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October 2010





Contents

1. Introduction 1

2. Theoretical framework 3

2.1. Quantum field theory and statistical mechanics . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Partition function in thermal field theory . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Effective field theories 10

3.1. Chiral perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1. Properties of the chiral Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2. Explicit symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3. Spontaneous symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.4. Spontaneous symmetry breaking in QCD . . . . . . . . . . . . . . . . . . . . . 16

3.1.5. Effective Lagrangians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Effective thermal field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1. Thermal masses and resummation . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2. Effective thermal field theory approach . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3. Dimensionally reduced QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.4. Convergence issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4. Finite size effects 38

4.1. Massive scalar field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2. Massless scalar field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3. Theories with spontaneous symmetry breaking . . . . . . . . . . . . . . . . . . . . . . 43

4.4. Yang-Mills theory at very high temperatures . . . . . . . . . . . . . . . . . . . . . . . 47

5. Conclusion 53

A. Partition function in quantum mechanics 55

I



B. The QCD Lagrangian 58

C. Momentum sum for massless case 61



List of Figures

3.1. Perturbative results for the pressure of pure glue QCD. . . . . . . . . . . . . . . . . . 36

3.2. Dependence of the pressure of pure glue QCD on the renormalization scale. . . . . . . 37

4.1. Finite size effects to the free energy density of a massive scalar field at low T . . . . . . 45

4.2. Finite size effects to the free energy density of a massless scalar field. . . . . . . . . . . 47

4.3. Finite size effects to the free energy density of a massive scalar field at high T . . . . . 50

4.4. Variation with respect tom/T of finite size effects to the free energy density of a massive

scalar field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5. Variation with respect to mL of the finite size effects to the free energy density of a

massive scalar field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III



1. Introduction

Quantum field theory is the most accurate theory available at the moment that has passed validation

through a variety of experimental checks. Within the framework of quantum field theory it was

possible to incorporate three of the known forces (the electro-magnetic, the weak and the strong) into

the so-called Standard Model of Particle Physics. Much of the success came through the framework

of Yang-Mills theory which provided a systematic way of describing weak and strong interactions.

Quantum field theory has proved very fruitful also in many other fields of physics, such as solid state

physics (superconductivity, superfluidity), atomic physics, cosmology and astrophysics. Nevertheless

some questions are still unanswered and the last building block of the Standard Model is yet to be

discovered. The Higgs boson, first theoretically predicted in the 60’s and incorporated in the Standard

Model through the Weinberg-Glashow-Salam theory of electroweak interactions, is the particle through

which all other massive elementary particles acquire their mass.

Even if the Higgs boson will be discovered, there is nowadays still a general belief that the Standard

Model of Particle Physics is only an effective theory of a more general one, that incorporates also

gravity.

Despite the fact that both the theory and the tools to calculate quantities of interest are in principle

known, applying them to the known world involves lots of difficulties and many calculations are far

from being under control. Throughout the years different directions have emerged in order to surpass

computational difficulties.

Analytical methods use approximations, symmetries of the underlying theories, empirical and ex-

perimental evidence in order to simplify the calculations. The computational lattice Monte Carlo

approach on the other hand also makes approximations in practice, one of them being the reduced

size of physical systems that can be numerically managed. Since both methods contain approxima-

tions, considerable effort is put into estimating the errors and the accuracy of the two approaches.

The following thesis treats the effects occurring in a scalar field theory due to the finite volume it lives

in. By calculating the partition function, the contributions due to the finite volume are determined

for the free energy density in both the massive and the massless case. The results for the massive

scalar field can be used on one hand for estimations on finite size effects in the low temperature and
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Chapter 1. Introduction

large volume limit of chiral perturbation theory and on the other hand for a Yang-Mills theory at very

high temperature.

The thesis is structured as follows. The second chapter gives a short introduction to quantum field

theory and thermal field theory. The correspondence between the partition function of statistical

mechanics and the path integral method of quantum field theory is discussed in some detail. This

chapter provides also the starting point for the calculations in chapter 4.

The third chapter presents the effective theory approach for two different regimes of interest in the

theory of strong interactions. The physics of low energy hadrons is described within the framework

of chiral perturbation theory. The symmetries of the QCD Lagrangian in the chiral (massless quarks)

limit and the phenomenon of spontaneous symmetry breaking are used in order to develop a theory in

terms of the physical degrees of freedom occurring in the low energy regime of the underlying theory.

Effective thermal field theory provides an approach to the deconfined quark-gluon plasma at very high

temperatures. The static limit of the QCD Lagrangian is used and the different scales appearing in

the thermal field theory are separated in such a way that the remaining Lagrange density contains

only the non-perturbative scale.

Finally, the forth chapter provides the calculation of the partition function of a scalar field theory in

a finite volume. The results are used to estimate the contributions of finite size effects in perturbative

thermal field theory and in theories with spontaneous symmetry breaking, applicable to low energy

hadronic physics. The two physical limits of massless and massive scalar fields will exhibit qualitatively

different finite size corrections.
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2. Theoretical framework

In this chapter the main ideas of quantum field theory and thermal field theory that will be used

throughout the thesis are introduced. First, elementary notions of quantum field theory are defined.

Afterwards the connection between quantum field theory and statistical mechanics is made through

the path integral formalism as a mathematical link. For a detailed treatment on this subject for

instance Ref. [1] is recommended. Natural units will be used throughout the thesis, ~ = c = kB = 1.

2.1. Quantum field theory and statistical mechanics

Quantum field theory (QFT) provides a theoretical framework in which both the concepts of quantum

mechanics and special relativity are put together. Within this framework particles and fundamental

interactions are treated as physical fields and are quantized. Mathematically this is done by trans-

forming the fields entering the Lagrange density into field operators. This leads also to the possibility

of describing physical systems of a varying number of degrees of freedom, in terms of the so called

creation and annihilation operators. With these 4 operators (2 for fermions and 2 for bosons) and

their (anti-)commutation relation,

[ap, a
†
q] = (2π)3δ(3)(p− q), [ap, aq] = [a†p, a

†
q] = 0 for bosons,

{ap, a†q} = (2π)3δ(3)(p− q), {ap, aq} = {a†p, a†q} = 0 for fermions,
(2.1)

field operators describing all types of particles can be constructed.

The principles of special relativity are integrated into quantum field theory through the equal

time commutation relations of the field operators. The simplest example of how special relativity is

integrated into quantum field theory is given through a free real scalar field. First the scalar field is

written in terms of its Fourier modes and is required to be the solution of the Klein-Gordon equation,

(∂2t + p2 +m2)φ̃(p, t) = 0. By substituting the field amplitudes with the creation and annihilation

operators for bosons (thus quantizing the field), it finally can be written as:

φ(x) =

∫
d3p

(2π)3
1

√
2Ep

(
ape

−ipx + a†pe
ipx
)

∣
∣
∣
∣
∣
p0=Ep

with Ep =
√

p2 +m2. (2.2)
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Chapter 2. Theoretical framework

Its commutator is

[φ(x), φ(y)] =

∫
d3p

(2π)3
1

2Ep

(

e−ip(x−y) − eip(x−y)
)







= 0, (x − y)2 < 0

6= 0, (x − y)2 > 0.

(2.3)

This commutation relation is interpreted as follows: provided two fields are separated by a time-like

interval (are causally connected), operators do not commute (6= 0), that is, they cannot be determined

simultaneously with an arbitrary precision. As soon as they are separated by a space-like interval

they will commute (= 0)1, meaning they are no longer causally connected and can be simultaneously

measured with an arbitrary precision.

The time ordered product of two fields projected on the ground state in the free theory describes

the propagation of particles through space and is a Green’s function for the differential equation that

describes this field (Klein-Gordon equation for scalar fields, Dirac equation for spinor fields, Maxwell

equation for vector fields). It is called the Feynman propagator and for a real scalar field it looks like:

〈0|Tφ(x)φ(y)|0〉 = DF (x − y) =

∫
d4p

(2π)4
ie−ip(x−y)

p2 +m2 − iε
. (2.4)

In an interacting theory the field propagator cannot be calculated in the same way, due to the fact

that it is not known a priory how field operators act on the vacuum state of an interacting theory.

However, it can be expressed in terms of the vacuum state of the free theory and the interaction part

of the Hamiltonian expressed in the interaction picture.

〈Ω|T {φ(x)φ(y)}|Ω〉 = lim
t→∞(1−iε)

〈0|T {φI(x)φI (y)exp
[

−i
∫ t

−t dt
′

HI(t
′

)
]

}|0〉

〈0|T {exp
[

−i
∫ t

−t
dt′HI(t

′)
]

}|0〉
(2.5)

By expanding the exponential into a Taylor series in the coupling constant and using Wick’s theorem

[2], the right hand side of the equation can be expressed as an infinite sum of products of Feynman

propagators. Each term in the expansion can be diagrammatically represented as a Feynman diagram.

Through the LSZ reduction formula the scattering matrix can be expressed in terms of a series of such

Feynman diagrams. In this way physical quantities such as scattering cross sections or particle decay

rates may be calculated explicitly.

The path integral formalism is an alternative approach to quantum field theory. It generalizes the

action principle of classical mechanics for fields. Its physical interpretation is that the evolution of a

system from one state to another is the sum of all different (in principle infinitely many) paths the

system can take in the phase space.

1For a space-like interval a Lorentz transformation can be performed, (x − y)2 → −(x − y)2, so that the integrand

vanishes, whereas for time-like intervals no such transformation exists.

4



Chapter 2. Theoretical framework

The details of this approach can be found in every QFT book. Here, only the result from Ref. [3]2

is shown:

〈Ω|T {φ(x1) · ... · φ(xn)}|Ω〉 = lim
t→∞(1−iε)

∫
Dφφ(x1) · ... · φ(xn)exp

[

i
∫ t

−t dt
∫
d3xL

]

∫
Dφ exp

[

i
∫ t

−t
dt
∫
d3xL

] (2.6)

An essential difference between these two approaches is that classical fields enter the path integral

rather than field operators. Second, due to the fact that the exponent of the integrand contains the

Lagrange density and not the Hamiltonian, the n-point function is manifestly Lorentz invariant.

A systematic way of obtaining n-point functions in the path integral formulation is by defining the

generating functional as:

Z[J ] =

∫

Dφ exp
[

i

∫

d4x(L − Jφ)

]

. (2.7)

The J field of the integrand is called source term. Through functional derivatives with respect to this

source term, n-point functions can be generated as:

〈Ω|T {φ(x1)...φ(xn)}|Ω〉 = Z[J ]−1

(

−i δ

δJ(x1)

)

...

(

−i δ

δJ(xn)

)

Z[J ]

∣
∣
∣
∣
J=0

. (2.8)

The generating functional (2.7) is similar to the partition function from statistical mechanics; it has

the same structure of a sum over all possible configurations of a statistical weight. The only difference

is that the exponent is purely imaginary and not real and negative as in statistical mechanics. To

construct the link between them a procedure similar to the Wick rotation is used, in which the time

coordinate is defined as purely imaginary.

x4 = ix0, ~xE = ~x (2.9)

This leads to:
∫

Dφ exp
[

i · (−i)
∫

d4xE(LE − Jφ)

]

(2.10)

with

−LE =
1

2
(∂0φ∂0φ−∇φ · ∇φ)− V (φ)

= −
[
1

2
(∂4φ∂4φ+∇φ · ∇φ) + V (φ)

]

= −
[
1

2
∂µφ∂µφ+ V (φ)

]

.

(2.11)

The exponent is now real and negative, and it also seems that the euclidean Lagrangian is the

sum of the kinetic part and the potential energy V (φ), which is just the total energy of the system.

Summing up, the generating functional in the imaginary time formalism becomes:

Z[J = 0] = C

∫

Dφ exp
[

−
∫

d4xLE

]

. (2.12)

2The difference to the free theory is that here the projection is realized on the vacuum state of the interacting theory,

|Ω〉 and that the Lagrangian contains also the interacting part.
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Chapter 2. Theoretical framework

Trying now to express the partition function for a real scalar field (appendix A), one obtains

Z = Tr[e−βĤ ]

=

∫

φ(β,x)=φ(0,x)

∏

x

[CDφ(τ,x)]exp
[

−
∫ β

0

dτ

∫

d3xLE

]

.
(2.13)

The partition function of statistical mechanics has the same structure as the generating functional

of quantum field theory. The difference lies only in the integration limits of the time integral in the

exponent. For the partition function, the “time” integral spans from 0 to the inverse temperature

with the additional requirement of periodicity of the fields in the time variable.

2.2. Partition function in thermal field theory

This section provides an introduction to the main ideas of quantum field theory at finite temperature

in the non-interacting case. The interacting case will be presented in section 3.2 within the framework

of effective thermal field theories.

The main object in statistical mechanics is the partition function of the system, calculated in the

last section. Starting with the partition function, all thermodynamic quantities can be determined.

Some examples are the free energy, the entropy and the average energy:

F = −T lnZ,

S = −∂F
∂T

,

E =
1

Z
Tr(ĤeβĤ).

(2.14)

In the following, the partition function for a scalar field will be explicitly calculated and this will

be the starting point of the calculations in chapter 4 in determining the finite size effects. In order

to keep the calculation as general as possible, d spatial dimensions are considered. Some results will

then be calculated for d = 3.

The starting point is Eq. (2.13) [4]. The strategy is to express the fields through their Fourier

representation as

φ(τ,x) = T
∞∑

n=−∞
φ̃(ωn,x)e

iωnτ , ωn = 2πTn. (2.15)

For bosons periodic boundary conditions in the τ -direction are required whereas for fermions anti-

periodic ones. The spatial volume will be regarded as finite as well, since finite size effects will be

calculated later on. Having now a function with one spatial coordinate, it will be represented as

f(x) =
1

L

∞∑

n=−∞
f̃(n)eikx with k =

2πn

L
, n ∈ Z. (2.16)

6



Chapter 2. Theoretical framework

Here 1/L plays the same role as T . Now the Fourier representation of φ becomes:

φ(τ,x) = T
∑

n

1

V

∑

k

φ̃(ωn,k)e
iωnτ+ik·x with V = L1...Ld. (2.17)

The requirement that φ is a real scalar field reads in the reciprocal space as:

[

φ̃(ωn,k)
]∗

= φ̃(−ωn,−k). (2.18)

Therefore only half of the Fourier modes are independent.

In order to express the integrand of (2.13) in terms of the Fourier representation, first express

quadratic forms in the fields as:

∫ β

0

dτ

∫

ddxφ1(τ,x)φ2(τ,x) =
T 2

V 2

∑

n,m

∑

k,p

φ̃1(ωn,k)φ̃2(ωm,p)·

·
∫ β

0

dτ

∫

ddxeiτ(ωn+ωm)+ix·(k+p)

= T
∑

n

1

V

∑

k

φ̃1(−ωn,−k)φ̃2(ωn,k).

(2.19)

The euclidean Lagrangian for a scalar field is (2.11). In the free case V (φ) = 1
2m

2φ2. The exponent

can be written as:

exp(−SE) = exp

[

−
∫ β

0

dτ

∫

ddxLE

]

= exp

[

−1

2
T
∑

n

1

V

∑

k

(ω2
n + k2 +m2)|φ̃(ωn,k)|2

]

=
∏

k

{

exp

[

− T

2V

∑

n

(ω2
n + k2 +m2)|φ̃(ωn,k)|2

]}

.

(2.20)

Turning now to the calculation of the path integral one could first try to solve the integral directly.

