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Abstract

The concept of a hidden sector, a set of additional particles and forces which interact with
the Standard Model content predominantly via gravity, appears to be a promising approach
towards accommodating dark matter without modifying the Standard Model. In this thesis
we investigate a hidden sector featuring two Dirac fermions charged under an unbroken
U(1)′ gauge symmetry. The associated gauge field, the dark photon, can interact via kinetic
mixing with the ordinary photon. We explore the phenomenology of this model in three
different areas: early Universe cosmology, from Big Bang Nucleosynthesis to the onset of
large-scale structure formation; galactic structure, where we formulate a dynamical model
for the dark matter halo which is consistent with observations; and finally direct detection
experiments, where we examine a possible diurnal modulation signal. We find that the model
can explain various observed features of spiral galaxies, such as the cored density profile
and the Tully-Fisher relation. These analyses are used to set constraints on the parameter
space of the model.
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”There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy.”

William Shakespeare, Hamlet

”Dark matter is what my research team is looking for. No one knows what it is. There’s
more stuff out there in the universe than we can see, that’s the point. We can see the stars
and the galaxies and the things that shine, but for it all to hang together and not fly apart,
there needs to be a lot more of it to make gravity work, you see. But no one can detect it.
So there are lots of different research projects trying to find out what it is, and this is one
of them. ... We think it’s some kind of elementary particle. Something quite different from
anything discovered so far. But the particles are very hard to detect.”

Philip Pullman, His Dark Materials

“For the movement of composite bodies is, as we said, determined by that simple body
which preponderates in the composition. These premises clearly give the conclusion that
there is in nature some bodily substance other than the formations we know, prior to them
all and more divine than they.”

Aristotle, On the Heavens

1This section on elliptical galaxies is almost exclusively Robert’s work, which derived from his insight and
some discussion we shared while working on [1]. Given the context in which this work arose, and its flowing
well with the rest of the thesis, we thought it was a good idea to add it.
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CHAPTER 1

INTRODUCTION: THE DARK MATTER PROBLEM

There are matters we see, there are matters we don’t, there are the brightest of photons,
there are the darkest of photons, there was the age of ions, there was the age of atoms, there
was the season of radiation, there was the season of matter, it was the spring of stardust, it
was the winter of stars - and above all, the dark matter halo so yearned to cool that half the
photons coming from a star’s deathbed insisted on being transformed, for good or for evil,
into dark matter particles.1

1.1 Evidence for dark matter

Poetic or arcane as they might sound, the lines above are describing the journey we will
undertake in the following pages, in an attempt to shed light on one of the biggest problems
in modern cosmology: the mystery of dark matter. Already in his cosmological treatise On
the Heavens (dated 350 BC) Aristotle had come to the conclusion that there had to be some
form of matter other than the one we experience, guiding the motion of celestial bodies in
the Universe. Still, it was not until the 1930s that scientific evidence started accumulating
and pointing convincingly towards the existence of this new form of matter. We now refer
to this as ”dark matter”, in contrast to the luminous ”baryonic matter”, which is very well
described by the Standard Model of particle physics.

It was the year 1933 when Franz Zwicky, a Swiss astronomer at Caltech, was examining
the Coma Cluster, and employed the virial theorem to estimate the total mass present within
the cluster itself. What he found was that the luminous matter could only account for a small
percentage of the total cluster mass, the rest of which had to be invisible, and which he coined
dunkle materie (”dark matter”) [3]. Still, more convincing evidence appeared in the late 1960s,
when Vera Rubin and Kent Ford determined the rotational velocity profiles of edge-on spiral
galaxies to unprecedented accuracy. These were found to be, to very good approximation,
flat far beyond the region where luminous matter was present, in stark contrast with the
fall-off which would be inferred from Kepler’s law [4].

