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Abstract 

We use the Month-Weng discussion of the Piwinski intrabeam scattering 

theory to derive formulae which are useful for beams of asymptotically large 

energies. The results are relatively simple formulae which are applicable to 

elliptical as well as round beams and which give quite good agreement with the 

more exact strong-focussing theory as discussed by Bjorken and Mtingwa. 
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I. Introduction 

An important limitation on the stacking rate of antiprotons in the Pbar Source 

Accumulator and on the luminosity of the Tevatron is due to the multiple Coulomb 

scattering of particles within a beam, commonly referred to as intrabeam scattering. 

The original theory of this phenomenon is due to Piwinski [Ref. 11, where the variation 

of lattice functions around the accelerator ring was neglected. More recently, Bjorken 

and Mtingwa [Ref. Z] used a quantum field theory approach to discuss the same 

problem for strong-focussing accelerators wherein lattice parameters vary around the 

ring. 

At various times, Piwinski, Sacherer and M6h1, and Martini have shown how 

to extend the original Piwinski formalism to the case of varying lattice parameters. 

Their results are nicely summarized by Martini in Ref. 3. 

In the present work, we &il extend the asymptotic expressions given in Month- 

Weng [Ref. 4] to the case of beams with unequal horizontal (H) and vertical (V) 

emittaxes. These formulae involve using average values for the lattice functions 

around the machine, and the question arises as to the accuracy of such smoothing 

approximations. To answer this question, we compare the results with the exact 

theory of Bjorken and Mtingwa [Ref. 21. 

A word of explanation as to why one wishes to develop such equations is in 

order at this point. Intrabeam scattering causes the emittances, both longitudinal 

and transverse, to change with time. It is necessary to calculate this dependence for 

colliders in order to predict the luminosity L as a function of time. An examination 
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of the formalism shows 

A&= -1 
sT dt TT (G, E,, A,, machine parameters) 

1 d-4 = -1 
A, dt TP (%, %? A,, machine parameters) 

where T stands for the transverse directions either H or V and T=, 7P are the instan- 

taneous lifetimes for transverse (E,) and longitudinal (A,) emittances. If one could 

find simple analytical expressions for 7;’ and r; I, then one could easily integrate the 

above coupled equations to obtain the beam behavior with time. 

The other approach has been to use the Bjorken-Mtingwa formalism to calcu- 

late T;‘,-’ and TV-‘,-’ for values of Ed, E”, and A, that are encountered in the beam growth 

and to paramaterize these growth rates by, for instance, power laws: 

These can be substituted into the differential equations above and integrated. The ad- 

vantage of the asymptotic expressions over this procedure is that much less computer 

time is used, and the functional dependence on machine parameters is explicitly dis- 

played. It will turn out that the accuracy of the asymptotic expressions is satisfactory 

for this use. 

A few remarks on the physics of the process are in order. Consider the Tevatron 

beam at Fermilab with 

V a8 = 1MV 

A, = 2 ev-set (95% longitudinal emittance) 

Eli = 24~ mm-mr (95% H invariant emittance) 

(3) 

(4) 

(5) 
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If we calculate the transverse and longitudinal temperature of the beam (with s being 

the longitudinal variable), we find 

<P, > = 10 MeV/c 

< 6~. > = 90 MeV/c in the Lab. 

(6) 

= 90 MeV/c 
= 90 Kev in the CM of the bunch. 

7 

Thus the beam is much bigger in the transverse direction than in the longitudinal 

direction. If we accelerate such a beam to higher energy the situation becomes worse 

since the momenta scale with y as 

<P, > -J;J 

< 6p. >em - 7-f. 

The process which we consider here is for two protons to undergo Coulomb 

scattering with a concomitant shift of transverse energy into longitudinal energy. It 

would seem at first glance that this would result in cooling in the H,V directions and 

heating in the s direction. This is true for V, but due to dispersion (7) in the machine 

it is not true for H. Consider the case shown in Fig. 1. 

The two particles imagined to be initially performing oscillations around a 

commcm equilibrium orbit will have after scattering, in regions of nonzero dispersion, 

different equilibrium orbits about which they will perform synchrotron and betatron 

oscillations. These radial jumps of the equilibrium orbits heat up the horizontal 

betatron oscillations. 

It is clear that a mixing parameter e+sts that depends upon the relative sizes 

of *Era and ~a,,, where a, is the rms value of %. Consider the Tevatron at E = 1000 
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GeV. We find that a,, - 0.5mm and q(r,, - 0.24 mm for the example we considered 

above. Thus since the betatron oscillations are large compared to the dispersion, all 

of the particles can scatter off each other. On the other hand, if vg,, > crHHa then only 

a fraction of the beam could interact with itself, and the intrabeam scattering rate 

would slow down. The relevant parameter is defined as 

T= 
4p 

u;:, t 9* 6,' ' 
where 0 < 2’ < 1. 

A picture looks as shown in Fig. 2 for T << 1. In this case all of the particles are 

not able to scatter from each other at any given time and the rate of interaction is 

reduced. 

II. Piwinski-Month-Weng Formulae 

In the present work, we want to use the Month-Weng [Ref. 41 discussion of the 

Piwinski theory to derive large +y (ratio of particle energy to rest mass) asymptotic 

formulae for the intrabeam scattering growth rates. The results are to be applied to 

the Tevatron where 7 = 1000 and are applicable to both elliptical (c, # c,) and 

round (c, = E,) beams. Note that Month and Weng calculate the growth rates of 

the coordinates mE, o,,, and Q? (rms value of relative momentum spread $) whereas 

Bjorken and Mtingwa calculate the emittance growth rates. To compare the two sets 

of formulae we choose below to include the necessary factor of 2 in all the Month- 

Weng formulae. Thus, we will always consider emittance growth rates. We also point 

out that Month and Weng use the normalized 95% emittances which are 67r7p times 

those defined by Bjorken and Mtingwa. 