This turns out to be rather difficult because one has to keep track of the degrees of freedom one chooses

for the integration. Therefore it is useful instead to recall the calculation of the partition function

for a harmonic oscillator and transfer the result to the case of a scalar field. Using Eq. (A.16) the

exponential can be rewritten as

exp



−1

2
mTω2a20 −mT

∑

n≥1

(ω2
n + ω2)(a2n + b2n)



 = exp

[

−1

2
T

∞∑

n=−∞
m(ω2

n + ω2)|xn|2
]

. (2.21)

Now the exponential has the same structure as that in Eq. (2.20) with the difference of an overall

d-dimensional product over k suggesting again that the scalar field is described as coupled harmonic

oscillators in all spatial dimensions. Through the replacements

m→ 1

V
, ω2

HO → k2 +m2 ≡ E2
k, |x2n| → |φ̃(ωn,k)|2 (2.22)

7



Chapter 2. Theoretical framework

the final result is (cf Eq. A.18)

Z =
∏

k



T
∏

n

(ω2
n + E2

k)
− 1

2

∏

n′

(ω2
n)

1
2



 . (2.23)

This equation will be the starting point for the finite size calculations in chapter 4.

Making now use of the relation
∑∞

k=−∞ 1/(k2 + x2) = π/xtanh(πx), the expression in brackets can

be rewritten so that the free energy density in infinite volume becomes:

lim
V→∞

F

V
=

∫
ddk

(2π)d

[
Ek

2
+ T ln

(
1− e−βEk

)
]

≡ J(m,T ). (2.24)

The first term in Eq. (2.24) is the vacuum energy density, independent of temperature. Its evalua-

tion is possible in terms of a more general function by using dimensional regularization,
∫

ddk

(2π)d
1

(k2 +m2)A
=

1

(4π)d/2
Γ(A− d/2)

Γ(A)

1

(m2)A−d/2
, (2.25)

which, unlike the vacuum integral, is finite. Inserting A = −1/2, the vacuum energy density becomes

in four space-time dimensions:

J0(m) = − m4

64π2
µ−2ε

[
1

ε
+ ln

µ2

m2
+ ln4π − γE +

3

2

]

, (2.26)

where µ is an arbitrary scale parameter.

The expression contains a divergence (1/ε) due to the regularization scheme used. The divergence is

expected to appear, since the expression represents the vacuum energy density in the infinite volume

limit.

The thermal part cannot be calculated exactly. In the low temperature region, i.e. for m/T � 1,

its expression is:

JT (m) = T

∫
ddk

(2π)d
ln
(
1− e−βEk

)
= −T 4

( m

2πT

) 3
2

e−
m
T

[

1 +O
(m

T

)

+O
(

e−m/T
)]

. (2.27)

Eq. (2.27) shows that in the low temperature regime the thermal effects are suppressed by an expo-

nential factor.

In the high temperature limit (T � m), the integral can be evaluated by first calculating

I(m,T ) =
1

m

d

dm
J(m,T )

= T
∑

n

∫
ddk

(2π)d
1

ω2
n + E2

k

(2.28)

in the high temperature limit and then performing the integration over m. The integration constant

is an m-independent quantity, namely J(0, T ) = −π2T 4/90. Therefore, the first few terms of the free

energy density are:

JT (m) = −π
2T 4

90
+
m2T 2

24
− m3T

12π
− m4

32π2

[

ln

(
meγE

4πT

)

− 3

4

]

+O
(
m6

T 2

)

+O(ε). (2.29)

8



Chapter 2. Theoretical framework

The first term (the integration constant) is just the free energy density of a massless gas with one

degree of freedom. The following corrections come with increasing powers of m but are suppressed by

increasing powers of T in the denominator. In addition, the expansion shows that JT (m) is not analytic

in m2 containing an odd power in m. This is the reflection of the so-called infrared (IR) problem of

thermal field theory and will lead in the interacting case to the necessity of doing a resummation of

diagrams to all orders in the coupling constant in order to keep the perturbation expansion finite.
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3. Effective field theories

Having the basic mathematical tools to perform calculations in quantum field theory and thermal field

theory as well, the physical model of strong interactions can be approached, Quantum Chromody-

namics (QCD). This non-abelian gauge theory is used in the following chapter do work out effective

theories that are applicable for low energies and for high temperatures. The physical systems de-

scribed range from low energy hadronic physics and scattering processes to high temperature plasma

of quarks and gluons.

In the first section the symmetries of the fermionic part of the Lagrangian are used in order to

construct a low energy effective theory, whereas in the second section the different energy scales

appearing in the gluonic part of the Lagrangian are exploited in order to develop an effective theory

for strong interactions at temperatures far above that of the deconfinement transition.

3.1. Chiral perturbation theory

Starting with the mid 50’s experiments revealed an increasing number of new particles, with masses

ranging within several nucleon masses. Without an exact theory describing the interactions between

these new particles, several attempts were made to describe the underlying physics. Using the known

hadron spectrum by that time, Gell-Mann organised them into octets and decuplets according to their

masses approaching therefore a group theoretical description of the hadrons (Ref. [5]).

Further experiments (deep inelastic scattering) lead to the conclusion that hadrons do have a sub-

structure. The parton model (Refs. [6] and [7]) with the Bjorken scaling was a success as it managed

to reproduce several properties of hadrons in agreement with experiment. In addition it revealed the

property of quarks to manifest themselves as almost free particles in the limit of large momentum

transfer and therefore to be considered as asymptotically free (Refs. [8], [9], [10], [11]). The scepti-

cism of physicists regarding these fictitious constituents of hadrons was diminished once a theoretical

framework of strong interactions was put into place and in terms of which it was argued that parti-

cles subject to strong interactions appear freely only as color singlets. This was later on known as

confinement and explained why quarks cannot be seen as free particles.

10



Chapter 3. Effective field theories

Even if the theory of strong interactions was successfully described in terms of a Yang-Mills theory

(non-abelian gauge theory), it was the large coupling constant of strong interactions that lead to con-

siderable difficulties. Due to the strong coupling regular perturbation theory (proved very successful

in QED) failed to work at energies of most interest, namely those of the hadron physics.

At a closer look one observes that the quarks account in average only for ≈ 1%1 of the hadron’s

mass. The remaining mass originates in the dynamics of the quarks within the hadron and obviously

cannot be treated as a perturbative correction.

There are however analytical methods for describing such systems perturbatively where the ex-

pansion is performed in terms of the momentum rather then the coupling constant. Yet there is a

qualitative difference between the two classes of hadrons. In the case of mesons the approximate chiral

symmetry and its breaking are exploited in the formalism such that mesons are treated as Goldstone

bosons. Baryons on the other hand cannot be treated as Goldstone bosons since they are massive even

in the chiral limit. The treatment of both types of hadrons is analogous but the asymptotic states

(physical degrees of freedom) that enter the calculations are different.

The method for describing such systems in a perturbative way is chiral perturbation theory. This

effective theory does not describe the system in terms of its elementary constituents (quarks) but only

in terms of the physical degrees of freedom, namely baryons and mesons. The perturbative treatment

is realised as a momentum and not a coupling constant expansion. In the case of a mesonic system

the explanation comes from the fact that the physical degrees of freedom (the mesons) are Goldstone

bosons and their interaction vanishes at 0 momentum.

It is useful to first determine the symmetries of the underlying full theory, in order to construct an

effective theory with the same symmetries built in. Now, inspecting the range of the quark masses,

one observes that they differ by 6 orders of magnitude from each other, the up-quark being the lightest

one (1.5− 3.3 MeV) and the top-quark the heaviest (171.2± 2.1 GeV) [12]. For describing the physics

of low energy hadronic matter it is sufficient to account for the physical degrees of freedom of the

system by allowing only the lightest quarks to enter the Lagrangian. This is formalized through the

statement that heavier virtual quarks (c,b,t) can be integrated out. Furthermore, the energies involved

can still be considered much higher then the masses of the remaining 3 quarks, such that one can

treat the mass term in the Lagrangian as a perturbation2. In this way the Lagrangian exhibits new

symmetries.

1For instance the proton has a mass of 938 MeV/c2, whereas the sum of the masses of its constituents, (uud) is between

6 and 12 MeV.
2In fact, the mass term in the QCD Lagrangian will be at first dropped completely in order to determine all the

symmetries of the Chiral Lagrangian. In the end, when the effective Lagrangian will be determined to a give order,

the mass term will be included.
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Chapter 3. Effective field theories

In the following, the symmetries of the QCD Lagrangian in the chiral limit, as well as for small

quark masses will be determined. A short introduction to spontaneous symmetry breaking and its

application in QCD follows. In the last part, the method for constructing effective Lagrangians is

described. This section employs the notation and the line of argument of Ref. [13].

3.1.1. Properties of the chiral Lagrangian

The QCD Lagrangian in the massless limit3 is:

LQCD =
∑

l=u,d,s

(qRl /DqRl + qLl /DqLl). (3.1)

For a short introduction to the QCD Lagrangian and its properties, see appendix B.

The quarks can be also written as a triplet (u d s)T and be split into right and left handed parts.

The Lagrangian exhibits two global symmetries (each acting separately on the left and right handed

components of the triplet):








uL

dL

sL








→ UL








uL

dL

sL








= exp

(

−i
8∑

a=1

θLa
λa

2

)

e−iθL








uL

dL

sL







,








uR

dR

sR








→ UR








uR

dR

sR








= exp

(

−i
8∑

a=1

θRa
λa

2

)

e−iθR








uR

dR

sR







.

(3.2)

The transformation matrices belong to the SU(3) group and are written in terms of the 8 generators

of this group4. Besides the SU(3)L×SU(3)R symmetry, the QCD Lagrangian has also a global U(1)V

symmetry, whose physical significance is related to the conservation of total baryon number: it is

parametrized by

θV ≡ θR + θL

2
. (3.3)

This is a singlet vector current (relative to the SU(3)L×SU(3)R group) of the form: V µ = qγµ1q. So

1 is a 3 matrix acting in the flavour space. At the classical level there is also a so called axial U(1)A

symmetry which is parametrized by

θA =
θR − θL

2
. (3.4)

3The kinetic part of the gluons is not shown.
4It is important to specify that the new symmetries of the QCD Lagrangian in the chiral limit are the same as for

the gauge symmetry of the strong force. The difference is that the gauge symmetry is a local one, whereas this

symmetry is global. Physically, the gauge symmetry acts in the color space where the new SU(3) global symmetry

in the flavour space of the massless fermions. If one would have considered only two flavours, the global symmetry

would have been SU(2).
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Chapter 3. Effective field theories

However at quantum level it is explicitly broken due to anomalies (Ref. [14]): the corresponding axial

current is not conserved: ∂µA
µ =

Nfg
2
s

32π2 εµνρσTr(F
µνFρσ). Here, the trace is taken in the flavour space.

The non-singlet global symmetry currents that can be constructed from the Lagrangian with respect

to its SU(3)L × SU(3)R symmetries are:

Lµa = qLγ
µλ

a

2
qL,

Rµa = qRγ
µλ

a

2
qR.

(3.5)

They satisfy ∂µL
µ,a = 0, ∂µR

µ,a = 0.

Often used quantities are linear combinations of these two currents,

V µ,a = Rµ,a + Lµ,a,

Aµ,a = Rµ,a − Lµ,a,
(3.6)

because they are parity eigenstates with positive and negative parity, respectively.

Since the chiral Lagrangian exhibits new symmetries, the corresponding charges have to be time

independent and therefore to commute with the Hamilton operator. The charges are the zero compo-

nents of the underlying symmetry currents:

Qa
R/L =

∫

d3xqR/Lγ
0(~x, t)

λa

2
qR/L(~x, t),

QV =

∫

d3x
[
qL(~x, t)γ

0qL(~x, t) + qR(~x, t)γ
0qR(~x, t)

]
,

(3.7)

and obey the following commutation relations:

[Qa
R/L, HQCD] = [QV , HQCD] = 0. (3.8)

Now, using the standard equal time commutation relation of fermionic field operators,

{qα(~x, t), q†β(~y, t)} = δ3(~x− ~y)δαβ , everything else 0, (3.9)

where α and β are spinor indices, it is possible to establish the following commutation relations for

the charge operators:

[Qa
L/R, Q

b
L/R] = ifabcQ

c
L/R

[Qa
L, Q

b
R] = [Qa

L/R, Q
b
V ] = 0.

(3.10)

The charges Qa
L and Qa

R form separately Lie algebras. They act as generators of the respective

symmetry transformations.
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Chapter 3. Effective field theories

3.1.2. Explicit symmetry breaking

So far the symmetries of the chiral Lagrangian in the limit of vanishing quark masses have been

determined. The non-zero masses of the u, d and s quarks however, produce a term in the QCD

Lagrangian which explicitly breaks its invariance under the SU(3)L × SU(3)R group and therefore

generates non-vanishing terms for the divergences of the previously introduced currents.

The symmetry breaking term in the Lagrangian is:

−qMq = −(qLMqR + qRM
†qL) (3.11)

with:

M =








mu 0 0

0 md 0

0 0 ms







. (3.12)

The terms in Eq. (3.11) transform non-trivially under SU(3)L × SU(3)R,

qRMqL → qRU
†
RMULqL. (3.13)

The divergences of the symmetry currents are now:

∂µV
µ,a = iq[M,

λa

2
]q

∂µA
µ,a = iq{λ

a

2
,M}γ5q

∂µV
µ = 0

∂µA
µ = 2iqMγ5q +

3g2s
32π2

εµνρσF
µν
a F ρσ

a .

(3.14)

The only conserved current corresponds to the U(1)V symmetry and its physical significance is the

baryon number conservation (which is obviously not dependent on the numerical value of the quark

masses). The axial current contains also the anomaly term. Furthermore, if the quark masses would

be equal, the vector multiplet current would be conserved since the mass matrix would be proportional

to the unit matrix and [1, λ
a

2 ] = 0.

3.1.3. Spontaneous symmetry breaking

An important property of the strong interaction is that the ground state of the theory does not

exhibit all the symmetries of the (chiral) Lagrangian. However, the theoretical aspects are not well

understood and evidence for this phenomenon in strong interactions come rather from experimental

data and empirical considerations. Therefore it is useful to start with a simple model that illustrates

the underlying dynamics.
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Chapter 3. Effective field theories

Generally, the breaking of a symmetry is said to be spontaneous if the ground state of the La-

grangian describing the physical system does not exhibit the same symmetry as the Lagrangian i.e.

the symmetry group under which the ground state is invariant is a subgroup of the symmetry group of

the Lagrangian. Every spontaneously broken global continuous symmetry generates massless bosons

[15].

The Linear SigmaModel is a toy model of such a theory. In the following section the main ingredients

are taken from Peskin and Schröder [1]. The starting point is a Lagrange density composed of N real

scalar fields and with O(N) symmetry.

L =
1

2
(∂µφ

i)(∂µφi) +
1

2
µ2(φiφi)− λ

4
(φiφi)2. (3.15)

The Lagrangian is invariant under the symmetry transformations of the fields φi = Rijφ
j , Rij being

an N × N orthogonal matrix. An important property of this Lagrangian is that the mass term has

the wrong sign (usually L = ... −m2φ2), suggesting that the fields have no physical meaning (their

mass would be purely imaginary). The reason for this is that in this form, the Lagrange density does

not manifestly describe the ground state, but some unstable state.

The ground state is described by the fields φi0 that minimise the potential V (φi) = − 1
2µ

2(φiφi) +

λ
4 (φ

iφi)2:

∂V (φi)

∂φj
= 0 ⇒ φi0φ

i
0 =

µ2

λ
. (3.16)

This result only determines the length of the vector φi0 but does not provide any information about

the distinct φi’s, so the direction of the vector is arbitrary. The ground state is said to be degenerate.

The fields can be redefined by choosing a preferred direction of the field that minimises the potential:

φi0 = (0, ..., 0, v), where v =
µ√
λ

φi =
(
πk(x), v + σ(x)

)
, k = 1, ..., N − 1.

(3.17)

By introducing the new field into the Lagrange density the original O(N) symmetry disappears and

new types of interaction terms appear:

L =
1

2
(∂µπ

k)(∂µπk) +
1

2
(∂µσ)(∂

µσ) − 1

2
(2µ2)σ2

−
√
λµσ3 −

√
λµσ(πkπk)− λ

4
σ4 − λ

2
(πkπk)σ2 − λ

4
(πkπk)2.