Further compelling clues as to the existence of non-baryonic dark matter came hand in
hand with the drastic advance in our understanding of cosmology in recent years. Presently,
we acknowledge that dark matter is critical to explaining the structure of the acoustic peaks
that appear in the anisotropy spectrum of the Cosmic Microwave Background (CMB) [5].
These are a fingerprint dating from the very early Universe when photons and baryons were
tightly coupled in a photon-baryon fluid. The fluid in question oscillated within potential
wells provided by pressureless dark matter overdensities, in what are referred to as acoustic
oscillations (see e.g. [6]). These potential wells were critical for the subsequent growth of
matter overdensities (the seeds for future galaxies and clusters) following matter-radiation
equality, and hence for large-scale structure (LSS) formation. It is of vital importance that
they be provided by a form of matter which is non-baryonic, so as to not share the oscillating

1The sharp reader will have noticed some similarity between these lines and the incipit of Charles Dickens’
much celebrated work, A tale of two cities. Given the title of this thesis, such similarity is of course not a
coincidence.
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dynamics of the photon-baryon fluid. The ”non-baryonic” part here is decisive. Non-
luminous baryons, although dark, simply will not do.

Our current understanding of LSS formation also suggests that dark matter should be
”cold”, that is, non-relativistic at the onset of structure formation. In scenarios where LSS
formation is driven by hot dark matter (e.g. Standard Model neutrinos), structure formation
is suppressed below the so called free-streaming scale.2 Warm dark matter, a component
with properties intermediate to the aforementioned two, is not entirely excluded.

There are a number of other well documented observational evidences which attest a
virtually inevitable need for dark matter, for instance gravitational lensing and microlensing
experiments (see for example [8]), observations of the Lyman-α forest, and so forth. En
masse, these evidences also indicate that dark matter amounts to ≈ 85% of the matter budget
of the Universe [9].3 Observations also reveal that, at least in spiral galaxies, dark matter
is distributed in the form of a roughly spherical halo, which extends far beyond the range
of luminous matter and is responsible for the inferred flat rotation curves. For a more
comprehensive review on dark matter, refer for instance to [10].

The composition of dark matter, on the other hand, remains a mystery. Although a
collisionless cold dark matter (CDM) model appears to operate superbly on large scales,
correctly reproducing LSS formation and the matter power spectrum, this framework as
currently understood also presents a series of shortcomings on small scales. For instance,
collisionless CDM simulations predict a cuspy dark matter halo profile [11], in spite of
astrophysical observations indicating that the profile is rather cored or, anyhow, lower than
what collisionless CDM would predict. In the literature, this is referred to as the core-cusp
problem (see [12] for a review on the topic). These same numerical simulations predict an
excess of subhalos in juxtaposition to the number of observed satellite galaxies in the Local
Group, which is lower by about an order of magnitude. This dilemma has been dubbed the
missing satellite problem, or alternatively the dwarf galaxies problem [13].

1.2 Dark matter candidates

The Standard Model of particle physics (SM hereafter) is arguably one of the greatest ac-
complishments of physics. Based on the framework of spontaneously broken gauge groups,
the SM describes the non-gravitational interactions of particles exceptionally well up to and
slightly beyond the electroweak scale (for a review on the SM, see e.g. [14]). And yet, a
number of arguments suggest that the SM as we know it is incomplete. As is well known,
among the shortcomings of the SM is the lack of a suitable dark matter candidate.4 There are

2Furthermore, LSS formation in the presence of hot dark matter predicts a ”top-down” structure formation
process, with structure forming from fragmentation of superstructures known as Zeldovich pancakes into
smaller systems [7]. This is in blatant contrast with the commonly accepted ”bottom-up” structure formation
paradigm, based on a hierarchical merging of smaller structures into ever-growing larger ones (galaxies, galaxy
groups, clusters, superclusters, sheets, walls and filaments, up until the End of Greatness at a scale ∼ 100 Mpc),
which is supported by a variety of observations.

3On the other hand, the matter content accounts for ≈ 32% of the energy budget of the Universe, the
remaining ≈ 68% being made up of ”dark energy”, which drives the accelerated expansion of the Universe.