Keeping the above conventions in mind, the bunched beam emittance growth 
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rates are given by: 

1 -- -- 
5 w 

f(;, ;, ;) t (I-T)f(;, ;, i) 

1 I duZ 
-- 
7” 

-v = 2Af(a,b,c) 
CT; dt 

1 - E I da; _ --_ 
TP CT; dt 

2ATf($, ;, i), 

where 

and 

[ 

N 
==&$&” 

b = & 
+y” 

A = 
27nr; mp Nb 

8 /+r+f Ab 

2 a 
T = A!?=- u=Hb Ef: fill 

0: “& + qy = E;&, t 6rP7q%; 

1 1 $& m %$ = 
6@7 1/a b” = 1 I g&f 
6+7 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

04) 

(15) 

(16) 

o. is the rms bunch length; &, p,, and ij are the average values of the lattice betatron 

and dispersion functions; q, and rP are the proton mass (938 MeV) and classical 

radius (1.54 x lo-” m); Nb is the number of particles in a bunch; e: and E: are the 

6 



normalized 95% transverse emittances; T is the fraction of the center-of-mass energy 

spread participating in the energy exchange; and Ab is the longitudinal 95% invariant 

emittance. The well known Piwinski scattering function f(a,b,c) is given by: 

f(a, b, c) = 2 lm [ lzz d$ded* 

x sinBe -r[cos’ B + (a’ COP 6 + b’ ain’ #)sin’ 81 

x ln(c’r)(l-3 COS’B), (19) 

and satisfies the following relations: 

f(a,b,c) = f(b,a,c) 

f(a,b,c) + $f($ ;, ;) + &f(;, ;, ;) = o. 

The above formulae are handy in that approximate emittance growth rates 

can be obtained using only the ayerage lattice functions obtained from: 

DH = ; (22) 

L% = 5 (23) 

+R 
vi ’ (24) 

where R is the average accelerator radius and v,, and vy are the betatron tunes. 

The theory of intrabeam scattering has been verified for a variety of beam pa- 

rameters at CERN, the first being in the 22.5 GeV/c ISR (Intersecting Storage Ring) 

[Ref. 5,6]. Subsequently, the theory has been verified in the 270 GeV/c SPS (Super 

Proton Synchrotron) [Ref. 4,6,7,8], in the AA (Antiproton Accumulator) [Ref. 3,9] 

with a 3.41 GeV/c intense proton stack, and also in the AA with a 3.41 GeV/c 

antiproton stack [Ref. 31. 
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In the next section, we derive the large 7 asymptotic formulae for the emittance 

growth rates due to intrabeam scattering. The numerical results will be given in 

Section IV. 

III. Asymptotic Formulae 

To derive the asymptotic formulae, let us first consider the Piwinski scattering 

function f(a,b,c) defined by Eq. (19). The large 7 approximation corresponds to a 

and c large while b - 1. It is straightforward to do the Q$ integration giving 

f(a, b, c) = 4K Jo- [ =-r [CJ @+ w ain- 

XL+ aa i bZ sin’ 8) sin O(l - 3 cos2 0) In (~“1) dOdr, (25) 

where 10 is the zeroth order modified Bessel function of the first kind. 

Then for large a we can use 

e’ 
-LJ(x) - larie x 6 (26) 

to get 

f(a,b,c) N T lrn / 
1 e-r(co*z B + P sin’ 8) 

0 Jr 

x (1 - 3 cm2 0) In(car) db’ dr. (27) 

Since there is an exponential fall off in r, in the integrand we can make the 

large c approximation ln(?r) N 211~. Further, by a series of manipulations, the 0 

integration can be accomplished giving: 

f(a,b,c) N -4ay21ncg(b), (28) 

a 



where 

g(b) = l- e-r>y’ II. + 311 (?,)I dr. (29) 

Since 

IO(O) = 1 

I*(O) = 0, 

we have g(1) = J;; and 

f(a,l,c) 
4 K%K 

- - 
largi a,c a ’ (31) 

a well-known result for round beams. 

Next, we concentrate our efforts on evaluating the function g(b). First take 

b > 1. Set 

bs - 1 
_ x= - 1, 2 (32) 

so that 

[4(x) + 311(x)] dx. (33) 

Then use the formula 

J 
- e-t5(s’-l)-“‘Ip(t) t”& = r(Y + p + l)P;“(z) 

0 @” _ 1)-5(“+1) (34) 

[Re(v + P) > -11. 

Set 

b”+l i z 
a = bZ-l=m’ (35) 
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which gives 

c2 
z = 

i-- d - 1’ (36) 

We thus arrive at 

where P;” are the Associated Legendre Functions. 

Next, consider 0 < b < 1. First, note that I,,(x) and II(x) are even and odd 

functions, respectively, in x. So, rewrite Equation (29) as 

g(b) = l 
m emr(*) [IO (qr) - 311 (L$ r)] & 

J; 

Then set 

1 - bZ 
x = - 1, 2 

so that now 

g(b) = J&l- = 
-(*) [I,(x) - 311(x)] dx 

J;; 

We now use Equation (34) again by first setting 

We arrive at 

But 

/E and ,,/z reduce to yj 
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and 

\j(bZA and j(1 reduce to 6 (44) 
in the two domains of b, so that the Master Equation becomes 

g(b) = g [POt (v) f ;P:\ (ql)]$ z f). (45) 

Note that 

PI:_(I) = 0 
I 

pap) = 1, 

(46) 

(47) 

so that g(b) approaches ,/% smoothly as b + 1 from both above and below. Thus 

the domains were changed to in Equation (45). 

To further evaluate g(b), first note that for p = 0, 

p:(z) = P”(Z) 

where P,,(z) are called simply the Legendre Functions. An important relation is 

P:;(z) = (z’ - 1)-i /,’ P-t(i)di. 

Also, we have the representation 

P+(z) = i /,* (z + @-=i cos& d& 

(48) 

(49) 

Upon substituting Equations (49) and (50) into Equation (45), g(b) can be readily 

evaluated on the computer, giving the values found in Table I. A graph of g(b) is 

shown in Fig. 3. 
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The function g(b) can also be fit with an empirical formula in the range 0.1 < 

b < 10, 

g(b) - 2.691 1 - 
.2288964 

b > (1 + 0.16b)(11+ 1.35e-W’J) 

The fit is good to 2% in the range 0.2 < b < 10 and 1 g(b) 1 is 14% high at b = 0.1. 