(3.18)

The Lagrangian describes now N − 1 massless fields and one massive field σ(x) with m = 2µ2.5

Besides the kinetic and the mass terms, new types of interactions emerge that couple the σ fields to

the πk ’s and simultaneously break the original O(N) symmetry into an O(N − 1) symmetry.

5Note the correct sign of 2µ2
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Chapter 3. Effective field theories

The O(N) symmetry contains N(N−1)
2 independent parameters6. After redefinition of the fields,

the Lagrangian exhibits an O(N − 1) symmetry with only (N−1)(N−2)
2 parameters. The difference

of independent parameters is the number of broken symmetries and at the same time the number of

massless bosons that emerge (Goldstone bosons).

The proof of the Goldstone theorem is as follows: consider a Lagrangian with an arbitrary potential

L = Lkin − V (φ). (3.19)

Let φa0 be a constant field that minimises the potential. The potential is expanded now about this

minimum and one obtains:

V (φ) = V (φ0) +
1

2
(φ− φ0)

a(φ− φ0)
b ∂

2V (φ)

∂φa∂φb

∣
∣
∣
∣
φ0

+ ... . (3.20)

The coefficient of the quadratic term can be interpreted as a mass matrix, so its eigenvalues have to

be positive.
∂2V

∂φa∂φb

∣
∣
∣
∣
φ0

= m2
ab. (3.21)

Considering now a general continuous transformation of the form

φa → φa + α∆a(φ) (3.22)

the condition that V (φ) be invariant under this transformation reads:

V (φa) = V (φa + α∆a(φ)) ≈ V (φa) + α∆a(φ)
∂

∂φa
V (φ). (3.23)

Differentiating with respect to φb at φ = φ0, the following equation is obtained:
(
∂∆a

∂φb

)

φ0

(
∂V

∂φa

)

φ0
︸ ︷︷ ︸

=0

+∆a(φ0)

(
∂2V

∂φa∂φb

)

φ0

= 0. (3.24)

The interpretation of this equation is the following: If the transformation leaves the ground state

unchanged (∆a(φ0) = 0), the equation is satisfied trivially. On the other hand, if the transformation

of the field is not a symmetry of the ground state, so ∆a(φ0) 6= 0, then the m2
ab component of the

mass matrix has to vanish and the field corresponding to the eigenvector ∆a is massless.

3.1.4. Spontaneous symmetry breaking in QCD

The toy model introduced in section 3.1.3 provides a simple picture of the mechanism of sponta-

neous symmetry breaking and its physical implications. Nevertheless, when trying to investigate the

properties of the chiral QCD Lagrangian and the ground state of this theory, several problems occur.

6The independent parameters can be determined as follows: A matrix O, belonging to the O(N) group has N2

elements. The condition OTO = 1 represents
N(N−1)

2
(off diagonal) and N (diagonal) equations that relate these

N2 elements. The number of independent parameters (degrees of freedom) is finally N2 − N(N−1)
2

−N = N(N−1)
2

.
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Chapter 3. Effective field theories

There is indirect evidence from experimental data (mainly through the hadron spectrum) and

numerical evidence from lattice QCD that suggest spontaneous symmetry breaking. The exact mech-

anism and the underlying physics of this phenomenon is not well understood since it is not known

how the ground state of QCD looks like.

The first indication of spontaneous symmetry breaking (SSB) is the so called parity doubling. Since

the left and right handed charge operators (3.7) commute with the Hamiltonian (3.8) and have opposite

parity, the occurrence of a state with a positive parity suggests the existence of a degenerate state of

negative parity. The measured hadron spectrum on the other hand does not confirm the existence of

degenerate states with opposite parities. This indicates that the ground state of the theory is not, as

expected, symmetric under the full SU(3)L × SU(3)R × U(1)V group.

Another empirical evidence is the organisation of baryons of spin 1/2 and 3/2 into an octet and a

decuplet respectively, suggesting SU(3) rather then SU(3)L × SU(3)R as the underlying symmetry.

In addition, the octet of the pseudoscalar mesons are viable candidates for Goldstone bosons, due to

their relatively small masses in comparison to the baryons.

The theoretical indication for spontaneous symmetry breaking comes from Ref.[16] where it is shown

that in the chiral limit the ground state is necessarily invariant under SU(3)V ×U(1)V transformation,

i.e. the charge operators annihilate the ground state:

Qa
V |0〉 = QV |0〉 = 0. (3.25)

If we draw the attention to the vector and axial vector charge operators and their commutation

relation, it is clear that the former do form a closed Lie algebra while the latter do not. Defining

Qa
V/A = Qa

R ±Qa
L, (3.26)

one has

[Qa
V , Q

b
V ] = ifabcQ

c
V ,

[Qa
A, Q

b
A] = ifabcQ

c
V ,

[Qa
V , Q

b
A] = ifabcQ

c
A.

(3.27)

Now, since parity doubling does not occur in the hadron spectrum and due to the properties of the

vector and axial vector charge operator one is lead to the conclusion that the axial vector charge

operator does indeed not annihilate the ground state:

Qa
A|0〉 6= 0. (3.28)

Another aspect that should be mentioned is that a non-vanishing chiral condensate, 〈qq〉 is a suf-

ficient (but not necessary) condition for spontaneous symmetry breaking to occur in the QCD La-

grangian in the chiral limit. The following proof is rather schematic. For a detailed argumentation

see Ref. [13].
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Chapter 3. Effective field theories

First define the following nine scalar and pseudoscalar quark densities:

Sa(x) = q(x)λaq(x), a = 0, ..., 8

Pa(x) = q(x)γ5λ
aq(x), a = 0, ..., 8

(3.29)

with λ0 = 13×3. Knowing the definition of the vector charge operator Qa
V (t) (Eq. (3.26)) and using

the commutation relations of the γ and λ matrices, one can express the eight scalar quark densities

as

Sa(x) = − i

3

8∑

b,c=1

fabc[Q
b
V (t), Sc(x)] (3.30)

and show that (Eq. (3.25))

〈0|Sa(x)|0〉 = 0 for a = 1, ..., 8. (3.31)

By choosing a = 3 and a = 8, one obtains through a linear combination:

〈uu〉 = 〈dd〉 = 〈ss〉. (3.32)

Evaluating now the commutator of the axial charge operator with the pseudoscalar quark density for

the ground state and using the following commutation relation:

i2[γ5
λa
2
, γ0γ5λa] = λ2aγ0, (3.33)

one obtains:

i[QA
a (t), Pa(x)] =







uu+ dd, a = 1, 2, 3

uu+ ss, a = 4, 5

dd+ ss, a = 6, 7

1
3 (uu+ dd+ 4ss), a = 8

(3.34)

or generally:

〈0|i[Qa
A, Pa(x)]|0〉 =

2

3
〈qq〉, a = 1, ..., 8 (3.35)

with 〈qq〉 = 3〈uu〉 = 3〈dd〉 = 3〈ss〉.
Therefore a non-vanishing scalar quark condensate is a sufficient condition for spontaneous symme-

try breaking to occur, that is, for the axial charge operator not to annihilate the ground state.

3.1.5. Effective Lagrangians

After determining the properties of the QCD Lagrangian in the chiral limit, and knowing the sym-

metries that the ground state of QCD should exhibit, the goal is to construct the most general

Lagrangian that satisfies the SU(3)L × SU(3)R × U(1)V symmetry and that describes the dynamics
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of the Goldstone bosons associated with the spontaneous symmetry breaking in QCD. Having only

this restriction, the Lagrangian would in principle contain an infinity of terms of arbitrarily high or-

der in the fields and as many free parameters. Such theories are not renormalizable. The task that

arises from this fact is to organize the Lagrangian in such a way as to determine the importance of

diagrams generated by the interaction terms. The free parameters are redefined order by order so that

infinities (arising from loop integrals) can be hidden in the following higher orders. This technique of

construction of effective theories was proposed by Weinberg [17].

The starting point is a non-linear redefinition of the Goldstone boson fields,

U(x) = exp

(

i
φ(x)

F0

)

(3.36)

where U(x) is a group element of SU(3) and

φ(x) =

8∑

a=1

λaφa(x) =








φ3 +
1√
3
φ8 φ1 − iφ2 φ4 − iφ5

φ1 + iφ2 −φ3 + 1√
3
φ8 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 − 2√
3
φ8








=








π0 + 1√
3
η

√
2π+

√
2K

√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K̄0 − 2√
3
η







.

(3.37)

F0 is a parameter which is related to the pion decay π+ → µ+νµ and is known from experimental

data (F0 ≈ 93 MeV).

Through group theoretical arguments (Ref. [13] Sec. 4.2.2), it is possible to show how U(x)

transforms under the action of a group element g = (L,R) of the SU(3) × SU(3) = {(L,R)|L ∈
SU(3), R ∈ SU(3)} 7 group, namely

U → U
′

= RU L†. (3.38)

The most general Lagrangian that satisfies the required symmetries and with the minimal number

of derivatives is:

Leff =
F 2
0

4
Tr(∂µU∂

µU †). (3.39)

This is easy to check:

L′

eff =
F 2
0

4
Tr(R∂µU L

†L
︸︷︷︸

1

∂µU †R†) =
F 2
0

4
Tr(R†R
︸︷︷︸

1

∂µU∂
µU †) = Leff . (3.40)

The pre-factor is chosen such that by expanding U in a Taylor series the lowest order terms (so the

kinetic part) should be 1
2∂µφa∂

µφa. The U(1)V symmetry is satisfied trivially since Goldstone bosons

have baryon number 0 and therefore do not transform.

7L/R = exp
(

−i
∑8

a=1 Θ
L/R
a

λa

2

)
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This is not the entire picture. Given that quark masses are not zero, a mass term has to be included

in the lowest order Lagrangian. Since the mass matrix contains only constant values, such a term

in the Lagrangian would break the symmetry. If one however, motivated by Eq. (3.11), assigns a

transformation law

M → RML† (3.41)

to M , then the QCD Lagrangian is invariant. Therefore a term of the form

LSB =
F 2
0B0

4
Tr(MU † + UM †) (3.42)

can be added on the chiral theory side as well. B0 is related to the chiral quark condensate as

B0 = − 〈qq〉
3F 2

0

.

Writing the term quadratic in the φ fields explicitly, in the limit that mu = md = m, the masses of

the mesons can be determined [18]:

M2
π = 2B0m,

M2
K = B0(m+ms),

M2
η =

2

3
B0(m+ 2ms).

(3.43)

In order to generalize now Weinberg’s procedure, one organises the effective Lagrangian in terms of

an increasing order of derivatives and mass terms because the derivatives of the fields are related to

the momenta of the respective fields:

Leff = L2 + L4 + ... (3.44)

For instance, the 2 stands for the second power in the momenta or the first power in the mass matrix,

because the meson masses are related to the mass matrix through Eq. (3.43).

The next step in determining the importance of diagrams in calculations is the power counting

scheme which is based on the behaviour of diagrams under rescaling of momenta and mass like

pi → tpi and mq → t2mq. Accordingly, diagrams are organized by transformation of their amplitude

as:

M(tpi, t
2mq) = tDM(pi,mq) (3.45)

with

D = 2 +

∞∑

n=1

2(n− 1)N2n + 2NL, (3.46)

NL being the number of independent loops and N2n stands for the number of vertices coming from

L2n.
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Before determining the higher order terms in the effective Lagrangian it is important to establish

what quantities are of interest, in order to make measurable predictions. The most important object

is the S-matrix (scattering matrix), which is related through the LSZ formula to Green’s functions or

time ordered products of fields evaluated between the vacuum states.

An elegant procedure is to obtain the Green’s functions from the generating functional through

its functional derivatives with respect to some external fields (see Chap. 2). By introducing these

fields the original global symmetry of the theory should be promoted to a local one. The procedure is

actually the same used by Gasser and Leutwyler in Refs. [19] and [20] where they introduced in the

QCD Lagrangian eight vector and axial vector currents as well as the scalar and pseudoscalar quark

densities, vµ(x), aµ(x), s(x) and p(x) with the following definition:

vµ(x) =

8∑

a=1

λa
2
vµa , a

µ(x) =

8∑

a=1

λa
2
aµa , s(x) =

8∑

a=0

λasa, p(x) =

8∑

a=0

λapa. (3.47)

In order for the Lagrangian to have the same (now local) symmetries, the external fields have to be

subject to the following transformations:

rµ → VRrµV
†
R + iVR∂µV

†
R,

lµ → VLlµV
†
L + iVL∂µV

†
L ,

χ→ VRχV
†
L .

(3.48)

Here the vector and axial vector current have been redefined in terms of the left and right handed

vector currents lµ and rµ as:

vµ(x) =
1

2
(rµ(x) + lµ(x)), aµ(x) =

1

2
(rµ(x)− lµ(x)) (3.49)

and χ is:

χ = 2B0(s+ ip). (3.50)

The derivative terms in Eq. (3.48) have the same role as those in the covariant derivative, namely to

compensate for term arising from the kinetic part of the Lagrangian. In addition, the transformation

matrices are independent members of the SU(3) group but depend now on the space-time-coordinate

x through ΘR
a (x) and ΘL

a (x) respectively, since we have promoted the original global symmetry to a

local one.

Having all the ingredients for writing a Lagrangian with the required symmetries the next step is

to express the generating functional as a sequence of effective functionals, each containing an effective

Lagrangian of a certain order in momenta:

lnZQCD[v, a, s, p] = lnZ
(2)
eff [v, a, s, p] + lnZ

(4)
eff [v, a, s, p] + ... (3.51)
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Now we can sum up the orders of momenta each field contains and try to construct the most general

effective Lagrangian of a given order:

U = O(p0)

DµU , rµ, lµ = O(p1)

fL/R
µν , χ = O(p2),

(3.52)

where f
L/R
µν is the field strength tensor of rµ and lµ respectively:

fR
µν = ∂µrν − ∂νrµ − i[rµ, rν ],

fL
µν = ∂µlν − ∂ν lµ − i[lµ, lν].

(3.53)

Given two objects, A and B, that transform as A
′

= VRAV
†
L (and B in a similar way), the simplest

invariant object to form is Tr(AB†) since

Tr(AB†) → Tr[VRAV
†
L(VRBV

†
L)

†] = Tr(VRAV
†
LVLB

†V †
R) = Tr(AB†). (3.54)

The only candidates for such invariant objects up to O(p2) are: U , DµU , DµDνU , χ, UfL
µν , f

R
µνU .

In addition, by imposing Lorentz invariance, the most general Lagrangian to O(p2) is:

L2 =
F 2
0

4
Tr[DµU(DµU)†] +

F 2
0

4
Tr(χU † + Uχ†). (3.55)

From this Lagrangian one obtains the generating functional Z
(2)
eff [v, a, s, p], from which it is possible

to calculate the desired Green functions.

The free parameters of higher order Lagrangians contain information about the dynamics and can

in principle be calculated by other techniques like empirical data, or lattice QCD calculations [21].

They encode the dynamics of QCD in the non-perturbative regime.

3.1.6. Conclusions

It has been shown that it is possible to exploit the approximate chiral symmetry of the QCD La-

grangian as well as the observed, but not yet well understood spontaneous symmetry breaking of this

symmetry in order to construct an effective theory that is applicable at low energies, far beyond the

reach of the perturbative approach with the full (physical) QCD Lagrangian.