4There are several other drawbacks associated with the SM. Although it is not within the jurisdiction of
this thesis to discuss them, for completeness we will hereby provide a succint overview for the curious reader.
While some of these flaws are in a sense methaphysical (e.g., ”why is parity violated?” or ”why are there
exactly three generations of quarks and leptons?”), others are more pressing. For instance, the SM is unable
to account for neutrino masses (inferred from neutrino flavour oscillations), the observed predominance of
matter over antimatter (baryogenesis) and the presence of dark energy. The reader might also have heard that
the SM cannot accommodate gravity and suffers from the ”hierarchy problem”. Without going into further
detail, we would just like to point out that these are in fact not problems associated to the SM per se, but rather
to the QFT framework itself and to ”the SM plus new physics at some higher energy scale” respectively.
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a number of attributes which a proper dark matter candidate should abide by: 1) stability
on cosmological timescales, which can typically be attained by means of an appropriate
symmetry; 2) being able to reproduce the correct relic abundance, Ωdmh2

' 0.12 [9], and 3)
to be ”cold” or at most ”warm”. We now present a brief overview of a series of dark matter
candidates which are discussed copiously in the literature, prior to offering a novel approach
to accommodating dark matter (that is, hidden sectors), which we will follow in this work.
For a more comprehensive review on dark matter candidates refer for instance to [15]. The
reader who is somewhat less familiar with the particle physics side of dark matter might
find it befitting to read for instance [16] first.

1.2.1 The WIMP miracle

Without any doubt, the most popular dark matter candidate in the literature is that of a
weakly interacting massive particle, better known as WIMP. WIMPs do not take part in
electromagnetic or strong interactions, and the strength of their interactions with ordinary
matter is assumed to be comparable to that of the weak force; indeed, the scenario where
WIMPs couple to the W± or Z bosons at tree level is not an uncommon one. Historically,
WIMPs first caught the interest of the physics community when it was realized that, for
a particle χ whose relic abundance was determined by thermal freeze-out, with thermally
averaged annihilation cross-section 〈σannv〉, the relic abundance would roughly be given by:

Ωχh2
≈ 0.1

(
〈σannv〉

3 × 10−26 cm3s−1

)−1

. (1.1)

For a particle χwith mass at the electroweak scale (100 GeV-few TeV), exhibiting interactions
of strength comparable to the weak one, the thermally averaged annihilation cross-section
turns out to be in the ballpark, ∼ 10−26 cm3s−1. This feature is referred to as the ”WIMP
miracle”, and is unquestionably the reason behind the great popularity of WIMPs among
physicists. In addition, WIMPs appear frequently in theories beyond the Standard Model,
such as Supersymmetry (SUSY, for a review see for instance [17]). In SUSY, the introduction
of a supplementaryZ2 symmetry known as R-parity implies that the lightest supersymmetric
partner is stable, making it a good dark matter candidate [18].5

1.2.2 Exotics

A different class of dark matter candidates are referred to as ”exotics”. These customarily
originate through non-thermal effects, such as phase transitions. An example of such candi-
date is the axion, first proposed by Peccei and Quinn to solve the strong CP problem (that is,
the apparent lack of CP violations in the strong interaction, which follows from very tight
bounds on the neutron dipole moment) [19]. Peccei and Quinn introduced an additional U(1)
symmetry, the Peccei-Quinn symmetry, which is broken at some energy scale; the pseudo
Nambu-Goldstone boson associated with the breaking of this symmetry is the axion. Further
examples of exotic dark matter candidates include WIMPzillas, cryptons, brane world dark
matter, Q-balls, CHAMPs, D-matter, and so forth, with a list that could proceed ad infinitum.

1.2.3 Astrophysical candidates

To conclude, there also are a number of dark matter candidates motivated by astrophysics.
The preeminent one is that of Massive Astrophysical Compact Halo Objects (MACHOs),
which describe any type of astronomical body composed of baryonic matter which does

5Hopefully SUSY fans out there will not be offended, but I personally find this somewhat ad hoc.
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not emit radiation and meanders through the interstellar space (e.g. primordial black holes,
brown dwarfs, neutron stars, white dwarfs, unassociated planets, and so forth). At present,
MACHOs are almost entirely ruled out as an explanation for dark matter primarily on the
basis that they are composed of non-luminous but baryonic matter nonetheless. Ergo, they
cannot account for the non-baryonic matter content which appears necessary to explain the
CMB anisotropy spectrum.

