(nhere ahgle is always chosen to lie between 0° and 180°).
Now pick any orthogonal matrix Q having size(Q) = ¢ uwhere € is
small. Also, pick a set of numbers A3, 1 € i ¢ j £ p, such
that {Rij|1$i<j5p} U {1} 1is linearly independent over the
integers. Also, have the A;; satisfy

& C 255 €26, 1¢icCj¢p

for some & > 0 satisfying 6 ( € (6 2 €2 seems to work well).
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Finally, we define g to be

2
n(QeR;i;(A55)) = » 1 €9 Cj£p
p?-p

on supp(p) = {Qogij(kij) | 1<$€4 ¢3¢ g}. _ﬂue denote p by
_U{QeR;;(A55)).

It is easy to verity that this p satifies Condition D) above

and thus, as long as p22, p¥*¥" - invariant measure on S0(p) as

n - o, The smaller the choice of ¢, the smoother the grand

tour will turn out to be.

4. Jesting of Grand Tours

In order to assess the suitability of a grand tour for a specific
application, we need to perform statistical tests on it. Tuo
characteristics of particular concern to us are the rapidity with which a
sequence of 2-planes becomes dense, and the asymptotic uniformity of the
Ii6iting distribution, if any. For each of these characteristics, there
is a multitude of possible choices of how to measure them. We have
chosen one test that we feel uell measures the most .important

characteristic.

Rapidity. Here we rely on the follouing:

Fact: Given two 2-planes P, Q € 62,p, the relative position of P and

@ in RP is described by tuo angles 64, 6, wWith 0£684¢6;%n/2.
Precisely, there exists a rotation M € S0(p) such that M(P) =

<(&41,82> and M(Q) = (cosBieq + sinbBie3, cosbre, + sinB,ey).

The cosines of 84 and 8, are the correlations encountered in canonical
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correlation analysis. Thus, uwe use the terminology "canonical angles”

for 84 and 9.

We define the distance between P and Q as the larger canonical angle:

d(P,Q) = 8,. (It may happen that 6y = 6;,.) -~ -

Now let S = {P4,...,Pn} be a finite set of planes. Then ue define the

gap of S via
gap(S) = max min {d(P,P;)} .
PeG2, p 1€i¢&n

(We are justified 1in using "min™ and "max" rather than "inf"™ and "sup®
since n is finite and 62,p is compact.)
Let us define the e€-neighborhood of a plane P, to be

Def. Ne(Po) = {P€Gy,p|d(P,Po)<e}.

The number € will be called the radius of N (Py). In terms of this

definition, it is clear that gap(S) is the radius of the largest
neighborhood 1in 6;,p which lies in the complement of the set S of
"planes:
gap(S) = sup{e)0|3 Po€ G2,p 3 Ne(Po) © G2,p - SI.
or éxpressed yet another way,
. n
gap(S) = inf{eX0]6z2,p = U Ne(P{)}.
i=1
We now use this last equation to establish louwer bounds for n=n(e), where

nle) is the smallest number of planes needed to have gap ¢ €. Namely,

G2,p = Ne(P;) (except for a set of measure 0)

na<s

i=1

and so
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n
vol(G2,p) € ¥ vol(Ne(P;))
i=1
where "vol"™ stands for the invariant (Haar) measure on G2, p. By
invariance, vol(N¢(P;)) is independent of i, so

vol(62,p) € n-vol(Ng(Py))

uhere P, is, let us say, (84,8,).

Thus
vol (G2, p)
n =n(¢) 2 —— or
vol (Ne(Pg))
n(e) 2 [Prob(d(P,Py) < €]
where P € 63, is distributed according to the invariant measure.
It can be shown [Hote] that the canonical angles 64y, 6, betueen P and Po
have joint density function given by the folloming:
(p-2)(p-3)(sinBq-5inB2)P " (sin20;-5in264), 0£64¢6,¢n/2
0, otheruise.

f(684,62) = {

It p=3, we have 69 = 0 always, and 8, has density given by g(6;)=8ind,,

0 otheruwise.

0£82&ns/2, and g(8;)

We shall use the terminology "the 2-planes P and Q lie within angle

Ang" to mean that the larger canonical angle d(P,Q) = 8, is less than Ang

(uhere 0 ¢ Ang € 1/2).