The accuracy is probably better than the asymptotic formulas for the lifetimes. 

Now that we know how to compute the function f where the first and third 

arguments are large while the second argument is of order 1, we want to express all 

the emittance growth rates in terms of f of such arguments in order to obtain the 

asymptotic formulae. Using the relations given by Equations (20) and (21), we can 

readily manipulate Equations (8)-(10) to derive 

1 
- = 2Af(a,b,c) ’ 
7” 

(51) 

- (1 - T)a’f(a, b, c) (52) 

1 
- = 
5 

-2ATa’ [f(a, b, c) + &f(i, i, i)] . (53) 

In each case the function f has been manipulated so that the first and third 

variables are large compared to the second in order that our asymptotic expression 

for f(a,b,c) can be used. Thus, Equations (28), (51)-(53), and Table I are all that one 

needs to calculate growth rates for large 7. In the next section, we give the numerical 

results for the proposed Tevatron upgrade. 

IV. Results and Conclusions 

It is interesting to examine the implications of the expressions (51) to (53). If 
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we combine them with Equation (28), we obtain 

1 8lrSA 

TV -ag(b)lnc 
1 -= 

TX 
SnfAa(1 -T) [g(b) + ig(i)] l=c 

1 -= 
TP 

8ntAaT [g(b) + ig(k)] l=c 

(54) 

(55) 

(56) 

where we have neglected terms involving In b and assumed that a >> 1. 

Note that 7” is negative, i.e. there is damping in the vertical plane. This effect 

is also present in the horizontal direction as the first term in the brackets of Eq. (52) 

but is completely overwhelmed by the heating term from the dispersion. 

The dependance of the lifetime on the beam parameters is easy to see from 

Equations (54)-(56). 

TX - 
-$@;AbQ,, fi 

Nd (l--T) 
[g(b) + ; d;)] -' (57) 

For fixed Ab, 

flv - A’ “,$ h* (where h = harmonic number) 

which makes 

Tn - ,iFbe$iA: (VRFh)t JT [g(,,) + ig(i)]-’ 
Cl- T) b b (56) 

The function [g(b) + i g(t)] is tabulated in Table I and is graphed in Fig. 4. 

It is amusing to consider the case of two symmetrical beams colliding when both have 

limited lifetimes due to intrabeam scattering. Then 

J 
&,r N;T -/ NL Ldt N -N-N- 

2 flHQV @q 
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or using (58) 

J 
.Cdt m ,t Nb&A; t&h)* (1fT) [g(b) + ;g(;)] -I (59) 

Because the lifetime is proportional to $-, one power of Nb in the integrated L 

equation is cancelled out. One also notes the strong dependence on Ab which makes 

short bunch lengths incompatible with large JLdt. Of course, these conclusions are 

only qualitative since the time dependence is not exponential as assumed in Equation 

(59); actually the beams blow up more slowly as they get bigger. 

The dependence of ~~ on parameters is given by 

TP - 
~-i@f$‘d)i [g(b) + ~g(~)]-l 

b b b 

We now want to apply our asymptotic formulae to the parameters for the 

proposed Tevatron upgrade. The beam and lattice parameters we want to consider 

are as follows: 

Nb = 10” 

0. = 0.2m, 0.4m 

cn = 4 x 10-s to 1 x 10-s 

N 
“s = 57r, 12n, 20x mm - mrad 

N 
&” = 12?r, 20a, 80n mm - rad 

+y = 1000 

R = 1000111 

“H = 19.82686 

“v = 19.86333, 

(‘3”) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 
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The results are shown in Tables II-XV. Graphs of 7FmT, rfeM, ~~~~~ .rzmM, ~y-~, T,“-“, 

and the parameter T [cf. Equation (15)] versus cn for C. = 0.2 m, are shown in 

Figs. 5a-llb, where M-T denotes the results using the average lattice functions to- 

gether with the asymptotic formulae discussed in this paper, and B-M refers to BY- 

eraging the full theory of Ref. 2 around the Tevatron lattice. As can be seen, the 

agreement is remarkably good for both round and elliptical beams, especially for 

TV. The agreement for T” is reasonable although the times are too long for one to 

worry much about how well they agree, but as T is reduced to small values, typically 

M-T 
TP - 2 r8-M. P 

Fig. 12 shows how the lifetime depends on E:! for a fixed EEL and also compares 

the asymptotic expressions derived here with the exact calculation. 

It is useful now to return to our original problem, i.e., the evolution of the 

beam with time. If we take the ratio of Equations (55) and (56), we obtain 

5 = -- ‘I 1-T uaij* 

m T Tip 

But E,~ - u& and CT; - Ab. So 

7p N -, Ab 

ni % 

Using Equations (8) and (lo), we find 

(69) 

u-0) 

de, = k?dAb (71) 

where kl depends only on machine parameters. 

This is a very important result. It says that as the beam evolves with time, it 

follows a straight line trajectory in eH, Ab space. 

15 



Equation (69) can be recast in the form 

TH c(,“r =8, 
TP Eg 67rtjs ’ (72) 

a quantity which is dependent only upon lattice parameters and not upon beam 

parameters, ie. en,“, 6., r,,, 7. For the more exact theory of Ref. 2, one has 

[cf. Equation (4.9) of Ref. 21 

TH g27 --I- = 2 

TP &; 64% + Pn(v’ - %)‘I ’ 
(73) 

which is also dependent only upon lattice parameters. At each point of the lattice, 

this equation holds. However, a word of caution is in order if one wishes to calculate 

an average ratio of TV to rP around the accelerator lattice. If one uses Ref. 2 and 

calculates the average of the ratio, or < 2 > around the Tevatron lattice, one obtains 

<5,-L us7 
EN 

= 2.4 
Tp H 

(74) 

for all e&, oSr CT,,. But this is ~much larger than 0.413 which one obtains from Equa- 

tion (72). Both r,, and 7s oscillate around the lattice, and thus a more meaningful 

ratio is obtained by first averaging T,, and rP individually and then taking their ratio 

to compute $$ instead of < 2 >. P 

A comparison of Equation (72) and s$ as computed according to Ref. 2 
n 

is contained in Table XVI for various beam parameters. It is seen that the smaller 

values of o, agree well with the asymptotic formula, but as (TV increases, the exact 

calculation disagrees by about a factor of 2. It is also apparent that the trend is only 

a function of on and not of the transverse emittances. This dependence on 9 is only 

a result of how we decided to define the ratio of beam growth times for the overall 

lattice, namely as the ratio of their averages as opposed to the average of their ratios. 
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A program is given in the Appendix to follow the beam emittance growth. It 

is written in BASIC and calculates the horizontal and longitudinal emittances versus 

time due to the intrabeam scattering blowup. The program can be run interactively 

on the VAX cluster at Fermilab by the following commands: 

$ COPY FNALD::USR$ROOT33:[ALVIN,MAC]MAC_CALC,BAS. 