1.3 A hidden sector approach

As we have seen, a profusion of dark matter candidates emerge from the most disparate
scenarios, some of which originate from well motivated particle physics theories, other
which arise as solutions to problems which had nothing to do with dark matter. Nevertheless,
finding a way of systematically incorporating dark matter candidates, instead of having to
rely on theories which by a rather fortunate chance happen to have one, would be somewhat
appealing. From a particle physics mindset, a viable avenue for accommodating dark matter
is by extending the SM to include a hidden sector (HS). In other words, an extra sector
encompassing new particles and new forces which interact with the SM content primarily
via gravity. This implies the particle content of the hidden sector being naturally ”dark”. The
dynamics of the particles and interactions in the two sectors are described by the Lagrangian:

L = LSM +LHS +Lmix , (1.2)

whereLSM andLHS are the SM and HS Lagrangians respectively, andLmix comprises possible
additional non-gravitational interactions which couple the two sectors. The HS Lagrangian,
LHS, exhibits a G′ gauge symmetry, with the associated gauge fields mediating the interac-
tions between particles in the HS.

In the HS, accidental global or discrete symmetries could arise. If that occurs, the lightest
degree of freedom charged under either one of these accidental symmetries, or the gauge
symmetry G′ itself, is stable, thus providing a potential dark matter candidate. The dark
matter structure that follows can be extremely rich, comprising self-interactions (possibly
dissipative), formation of bound states, novel experimental signatures, and so forth. The
reader will have realized that the dark matter phenomenology of this model is closely linked
to the particle physics underlying the HS, that is, the particle and gauge bosons content of
the HS.

Consider the simple possibility where G′ contains a U(1) group as a factor. In this case,
a dark version of quantum electrodynamics is expected to arise, with interactions which
are mediated by a dark photon. The dark photon can mix with the ordinary photon via a
kinetic mixing interaction, to which we will devote further and more extensive discussions in
Chapter 1.3.1. Early work on a possible dark electromagnetic sector was carried out in [20].
The idea was reconsidered some years later in [21], where it was pointed out that dark matter
stability might be due to a conservation law following from a hidden gauge symmetry.

Let us consider the possibility ofG′ containing a U(1) factor further. This choice still leaves
quite a bit of leeway with respect to the possible phenomenology. For instance, the symmetry
could be broken (as explored recently in e.g. [22]), following which the dark photon acquires
a mass, or unbroken (as in e.g. [23–26]), which implies the dark photon is massless. In the
former case, if the mass of the dark photon is sufficiently high, the phenomenology of such
model might be indistinguishable from that of WIMPs. In the latter, the masslessness of the
dark photon implies the presence of long range Coulomb-like interactions, which can lead
to dissipative dynamics. These entail energy loss on a timescale which is significantly less
than the Hubble time.
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Even when dissipative interactions can potentially arise, one can reside in the region of
parameter space where dark matter is atomic and hence collisional, but not dissipative. One
collision per Hubble time can be sufficient to avoid significative dissipation, while at the
same time possibly allowing to address some of the shortcomings of collisionless CDM on
small scales [27]. On the other hand, even if dark matter were non-atomic and hence ionized,
a considerate (but certainly restricted) choice of parameters can still lead to a non-dissipative
plasma, although no significative work has been done in this direction.

In the presence of significative dissipative interactions one can make two final choices.
In the first, only a subdominant component of the dark sector exhibits dissipative dynamics.
This is the case for instance of double-disk dark matter, a case considered in the very recent
literature. In this model, the dissipative interactions allow for this dark matter component to
cool efficiently and form a disk rather than a halo [28]. The alternative choice instead consists
in having the entire dark sector being subject to dissipative dynamics: in this case, the need
for a heat source which can replace the energy lost is inescapable. Else, the dissipative
interactions are expected to allow the dark matter halo to cool on a timescale much less than
the Hubble time, which would be in stark contrast with observations.