In the following tables, obtained by Monte Carlo methods, the
probability shown is the fraction of random pairs of 2-planes in
eucf?dean space of the given dimension which lie within angle Ang. The
column labeled "No. of planes" giveé a theoretical lower bound for [the

number of 2-planes which can be chosen in that euclidean space so that
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all 2-planes lie within angle Ang of one of the choseﬁ ones]. Namely,
that theoretical louwer bound 1is the quantity: greatest integer in
1/Prob(d(P,Q)<Ang).

These tables should be thought of as a standard against which to measure
the rapidity with uwhich a séquencé of planes becog;s dense. In fact, if
We set Nposs(€) = the smallest possible number of planes needed to
achieve a gap of €, and Ngi(e) = the smallest number of planes (in
sequence), from some particular choice of grand tour, needed to achieve a
gap of €, we have

n(e) € Nposs(e) € Ngile)d
for all €>0. These inequalities are, with very fewm exceptions, actually

strict ones.
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Divension 7 , Limengion 8
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15 L23E-06 G.GEXQT t5 L 35-07 0.76+08
20 . . 3ISE-05 25as12 20 L558-006 0.3E407
28 .34E-04 29331 . LH2E-05 190426
30 JA9E~-03 5185 2% LGEE-DG 23917
i5 .81E-03 1230 35 LEIE0T 4105
40 .27E-02 166 &0 LSoE-03 10t
45 JT7E-0G2 130 G5 LEGE-G2 293
50 J19E-0O1 53 50 L9%E-02 §02
55 JG2E-0Y 25 55 L2580 G
60 B2E-01 13 60 JEBE-O1 8]
6S .15 7 65 L 9
70 &5 5 70 iy 5
75 .38 3 7% 1 3
&8 .56 2 &0 52 2
8% 7 2 &5 75 2
S0 t.0 2 G& 1.6 2
BRSPS T RIS IS ISR NIIRTIINS B N R A it R R T S E R T LT
Divermion 9 Civenzlon 10
Ang Probability Ho. of plancs Arvg Probability  Ho. of planes
5 .18E-15 0.6E+16 5 JA2E-17 0.8E¢18
10 L29E-11 0.3E+12 1¢ J77E-13 0.1E¢1¢
15 J79E-09 Q.tE+IQ i% GTE-10 Q.2E+1%
20 JGOE-07 0.2E%CS 20 L42E-08 T D.ZEYD9
25 .B2E-08 0.1E+07 25 LAZE-06 0.0E¥G7
10 .Q2E-05 108458} k3] . L21E-05 G86Y3%
35 .68E~D4 14768 35 Le0E-0% 50072
40 «36E~-03 2755 40 IGE-D3 7398
45 JI5E-02 657 (3] OSE-03 1653
56 .52E-02 192 50 Le8e-02 359
55 JABE-01 67 55 JGIE-02 108
60 . 38E-01 27 [ 1} L26E-01 12
65 LB4E~0Y 12 65 LGGE-DY 16
70 A7 6 m 1) 8
7% .30 4 75 .27 4
80 .69 3 &0 L Gh 3
85 W73 2 &3 74 2
$% 1.0 2 9¢ i.0 2