$ BASIC 

(READY) 

OLD MAC-CALC 

(READY) 

RUN. 

The program will prompt you for certain inputs, such as changes in the beam param- 

eters. Remember to input all information in uppercase letters. 

Fig. 13 shows an example’of a set of trajectories all starting from 

Ab = 0.5 ev-set but with s,, N = 57r, 12n, 20x mm-mrad. Note that the curves do 

not cross because then the differential equations (1) and (2) would not have unique 

solutions. The fact that ks in Equation (71) is only a function of machine constants 

guarantees that the curves are parallel. As a result, we see that injecting with a 

smaller transverse emittance gives a higher integrated luminosity even though the 

blowup is faster. 

Finally we note that the Tevatron has nearly round beams. In the case we 

considered above, s,, grows while sv stays constant. We should consider the modifi- 

cations necessary if there is coupling between the H and V phase space. The ansatz 

proposed here and arrived at independently by D. Finley [Ref. lo] is that the blowup 

of cH should be shared equally between sr, and E,. This seems plausible if the cou- 
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pling is by particles moving about in phase space by Arnold diffusion. Indeed, the 

intrabeam scattering may even aid in this process. 

In order to modify the program to accommodate this postulate, make the fol- 

lowing change: 

12565 EMITX = EMITX + D_EMIT/2 

and add 

12566 EMIT-Y = EMIT-Y + D-EMIT/2 . 

In conclusion, we have derived large -y asymptotic formulae for emittance 

blowup rates due to intrabeam scattering. Moreover, for both round and ellipti- 

cal beams, these asymptotic formulae give good agreement with calculations based 

upon the more complete theory of Ref. 2. Thus, the formulae should be adequate 

for predicting the evolution of luminosity with time in the present generation of high 

energy accelerators. 
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Figure Captions 

Fig. 1 Sudden jumps in the equilibrium orbits of two protons un- 

dergoing Coulomb scattering causing heating of both the 

horizontal and longitudinal motion. 

Fig. 2 Distributions of rms beam sizes due to momentum spread 

and horizontal betatron oscillations. 

Fig. 3 The function g(b) vs. b. 

Fig. 4 The function g(b) + ts(i) vs. 6. 

Fig. 5a-lib Tevatron lattice intrabeam scattering growth times rP,rx, 

and r, calculated using the asymptotic formulae in this 

work (M-T) and also calculated from the strong-focussing 

theory of Ref. 2 (B-M) as a function of a,, , for N = 10” and 

various emittances and (T,. 

Fig. 12 Variation of rH and rP vs. E: for NP = NP = lO”,ez = 

20x mm-mrad, 

e, = 0.2 rn,~~ = 0.2 x lo-‘. Shown are the intrabeam 

scattering growth times as calculated from the asymptotic 

formulae (M-T) and from the strong-focussing theory of 

Ref. 2 (B-M). 

Fig. 13 An example of beam blowup for fixed E: and various initial 

EN H. Time is the parameter along the curves. The very 

fast blowup for small initial sg is evident. However, the 
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integrated luminosity remains greater for the smaller initial 

E: since the curves do not cross. 
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Table Captions 

Table I 

Values of g(b) and g(b) + is(i) vs. b. 

Tables II-XV 

Numerical comparison for the Tevatron lattice of the intrabeam scattering growth 

times as calculated from the asymptotic formulae of this work (M-T) with those 

calculated from the more exact calculations of Ref. 2 (B-M) as a function of g,, for 

N = 1O'l and various emittances and ra. 

Table a,(m) cE(mm-mrad) cf(mm-mrad) 

II 

III 

IV 

V 

VI 

VII 

VIII 

IX 

X 

XI 

XII 

XIII 

XIV 

xv 

0.2 

0.2 

0.2 

0.2; 

0.2 

0.2 

0.2 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

0.4 

5x 80T 

12x 12iT 

127r 2ozT 

12n SOiT 

207r 12n 

207r 2OT 

20a 80T 

58 8057 

1277 12T 

12a 207r 

127r 80T 

20n 12x 

207r ; 20n 

2077 80x 
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Table XVI 

Comparison for the Tevatron lattice of T g’7 $+-f rom the asymptotic formulae of this 

work and s$ calculated from the more precise strong-focusing theory of Ref. 2. 

In each case, N 1 lo”, g, = 0.2 m,r = 1000. 

Table E: (mm-mrad) 6: (mm-mrad) 