The choice of the entire hidden sector featuring significative dissipative interactions, and
hence requiring a heat source, is largely unexplored in the literature. The only exception is
possibly mirror dark matter, a very particular model which we discuss in the next section.
In this thesis we consider what is arguably the simplest model featuring a dissipative dark
sector. The position occupied by our model in the landscape of possible hidden sectors is
given in the diagram below.

Hidden sector gauge symmetry G′

G
′ 2 U(1) G

′
⊃ U(1)

U(1) broken U(1) unbroken

Non dissipative Dissipative

No heat source Heat source

Our model

1.3.1 Mirror dark matter

Mirror dark matter (MDM henceforth) is a notable example of a HS model, with the HS being
exactly isomorphic to the SM (including couplings). It follows that each SM particle and
gauge field is now mapped, via an exact Z2 symmetry, to a mirror partner [29]. Although
MDM has the potential to act as a suitable dark matter candidate, the reason for which it
was first studied in detail was actually that of addressing the issue of the observed parity
violation in nature. If the aforementioned Z2 symmetry, along with switching SM particles
with their mirror partners, additionally swaps left and right chiral fields, it can be interpreted
as parity. In the MDM framework parity emerges as a fundamental unbroken symmetry
of the theory, which appears to be broken for the sole reason that we are not able to detect
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mirror particles. For an up-to-date and comprehensive review on MDM refer to [30].
In addition to the SM and mirror sectors, Lagrangian terms which couple the two are

allowed, provided they are gauge-invariant and renormalizable.6 As it turns out, there are
only two such terms one can write: the first is a Higgs-mirror Higgs quartic coupling, which
is not expected to play a salient role in our discussion; a second and far more important term,
with extremely fascinating astrophysical and cosmological consequences, is a kinetic mixing
term, which mixes the ordinary and mirror photons (with field-strength tensors Fµν and F′µν
respectively):7

Lkm =
ε
2

FµνF
′

µν . (1.3)

What is the physical effect of this term? The trick here [32] is to perform a non-orthogonal
transformation on the photon and mirror photon gauge fields (Aµ and A′

µ), which results in
two massless unmixed states. From here one can easily rotate into a basis where only one
of these two states couples both to SM and mirror particles, while the other only couples to
mirror particles: the former is then identified as being the physical photon, and the latter
as the mirror photon.8 In a basis suitable to an ordinary matter environment, the coupling
of the physical photon to SM particles with charge Q is Qe (as one would expect), while the
coupling to mirror particles with mirror charge Q′ is εQ′e [30, 32]. Given that the requirement
ε � 1 is determined a posteriori, these particles are commonly referred to as millicharged
particles.

It has been shown that on large scales the phenomenology of MDM can be de facto
indistinguishable from that of collisionless CDM, reproducing the successful LSS formation
scenario. This is possible provided that suitable initial conditions are satisfied [33, 34] and
that the kinetic mixing parameter, ε, satisfies the bound ε . few × 10−9 [30, 35]. Under these
conditions, MDM behaves cosmologically as collisionless CDM following matter-radiation
equality.

In constrast, the physics of MDM is very different from that of collisionless CDM on small
scales, featuring a much richer array of interactions and nontrivial dynamics, particularly in
the context of galactic structure. In the MDM framework it is assumed that the dark matter
halo is in the form of a roughly spherical plasma, which can cool at a rate Γcool via dissipative
interactions, such as thermal bremsstrahlung. It is estimated that the halo cooling timescale
is of order 3 × 108 years, an issue which is referred to as the radiative cooling problem [36]. In
order to account for the observed sphericity of the dark matter halo, a sizeable heat source
which can replace the energy lost to dissipation is required.