Of course, the issues presented here are not the whole picture. As for the mesons, there is a similar

approach for the heavier degrees of freedom, the baryons. This however, would be beyond the scope of

this thesis since only the light degrees of freedom, the mesons (pseudo Goldstone bosons) are important

in accounting for finite size effects.
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3.2. Effective thermal field theory

Not only low energy particle physics has gained importance in the past decades but also hot and dense

hadronic matter. This is due to the fact that hadronic matter under these conditions is relevant for

many different areas of physics. First of all, the theoretical understanding of hot matter is important

for describing the early universe as it is believed that this was the initial state of matter right after the

Big Bang [22]. Also different properties of quantum fields at extreme temperatures such as the electro-

weak phase transition may account for the electro-weak baryogenesis. Closely related to cosmology

is astrophysics within which neutron stars and other massive objects are constituted of elementary

matter under extreme conditions and therefore describable with this theory. Equally important is

the study of heavy ion collisions. Collision experiments of gold ions and lead ions (RHIC at BNL

New York, CERN in Geneva, GSI in Darmstadt) try to reveal the theoretically predicted but not

yet observed and well understood quark gluon plasma. This plasma (QGP) is a new phase occurring

above temperatures of Tc ≈ 175 MeV and is believed to arise due to the asymptotic freedom of QCD.

Difficulties arise however when trying to push calculations beyond the leading order. First it is

the large coupling of the strong force that renders a perturbative weak coupling expansion applicable

only beyond huge temperatures ≈ 105 GeV. However, different techniques that will be treated in this

section to some extent can push the applicability of perturbation theory to lower temperatures.

Secondly, as seen in Chapter 2, the finite dimension of the imaginary time direction (the finite

temperature) leads to a sum over Matsubara modes, which in the case of bosons include the n = 0

mode. It turns out that this mode is most sensible to thermal effects and leads to infrared divergences.

Different techniques have been developed to deal with these problems. The most straightforward

is to use effective theories that separate the degrees of freedom most sensitive to infrared problems

from those that are of ultraviolet type and can be handled perturbatively. In this manner the theory

becomes simpler and still exhibits the correct temperature dependence.

Since the correspondence of finite temperature field theory and field theory at T = 0 is straight-

forward, lattice calculations can be carried out also for hot matter. Actually through numerical

calculations a possible phase transition from ordinary hadronic matter to quark gluon plasma was

established at temperatures of Tc ≈ 175 MeV.

Just how in chiral perturbation theory the light pseudo-Goldstone bosons account for most of the

finite size effects in numerical calculations, finite size effects appear also in thermal field theory. They

depend not only on the mass gap of the theory but also on the temperature.

In the following sections difficulties that arise in thermal field theories are briefly exposed and

the main ingredients for writing an effective theory of QCD are presented. Notation and the line of

argument are partially used from Ref. [4]. Having the effective theory it is possible to carry out lattice
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calculations and numerically determine quantities of interest.

3.2.1. Thermal masses and resummation

In order to proceed to the effective theory approach it is important to understand the main features

of an interacting thermal field theory [4]. As seen in Chapter 2 it is not possible to obtain an exact

result of the free energy of a system and a power expansion is always necessary.

Going now to the interacting theory an expansion in terms of the coupling constant of the respec-

tive theory is desired. However, at next to leading order divergences occur and some resummation

technique has to be used in order to get rid of these divergences. Closely related to this problem is

the occurrence of a new scale in the problem generated by a so-called thermal mass. All these new

features render the perturbative expansion non-trivial.

Using a real scalar field with φ4 interaction, the interaction action is

SI =

∫ β

0

dτ

∫

d3xLI =

∫ β

0

dτ

∫

d3x
λ

4
φ4. (3.56)

Therefore, the partition function reads:

Z(T ) = C

∫

Dφe−S0−SI = C

∫

Dφe−S0

[

1− 〈SI〉0 +
1

2
〈S2

I 〉0 − ...

]

, (3.57)

where the exponential factor e−SI has been expanded in Taylor series. The thermal average in the

free theory is defined as:

〈...〉0 =
C
∫
Dφ[...]exp(−S0)

C
∫
Dφ exp(−S0)

. (3.58)

The free energy density can then be calculated as follows:

f(T ) = −T

V
lnZ =

F(0)

V
− T

V
ln

[

1− 〈SI〉0 +
1

2
〈S2

I 〉0 − ...

]

=
F(0)

V
− T

V

{

−〈SI〉0 +
1

2

[
〈S2

I 〉0 − 〈SI〉20
]

︸ ︷︷ ︸

=〈S2
I
〉0,c

−...
}

.
(3.59)

By expanding ln(1 − x) = −x − x2/2 − ... only the connected diagrams remain at each order in λ.

For instance, terms of the form: · are cancelled. The first term in Eq. (3.59) is just the free

energy density determined in Chapter 2:

f(0) = J(m,T ). (3.60)

The next term, of order O(λ1), is calculated in terms of the scalar field propagator in the free

theory.

〈φ(x)φ(y)〉0 ≡ G0(x− y) = T
∑

n

∫
d3k

(2π)3
eiP (x−y) 1

P 2 +m2
. (3.61)
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The integration variable P is defined as P ≡ (ωn,p). Evaluated at x = y, the field propagator becomes

just (cf. Eq. (2.28)):

G0(0) = T
∑

n

∫
d3p

(2π)3
1

P 2 +m2
. (3.62)

With these notations, the next term in the expansion of the free energy density can finally be written

as:

f(1)(T ) = lim
V →∞

T

V
〈SI〉0 = lim

V →∞

T

V

∫ β

0

dτ

∫

V

d3x
λ

4
〈φ(x)φ(x)φ(x)φ(x)〉0

=
3

4
λ〈φ(0)φ(0)〉0〈φ(0)φ(0)〉0

=
3

4
λ[I(m,T )]2.

(3.63)

In the last relation Wick’s theorem and the translational invariance of 〈φ(x)φ(y)〉0 was used and

therefore the integrals became trivial. The factor 3 is a combinatorial factor arising from all the

possibilities of combining 4 identical fields.

In the same manner f(2) of O(λ2) can be determined:

f(2)(T ) = lim
V →∞

[

− T

2V

(
〈S2

I 〉0 − 〈SI〉20
)
]

= −λ
2

16

[

12

∫ β

0

dτ

∫

V

d3x〈φ(x)φ(0)〉40 + 36〈φ(0)φ(0)〉20
∫ β

0

dτ

∫

V

d3x〈φ(x)φ(0)〉20

]

.

(3.64)

Again f(2) can be rewritten as

f(2)(T ) = −3

4
λ2
∫ β

0

dτ

∫

V

d3x[G0(x)]
4 − 9

4
λ2[I(m,T )]2

∫ β

0

dτ

∫

V

d3x[G0(x)]
2. (3.65)

However, these three terms (Eqs. (3.60), (3.63) and (3.65)) cannot be simply added together because

they are functions of the bare parameters m ≡ mB and λ ≡ λB. First, the bare parameters have

to be expressed in terms of the renormalized ones8, mB = mB(mR, λR), λB = λB(mR, λR). The

renormalized parameters should be chosen in such a way that in the weak interaction limit, λR � 1,

these relations can be written as an expansion in terms of λR:

m2
B = m2

R + λRf(m
2
R) +O(λ2R)

λB = λR + λ2Rg(m
2
R) +O(λ3R).

(3.66)

The function f is determined by choosing a specific scheme, in which for instance the physical mass

corresponds to the exponential fall-off factor of the propagator for a particle at rest, exp(−mRτ).

Calculating the propagator 〈φ(x)φ(0)(1−SI )〉0,c in the 0 temperature limit up to O(λB), the physical

mass can be read off from the pole of the propagator:

m2
R = m2

B + 3λBI0(mB) for T = 0. (3.67)

8The renormalization of parameters is performed at T = 0 since thermal effects do not modify short-distance (ultra-

violet) divergences (cf. Ref. [23]).
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Here, I0(m) denotes the n = 0 part of I(m,T ). The 0 mass limit is interesting through the way the

soft modes that become increasingly important, change the qualitative behaviour of f(T ). For the

particular case of vanishing mass, the bare mass can be directly replaced with the renormalized one,

since I0(0) = 0.

In the limit of small masses the high temperature expansion can be used to express the 3 leading

terms of the free energy density:9

f(0)(T ) = J(mB , T ) = −π
2T 4

90
+
m2

BT
2

24
− m3

BT

12π
+O(m4

B), (3.68)

f(1)(T ) =
3

4
λB [I(mB, T )]

2

=
3

4
λB

[
T 4

144
− mBT

3

24π
+O(m2

BT
2)

]

,
(3.69)

f(2)(T ) = −9

4
λ2B

T 4

144

T

8πmB
+O(m0

B). (3.70)

All the odd powers of mB are associated with the zero Matsubara modes, either they come directly

from these modes, as in the case of f(0) or they are some products of zero Matsubara modes with

leading non-zero modes, as in f(1) and f(2).

Taking the fractions of the odd terms in mB to each order, one obtains

δoddf(1)

δoddf(0)
∼ δoddf(2)

δoddf(1)
∼ λBT

2

8m2
B

. (3.71)

It is obvious that in the limit mB → 0 odd terms of higher order in λB become increasingly important,

leading to a breakdown of the perturbative series. To solve this problem one can try to sum up every

first odd term in mB to all orders and hope that by taking afterwards the limit mB → 0 the result

will be finite.

Inspecting the structure of the odd terms, one observes that they are produced by a product of one

0 Matsubara mode contribution and, to a given order, the corresponding number of non-zero mode

contributions. Diagrammatically, the odd terms are given by ring diagrams of the form:

n = 0

n 6= 0

9The bare quantities are used throughout the calculation and only in the end they will be replaced by the renormalized

quantities.
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The larger circle is to be seen as only the n = 0 mode contribution of the loop while the smaller

(outer) one contains only the non-zero modes.

The purpose is to sum these diagrams to all orders:

+ + ... +

At order N the first odd term in mB is

(−1)N+1

N !

(
λB
4

)N

6N2N−1(N − 1)!

[
T 2

12
︸︷︷︸

=I′(0,T )

]

T

∫
ddp

(2π)d

(
1

p2 +m2
B

)N

︸ ︷︷ ︸

zero-mode ring

, (3.72)

where I
′

(0, T ) denote the non-zero-mode ring. The zero-mode contribution can generally be expressed

as:
∫

d3−2εp

(2π)3−2ε

1

(p2 +m2
B)

N
=

(−1)N+1

(N − 1)!

(
d

dm2
B

)N (
m3

B

6π

)

(3.73)

so that the odd term at order N is

δoddf(N) = −T
2

1

N !

(
λBT

2

4

)N (
d

dm2
B

)N (
m3

B

6π

)

. (3.74)

This term looks just as the Nth term of a Taylor expansion. So summing the odd terms to all

orders in λB, one gets
∞∑

N=0

δoddf(N) = − T

12π

(

m2
B +

λBT
2

4

) 3
2

. (3.75)

Collecting all remaining terms of f(0), f(1) and f(2) after sending mB (and implicitly mR) to 0, the

free energy density becomes:

f(T ) = −πT
4

90

[

1− 15

32

λR
π2

+
15

16

(
λR
π2

) 3
2

+O(λ2R)

]

, (3.76)

with λB = λR +O(λ2R).

The zero mode contribution of the Matsubara sums gives rise to infrared divergences that can be

eliminated only through resummation. Furthermore the resummation procedure accounts for the non-

analyticity of the loop expansion. At increasing order in the coupling parameter, the non-analytical

structure of the expansion remains due to the fact that at each order zero Matsubara modes give rise

to infrared divergences.
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Closely related to the infrared divergences occurring from the soft modes is the thermal mass. The

procedure of resummation can be avoided by introducing in the free Lagrange density an effective

mass for the n = 0 field, (1/2)m2
effφ

2
n=0 and substracting the same quantity from the interacting part

of the Lagrange density. Following the procedure of mass renormalization, the effective mass can be

read again from the pole of the field propagator:

m2
eff =

mB→0

λRT
2

4
+O(λ2R) (3.77)

Due to the small coupling constant this effective mass plays a role only for the Matsubara zero

mode, and prevents it from exhibiting the typical divergent behaviour as one would normally expect.

Therefore the free energy density can be rewritten up to the term f(1) as:

f(T ) = −π
2T 4

90
+

3

4
λR

T 4

144
− m3

effT

12π
+O(λ2R). (3.78)

So the last term in Eq. (3.78) is nothing else but the leading order contribution, O(λ0R) of the

Matsubara zero-mode to the free energy density arising from thermal effects.

In the case of QCD, the calculations are similar, merely the result differs partially. Since QCD is a

non-abelian gauge theory, the gauge bosons (gluons) are subject also to self-coupling, which in terms

of the QCD coupling constant is of the order O(g2).

The procedure works as follows. The full gluon propagator 〈Ãa
µ(P )Ã

b
ν(Q)〉 10 will be calculated to

O(g2) and will be expressed for small momenta as

δA,B · 1

P 2 +m2
eff

, (3.79)

where A and B stand for all indices of the gauge fields Aa
µ. The propagator to O(g2) is

〈Ãa
µ(P )Ã

b
ν(P )(1− SI +

1

2
S2
I )〉0,c. (3.80)

The −SI term contributes with the self-energy of the gluon:

The 1
2S

2
I term contributes with the 3-vertex diagrams: gluon-fermion, gluon-ghost and gluon self-

interaction.

10The tilde over A denotes the vector field in the Fourier space.
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, ,

After calculating the contributions of all these terms, the propagator reads:

〈Ãa
µ(P )Ã

b
ν(Q)(−SI +

1

2
S2
I )〉0,c

= −g2 δ
abδ(P +Q)

(P 2)2

{[(

3 +
3

2
− 1

2

)

Nc + 2Nf

]

δµ0δν0 +

[(

3− 7

2
+

1

2

)

Nc

]

δµiδνi

}
T 2

12
+O(g4)

= −δ
abδ(P +Q)

(P 2)2
δµ0δν0 · g2T 2

(
Nc

3
+
Nf

6

)

+O(g4),

(3.81)

where Nc denotes the number of colors of the gauge fields and Nf the number of flavours of the

fermions. The contribution is of order 1/(P 2)2 and does not have the structure of a propagator as

(3.79) but it can be considered as the second term of a Taylor expansion. Tracing the expansion back,

one obtains

〈Ã2
µ(P )Ã

b
ν(Q)〉 ≈ δabδ(P + P )

P̃ + δµ0δν0m2
E

(3.82)

with

m2
E = g2T 2

(
Nc

3
+
Nf

6

)

. (3.83)

Several conclusions can be drawn. First of all mE is of order O(g) indicating non-analyticity of

f(T ) (cf. Eq. (3.78)) in the weak coupling expansion. Secondly, it only affects the “time” component

of the Aµ field due to the prefactor δµ0δν0. Therefore it is said that at next to leading order only

color-electric fields are screened in a QCD plasma. The occurrence of an electrostatic screening mass

introduces also an additional scale in the problem of order ∼ gT .

The calculation of the magnetic screening mass raises however more problems. As seen previously

it vanishes at the gT scale. It is generally believed that the contribution from the magnetic mass is

of order g2T ([24], [25], [26]). Also in Refs. [27] and [28], based on dimensionally reduced QCD, it

is stated that the magnetic screening mass should be of order g2T . This fact has two implications.

Starting from this premise, the contribution to the free energy involving only four-gluon couplings is

δfN (T ) = g6T 4

(
g2T

m(T )

)N−3

, (3.84)

N being the number of vertices. Replacing now m(T ) with # · g2T the contribution from individual

diagrams becomes of order g6T 4 and their sum cannot be estimated in a loop expansion. Second,

through similar arguments it is shown that the magnetic screening mass cannot be calculated or even

defined unambiguously, being purely non-perturbative.
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This is the famous infrared problem of QCDwhich shows that perturbation theory loses its predictive

power at higher order even if renormalization group arguments state that the coupling becomes small

at high energies.

So far the only way to overpass this difficulty is through lattice calculations. These can be carried out

using effective theories where the coupling constants are determined analytically through perturbative

calculations from the full theory.

3.2.2. Effective thermal field theory approach

As seen in chapter 2, zero Matsubara modes are the most infrared sensitive degrees of freedom. Due

to these modes, theories often exhibit infrared divergences (see massless scalar fields) and give rise to

the necessity of using resummation in order to render physical quantities finite.