XVI A 20%. 20n 

XVI B 12n 12x 

XVI c 5K 807r 
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TABLE I 

b s(b) db) + id i) 
.lO -1.6451 8.3404 
.20 -.2491 6.8069 

.30 .4677 5.9305 

.40 .9072 5.3245 

.50 is987 4.8669 

.60 1.4002 4.5031 

.70 1.5431 4.2037 

.80 1.6457 3.9512 

.90 1.7195 3.7343 
1.00 1.7724 3.5451 
1.10 1.8097 3.3782 
1.20 1.8351 3.2295 
1.30 1.8514 3.0959 
1.40 1.8606 2.9751 
1.50 1.8644 2.8651 
1.60 1.8639 2.7644 
1.70 1.8599 2.6719 
1.80 1.8532 2.5864 
1.90 1.8445 2.5072 
2.00 1.8340 2.4335 
2.10 1.8222 2.3648 
2.20 1.8094 2.3004 
2.30 1.7958 2.2401 
2.40 1.7815 2.1833 
2.50 1.7668 2.1298 
2.60 1.7518 2.0793 
2.70 1.7365 2.0315 
2.80 1.7211 1.9862 
2.90 1.7056 1.9432 
3.00 1.6901 1.9023 
3.10 1.6746 1.8633 
3.20 1.6592 1.8262 
3.30 1.6438 1.7907 
3.40 1.6287 1.7567 
3.50 1.6136 1.7243 
3.60 1.5987 1.6931 
3.70 1.5840 1.6633 
3.80 1.5695 1.6346 
3.90 1.5551 1.6070 
4.00 1.5410 1.5805 
4.10 1.5271 1.5550 
4.20 1.5134 1.5304 
4.30 1.4999 1.5067 
4.40 1.4866 1.4830 
4.50 1.4735 1.4616 
4.60 1.4606 1.4403 
4.70 1.4479 1.4196 
4.80 1.4355 1.3996 
4.90 1.4232 1.3802 
5.00 1.4112 1.3614 

b 
5.10 
5.20 
5.30 
5.40 
5.50 
5.60 
5.70 
5.80 
5.90 
6.00 
6.10 
6.20 
6.30 
6.40 
6.50 
6.60 
6.70 
6.80 
6.90 
7.00 
7.10 
7.20 
7.30 
7.40 
7.50 
7.60 
7.70 
7.80 
7.90 
8.00 
8.10 
8.20 
8.30 
8.40 
8.50 
a.60 
8.70 
8.80 
8.90 
9.00 
9.10 

<9.20 
9.30 
9.40 
9.50 
9.60 
9.70 
9.80 
9.90 

10.00 ~ 

go T(b) + is(i) 
1.3993 1.3431 
1.3876 1.3255 
1.3761 1.3083 
1.3649 1.2917 
1.3538 1.2755 
1.3429 1.2598 
1.3322 1.2446 
1.3216 1.2297 
1.3113 1.2152 
1.3011 1.2011 
1.2910 1.1874 
1.2812 1.1740 
1.2715 1.1610 
1.2619 1.1483 
1.2525 1.1359 
1.2432 1.1238 
1.2341 1.1120 
1.2252 1.1005 
1.2164 1.0892 
1.2077 1.0782 
1.1991 1.0674 
1.1907 1.05G9 
1.1824 1.0466 
1.1743 1.0365 
1.1662 1.0267 
1.1583 1.0170 
1.1505 1.0076 
1.1428 .9984 
1.1352 .9893 
1.1278 .9804 
1.1204 .9717 
1.1132 .9632 
1.1060 .9549 
1.0990 .9467 
1.0921 .9386 
1.0852 .9307 
1.0785 .9230 
1.0718 .9154 
1.0652 .9079 
1.0588 .9006 
1.0524 .a934 
1.0461 .a864 
1.0398 .a794 
1.0337 A726 
1.0277 3659 
1.0217 .a593 
1.0158 .8520 
1.0100 .8465 
1.0042 .a402 
.9985 .a340 
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TABLE XVI 

i = 10” E; = c$ = 207r x 1O-6 m 

m 

:q. 69 

y (m-l) 
0.413 
0.413 

f 

0.413 
0.413 
0.413 
0.413 
0.413 
0.413 

B. 
N=l()” EN=$‘=i2Txin-6m 

6, =?I.2 ,’ 7 = 1OG” 

!I Ref. 2 I 
,- -_ 

_- .-- 
\n 

II 

Eq. 69 
I TII , <TIL>ynl ,,-*\ ( TV I r,d-f , -,\ 

fill r, <TpZCN, 1”’ I 7 & - \m -I 

0.40 x lo-* 9.830 0.417 9.740 0.413 
0.80 x 1O-4 2.710 0.460 2.440 0.413 
0.12 x 1o-3 1.300 0.497 1.080 0.413 

sl. 
,!I = 10” c; = 5n x 1O-6 m E; = 80x x 1O-6 m 

6, = 0.2 m -y = 1000 
Ref. 2 Eq. 69 

2 
ov F * (m-l) ? 9 (m-l) 

0.40 x 10-d 4.170 0.424 4.06 0.413 
0.80 x lo-* 1.170 0.478 1.02 0.413 
0.12 x 1O-3 0.568 0.521 0.451 0.413 
0.16 x 1O-3 0.341 0.556 0.254 0.413 
0.20 x 1O-3 0.230 0.585 0.162 0.413 
0.40 x 1O-3 0.067 0.679 0.041 0.413 
0.60 x 1O-3 0.032 0.734 0.018 0.413 
0.10 x 10-Z 0.013 0.799 0.006 0.413 
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APPENDIX A 

MAC-CALC.BAS l/20/88 

A.V. TOLLESTRUP 

FNAL 

1 REM THIS PROGRAM CALCULATES VARIOUS MACHINE PARAMETERS FROM INPUT DATA 
2 REM LISTED IN ME FIRST 100 LINES 
3 PRINT "VERSION l/20/68 BETTER APPROX FOR C(B)" 
4 PRINT\PRIM\PRINT 
B DECLARE REAL FUNCTION GB(REAL) 
9 DECLARE REAL FUNCTION IO(REAL) 
10 DECLARE REAL FUKTION LW 
11 DECLARE REAL FLMTIDN SIGMA 
12 DECLARE REAL FUNCTION E~A(REAL) 
13 DECLARE REAL FWCTION SYNC FREQ(REAL) 
14 DECLARE REAL FUKTION THm MAX(REAL) 
15 DECLARE REAL FWCTION DELTA-E(REAL) 
16 DECLARE REAL FLRKTION DELTA-NU !TUNE SHIFT 
17 DECLARE REAL FWCTION TAU-PXREAL) 
16 DECLARE STRING FOR-STRING 
19 FOR STRINGA 
='##.f 11.11 I#.## .###^--- 11.11 
92 OPEN "MAC.OW FOR OUTFUT AS FILE#l 

111.1 ###.#" 