It has been extensively argued in the MDM framework that an adequate heat source can
arise from ordinary core-collapse supernovae [36]. The proposed mechanism invokes kinetic
mixing induced processes in the core of the supernovae (e.g. ee→ e′e′, γ→ e′e′). For ε ∼ 10−9,
these processes are expected to convert ∼ 1/2 of the core-collapse energy into light mirror
particles: initially predominantly mirror electron pairs, which are ultimately reprocessed
into mirror photons in the region surrounding the supernovae (see e.g. [37]). These mirror

6A simple criterion to determine whether a Lagrangian term is renormalizable is to verify whether the mass
dimension of the relevant coupling is nonnegative.

7In early works it was usually assumed that such a term arised at loop level, provided a connector particle
existed. In 1991 Foot and He reiterated once and for all that, as the kinetic mixing term is renormalizable and
gauge invariant, it can legitimately be present as a Lagrangian term [31].

8One might question how did this asymmetry arise, given that we started with a Lagrangian which is
perfectly symmetrical upon interchange of ordinary and mirror states. Of course, the broken symmetry is
only apparent, and is the result of a transformation which is appropriate within an environment dominated
by visible matter. In fact, one can make a different choice of transformation, which leads to a mirror photon
coupling both to mirror and SM particles, and a sterile photon coupling only to SM particles. At the end of the
day, this is only a choice of basis, which does not affect any physical result (see [30] for further discussions).
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photons can heat the halo at a rate Γheat through a variety of avenues. It is argued that the
preeminent process is photoionization of a mirror metal component (e.g. mirror oxygen,
mirror iron). This is possible since, for the range of halo temperatures considered, these
mirror metal components retain their K-shell mirror electrons.

Furthermore, it is pointed out that a variety of feedback mechanisms can dynamically
modify the quantity Γheat − Γcool, until the equilibrium situation Γheat = Γcool is reached,
without having to invoke fine tuning between the two rates. More in-depth studies of
MDM in the context of galactic structure have demonstrated that this framework is also able
to provide an explanation to a series of observational properties of spiral galaxies which
arise, to a greater or lesser extent, as a consequence of the aforementioned energy balance
relation, Γheat = Γcool [38]. To conclude, MDM has also been shown capable of explaining
the results, both positive and negative, from the dark matter direct detection experiments
(DDEs henceforth), alleviating the apparent tension between some of them [30, 39].

1.3.2 Two-component hidden sector dark matter

Mirror dark matter, while representing a suitable and well motivated example of a HS dark
matter candidate, is certainly a very restricted one: the complete isomorphism between the
visible and mirror sectors implies all couplings being equal. It follows that MDM possesses
only two free parameters: the kinetic mixing and Higgs-mirror Higgs quartic interactions
couplings. Nevertheless, there exist alternative models which have a similar phenomenology
to MDM while at the same time being far less restrictive. Recall the salient features inherent to
MDM which are at the origin of its peculiar phenomenology: an unbroken U(1) interaction
(mirror electromagnetism, the mirror photon being kinetically mixed with the ordinary
photon), implying significative dissipative dynamics in the HS and hence the need for a heat
source.

An example of such an alternative model is that of a two-component HS featuring two
particles, hereafter denoted by F1 and F2, charged under an unbroken U(1) gauge symmetry;
the relevant interactions are mediated by a massless dark photon, which can interact via
kinetic mixing with the ordinary photon. Such a model is obviously closely related to
others discussed in the recent literature, which feature a dark electron and a dark proton
[22–26]. In addition, given that the massless dark photon mediates long-range dissipative
interactions, the phenomenology of this model closely resembles that of MDM, with the
ligher particle corresponding to the mirror electron and the heavier one to mirror nuclei.
As we will discuss more thoroughly in Chapter 2, the relic abundances of the two particle
species are determined by a particle-antiparticle asymmetry. That is, the model is an example
of asymmetric dark matter, extensively discussed in the recent literature (see e.g. [40, 41] for
reviews on the topic).9 In addition, this framework has been analysed in recent years in the
context of DDEs, and has been proved to be capable of explaining the results arising from
the various experiments consistently provided one particle be much heavier than the other
and the kinetic mixing parameter, ε, satisfies ε ∼ 10−9 [43].10

9Asymmetric dark matter is very well motivated on the basis of the observation that Ωdm/Ωb ' 5, that is,
that dark and visible matter have similar relic abundances. Given that the relic abundance of visible matter
is largely determined by the baryon-antibaryon asymmetry (baryogenesis), one might speculate that the relic
abundance in the dark sector might also be determined by a particle-antiparticle asymmetry. Moreover, in
several asymmetric dark matter scenarios, dark matter and visible matter share a common origin (as for instance
in the case of ”pangenesis” [42]).