Generally, in order to predict whether different effects are perturbative or non-perturbative ones,

it is useful to determine the magnitude of the expansion parameter. For that the most general

dimensionless expansion parameter is determined for both bosons and fermions. Here, only that for

bosons is of interest.

With increasing order in the expansion, an additional vertex factor appears which is denoted as

g2. Since summation over Matsubara modes involve a factor T , a preliminary expansion parameter is

g2T . In order to generate a dimensionless expansion parameter, the mass has to be used also:

εb ∼
g2T

m
. (3.85)

Thus, closely related to the discussion of the previous section, it seems that due to the mass depen-

dence of the expansion parameter the perturbation expansion may break down in different regimes.

For instance the zero Matsubara mode appears to be non-perturbative in the limit of vanishing mass.

Furthermore, due to resummation of ring diagrams an effective mass (colour electrical screening) oc-

curs and is of the order m2
eff ∼ g2T 2 so that the bosonic expansion parameter becomes εb ∼ g2T

gT = g.

This shows that the expansion is still valid and the terms are finite but the structure of the expansion

becomes peculiar (Eq. (3.76)). As the magnetic screening mass is of order g2T , colour magnetic

screening is expected to be a purely non-perturbative effect since εb ∼ 1.

Generally speaking the system seems to posses a so-called scale hierarchy, not only common to

thermal field theories but also to effective theories at vanishing temperature. The scale is expressed

as g2T/π � gT � πT . The first scale refers to non-perturbative effects such as screening of color

magnetic fields in a QCD plasma. The second scale refers to the perturbative scale where resummation

is required and the last scale refers to the purely perturbative scale.

The breakdown of perturbation theory at high temperatures can be understood physically in the
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following way [29]. At low temperatures perturbation theory is applied for processes where only a

small number of particles participate in. At high temperatures the number of particles that participate

in collisions increases, especially for the bosonic degrees of freedom for which the amplification factor

is the bosonic distribution function,

nB(E) =
1

exp(ET )− 1
, E ≡

√

k2 +M2, (3.86)

and the expansion parameter becomes g2nB(E). In the small momentum limit, through expansion of

the distribution function into a Taylor series, one obtains the previous result:

g2nB(E) ≈ g2T

m
. (3.87)

For dealing with non-perturbative effects and infrared divergences, effective field theory is used, in

which the strongly coupled soft modes (the ones that generate infrared divergences) are factorized

from the weakly coupled high-momentum modes into a simple Lagrangian.

Knowing the structure of the partition function, one can expand the field into a Fourier sum for

the time coordinate as shown in Eq. (2.15):

φ(x, τ) =

∞∑

n=−∞
φn(x)exp(iω

b
nτ), ω

b
n = 2πnT. (3.88)

Placing now the expansion into the action, it is possible to carry out the integration over the

time variable and obtain a 3-dimensional action corresponding to a 3-dimensional Lagrange density

composed of an infinity of fields. Schematically the procedure is

SE =

∫

d4xL →
∑

∫

d3xL3d. (3.89)

The masses of the new fields depend now on ωb
n.

Now the heavy modes (with masses ∼ πT ) of the 3d theory interact only weakly with each other

and can be integrated out

exp(−Seff) '
∫

DψDφn6=0exp(−SE). (3.90)

The effective action can be written as

Seff ' cV T 3 +

∫

d3x

[

Lb(T ) +

∞∑

n=0

On

T n

]

. (3.91)

Here Lb(T ) is a 3d super-renormalizable effective Lagrangian containing temperature dependent con-

stants. On are higher order operators and are suppressed by powers of temperature.

Once a 3-dimensional Lagrangian has been determined all the parameters entering the 3d La-

grangian have to be determined also. This is done by constructing Green’s functions with the effective

31



Chapter 3. Effective field theories

Lagrangian and requiring that the they match with a certain accuracy to the static 4-dimensional

Green’s functions:

G3d(k1, ..., kn) = G4d
ω=0(k1, ..., kn)(1 +O(gm)). (3.92)

The number of higher order operators On that are included in the effective Lagrangian depends on

the desired accuracy.

As a consistency check the scales that enter the new effective Lagrangian should be smaller than

scale that has been integrated out
meff

2πT
� 1 (3.93)

With the effective action the partition function can be calculated and other quantities of interest.

Non-perturbative methods can also be used such as numerical simulations on the lattice.

3.2.3. Dimensionally reduced QCD

As outlined in the introductory chapter, finite temperature QCD is of particular interest in high energy

physics due to its theoretical relevance for heavy ion collisions, as well as cosmological problems and

effects related to these topics such as the quark gluon plasma and phase transitions.

The goal is to write an effective SU(3) gauge theory that describes only the soft modes, those that

are most sensitive to IR effects. Since fermions are not affected by IR effects due to the lack of the

Matsubara zero mode, only the gluonic part of the QCD Lagrangian 11 will be written

L = −1

4
F aµνF a

µν (3.94)

with

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (3.95)

For the properties of the QCD Lagrangian recall appendix B.

Since the vector fields Aa are bosons, the infrared sensitive modes are the zero Matsubara modes

that do not depend on the τ coordinate. Therefore the effective theory will be d = 3− 2ε dimensional

(Refs. [28], [30]). In addition, the effective Lagrangian has to inherit the symmetries of the original

theory. The heat bath breaks Lorentz invariance but since the effective theory is a 3 dimensional it

needs to be symmetric only in the spatial directions.

The underlying gauge symmetry

A
′

µ = UAµU
−1 +

i

g
U∂µU

−1 (3.96)

11The folowing derivation of the effective QCD Lagrangian is taken from Ref. [4]. Originally, these calculations were

performed in Refs. [27] and [28].
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reads now 12

A
′

i = UAiU
−1 +

i

g
U∂iU

−1,

A
′

0 = UA0U
−1,

(3.97)

where U does not depend on τ since the static limit is considered. The effective theory is described

in the static limit by a d-dimensional bosonic vector field and a scalar field A0 in the adjoint repre-

sentation.

With these ingredients note that Eq. (B.17) becomes:

F a
i0 = Dab

i A
b
0 (3.98)

and the Lagrangian can be written as

L =
1

4
F a
ijF

a
ij +

1

2
(Dab

i A
b
0)(Dac

i A
c
0). (3.99)

By rewriting
λa

2
Dab

i A
b
0 = ∂iA0 + gfacbλ

a

2
Ac

iA
b
0 = ∂iA0 − ig[Ai, A0] = [Di, A0], (3.100)

where Di is the covariant derivative in the fundamental representation (see appendix B), the effective

Lagrangian reads

L(0)
eff =

1

4
F a
ijF

a
ij +Tr{[Di, A0][Di, A0]}. (3.101)

As a next step, one can add terms of increasing order built up of the vector fields Aa
i and the scalars

Aa
0 . Operators of the lowest dimensionalities are

dim=2: Tr[A2
0];

dim=4: Tr[A4
0], (Tr[A

2
0])

2;

dim=6: Tr{[Di, Fij ][Dk, Fkj ]}, Tr[A6
0], ...

(3.102)

The effective action thus becomes

Seff =
1

T

∫

ddx

{
1

4
F a
ijF

a
ij +Tr([Di, A0][Di, A0]) +m2

ETr[A
2
0]

+ λ(1)(Tr[A2
0])

2 + λ(2)Tr[A4
0] + ...

}

.

(3.103)

The prefactor 1/T comes from the integration over τ . Since no field depends on τ the integration is

trivial and generates only this prefactor.

Instead of going further with the simplification of the effective theory down to the scale of g2T , the

concrete procedure of calculating the free energy of a gluon gas is sketched as done in Ref. [31].

12The same notation as for Aa
µ was used for the new fields Aa

i and Aa
0 .
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The procedure is as follows: first, the momentum scale πT is integrated out, generating the EQCD

effective theory that describes the system at length scales of 1/(gT ). Next, the gT scale is integrated

out from the EQCD Lagrangian generating thus a Lagrangian which contains the lowest scale, g2T/π.

This Lagrangian describes the physics at length scales of π/(g2T ) and is purely non-perturbative.

After having separated all existing scales from each other the coefficients of effective Lagrangians have

to be calculated by matching with the Lagrangian of full QCD. Having determined the coefficients to

the desired precision, lattice calculations can be performed with the MQCD Lagrangian.

The free energy density can be written as a sum of contributions coming from these three scales:

f(T ) = fQCD(πT,Λ) + fEQCD(gT,Λ,Λ
′

) + fMQCD(g
2T/π,Λ

′

). (3.104)

There are two ultraviolet cutoff scales Λ and Λ
′

. They appear in the individual contributions to the

free energy density but cancel against each other in the final result. This is expected since f(T ) is a

physical quantity independent of ultraviolet cutoffs.

After the first step of the scale separation, the partition function can be factorized as:

ZQCD(T ) = e−fQCD(πT,Λ)T 3V

∫ (Λ)

DAa
0DAa

i exp

[

−
∫

d3xLEQCD

]

, (3.105)

where LEQCD is the Lagrangian of Eq. (3.103).

Practically, at this step there are at least two matching coefficients that have to be expressed as

functions of g2 and T . These are fQCD and gE . The latter stems from the covariant derivative

Di. Since we want to go to the next scale of g2T also the term of mE has to be included in the

effective Lagrangian. For instance in Ref. [32], where the pressure was calculated at O(g6ln(1/g)),

five coefficients had to be determined coming from operators up to dimension 4.

Generally, these coefficients are determined by calculating static quantities in both EQCD and QCD

(or EQCD and MQCD) and matching the results up to the desired order in the parameters of the

underlying theory.

The fQCD term can be calculated from the full theory without any resummation since all the infrared

effects are considered to be in LEQCD. For instance, using the MS scheme with Λ as the scale and

renormalizing the coupling g at the scale 4πT one obtains

fQCD =
(N2

c − 1)π2

9

{

−1

5
+
Ncg

2(4πT )

16π2
+

+

(
Ncg

2(4πT )

16π2

)2
[

−12

ε
− 72ln

Λ

4πT
− 4γ − 116

5
− 220

3

ζ
′

(−1)

ζ(−1)
+

38

3

ζ
′

(−3)

ζ−3

]}

.

(3.106)

By simply reading the coupling from the full theory, the coupling constant gE is at leading order in

g simply:

gE =
√
Tg (3.107)
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The parametermE can be considered the color electric screening mass with higher order corrections.

Therefore, it can be calculated by matching the perturbative expansion in g2 from both QCD and

EQCD. To leading order it is [31]:

m2
E =

Ncg
2T 2

3

[

1 + ε

(

2ln
Λ

2πT
+ 2

ζ
′

(−1)

ζ(−1)

)]

. (3.108)

Next, the massive field Aa
0 can also be integrated out simplifying the theory even further. The new

Lagrangian looks like:

LMQCD =
1

4
F a
ijF

a
ij + δLMQCD, (3.109)

where the same notation was used for the F a
ij fields as in the EQCD Lagrangian. The second term on

the rhs of Eq. (3.109) stands for higher order operators of the Aa
i fields that respect the symmetries

of the original Lagrangian. Now it is possible to make the identification
∫ (Λ)

DAa
0DAa

i exp

[

−
∫

d3xLEQCD

]

=

= e−fEQCD(gT,Λ,Λ
′
)(gT )3V

∫ (Λ
′
)

DAa
i exp

[

−
∫

d3xLMQCD

]

.

(3.110)

This relation comes from Eq. (3.104) with:

fMQCD(g
2T/π,Λ

′

) = −T

V
ln

[
∫ (Λ

′
)

DAa
i exp

(

−
∫

d3xLMQCD

)]

. (3.111)

In the MQCD Lagrangian (3.109) the only scale is g2T . It enters the Lagrangian through the

coupling constant in the covariant derivative Di [32]:

g2M = g2E
(
1 +O(g2E/mE)

)
. (3.112)

The term fEQCD can be determined by calculating the logarithm of the partition function in both

EQCD and MQCD. The result is:

fEQCD · (gT )3 = Nc − 1

4π
m3

E

{

−1

3
+

NcgE
16πmE

[
1

ε
+ 4ln

Λ

2mE
+ 4

]}

. (3.113)

The term fMQCD is non-perturbative. In principle, it can be estimated via lattice simulations using

the parameters determined perturbatively as shown before. However, the conversion of the results from

3d lattice regularization to 3d continuum regularization and than to the 4d original theory necessitates

some perturbative matchings.

In Ref. [32] higher order computation were performed in determining the pressure up toO(g6ln(1/g)).

Beyond this order perturbation theory is expected to break down. In order to determine the parame-

ters of the effective Lagrangians to that precision higher order operators were needed. Their coefficients

have been determined by matching 4-point functions calculated in both theories.

Even if high order corrections are known for static quantities such as pressure or the free energy,

their convergence is still poor even for large temperatures. The next section is devoted to this aspect.
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3.2.4. Convergence issues

In the final result of f(T ) all Λ and Λ
′

dependences should cancel since f describes a physical quantity.

However there remains a scale dependence from the running coupling constant g(µ).

The result can be written as a sum of terms with increasing power in the coupling g (or α
1/2
S ).

In this way the relative contribution of each term can be observed and by successively adding these

terms together the convergence of the perturbative series can be studied.

The following plot is from Ref. [33] and shows the pressure calculated to different orders normalized

to the non-interacting value pSB.

Figure 3.1.: Perturbative results for the thermal pressure of pure glue QCD normalized to the ideal-gas value

as a function of αS(µ = 2πT ). Ref. [33]

Convergence of the perturbative series seems to appear only for αS < 0.05. Additionally it seems

that in different regions higher order terms yield a larger contribution than lower order terms. This

raises the question of how much higher order (and not yet calculated) terms contribute to the final

result.

Another aspect that should be mentioned is the dependence of the result on the renormalization

scale. As seen from Fig. 3.2, taken from [33] the numerical dependence on the renormalization scale

grows with increasing order. So it seems perturbation theory loses its predictive power at temperatures

of interest.

In conclusion, a significant progress has been made in the last years to push perturbative calculations
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Figure 3.2.: Perturbative results for the thermal pressure of pure glue QCD as a function of T/Tc (T/ΛMS =

1.14). The various grey bands bounded by differently dashed lines show the perturbative results

from order g2 to order g5, using a 2-loop running coupling with MS renormalization point µ varied

between πT and 4πT . The thick grey lines show the continuum extrapolated lattice results. Ref

[33].

as far as possible. Still, due to the non-perturbative nature of the color-magnetic sector of QCD, lattice

calculations are so far the only reliable approach.
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4. Finite size effects

Even if QCD is in general not susceptible to an analytic treatment, it has been shown in the previous

chapter that under special circumstances such as very low temperature (and momenta) or very high

temperature effective field theory methods allow to simplify the problem considerably. In this chapter

these frameworks are used in order to address a particular phenomenon, namely the appearance of

finite volume effects in physical observables.

For the regime of low temperatures and momenta, where hadrons are the physical states, an effective

theory described in terms of these states has been constructed. At high temperatures, another theory

appears where degrees of freedom related to gluons play a dominant role.

In both regimes an alternative approach is to treat the entire problem numerically through lattice

Monte Carlo simulations. However, extrapolation of numerical data is often difficult due to the finite

lattice spacing and due to the effects of using a finite volume instead of doing calculations in an infinite

volume.

In this chapter I concentrate on the effects due to a finite volume in a scalar field theory. This is

done by calculating the free energy density and comparing it with the result in the infinite volume

limit. It is useful to look at scalar fields since they have similar infrared properties as QCD. In fact,

in order to obtain the free energy density for a gluon gas in the non-interacting limit, one has only to

multiply the massless scalar field result with the degrees of freedom of the gluons. On the other hand

an O(N) symmetric field theory, describing QCD at low momenta, contains N − 1 weakly interacting

scalar fields.