98 ! 
99 !***** CONSTANTS ******* 
1OOEMITx 
101 NB =-3 

=2O\EMITY=20 
! tARABEl OF BUNCHES 

102 NPBAR = .30 ! NUMR OF PBAR IN THE MACHINE IN UNITS OF El2 
103 NP = .3 --_ 
104 em STAR = 1.0 ! BETA AT INTEFJACTIOMN POINT 
105'VRF = .13536 
104 EV SEC = .23676 
107 FO-= 47619 
106 HARM = 1113 
109 E=938 
110 R =lwO 
111 TUNE = 19.62666 
112 XP = R/(TUNE)r*2 
210 CANT = TUNE 
215 PRINT "USE APPROX CALC FOR G(B)";\INPUT APPROXS 
250 PRINT 'Sl$PAF+ETE$ [SPS] OR SSC [SSC]*;\INPUT AS 
260 IF AS = 
270 READ EMI~~~~~,~NBAR,NP,VRF,W-SEC,FO,HARM,E,GMT,T~JNE,XP,R 
260 IF AS I 
280 READ EMIT X,EMIT Y,NB,NPBAR,NP,VRF,EV SEC,FO,HARM,E,GM,TE,XP,R 
300 -!~~~~~~~..~~~t~* CHANGE Im .e,te..,.at.**.. 
3D2 PRINT "CHANGE CONSTANTS'; 
305 INPUT AS 
306 IF AS = 'N' THEN 600 ELSE PRINT 'VARIABLE ='; 
310 INFUT AS s 

320 IF AS = 'EMIT-X. THEN mWN& 24; 

321 IF AS = "EMIT-Y' THEN ;RIN& EMT-Y; 

330 IF AS = "NE' THEN PRINT NB; - 
INPUT NB 

340 IF AS = 'NPBAR. THEN PRINT NPBAR; 
INPUT NPBAR 

Al 



350 IF AS = “NP” THEN PRINT N IP. .-’ 
INPUT Nt’ 

360 IF AS = “BETA STAR” MEN PRINT BETA STAR: 

370 IF AS 
INPUT BETAISTAR’ 

= “VRF” THEN PRIKT VRF; 
INPUT VRF 

380 IF AS = “‘E-SEC” THEN F’;’ E&SEC; err 

390 IF AS = “FO” THEN PRINT FO; 
INPUT FO 

400 IF AS = “HARM” THEN PRINT HARM; 
INPUT HARM 

410 IF AS = “E’ THEN PRINT E: 
INhJl E' 

420 IF AS = "GMT" THEN PRIKT GAMT; 
INPUTGAMl 

430 IF AS = ‘TUNE’ THEN PRINT TUNE; 
INPUT TUNE 

440 IF AS = *XP* THEN PRINT XP. -..w - ..- ’ 
IRrul xl- 

690 IF AS = ‘N” THEN 600 
595 PRINT “MORE’ 

INPUT AS 
GOT0 320 

600 ! END CHANGE DATA 
1000 PRINT DATES(O) ,TIMES (0) _^_^ 

_ 
:ALCUATED CONSTANTS l”l” !**l******t ‘~ 

1020 GAMMA = E/ .936 
1030 BETAX I R/TUNE 
5WD Y = TAU PIVRFT 
7998 
7999 
moo 
8001 
6.002 
8W3 
8004 
8005 
8006 
8010 
8011 
8012 
8013 
8014 
8100 
8101 
6102 
8103 
6104 
8105 
8106 
8110 
8111 
8112 
8113 
8114 
8900 
8901 
8910 

l ********* 

! l *t** PRINT STATEUENTS . ..+.t* 
PRINT “LUM PER CROSSING “;LLM,“TOTAL LUI “;NB*FO*LM 
PRINT "SIGMA X MM ';lO*SIGMA-X, 'SIGMA~Y MM ";~o~SIGMA-Y 
PRINT ‘ETA -"; ETA(E) 
PRINT “SYNC FRED ’ ; SYNC 
PRINT ‘THETA RMS NC+= 

FREQ (VRF) 
‘; nil?TA MAX(VRF),“LENGTH,CM :‘;30rTHETA MAX(VRF) 

PRINT #DELTA E RMS IN REV’; DmA E(VRF) 
PRINT ‘DELTA-NUSINGLE CROSSING TUNE SHIFT ; 

, “D%T;AF& ;D”A-E @RF) /Ea. 001 

PRImPRINT ‘IrTAU P HOURS: ‘;TAU P(VRF) 
_ 

PRINT ‘TAU-X HOURS: ‘;TAU-X 
PRINT “TAU-Y HOURS: ‘;Tm 
PRIM “Al n;A1;T Cl ';Cl;' T “;T;’ A, (HOVRS)rr-1 “;A*36W 
PRINT “B= ‘;B, ‘APPROX USED FOR G(B)?‘;APPROXS,“G(B) =‘;GB(B) 
PRINT#l, ‘LUI PER CROSSING ‘;LUI,“TOTAL LLM ‘;NB*FO*LUII 
PRINT#l, 'SIGMA-; hU ';lO*SIGM-X, "SIGMA Y MM ";~OISIGM Y 
PRINT#l, ‘ETA ; flA(E) 
PRINT#l, “SYNC FRED ‘;SYNC FRED(VRF) 
PRINT#l, ‘THETA RMS NSs “; l?iETA MAX(VRF) ,“LENGTH,CM :‘;30tTHETA MAX(VRF) 
PRINT#l, “DELTA E RkS IN MEV’; DaA E(VRF) ,“DELTA P/P:‘;DELTA-E(VRF)/Et.~l 
PRINT#l, “DELTA-NU,SINGLE CROSSING TUNESHIFT 
PRINT#l,\PRINT#i, “TAU P HOURS: “;TAU-P(VRF) 

” ; DELTA-M 

PRINTi , ‘TAU X HDLRS: “;TAU X 
PRIM#l , 
PRIKT#l, "Al 

“TAU-Y HWRS: “;TAEY 
";A1;T Cl ";Cl;. T ‘;T;’ A, (HGURS)t*-1 “;A*3600 

PRINT#l,"% ‘;B, “APPROX USED FOR G(B)?‘;APPROXS,‘G(B)=“;GB(B) 
PRINT OUT CONSTANTS USED 

PR:M \PRImPRINT\PRINT’ **....***** CONSTANTS USED I*****,, 
PRINT "EMIT-X",EMIT-X,, 'EMIT-Y",EUIT-Y 

‘****lo 

A2 



a911 
6920 
a921 
8930 
8940 
8950 
8960 
8970 
8980 
8981 
8982 
0983 
0984 
0905 
8986 

0989 
8990 
8991 

PRINTil; 
PRINT#l, 
PRINT#l, 
PRINT#l, 
PRINT#l, 
PRINT#l, 
PRINT#l, 
PRINT#l, 

! 