10The recent results from the LUX experiment [44] call for a reconsideration of this explanation. We will
provide more food for thought in this respect in Chapter 4.3.
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Outline of research project

The two-component hidden sector dark matter model described above has been explored
in detail only with respect to direct detection experiments. The aim of our research project
is to scrutinize its phenomenology in a number of other contexts, to verify whether it can
indeed provide a suitable dark matter candidate. In Chapter 2 we analyse the model’s early
Universe phenomenology, focusing on two main areas: the addition of extra energy density
during the radiation dominated era, in particular at the epochs of Big Bang Nucleosynthesis
(BBN) and Hydrogen recombination; and the physics of dark recombination, during which
the charged dark particles combine into neutral dark states. In Chapter 3, we probe this
model in the field of galactic structure, and find that it can explain a number of puzzling
observational properties of spiral galaxies. In Chapter 4 we expound some experimental
signatures of the model, and in particular argue that its self-interacting nature is expected to
lead to a diurnal modulation signal, particularly enhanced for direct detection experiments
located in the Southern hemisphere. Finally, in Chapter 5 we draw a few closing remarks.
For further details, we redirect the reader to our paper, on which the work carried out in
Chapters 2 and 3 is based [1].
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CHAPTER 2

EARLY UNIVERSE COSMOLOGY

As discussed earlier, a viable and well motivated way of incorporating dark matter is by
means of a hidden sector. We now begin our analysis of the explicit HS outlined in the pre-
vious Chapter. That is, a HS featuring an unbroken U(1)′ symmetry, whose interactions are
mediated by a massless gauge boson, the dark photon (γD). The HS additionally encompasses
two stable dark matter particles, F1 and F2, taken to be Dirac fermions, with masses mF1 and
mF2 . The two particles are charged under the U(1)′ gauge symmetry, with charges Q′

F1
and

Q′

F2
. We will assume the charges are opposite in sign, although not necessarily the same in

magnitude, with charge ratio Z′ ≡ Q′

F2
/Q′

F1
.

In the early Universe, dark electromagnetic interactions are expected to efficiently anni-
hilate the symmetric components of the F j abundances. Ipso facto, our model is an example
of asymmetric dark matter, that is, one where the dark matter abundance is set by a particle-
antiparticle asymmetry (refer for instance to [40, 41]). Without loss of generality, we can
assume that the HS today contains negligible amounts of dark matter antiparticles: F1 and
F2. Defining nF j to be the number density of the F j particle, local neutrality of the Universe
jointly with dark matter asymmetry then imply that nF1Q

′

F1
+ nF2Q

′

F2
= 0.

We now proceed to write down the Lagrangian of our model. Apart from the kinetic
terms for the dark photon and dark fermions, and the mass term for the latter, the only other
renormalizable and gauge-invariant term we can write is a kinetic mixing one, that is, one
that couples the ordinary photon to the dark photon [31]. The Lagrangian is:

L = LSM −
1
4

F
′µνF

′

µν + F1(iDµγ
µ
−mF1)F1 + F2(iDµγ

µ
−mF2)F2 −

ε
′

2
FµνF

′

µν , (2.1)

where F′µν = ∂µA′

ν − ∂νA
′

µ is the field-strength tensor for the dark electromagnetic interaction,
whose mediator, the dark photon, is described by the gauge field A′

µ.1 The dark fermions
are instead characterized by the quantum fields F j, and the covariant derivative relevant to
the dark electromagnetic interaction is DµF j = ∂µF j + ig′Q′