For theories with spontaneous symmetry breaking two regimes are investigated. The first one is

the case in which the inverse dimension of the box is smaller than the temperature and than any

mass scale in the theory. In the second case the inverse dimension of the box is larger then the light

Goldstone modes. In both cases the light Goldstone modes dominate the effects of finite volume.

Massless fields are investigated in the limit of high temperature. It turns however out that the näıve

model of non-interacting massless fields is not applicable to a physical situation since thermal masses,

however small, change the finite size contributions qualitatively.
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Chapter 4. Finite size effects

4.1. Massive scalar field

In this section the free energy for a massive scalar field in a volume V = L1...Ld and at temperature

T = 1/L0 ≡ 1/β will be derived. Here, d denotes, as in chapter 2 the spatial dimension whereas

D = d + 1 will be the space-time dimension. Dimensional regularization is recommended as it keeps

the Lorentz invariance intact by not imposing cutoffs in the sums (integrals in the infinite volume

limit).

The starting point is the partition function in Eq. (2.23). Its logarithm can be expressed as:

lnZ =
∑

k

[

lnT +
1

2

∑

n′

lnω2
n − 1

2

∑

n

ln
(
ω2
n + E2

k

)

]

(4.1)

with

E2
k = k2 +m2 (4.2)

Taking the last term in Eq. (4.1) and denoting k ≡ (ωn,k)
1, the logarithm can be expressed as:

ln
(
k2 +m2

)
=

[

− d

dr

(
k2 +m2

)−r
]

r=0

. (4.3)

Using the Poisson summation formula,

1

βV

∑

k

H(k) =
∑

l

∫
dDk

(2π)D
H(k)eikl, l ≡ (βl0, Lili) (4.4)

with kl =
∑d

µ=0 kµlµ, the sum can be expressed as:

−βV
∑

l

[
d

dr

∫
dDk

(2π)D
(
k2 +m2

)−r
eikl
]

r=0

. (4.5)

In order perform the D-dimensional integral over k, the integrand should be modified such that it

becomes Gaussian. Rewriting

(
k2 +m2

)−r
=

1

Γ(r)

∫ ∞

0

dλλr−1e−λ(k2+m2), (4.6)

the sum becomes:

S(m) =
∑

k

ln
(
k2 +m2

)
=

− βV
∑

l

{

d

dr

∫
ddk

(2π)d
1

Γ(r)

∫ ∞

0

dλλr−1exp

[

−λ
(

k − i
kl

2λ

)2

− λm2 − l2

4λ

]}

r=0

,

(4.7)

where Γ(r) is the Gamma function. After integration over k and differentiation with respect to r, by

setting r = 0, the sum can be written as

S(m) = −βV 1

(4π)d/2

∑

l

∫ ∞

0

dλλ−1− d
2 e−λm2− l2

4λ . (4.8)

1ki =
2πn
Li

.

39



Chapter 4. Finite size effects

The zero-mode contribution, l = (0, 0, 0, 0) corresponds to the zero temperature and infinite volume

limit. Separating this mode from the others and performing the integral, we obtain

S(m) = −βV 1

(4π)D/2
(m2)

D
2 Γ

(

−D
2

)

− βV
2

(2π)
D
2

∑

l

′

(
m2

l2

)D
4

KD
2

(√
m2l2

)

. (4.9)

The function Kd(x) is the modified Bessel function of the second kind and the prime in the previous

sum denotes omission of the zero mode.

For the moment let us concentrate on the first term in Eq. (4.9). For that express the free energy

density as

f = −T

V
lnZ (4.10)

so that the infinite volume and zero temperature part of the free energy density is

fV→∞,T→0 = −1

2

(
m2

4π

)D
2

Γ

(

−D
2

)

. (4.11)

Inserting now D = 4− 2ε we get the same result as in Chapter 2, Eq. (2.26):

S(m)|T=0,V =∞ = − m4

64π2
µ−2ε

(
1

ε
+ ln

µ2

m2
+ ln4π − γE +

3

2

)

. (4.12)

The second term in Eq. (4.9) contains the thermal part of infinite volume and the finite volume

corrections:
∑

l

′

= 2

∞∑

l0=1
︸ ︷︷ ︸

T 6= 0

V → ∞

+
∑

l

′

︸︷︷︸

T = 0

V 6= ∞

+2

∞∑

l0=1

∑

l

′

︸ ︷︷ ︸

T 6= 0

V 6= ∞

. (4.13)

The first term in Eq. (4.13) is just the finite temperature term from chapter 2:

JT (m) ≡ fT,∞ = − 1

2π2
(mT )2

∞∑

l0=1

l−2
0 K2(mβl0), (4.14)

whereas the remaining part is denoted as:

fL = − 1

(2π)2

(m

L

)2∑

l

′

l−2K2(mL|l|)

− 1

2π2
(mT )2

∞∑

l0=1

∑

l

′ (
l20 + (LT )2l2

)−1
K2

(

mβ
√

l20 + (LT )2l2
)

.

(4.15)

The remaining terms in Eq. (4.1) appear to be infinite since they are 3-dimensional sums over

constant factors. It turns out however that, as we now demonstrate, they can be calculated explicitly

after suitable regularization and the temperature dependence drops out always. So these sums can

contribute to the free energy density at most with a constant term.
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The second sum in Eq. (4.1) can be written as:

∑

k

∑

n′

lnω2
n =− 2

∑

k

∞∑

n=1

d

dr

1

(2πnT )2r

∣
∣
∣
∣
r=0

=− 2
∑

k

(

−2ln(2πT )ζ(0) + ζ
′

(0)
)

.

(4.16)

Evaluating the Zeta function and its derivative at 0, ζ(0) = −1/2, ζ
′

(0) = −(1/2)ln(2π), the T

dependent part cancels against the first sum and the remaining term is:

−1

2
ln2π

∑

k

= −1

2
ln2π (Zd(1, ..., 1; 0) + 1) . (4.17)

The sum is expressed in terms of the Epstein Zeta function whose definition is:

Zd(a1, ...ad; s) ≡
∞∑

n1=−∞
...

∞∑

nd=−∞

′ [
(a1n1)

2 + ...+ (adnd)
2
]−s

. (4.18)

Useful relations concerning the Epstein Zeta functions are found in Refs. [34] and [35]. It is not

possible to establish an analytic expression for this function in every dimension. For even dimensions

(d = 2, 4, ...) it can be expressed in terms of Γ (Gamma) and ζ (Riemann Zeta) functions. For odd

dimension usually it can be expressed as a sum of a dominating term and a small remainder truncated

at a given order. Details on the calculation of the Epstein Zeta function are given in appendix C. For

the particular case of d = 3− 2ε,

Z3(1, 1, 1; 0) = −1. (4.19)

This result is convenient because it means that the first two sums in Eq. (4.1) are exactly 0 after

proper regularization.

4.2. Massless scalar field

The massless case of a scalar field can be applied to a non-interacting photon or gluon gas subject to

boundary conditions. It exhibits a non-trivial contribution due to the presence of the massless mode.

The starting point in calculating the free energy density of the massless scalar field is the last

sum of Eq. (4.1). For consistency and for keeping dimensions correct, the mass is replaced by an

infinitesimally small mass, which is smaller than any other scale in the problem, m ≡ ε. Therefore,

the sum can be written as:

∑

k

∑

n

ln
(
k2 + ω2

n + ε2
) ε→0

= ln(ε2) +
∑

k

∑

n

′

ln
(
k2 + ω2

n

)

= ln(ε2) +
∑

k

′

lnk2.
(4.20)
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In order to calculate the second sum in Eq. (4.20) the definition from Ref. [36] for the massless

propagator is used:
∑

k

′

lnk2 = − d

dr

(
Vd
Γ(r)

lim
m→0

(

Gr −
Γ(r)

m2rVD

))

. (4.21)

The definition of Gr is given in appendix C.

Using now the expansion for small masses, the sum becomes:

∑

k

′

lnk2 =− d

dr
lim
m→0

(

VD
Γ(r)

(

Γ
(
r − D

2

)

(4π)D/2
mD−2r+

+
1

VD

(
L̄2

4π

)r

(ar + br − br−D
2
)− Γ(r)

VDm2r

))

r=0

=− d

dr
lim
m→0

[

VD
Γ(r)

Γ
(
r − D

2

)

(4π)D/2
mD−2r+

+

(
L̄2

4π

)r
1

Γ(r)

( ∞∑

n=0

(

−m
2L̄2

4π

)n
1

n!
αr+n +

(
m2L̄2

4π

)−r

Γ(r)−

−
∞∑

n=0

1

n!

(

−m
2L̄2

4π

)n
1

n+ r
−

− (−1)
D
2
−r−1

Γ
(
D
2 − r + 1

)

(
m2L̄2

4π

)D
2
−r


ln
m2L̄2

4π
+ γE −

D
2
−r
∑

n=1

1

n



−

−
∞∑

n6=D
2
−r

1

n!

(

−m
2L̄2

4π

)n
1

D
2 − r − n



 − 1

m2r





r=0

=lnL̄2 − α0 +
2

D
+ γE − ln4π,

(4.22)

where L̄ is the average dimension of the D-dimensional system, L̄ ≡ (L0 · ... · Ld)
1/D and VD is the

D-dimensional volume, VD ≡ L0 · ... · Ld. An exact derivation of the ar, the br as well as the αr

function is given in appendix C.

Turning now to Eq. (4.1) for a massless field, we have:

lnZ =
∑

k

lnT +
1

2

∑

k

∑

n′

lnω2
n − lnε− 1

2

∑

k

∑

n

′ln
(
ω2
n + k2

)
. (4.23)

As was shown at the end of the previous section, the first two terms cancel against each other. The

last sum in Eq. (4.23) is split into the n = 0 and the n 6= 0 modes:

∑

k

′

lnk2 + 2

∞∑

n=1

∑

k

ln
(
ω2
n + k2

)
. (4.24)

The first sum of Eq. (4.24) is just the massless sum of a d-dimensional system, evaluated in Eq. 4.22:

∑

k

′

lnk2 = ln
L̄2

4π
− α0 +

2

d
+ γE . (4.25)
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Here the logarithm contains L instead of L̄ since all spatial dimensions are considered equal.

In the second term of Eq. (4.24), the ωn term can be considered an n-dependent mass. Therefore,

from Eq. 4.7 we have:

2

∞∑

n=1

∑

k

ln
(
ω2
n + k2

)
= −2π

d
2

(
L

β

)d

Γ

(

−d
2

)

ζ(−d)

− Ld

(4π)d/2

∞∑

n=1

∫ ∞

0

dλλ−1− d
2 e−λ(2πTn)2

∑

l

′

exp

[

−
d−1∑

µ=1

(lµL)
2

4λ

]

.

(4.26)

The first term on the rhs of Eq. (4.26) stems from the vacuum energy density through:

2
∞∑

n=1

[

− Ld

(4π)
d
2

(ω2
n)

d
2 Γ

(

−d
2

)]

(4.27)

Since the only term depending on n is ωn, the sum becomes:

∞∑

n=1

(ω2
n)

d
2 = (2πT )dζ(−d), (4.28)

where ζ(s) =
∑∞

n=1 n
−s is the Riemann Zeta function.

Gathering all terms of Eq. (4.23), we get:

lnZ =(LT )d
Γ
(
D
2

)

π
D
2

ζ(D)− lnLT

+ 2(LT )
d
2

∞∑

n=1

∑

l

′

(
n

|l|

) d
2

K d
2
(2πLT |l|n)− ln

ε

T

+
1

2
α0 +

1

2
ln4π − 1

d
− γE

2
− ln2π(Zd(1, ..., 1; 0) + 1),

(4.29)

where the following relation has been used:

π− s
2Γ
(s

2

)

ζ(s) = π
s−1
2 Γ

(
1− s

2

)

ζ(1− s). (4.30)

Inserting D = 4 and d = 3, along with the numerical evaluation of α0 from Ref. [36] and

Z3(1, 1, 1; 0) = −1 from Eq. 4.19, the partition function for the massless scalar field in 4 dimen-

sions becomes:

lnZ =
π2

90
(LT )3 − lnLT +

1

2π

∑

l

′ 1

|l|3
e2πLT |l|(1 + 2πLT |l|)− 1

(e2πLT |l| − 1)2
+ 0.72. (4.31)

The constant factor is not important in determining thermodynamic quantities and can be left out.

It partially stems from the α0 function evaluated in 3 dimensions and with equal box dimensions.

4.3. Theories with spontaneous symmetry breaking

As discussed in section 3.1, chiral perturbation theory provides a useful tool to describe low energy

systems of hadronic matter. When the system is evaluated on the lattice, light Goldstone modes can
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feel the boundaries and finite size effects can be important. Effects of higher modes are expected to

be suppressed.

Scalar field theory provides an useful tool to analyse the effects of finite volume and temperature for

low energy QCD for two reasons. First of all, this is due to the isomorphic relation between the O(4)

group used to describe spontaneous symmetry breaking in scalar field theory and the SU(2)L×SU(2)R

symmetry of the chiral Lagrangian. The subgroups of the two systems are also isomorphic after

symmetry breakdown, O(3) ∼ SU(2)V . So an effective theory of a broken O(N) symmetry is merely

N − 1 interacting scalar fields. Secondly, it is shown in section 3.1 that interaction occurs only at

next-to-leading order and that it is weak (of O(p)). Therefore the dominant finite size effects appear

due to free Goldstone modes.

It is useful to distinguish between two cases. In the first case the linear size of the box is large.

A reference scale could be the pion mass (L−1 � Mπ). This limit implies that even for the lightest

Goldstone modes the Compton wavelength does not extend beyond the size of the box. The other

limit is when the Compton wavelengths of the lightest Goldstone modes do extend beyond the box

(L−1<∼Mπ). In this regime regular chiral perturbation theory breaks down and a different expansion

scheme has to be used.

In Refs. [37],[38] and [39] the first regime was inspected and it was found that in the limit of large

volumes (that extend beyond any m−1 scale) and low temperatures the chiral Lagrangian does not

change and it corresponds to the zero temperature and infinite volume limit. Moreover it is shown

that the expansion parameters do not depend on either the temperature or the linear dimension of

the box provided the fields are subject to the standard boundary conditions, periodic for bosons and

anti-periodic for fermions. This can be seen also in Fig. 4.1 where the finite volume effects on the

partition function of the scalar field is shown. Indeed, in the regime of large volume (MπL ' 5) and

not too low temperatures the effects vary between approximately 1% and 10%.

Even for higher temperatures (T 'Mπ) finite size effects are still small. This confirms the statement

that in the large volume limit no significant effects appear in the partition function of the scalar field.

However, in the small volume limit, mL<∼1 finite size corrections are orders of magnitude higher

then the free energy density in the thermodynamical limit, suggesting that in this region the simple

picture of a non-interacting scalar field is no longer applicable. This case is discussed in the following.

The other regime occurs if m tends to 0 at fixed L. The perturbation series in terms of the

effective Lagrangian breaks down and a reorganization of the perturbative series has to be performed

[39]. In order to control the effects due to the finite volume, an expansion in terms of 1/L is used,

called the large volume expansion. In Ref. [36] such an expansion is performed for a theory with an

O(N) symmetry. “Magnetic” language is used in order to keep the approach general. Therefore the
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Figure 4.1.: Finite size effects for a scalar field in the large volume limit m,T � L−1 by plotting fL/fT,∞

from Eqs. 4.14 and 4.15. No absolute scale is set since the partition function depends only

on dimensionless quantities mL and LT . In the region of m,T ' L, in which the finite size

corrections are orders of magnitude larger than the free energy density in the thermodynamic

limit, the scalar field approach loses its predictive power.

symmetry breaking field, χ(x) is reinterpreted as the magnetic field H(x) and the Goldstone boson

fields are rather S(x) then U(x) 2.