PRINT#l\PRINT#l\i'RINT#l,a l **.*..t*ta. CONSTANTS USED **********,t*,n 
PRINT#l, "EMIT X',EMIT X,, "EMIT_V",EMIT Y 
PRINTtl. "NO. DF BUNCHES: ";NB 

"NPEAR",NPBAR*lE12,,'NP',NPtlE12 
"NPBAft/BUNCH ",~E~~*NPBAR/NB,,"NP/BuNCH ",lE12rNP/NB 
"BETA STAR",BEfA STAR,,"VRF",VRF 
'EV SEC’,EV SEC,T"FO",FO 
~HAM,~."E',E 
"CAM-l? CAMT,,"TUNE',l'URE 

3ETAX".BETAX 
a992 
9998 

PRINT "NO. OF BUNCHES: ";NB 
PRINT "NPBAR",NPBAR*lE12.,"NP',NP*lEl2 
PRINT "NPBAR/BUNCH ",lE12rNPBAR/NB,,"NP/BI 
PRINT "BETA STAR",BETA STAR,,"VRF",VRF 
PRINT "EV SEC’,EV SEC,:"FO',FO 
PRINT "HARid',HARM~,"E',E 
PRINT "CANT", GAMT,,"TUNE",TUNE 
PRINT "XP',XP,,"BETAX',BETAX 
PRINT "RADIUS R".R 

JNCH ",lE12*NP/NB 

“xP’,xP,,“LL , 
"RADIUS R',R 

9999 
MOOD 
10002 
1WlO 
10020 
10098 
10099 
101w 
lOl!O 
10120 
10130 
10140 
10145 
10150 

!**** DEFINE Ll.M a....* 
DEF REAL LUM 
22 = SIGMA 
LL ;~P*NPBAR/(4*PI*SIGMA-X l SIGMA-Y) * (lE24/NB*r2) 

! 
!r**r DEFINE SIGMA-X UNITS CM I.*...,. 

DEF REAL SIGMA 
SIG2 X = EMIT X l BETA_STAR/(6rGAWA) 
SIG2-Y = EMIT-Y . BETA STAR/(6rGAMMA) 
SIG@ X = SQRT(SIG2 X)-e .l 
SIGMA-Y = SQRT(SIG'LIY) l .l 

! SIGMA IN MM, CHANGE TO CM 

SIGMA-= SIGMA-X 
END DEF 

10198 ! 
10199 !**** DEFINE ETA(E) 1.. 
10200 DEF REAL ETA(E1) 
10210 ETA = (l/GAJdl**2) - (.938/El)m2 
10220 END DEF 
10298 ! 
10299 !**a* DEFINE SYNC_FREq(V) t..*. 
10300 DEF REAL SYNC FREQ(V) 
10310 SYNC FREQ = S~RT(V*ETA(E)*HARM/(2tPI*E*lOW))r FO 
10320 END EEF 
10398 ! 
10399 !rorr DEFINE THETA-MAX(V) (UNITS NS) a*,.. 
104W DEF REALMETA-VAX(V) 
10410 THETA = sqRT(.3333m SECIFOIFOIETA(E)[(EISYNC-FREQ(v)*~E~)) 
10420 THETA MAX = THETA/(2r~I*FO) I lE9 
10430 END DEF 
10498 ! 
10499 !.rm DEFINE DELTA-E(V) (UNITS MN) **a. 
10500 DEF REUDELTA E(V) 
10610 DELTA E = SqRT(Ey_SEC + E l SYNC-FREQ(V) * lE9/(3*ETA(E))) l 1E-6 
10520 END DEF 
10598 ! 
10699 !ww DEFINE DELTA-NU . . . . . 
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10600 DEF REAL DELTA NU 
10610 DELTA NU = 1.5Ti. NP * BETA-STAR/(~*PIIGAMMA*SIGMAI~~ t NBelQQ) 
10620 END DEF 
10698 ! 
10699 !***** 
10700 DEF REAL TAU P(V) 

DEFINE TAU-P *..a*. 

10710 T = 6 l PI r-GAMMA I XPm2 
10720 T = T . (DELTA E(V)/E + .W1)**2 
10730 T = T /(EMIT-X-* PI *lE-6r BETAX) 
10740 T = l/(l+T) 
10760 Al = GAMMA . EMIT Y . PI t lE-6 
10770 Al = Al/(6 l PI *-BETAX) 
10780 Al = SqRT(A1) /SQRT(T) 
10790 Al = Al/(DELTA-E(V)/E I ,001) 
10810 Cl = ('tMIT X . EMIT Y . (PIalE-6)*.2 1 BEfAX1+2/T)tr(1/12) 
10820 Cl = Cl I 7(6*PI)r*:6 . THETA~MAX(V) 1 .3 , NB/NPtlE-12)$*(1/6) 
10830 Cl = Cl*(GAJMA*EMIT-Y 1 PI 1 lE-6/( B.PhBETAX.l,64E-18) )tr.5 
10840 AA = 27 * PI . (1.54E-18)rr2 l .938E9 I NPelE12/NB 
10850 AA = AA/(8 l GAMMA l PI102 . lE-12) 
10860 A = AA/( EMIT X . EMIT-Y t EV-SEC ) 
10865 Kl = 4 . A l t%11.6 
:;;'J; &=z(G~;;sV~IT_X)** .5 