Oistrmion 2 Dimsrion 16

- e w w e e W o oo

Argg Probability Mo, of plorms vy Probebility Mo, of planss
5 58E-22 0.5023 [ J2EE~-26 0.G6E+27
10 JSTE~16 G.2E%t¥ - - 10 ~ JGGE-19 7 0.2E+20
15 J17g-12 G.6E+13 15 J65E-18 0 cF+i6
20 - - JA7E-10 G.E%TH e JE5E-12 0.2E413
g5 .30E-08 §.358409 25 JOSE~1G O.IE2YY
30 HLE-OS 0.6+ 07 10 JBLE-08 6.2E409
35 18E-D5 L5847 15 JIT7E-06 0.65407
40 +19E-08 52000 40 +28E-05 355700
45 .Y4E~-D3 6921 45 I1E-06 22130
50 .81E-03 122% 50 LE4E-03 G121t
55 «35E-02 279 55 J16E-02 708
60 +13E-CY 76 60 64802 1c7
65 . 38E-Gt e7 (31 +3E-0t 4%
70 <97£-0t 1t 70 .6BE-01 15
75 .21 5 75 17 6
80 .60 3 &0 .36 3
83 .67 2 85 64 2
%0 1.0 2 90 1.0 2
B e T e s e T e TSI UNAINETYSITEIESY SN IS IS SRR T U R s s
Dimension 116 Diwensicon 20
Arg Probability Mo. of planes Arvg Probability HNo. of plancs
5 +14GE-30 0.7E¢%¢ L3 I6E-3S 0.3E+4¢
10 .346E-22 0.38423 10 .C2E-C8 0.5E¢29
15 <e5E-17 G.0ELB 15 JGOE-22 0.3E423
20 65E-14 0.2E%15 20 «GRE~18 0.1E419
k43 «26E-1¢ G.qE*12 25 LIE-14 0.5E+15
30 .31E-09 0.3E¢1¢ k1] «95E~-12 0. 1E+13
35 J16E-07 G.6FE408 s W15E-09 0.7E%10
&0 JG2E-06 0.2E4%07 40 +S2E-08 0.1E¢09
45 LH6BE-03 146196 a5 34506 0.35¢07
50 JT74E-04 13516 5¢ TIE-CSH 140243
55 «S7E-03 1767 55 . G4E-U4 10604
60 «32E-02 I 6o JEEE-0) 1160
65 AGE-GY 71 ¢5 EGE-D2 184
70 LGSE-QY 2t 76 JR26E-OY 19
75 L) 8 7% L92E~0Y 11
80 .32 4 3+ 26 4
35 .61 2 85 5?7 2
S0 1.0 2 “3 1.6 4
3231222 2t At Attt 2 x- 2 2k SR SR Rl P 68 B
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The following graphs display the gap as a function of the number of
planes, for three types of grand tour: (1) planes picked at random, (2)
planes picked by the torus metﬁod, and (3) planes picked via a plain
random walk on SO(p). The gap was not, in fact, computed but was instead

— - -—

estimated via gap(N)« max min d(Q;,P;) where {Q;} is a fixed set
14i€100 1<j¢N

of planes picked at random. Due to the vast quantity of computing time
necessary, wue have restricted the calculations to only tuwo values of the

dimension: p=4 (using the average of 5 repetitions) and p=8 (using the

average of 3 repetitions).
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5. Some Applications of Grand Tours

The most basic purpose to which one may put a grand tour is to try to
understand the shape of data. This understanding will presumably be

applied to interpreting the data -— drawing real-uerld conclusions.

Unfortunately, ue are a long way from the point where we can do this
confidently. The grand tour can be said to approximate the information
content of a p-dimensional scatterplot by a time-indexed family of two-
dimensional images, i.e., a movie. In order that human observers be able
to interpret this kind of movie visually, a great deal of experience

viewing such movies would be advantageous.

Much 1is still to be learned when p=3, and the case p=4 already
presents a major challenge. Perhaps it would be of value to develop a

taxonomy of scatterplots based on extensive experience with actual data.

This may lead to the use of certain adjectives to describe the shapes of
scatter-diagrams in greater than two dimensions. These adjectives uould
ideally correspond to measurements which the computer could make with
great speed. An example of one such adjective-measurement pair might be
the idea of "clottedness™ as defined. in Friedman-Tukey [PP] as their

figure of merit for projection pursuit.

A useful genre of statistics may be compiled by applying a uniformly
distributed grand tour to a particular scatterplot S in RP. Let ¥ be any
meafgrement that can be applied to tuo-dimensional scatterplots, such as
their clottedness. Then, for each 2jplane Q in RP, we may apply v to the

result of projecting S onto Q, obtaining V(ngq(S)). As Q ranges over all
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2-planes in RP (With the invariant measure), there is a measure induced
on the set of real‘numbers {¥(nq(S))}. This measure carries significance

especially when all coordinates represent identical units.

Statistics of this distribution of real numbers may be  estimated by
Yefting Q@ run through a long sequence Pj,...,PN of a uniformly
distributed grand tour. To take, for example, the mean m of this

distribution, we may estimate m via

N
Y vw;(s)),
i=1

Z | -

nhere w; denotes orthogonal projection onto the 2-plane Pj;. This is a

deep fact, provable by standard techniques in ergodic theory [Breil.