An important difference to the infinite volume limit is the fact that in a finite volume the Goldstone

modes have a net magnetization of

m =
1

V

∫

dxS(x), (4.32)

that appears in the action as

−m ·HV. (4.33)

At vanishing magnetic field (H = 0), the magnetization rotates freely in the group space rendering

the partition function divergent3. In order to keep the integral finite, the magnetization has to be

treated as a collective variable by using the Fadeev-Popov procedure. A factor
∫

dm δ

(

m− 1

V

∫

dxS(s)

)

≡ 1 (4.34)

2Bold letters are used to remind that they are multi-component scalar fields, S(x) = (S1(x), ...., Sn(x)).
3It is the analogous situation of defining a path integral for a gauge field, when attention has to be paid not to integrate

over physically identical fields.
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Chapter 4. Finite size effects

is introduced in the partition function. The integral overm is split into its magnitude and its direction

dm = mN−1dmde, with e = ΩT (1, 0, ...0) (4.35)

and where ΩT is an O(N) rotation.

By rotating the Goldstone fields, S(x) = ΩTR(x), the factor becomes
∫

dΩdmmN−1δ

(

m · (1, 0, ..., 0)− 1

V

∫

dxR(x)

)

. (4.36)

The collective variable, Ω is associated with the zero mode S(x) = const, while R(x) is the non-zero

mode and enters the effective Lagrangian. It is expressed through Π = (π1, ..., πN−1) as

Ri(x) = πi(x)

R0(x) =
√

1−Π2(x) = 1− 1

2
Π2(x) + ...

(4.37)

Physically, the contribution from the dominant (light) mode has been separated from heavier modes

that are treated perturbatively.

Establishing now counting rules for the fields in terms of 1/L (just as in Sec. 3.1.5),

Π ∼ L1−d/2, ∂µ ∼ L−1, H ∼ L−d, (4.38)

the first contribution to the effective action, taking H = (H, 0, ..0), is:
∫

dx
1

2
F 2
π∂µΠ∂µΠ− ΣHV Ω00, (4.39)

with Fπ being the pion decay constant and Σ ≡ limH→0〈φ0〉 being in chiral language the negative

quark condensate.

With all these ingredients the partition function can be calculated to the desired order in 1/L and

with it, correlation functions and other quantities of interest. An important consequence of treating

the zero Goldstone mode as a collective variable is the behaviour of the magnetization or, in the chiral

language, the quark condensate in a finite volume. Its value is in the limiting case H → 0:

〈φ0〉 = 1

V

∂

∂H
lnZ ∝ 1

N
VH. (4.40)

This means that, when H tends to 0, the magnetization will also drop linearly with H to zero. In

chiral perturbation theory this means that, in the chiral limit of vanishing quark masses and a finite

fixed volume the chiral condensate will vanish. This is the reason why in lattice simulations the chiral

condensate cand be calculated only for non-vanishing quark masses and needs to be extrapolated to

the chiral limit. In Ref. [39] the behaviour of the chiral condensate was in detail examined.

It is now clear that familiar physics and exponentially small finite-volume effects are found only if

L� M−1
π ; nevertheless, the chiral effective theory itself is valid also for L<∼M

−1
π as long as L is still

larger then the QCD scale4.

4The QCD scale is roughly speaking the scale below which a perturbative expansion in terms of the strong coupling
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4.4. Yang-Mills theory at very high temperatures

The partition function of the massless field contains only one scale, the dimensionless parameter LT .

Due to the lack of any other intrinsic scale, the thermodynamic quantities are expected to be very

sensitive to the geometric shape of the box. Indeed, this is obvious from the logarithmic correction of

the free energy density in the non-interacting case (cf. Eq. (4.31)).

f(T ) = − π

90
T 4 +

T

L3
lnLT − T 2

L2

∑

l
′

1

l2
e−2πLT |l|. (4.41)
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Figure 4.2.: Contribution of the zero mode finite volume correction to the free energy density. The sum in

Eq. 4.41 is negligible with respect to the zero mode contribution. The definitions for fL,m=0 and

f∞,m=0 are given in Eqs. (4.42) and (4.43).

The last term in Eq. (4.41) is an approximation of the sum in Eq. (4.31) in the limit of large LT

and is negligible. The second term however is a non-trivial correction to the thermodynamic limit.

It stems from the Matsubara zero mode evaluated in a finite volume. In Fig. (4.2) its importance is

illustrated by plotting the ratio between the zero mode contribution due to finite size effects,

fL,m=0 =
T

L3
lnLT, (4.42)

and the free energy density of the massless scalar field in the infinite volume limit,

f∞,m=0 = −π
2

90
T 4. (4.43)

constant, αs(Q) is no longer possible due to its large value. This scale is about ΛQCD ≈ 200 MeV for which

αs(ΛQCD) ≈ 0.4.
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The plot shows an extremum at the value

T =
e

1
d−1

L
, (4.44)

so at LT = 1.39 finite volume corrections seem to exceed the quantity in infinite volume. In addition,

the shape varies slowly with increasing LT , requiring LT = 7 in order to get contributions of only

5%, or LT = 13 in order to reduce them to under 1%.

We note that the expression in Eq. (4.41) is not in agreement with the calculations performed in

Ref. [40]. The method used there to calculate the partition function of a non-interacting massless gas

is based on the Zeta function renormalization. It is the requirement for modular invariance and the

vanishing dimensionality of the partition function which ultimately leads for the finite size effects to

be d times smaller than in this case; indeed Gliozzi obtains a term of

−1

d
lnLT. (4.45)

Naively, omitting interactions, this results can be compared to lattice simulations. In Ref. [41] the

SU(3) gauge theory has been simulated with different improved actions of O(a2) and O(a4). The

energy density has been calculated with these actions for Ns/Nt = 4 and Ns/Nt = 6 with increasing

number of Nt.

In order to compare the results, the partition function for a gluon gas has to be determined. In the

non-interacting case, this is just the partition function of the scalar field multiplied by the polarization

states of the gluon (2) and the dimension of the adjoint representation of the SU(3) group. Therefore:

Z

N2 − 1
=
π2

45
(LT )3 − 2lnLT +O(e−2πLT ). (4.46)

The energy density in a finite box is:

ε ≡ T 2

V

(
∂lnZ

∂T

)

V

= (N2 − 1)

(
π2T 4

15
− 2T

V

)

. (4.47)

Calculating the ratio of this expression and the energy density in the thermodynamic limit, the factor

1− 30

π2

1

(LT )3
(4.48)

is obtained. Interpolating now the numerical results for LT = 4, 6 with a function of a− b(LT )−3 the

result for b is 0.62 which clearly is smaller than 30/π2 ≈ 3.03.

On the other hand, the analytic result obtained by Gliozzi, 15/2π2 ≈ 0.76 differs after all with about

20% from the numerical result. However, obviously the functional form cannot be tested on two data

points, and many other simulations have indicated very small volume dependence. In fact, as will

be discussed below, in an interacting theory the volume dependence is expected to be exponentially

small.
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In conclusion, the partition function calculated within the framework of Ref. [36] fails to provide

quantitative results but gives a qualitative picture on the behaviour of non-interacting massless fields

subject to boundary conditions.

Still the obtained result shows that the relation p = −f valid in infinite volume limit cannot be

used in finite volumes. Calculating

p = T

(
∂lnZ

∂V

)

T

,

f = −T

V
lnZ,

(4.49)

one obtains
p+ f

T 4
=

2

3

(N2 − 1)

(LT )3
(
ln(LT )3 − 1

)
, (4.50)

which is only in the LT → ∞ limit small.

As already mentioned, this model of a massless scalar field can however not be regarded as a good

approximation for the physical case of a gas of non-abelian gauge bosons. It is known from the

previous chapter that a non-abelian plasma exhibits a screening of order g(T )T for the electric sector

and of order g2(T )T for the magnetic sector. Even in the low temperature limit, the existence of a

small thermal mass changes the picture qualitatively.

A detailed picture is given in Ref. [42] where the finite size effects of a relativistic Yang-Mills theory

were analysed by using the symmetries of the Euclidean partition function. The thermodynamical

observables where interpreted in terms of the energy-momentum tensor living in a β × L3 volume.

By using the properties of the traceless part of the energy-momentum tensor, coordinate axes could

be interchanged such that the energy density, expressed in terms of the energy levels of the system

would depend explicitly on temperature. In this manner, by using QCD sum rules the thermodynamic

observables could be related to the expectation values of the energy-momentum tensor.

By making use of the empirical fact that the theory exhibits a mass gap denoted as the difference

between the first excited state and the ground state, the finite size effects can be determined in terms

of the product mL, the inverse temperature β and the mass derivative ∂βm(β).

The corrections to the pressure hold only up to energies that do not exceed the second excited state.

Writing the pressure in a finite volume as the sum of the pressure in the thermodynamic limit and

the correction,
p(T, L)

T
=
p(T, L = ∞)

T
+ δ, (4.51)

the leading order correction to the pressure is:

−m
2

T 2

e−mL

2πLT
. (4.52)
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In conclusion the finite size effects on the pressure5 were found to fall off exponentially with increasing

linear dimension of the box. Moreover, the corrections are negative denoting a dropping of pressure

with decreasing volume.

A similar conclusion can now be drawn for the scalar field theory with mass. The leading finite size

corrections to the scaled free energy density, fL/T
4 is in the large mL limit (cf. Eq. 4.15):

− 3

π2

√
π

2
e−mL

(
(mL)3/2

2(LT )4
+

1

mL

)

. (4.53)

As in Ref. [42], the correction are negative and exhibit the same exponential falling.

In the following, the corrections of the free energy density due to the finite volume have been

calculated in different regimes for massive scalar fields.
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Figure 4.3.: Finite size corrections of the free energy, fL/fT,∞ (cf. Eqs. (4.14) and (4.15)) as function of T

and L−1. The three light lines are (from left to right) the lines of constant parameter LT = 6, 4, 2.

The free energy density is a function of 3 parameters, T , L and m. They are expressed in terms

of dimensionless parameters that are usually used also in lattice calculations. These parameters are

Ns/Nt = LT and mL. The former parameter characterises the geometric shape of the of the system

whereas the latter parameter gives a clue on the spectrum of the theory, whether there is a mass gap

and how large it is. So, the scales can be set through a proper choice of these parameters.

5Or free energy, since p = −f in the thermodynamic limit.
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Figure 4.3 illustrates the contribution to the free energy due to finite volume effects. No absolute

values are set here, since the ratio fL/ft,∞ is a function of only the dimensionless parameters LT , mL

and m/T = mL/LT . Nevertheless, several properties can be drawn.

In Ref. [43] the numerical value of the lightest screening mass is given in terms of m/T for high

temperatures above the deconfining temperature Tc. The mass grows for temperatures between ap-

proximately 1.2Tc and 2.2Tc and ranges typically fromm/T ≈ 2.6 tom/T ≈ 2.9. With these numerical

values and for LT = 4, it was found in Ref. [42] that the corrections to the pressure due to finite

volume are negligible small, namely of the order of 10−5. Calculating the finite volume correction for

the massive scalar field, fL/fT,∞ (cf. Eqs. (4.14) and (4.15)) with the same values for m/T and LT

respectively, it turns out to be of the same order, ≈ 1.7 · 10−5. Fig. 4.3 contains also the lines of

constant LT = 6, 4, 2. Having a theory with the given mass spectrum, the corrections due to finite

volume with constant LT down to 4 is only of ≈ 1% for high enough temperatures. This confirms the

empirical rule that finite size corrections are small for LT ≥ 4. Below this ratio finite size corrections

become important or even dominant. Therefore, it is expected that in this region the simple model

of a scalar field loses its predictive power and its applicability.

Fig. 4.3 also shows that with increasing temperature the effects of finite volume increase for any

given constant LT . This is expected since, by only keeping LT constant, the product mL decreases

with increasing temperature, meaning that the Compton wavelength of the particle expands beyond

the linear length of the box. This can be seen more in detail in Fig. 4.4 where finite size corrections

of the free energy are plotted for constant LT = 4, 6. Indeed, for increasing temperature, that is for

decreasing m/T , finite size corrections increase.
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Figure 4.4.: Variation of finite volume contribution to the free energy density (cf. Eqs. (4.14) and (4.15))

with constant LT = 4, 6 as function of m/T . The contributions increase with decreasing m/T .
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Figure 4.5.: Contribution of finite volume effects to the free energy density (cf. Eqs. (4.14) and (4.15)) with

variation of the mL parameter for two cases, LT = 4, LT = 6.

In addition, as seen from Fig. 4.5, the contribution of finite volume corrections decreases with

increasing mass. This comes due to the correlation of the field that varies as

∝ e−
|x−y|

m . (4.54)

Therefore, with increasing mass, the correlation of the field decreases over long distances and thermal

effects do not “feel” the sides of the box any more. By ensuring small finite size effects for light masses,

all other heavier fields will have negligible contributions to these effects.

In conclusion Ref. [42] showed that even in the high temperature limit, (Tc � T � 105 GeV) finite

size effects should be suppressed by a Boltzmann factor coming from dynamically generated masses

rather then being a non-negligible function of LT . While the model proposed in Ref. [40] generates

qualitatively different results then those in Ref. [42] it is not applicable to thermodynamic systems

with dynamically generated masses.

52



5. Conclusion

I have calculated the partition function of a scalar field in a finite box and analysed the effects of finite

volume on the free energy density in different regimes. The formulas can be used to make estimates

on thermodynamical quantities calculated on the lattice.

If in theories with spontaneous symmetry breaking the inverse volume is beyond any mass scale,

the effects are negligible and ordinary chiral perturbation theory can be used. Finite size effects are

only relevant if the dimension of the box is of the order of the lightest Goldstone boson Compton

wavelengths. They become dominant, and change the behaviour of various observables qualitatively,

if the box size is smaller than the pion wavelength. The effects manifest themselves in the partition

function through the lightest Goldstone boson modes that rotate freely in group space unless the

explicit symmetry breaking term is large enough. By using the Fadeev-Popov procedure, the quasi-

zero modes are treated as collective variables and the heavier modes are treated as higher order terms.

However in both regimes only the lightest Goldstone modes (the π-mesons) contribute to the finite

size effects.

For the case of a massless scalar field the partition function features a non-negligible contribution of

a logarithmic term. This term stems from the Matsubara zero mode contribution of the momentum

sum. However, the technique used was not able to reproduce quantitatively other results in the

literature, it turns out that the factor of the logarithmic term is 3 times larger than that in Ref. [40].

However, several conclusion can be drawn. The translational invariance of the energy-momentum

tensor remains intact and e − 3p = 0 remains an exact identity. On the other hand, the relation of

pressure and free energy density, that exists in the thermodynamical limit f = −p is not fulfilled and

the pressure can be traded for the free energy density only in the large LT limit.

In Ref. [40] it is expected that even in the interacting case of a boson gas with dinamically generated

masses the logarithmic behaviour of finite size effects is maintained. However, it turns out that

the finite size corrections are exponentially small provided the theory exhibits a mass gap in its

spectrum whose Compton wave length does not extend beyond the dimension of the box [42]. In

addition if a lattice with a ratio Ns/Nt = LT ≥ 4 is used, effects can be reduced to below 1%. This

contradicts the previous statement, since thermal masses are always generated in a plasma and the
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finite size corrections are thus expected to fall off exponentially with increasing volume and not to

grow logarithmically.
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A. Partition function in quantum mechanics

The starting point is the spatial coordinate and its canonical momentum with their respective opera-

tors obeying the commutation relation (~ ≡ 1)

[q̂, p̂] = −i, (A.1)

the completeness relation
∫

dq|q〉〈q| = 1,

∫
dp

2π
|p〉〈p| = 1 (A.2)

and the projection on each other:

〈q|p〉 = eipq (A.3)

The partition function can be expressed in the spatial representation as follows:

Z = Tr[e−βĤ ] =

∫

dq〈q|e−βĤ |q〉. (A.4)

Now β is split into N intervals so that β = Nε and for each slice a completeness relation for the position

operator on the right side and for the conjugated momentum on the left side of the exponential (A.2)

is introduce:

Z =

∫
dpN
2π

...