10880 G2 = GB(l/B) 
10885 TAUP = LOG(U) * Cl + LOG(Cl/B)rG2/B 
10890 TAUP = TAlR' * Al s Kl . T 
10895 TAIR' = TAUPt36W 
109W TAUX =(l-T)r(Al/B)rr2 
10905 TAUX = (I-TAUX)*B*LOG(Cl/B)*G2/Al - (1-T)*AlrGleLOG(Cl) 
10910 TAUX = Kl*TAUX 
10915 TAUX = -36OOrTAUX 
10920 TAU Y =Kl*LOG(Cl) . a/Al 
10925 TAU-Y = l/TAU Y 
10996 TAU-X = l/TAm 
10997 TAW = l/TAuP 
10998 TAU P = TAIJ' 
11ooO BD-DEF 
llOlO! 
11020 !******a*** DEFINE G(B) *************t***** 
11030 DEF REAL GBfXJ 
11040 GBB = 0 
11041 if APPROXS = 'Y' THEN 11170 
y4; y3& ( g2 - l)/(X**2 + 1) 

:: 
11060 KMX = moo 
11070 FOR kl TO KMAX-1 
11080 Y I K*YMAX/KMAX ~I 
11090 Y = Y*Y 
11100 GBB= GBB+ m((ABS(FB)-l)*Y)*(IO(FBtY) + 3rIl) 
11110 NET K 
11120 GBB= GBB+.S 
11130 DELTA Cl 
11140 

3 = ~((ABS(FB)-l)*YMAX**2)r(IO(FB*YM~*t2) + 3+11) 
GBBz ?%I 3+ .5*DELTA GB 

11150 GB = GBI 
11160 GOT 10 

3* 2 l sqRq2/(x**2 l 1))r MAX/KMAX 
11180 

11170 GB = 2.691*(1 - 
11180 ! 

.2288964/X)/((l + .16*X)*(1 + 1.35*EXP(-X/ .2))) 

11190 END DEF 
112W! 
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11210! *********** DEF IO(X) AND 11(X) ***.e...e**.t.,t 
11220 DEF REAL IO(X) ! AND 11 
11230 XS = SGNlXl 
11240 XA = ABs(Xj 
11250 IF XA>4 GOT0 11390 
11260 Yl = .5rXA 
11270 IOO= l\ u=l 
11280 Ill= Yl \ V=Yl 
11290 FOR M=l TO 20 
11300 u = u l Y1**2/M**2 
11310 v t v l Y1**2IrM*IM+111 
11320 IOO= 
11330 Ill= 
11340 NMT 
11350 ioO= 
11360 GOT0 
11390 IWZ 
114w Ill= 
11410 IOOZ 
11420 Ill= 
11430 IO = 

IW+U .. . ” 
Ill* v 
M 
IW*EXP(-XA) \ Ill = !%‘(-XA)*Ill ! REMOVE EXP DEPENDANCE 
11430 
l/SQRT(2tPItXA) 

:Ei* (1 
Ill*(l 

+ l/(E*XA) + 4.5/(8*XA)**2 + .07324/XAtr3) 
- 3/(8*XA) - 

11440 11 I: ::. xs 

15/ (2* (E*XA) **2) - 105/(2r (EM) ~3) ) 

11450 END DEF 
31 l *. I.. a.. l . . LIFE T 

11880! LOOP FOR PRINT OUT LI 
11881 
11890 
11900 
12000 
12020 
12030 
12040 

IME VS DELTA-P/P t** *a* *a* *a* l ** **a 

~-FE TIME ALA Bj/H 
GOT0 12200 !REMOVE THIS LINE FOR LIFETIME VS DELTA-P/P 
PRINT\PRIM “****** LIFElIME VS DELTA P/P **rrr***"\PRINT\PR 
PRINT "DELTA P/P',.TAU_P/2","TMI_X/2',"~I'SICMA_Z",~T',"Al~ 
FOR I= 1 TO 10 
PRINT DELTA-E(VRF)/E*.Wl,TAU P(VRF)/2,TAU-X/2,30rTHETA-MAX(VRF) 
IF TAU X > 1OWO THEN GO TO l&m 
EJ SEC-= 2r EV SEC 

lINl 

.T,Al 

12050 VRF = 4dRF - 
12060 A I A/2 
12080 NEXT I 
12200 ICONTINUE 
12480! 
12481! 
12482! 
12490! *....*.*.** EMITANCE VS TIME CALC 
12491 PRINT\PRImPRINT ’ 

l ********t******* 

12492 PRINT#l\PRItU#l\PRIM#l,’ 
1*l*~**.*t*t*8b~~~t*.**..,~,.~\pRI~ 

12495 PRINT L 
l *..**o*t.**.**t***t~~*~*~~*~,~\PRINT/] 

1;:96 PRINTf%x 
EV-SEC DELTA-P/P SIGMA-Z TAUX TAU-P' 

hIiT X 
l;:W FOR I=0 m 400 

Ev-SEC DELTA-P/P SIGMA-2 TAU-X TAU-P' 

12502 IF I/20 - INT(I/20) > .Ol THEN GOT0 12610 
12505 PRINT USING FOR STRING,A 

.05*1 
TAU X : TAUP- 

EMIT X , EV-SEC , DELTA-E(VRF)/E*.Wl , 30eMETA MAX(VRF) 

1250x PkNT#l USING FOR STRING,& 
.OSrI 
TAU X : TAkR'- 

EMIT X , EV-SR , DELTA-E(VRF)/E*.Wl , 3O*THETA MAX(VRF) 

12615! 
;!fK& ;; TAU-P(vRF) 

= .05 
12540 D-w SEC = EV SEC l 2 l DT/Y 
12550 0-m = EM- t 2 * DT/TAU-X 



12560 EV SEC = EV SEC + D EV SEC 
12565 Ehin X = EMTT X + DIM 
126W ND-l-1 - 

13001 PRINT#l, "aIT X= ";EljlIT X;" 
EMIT Y=";EMIT Y;" T= ";T;" A= O;A 

6;1IT Y=";d;lIT Y;" T= ';T;" A= ";A 
13OW PRINT "EMIT X= ";EhUT X;' 

15000 DATA 22.5,22.5~3,.256,.2~5,3.9,.952~,43406,4~20,270,23.3,26.7,1.76,11W 
15010 DATA 6,6,17397,127,127,10,4.39,3614,103680,2oooO,67,78,3.14,132W 
16000 END 
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