The advantages of using such measurements (and their corresponding
adjectives) include 1) they are easy to compute, and 2) they convey an
intuitive content based on the user’s knouledge of two-dimensional

scatterplots.

Projection pursuit methods can be described as the study of. the above
paradigm where the maximum or minimum of the set {¥(wg(S))} is the
statistic of interest. These extreme values are usually sought via hill-

climbing algorithms as in [PP].

One great mystery in projection pursuit is endemic to hill-climbing
algorithms: how can we be confident that a local maximum is in fact the
absolute maximum C(or at least very near to it)? A grand tour uhich
rapidly becomes dense in G62,p may be wused to help with this problem.

Using, e.g., the torus method with large stepsize (step=25.0 will work),
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we may let each grand tour plane P4,P2,... be the starting point for a
hili-climbing procedure to maximize V(wq(S)) locally. When the local max
is found, a record is kept of ‘that value max;j. One may then determine

from the distribution of {max;} an estimate of the absolute max.

— - -

Perhaps a better procedure would be to use the torus method with an
intermediate stepsize, say step=1.0. Then hill-climbing may be initiated
from P; whenever

Yri-1(8S)) € ¥(w;i(S)) > ¥(m;+1(8))
(uhere wj again denotes orthogonal projection onto Pj). Once again the
local max values {max;} may be stored and eventually used to estimate the

absolute max.
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APPENDIX

We describe here a method for reducing the number of matrix

multiplications in the grand tour, -torus method te 2p~-3. —

1. Let N=2p-3 and think of the coordinates x;; of TN as being indexed
by all pairs i,j where i=1 or 2, and 2¢j¢p if i=1, but 3<¢jép if
i=2.

2. Define a map f:TNoS0(p) via flxq,2,...5%2,p) =
Ry,2(x4,2)°...°R2,plx2,p).

3. Define a map F: ™ G2,p via F = ponef yghere w:S0(p)3V;,, and
p:V2,p > G2,p are as in Section 3, part I ahove.

4. We shall prove the
Theorem: F:TNoG,, o is a surjection.

Proot: Let Pe G2,p, be an arbitrary 2-plane. He must Ffind
X1,2...2%X2,p (real numbers mod 2m) such that
Ri,2(xq,2)°...°Rz, plx2,p)¢89,82> = P. Letting 05,5 = -xi,5,» this
is equivalent to finding 65,; (real numbers mod 2w) such that
R2,p(02,p) ©...° Ri2(8q,2) P = <(24,85).
Now pick any orthonormal basis V, W for P.
First, we pick 84,2 so as to satisfy
-sinf4,2 vq + cosBq,2 vz = 0.
This assures that R4,2(84,2) annihilates the second component of v.
e similarly choose 84,; so that
-sinBq,jv’q + cosBq,jv’;

where v’y = the first component of
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R1,j-1(91,j-1)°...°R1,2(91,2)v
and v’; is the jth component (in fact, v’; = v; for j23).
Thus, R1,p(91,p)°...°R1;2(61,2)V must have its 2nd through pth

components equal to 0, and since it’s a unit vector, it must, in

— - -

fact, be 24.

We now similarly choose 62,3,...,82,p so the 3rd through pth
components of &’ are annihilated by R2,3(82,3)»...,R2,p(62,p) in
turn, where W’ denotes Ry, p(6q,p)°...%Rq,2(84,2)d. As a result,
the vector Rz,p(82,p)°...°Ry,2(8q,2)8 lies in the plane <&4,82).
But, since the orthonormal pair V,u is taken to an orthonormal pair
by the orthogonal transformation Rz,p(82,p)°...°Rq,2(84,2) and
since V is taken to @4, we must have that W is taken to e,.
Thus, e have chosen 81,2,...,82,p so that
Rz,p(82,p)°...%Rq,2(8q,2) takes the frame V,u to the frame eq,e,
(more than uwe needed!) and as a result the plane P = (V,wu> is taken
to ¢84,€2> as desired. n
Since F:TNesz,p is a surjection, it now follows, just as in Section
3, part I, that a dense curve a in TN will be taken by F.to a dense
curve Foa in Gz,p. We then just 1let the Kth plane of our grand
tour be defined as

Pk = F(a(K-STEP)), K=1,2...

for some appropriate choice of stepsize STEP.