∫
dp1
2π

∫

dqN ...

∫

dq1

∫

dq〈q|pN 〉〈pN |e−εĤ |qN 〉·

· 〈qN |pN−1〉...〈p1|e−εĤ |q1〉〈q1|q〉.
(A.5)

By expanding the exponential in Taylor series, one obtains:

Z ≈
∫ N∏

i=1

dpidqi
2π

eipi(qi+1−qi)
(
1− εH(qi, pi) +O(ε2)

)

∣
∣
∣
∣
∣
xN+1=x1

. (A.6)

Now using limN→∞(1 + x
N )N = ex and limN→∞

∏N
n=1(1 + xn

N ) = exp[limN→∞
1
N

∑N
n=1 xn], the

partition function:

Z = lim
N→∞

∫
[

N∏

i=1

dqidpi
2π

]

exp






−

N∑

j=1

ε

[

p2j
2m

− ipj
qj+1 − qj

ε
+ V (qj)

]






∣
∣
∣
∣
∣
∣
xN+1=x1

. (A.7)

With the following identifications:

∫ N∏

i=1

dqi →
∫

Dq and

∫ N∏

i=1

dpi
2π

→
∫

Dp (A.8)
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and
qi+1 − qi

ε
→ q̇(ti),

ε

N−1∑

n=0

f(tn) →
∫ β

0

dτf(τ),
(A.9)

the final result is:

Z =

∫

q(β)=q(0)

DqDp
2π

exp

{

−
∫ β

0

dτ

[
p(τ)2

2m
− ip(τ)q̇(τ) + V (q(τ))

]}

. (A.10)

The path integral is gaussian in the conjugated momenta, so that, without loss of generality, the

integration over all momenta can be carried out:

∫ ∞

−∞

dpi
2π

exp

{

−ε
[
p2i
2m

− ipi
qi+1 − qi

ε

]}

=

√
m

2πε
exp

[

−m(qi+1 − qi)
2

2ε

]

, (A.11)

obtaining

Z = C

∫

q(β)=q(0)

Dq exp
{

−
∫ β

0

dτ

[

m

2

(
dq(τ)

dτ

)2

+ V (q(τ))

]}

(A.12)

with

C ≡
( m

2πε

)N/2

. (A.13)

The factor C does not contain any information about the dynamics of the system since it does not

depend on V (q). It is divergent in the limit ε → 0 and N → ∞ but still is important in determining

the correct partition function in the continuum limit. In combination with the remaining path integral

the partition function will be finite. It can be easily determined for the simple case of an harmonic

oscillator. Its partition function has the following structure:

Z = C

∫

q(β)=q(0)

Dq exp
{

−
∫ β

0

dτ

[

m

2

(
dq(τ)

dτ

)2

+
mω2

2
q(τ)2

]}

. (A.14)

Using the Fourier representation for q(τ):

q(τ) = T

∞∑

n=−∞
(an + ibn)e

iωnτ , (A.15)

and dropping half of the non-zero Matsubara modes (due to reality of the q(τ) coordinate) one obtains:

Z = C
′

∫ ∞

−∞
da0

∫ ∞

−∞

∏

n≥1

dandbnexp



−1

2
mTω2a20 −mT

∑

n≥1

(ω2
n + ω2)(a2n + b2n)





= C
′

√

2π

mTω2

∞∏

n=1

π

mT (ω2
n + ω2)

, C
′

= C

∣
∣
∣
∣
det

[
δx(τ)

δxn

]∣
∣
∣
∣
.

(A.16)

Since the prefactor, C
′

is independent of ω it can be calculated in the limit ω → 0. Moreover,

because the integral over the n = 0 Matsubara mode is divergent, it will be regulated for the moment
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by evaluating it on a finite interval. Using Eq. (A.4) and making the calculations again in a finite

volume, it is possible to extract C
′

by matching the sides of both calculations:

C
′

=
T

2π

√
2πmT

∞∏

n=1

mTω2
n

π
(A.17)

and thus, for the harmonic oscillator the partition function reads:

Z =
T

ω

∞∏

n=1

ω2
n

ω2
n + ω2

. (A.18)

Turning now to the partition function of a scalar field the difference to “ordinary” statistical me-

chanics is that the trace is to be understood as an integration over all (in principle infinitely many)

degrees of freedom of the fields. This provides also the link to quantum field theory at zero temper-

ature. It is possible to transfer the result obtained previously by making the following observations.

First, consider now the spatial coordinate q as an internal variable of the scalar field φ(t, q). There-

fore the field taken at a certain position, let us say φ(t, 0) behaves like q(t). So the simplest way to

determine the partition function of a scalar field is to take the Lagrange density for a scalar field as a

replacement for the previous Lagrangian. Second, if we do not fix the number of spatial coordinates

yet, an additional d-dimensional integration has to be performed. The Lagrangian for a scalar field

now contains an additional term namely the derivative term with respect to the spatial coordinates

∂iφ∂iφ. This term originates from a nearest neighbour interaction but does not affect the calculation

of the partition function1. Third, the path integral has to be performed not only in the time direction,

but also in the additional d dimensions (q → x). Therefore the result is:

Z =

∫

φ(β,x)=φ(0,x)

∏

x

[CDφ(τ,x)] exp
[

−
∫ β

0

dτ

∫

ddxLE

]

. (A.19)

with

LE = −LM (t→ −iτ) = 1

2

(
∂φ

∂τ

)2

+
d∑

i=1

1

2

(
∂φ

∂xi

)2

+ V (φ). (A.20)

1The term that is important in calculating the partition function is the one that is quadratic in the time derivative of

the field, ∂tφ∂tφ.
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B. The QCD Lagrangian

Quantum Chromodynamics is the theory of strong interactions. It relies on the property of quarks

not to be only electrically charged but to have also a so-called color charge of either “red”, “blue” or

“green”. Therefore the fermionic fields describing the quarks are written as triplets in color space:

ψ(x) ≡








ψr(x)

ψb(x)

ψg(x)







. (B.1)

A term of the form ψψ is to be understood as ψ1ψ.

The principle of gauge invariance in Quantum Electrodynamics proved very fruitful as it introduced

the photon as an interaction particle between charged fermions in a natural way.

For determining the QCD Lagrangian the same procedure as in the case of Quantum Electrody-

namics is followed. It is expected that the interaction particles of QCD, the gluons, emerge from the

same requirement of gauge invariance as in QED. The difference lies merely in the symmetry group

of the Lagrangian.

The free Lagrangian of massive fermions,

ψ(x)(i/∂ −m)ψ, (B.2)

exhibits a global SU(3) symmetry because of Eq. (B.1). It is invariant under the following transfor-

mation of the fields:

ψ(x) → Uψ(x) = exp

(

iαaλ
a

2

)

with a = 1, ..., 32 − 1 = 8. (B.3)

The λa matrices are the generators of the fundamental representation of the SU(3) group. They

obey the following commutation relations:

[
λa

2
,
λb

2

]

= ifabcλ
c

2
, (B.4)

and are normalized as:

Tr(λaλb) = 2δab. (B.5)
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The set of real numbers fabc are called the structure constants.

A second irreducible representation is called the adjoint representation and the generators are

defined in terms of the structure constants as follows:

(λbG)ac = ifabc. (B.6)

When trying to promote the global symmetry of the Lagrangian to a local one,

U → U(x) ≡ exp

(

iαa(x)
λa

2

)

, (B.7)

the derivative term ∂µψ generates the difficulty. A detailed treatment of this problem can be found

in Ref. [1]. Here, merely the result is stated by formally adding to the partial derivative a term in the

following way:

∂µ → Dµ = ∂µ − igAa
µ

λa

2
. (B.8)

Additionally, the Aa
µ(x) vector fields are required to transform in the following way under a local

SU(3) group:

Aa
µ(x)

λa

2
→ U(x)

(

Aa
µ(x)

λa

2
+
i

g
∂µ

)

U †(x). (B.9)

For small α this reads:

Aa
µ

λa

2
→ Aa

µ

λa

2
+

1

g
(∂µα

a)
λa

2
+ i

[

αaλ
a

2
, Ab

µ

λb

2

]

+ ... (B.10)

All these modifications finally ensure that the derivative term behaves like:

Dµψ → D
′

µψ
′

= U(x)Dµψ, (B.11)

making thus the new Lagrangian invariant under local SU(3) transformations.

The Aa
µ fields are thus the 8 gluons which act as interaction particles between the matter fields.

Now, an additional term involving only the gluon fields is needed in the Lagrangian in order to describe

their propagation. Noting that the transformation law of the covariant derivative implies that:

[Dµ, Dν ]ψ(x) → U(x)[Dµ, Dν ]ψ, (B.12)

one concludes that [Dµ, Dν ] transforms as:

[Dµ, Dν ] → U(x)[Dµ, Dν ]U
†(x). (B.13)

By calculating explicitly [Dµ, Dν ] one obtains:

[Dµ, Dν] = −igF a
µν

λa

2
(B.14)
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with

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (B.15)

called the field strength tensor.

By defining the covariant derivative in the adjoint representation,

Dac
µ = δac∂µ + gfabcAb

µ, (B.16)

The field strength tensor can be also written as:

F a
µν = ∂µA

a
ν −Dac

ν A
c
µ. (B.17)

The field strength tensor is not a gauge-invariant quantity. Since it involves only the gluon field it

is a candidate for the kinetic term in the Lagrangian. The simplest gauge invariant quantity that can

be constructed and regarded as the kinetic term of the Aa
µ fields is:

−1

2
tr

[

(F a
µν

λa

2
)2
]

= −1

4
(F a

µν)
2. (B.18)

The trace is to be understood of acting in color space.

Summing the terms up, the Lagrangian that is now invariant under local SU(3) transformations

reads:

L = ψ(i /D −m)ψ − 1

4
F a
µνF

aµν . (B.19)

One can perform a sum over all quark flavours in order to get the full Lagrangian of QCD.
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C. Momentum sum for massless case

In this appendix the functions used in section 4.2 are defined.

The derivation of Ref. [36] is used. For simplicity D denotes the dimensionality of the space-time

as was the case in section 4.2 whereas d stands again only for the spatial dimensions.

By denoting:

Gr =
Γ(r)

V

∑

p

1

(p2 +m2)r
, (C.1)

with VD ≡ L0...Ld, one obtains the following identity:

∑

p

ln(p2 +m2) =
d

dr

V

Γ(r)
Gr

∣
∣
∣
∣
r=0

. (C.2)

The sum in Eq. (C.1) can be evaluated, obtaining:

Gr =
Γ(r −D/2)

(4π)D/2
(m2)d/2−r +

∑

l

′

∫ ∞

0

dt tr−1(4πt)−D/2e−tm2− l2

4t , (C.3)

where l ≡ (l0L0, ..., ldLd) and the prime in the sum denotes omission of the zero mode again. In

order to use this function in the calculation of the partition function for the massless case, a low mass

expansion is performed. Having this expansion, the limit m→ 0 can than be taken. Given the theta

function

S(x) ≡
∞∑

n=−∞
e−πn2x, (C.4)

the second term in Eq. (C.3) can be written as:

gr =
1

VD

(
L̄2

2π

)r ∫ ∞

0

dt tr−D/2−1exp

(

−m
2L̄2t

4π

)[ d∏

i=0

S

(
L2
i

tL̄2

)

− 1

]

, (C.5)

with L̄ ≡ V 1/D the mean size of the box.

By splitting now the integral into 2 pieces, 0 ≤ t ≤ 1 and 1 ≤ t ≤ ∞ the identity

S(x) =
1√
x
S

(
1

x

)

(C.6)

is used for the second interval. After substituting in the second interval the variable of integration,
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Appendix C. Momentum sum for massless case

t→ 1/t, the entire integral can be written as:

gr =
1

VD

(
L̄2

4π

)r
(
ar + br − br−D/2

)
,

ar =

∫ 1

0

dt tr−D/2−1exp

(

−m
2L̄2t

4π

)[ d∏

i=0

S

(
L2
i

tL̄2

)

− 1

]

+

∫ 1

0

dt t−r−1exp

(

−m
2L̄2t

4π

)[ d∏

i=0

S

(
L̄2

tL2
i

)

− 1

]

,

br =

∫ ∞

1

dt tr−1exp

(

−m
2L2t

4π

)

.

(C.7)

Now the only quantity that contains infrared divergences in the limit m → 0 is br. Therefore, the

ar function can be expanded in powers of m2 without problems, yielding:

ar =

∞∑

n=0

(

−m
2L̄2t

4π

)n
1

n!
αr+n. (C.8)

The expansion coefficient is:

αs = α̂s−D/2

(
Li

L̄

)

+ α̂−s

(
L̄

Li

)

(C.9)

with

α̂p(li) =

∫ 1

0

dt tp−1

[
d∏

i=0

S(l2i /t)− 1

]

. (C.10)

The infrared divergence in br comes in the form of a fractional power of m, namely m−2r. This

contribution stems from the p = 0 mode in the momentum sum (C.1):

br =

(
m2L̄2

4π

)−r

Γ(r) −
∞∑

n=0

1

n!

(
m2L̄2

4π

)n
1

n+ s
. (C.11)

The function br may be evaluated also for negative r because the singularities occurring in the power

expansion at n = 0,−1, ... are compensated for by the divergences of the Gamma function. Thus, for

negative r ≡ −N one obtains:

b−N =
(−1)N+1

N !

(
m2L̄2

4π

)N
(

ln
m2L̄2

4π
+ γE −

N∑

n=1

1

n

)

+
∑

n6=N

1

n!

(

−m
2L2

4π

)n
1

N − n
. (C.12)

Having now expressed the integral in Eq. (C.3) as a power expansion in m2 and having separated

the infrared singularities from the finite part, it is possible to calculate the sum in Eq. (C.1) in the

massless case by noticing that one has to subtract first the zero mode contribution p = (0, ..., 0) before

taking the limit m→ 0.

The Epstein Zeta function is defined as:

Zd−1(a1, ...ad; s) ≡
∞∑

n1=−∞
...

∞∑

nd=−∞

′ [
(a1n1)

2 + ...+ (adnd)
2
]−s

, (C.13)
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and is called homogeneous if all the coefficients ai are equal to 1. It can be expressed in terms of sums

over the arithmetical function rd(n) that is the number of representations of an integer n as a sum of

d squares disregarded to sign or order:

Zd(s) =

∞∑

n=1

rd(n)

n

s

. (C.14)

The formulas for rd(n) are known exactly in even dimensions d = 2, 4, 6, 8 in terms of one-dimensional

sums. In odd dimensions however the function is difficult to obtain and is expressed as a sum of a

dominant term and a small reminder.

For d = 1, Z is by definition related to the Riemann Zeta function:

Z1(s) = 2ζ(2s). (C.15)

In the calculations of chapter 4 d = 3 was needed. Its expression is:

Z3(s) = 4

√
πΓ(s− 1

2 )

Γ(s)
ζ(s− 1

2
)β(s− 1

2
)−4

√
πΓ(s− 1

2 )

Γ(s)
ζ(2s−1)+8ζ(s)β(s)−2ζ(2s)+8R3(s), (C.16)

where

β(s) =

∞∑

n=0

(−1)n

(2n+ 1)s
(C.17)

is the Dirichlet Beta function.

The reminder in d dimensions is:

Rd(s) =

∞∑

n1=1

...

∞∑

nd−1=1

∞∑

l=1

2√
π
Γ(1− s)sin(πs)




πl

√

n2
1 + ...+ n2

d−1





s− 1
2

·Ks−1/2

(

2πl
√

n2
1 + ...+ n2

d−1

)

,

(C.18)

where Kd(x) is the modified Bessel function of the second kind. It should be noted that for s = 0,

the reminder is identical zero leading to an expression for the Epstein Zeta function in terms of only

one-dimensional sums.
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