F j
A′

µF j, with g′ being the coupling.
Note here how two accidental U(1) symmetries arise and imply conservation of F1 and F2

number, and hence stability of our dark matter particles. As we mentioned in Chapter 1,
this is quite a general feature of hidden sectors, perhaps explaining their appeal to the eyes
of phenomenologists: the predicted spectrum of dark matter particles can easily be made
massive, dark and stable. A good dark matter candidate indeed!2

It will be useful to define the dark fine structure constant, which characterizes the strength
of the interactions of F1 with the dark photon: α′ ≡ (g′Q′

F1
)2/4π. The coupling of F2 with the

dark photon will instead be described by Z′α′, where recall Z′ is the charge ratio of F2 to F1.

1Here Fµν = ∂µAν − ∂νAµ is the field-strength tensor for the electromagnetic interaction [U(1)Q], mediated
by the photon, which is described by the gauge field Aµ.

2One could consider a similar two-component hidden sector model charged under an unbroken U(1)′ inter-
action where the two dark matter particles are bosons instead. All the considerations we make in this subsection
will hold (e.g., stability of the two dark matter particles as a consequence of two accidental symmetries, and
so forth), and the bounds which we will derive in this work and summarize in Chapter 3.3 will be valid up to
factors of order unity, which account for spin statistics. Nevertheless, for the sole purpose of definiteness, in
this work we focus on the fermionic model.
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As we have seen in the previous Chapter, the physical effect of kinetic mixing is to endow
the dark fermions with ordinary electric charge:

g′Q
′

F j
ε′ ≡ εF je . (2.2)

Note that εF2 = Z′εF1 , and hence the two are not simultaneously independent parameters:
we choose by convention ε ≡ εF1 to be the independent one. Note at this point that the
fundamental physics of our dark matter model is described by five independent parameters:
mF1 , mF2 , α

′, ε and Z′. For definiteness we will examine the region of parameter space where
mF1 � mF2 and Z′ is an integer.

While our model is of course UV complete and renormalizable, it is also possible for
it to be the low energy effective field theory limit of a more complete framework. If, for
instance, such a framework features a confining interaction (which could possibly arise, for
example, from an SU(3)′ symmetry), then F1 and/or F2 might represent bound states whose
mass originates from the dark confinement scale (as occurs for instance in [45]).3 Another
possibility is that the mass terms for F1 and F2 might arise from a hidden sector scalar, H′,
with non-zero vacuum expectation value (〈H′〉 , 0), via a Lagrangian term such as λ jH′F jF j

(this is of course reminiscent of how the masses of quarks and leptons originate in the SM).
Let us briefly recall where our model sits in the landscape of hidden sectors (which is well

depicted by the tree diagram on page 10). The massless dark photon mediates long-range
dissipative interactions, and hence the galactic dark matter halo is expected to cool via these
dissipative processes (e.g. thermal dark bremsstrahlung). Inevitably, we incur in the need
for a heat source which can replenish the HS with the energy lost to dissipation. Unlike the
other models depicted in the diagram, here a pivotal role is that played by kinetic mixing.
We will call on kinetic mixing induced processes within the core of ordinary supernovae to
replace the energy lost to dissipative interactions. The proposed mechanism involves at first
F1-F1 pair production (recall F1 is the lightest of the two fermions), eventually annihilating
into dark photons which can escape and heat the halo. This is possible if ε ∼ 10−9 and
mF1 . few × TSN ' 100 MeV, where TSN ' 30 MeV is the maximum temperature that is
reached in the core of ordinary supernovae. At the same time, we obtain a lower limit on
mF1 from studies of White Dwarfs [46, 47] and Red Giants [48]: mF1 & 0.01 MeV (see for
instance [49, 50] for more recent summaries of the bounds). These limits define the range of
parameter space we will analyse in this work.

One final comment before we proceed. Although it is required of the kinetic mixing
parameter to be small (ε ∼ 10−9, as we will confirm in the course of this work), this does
not represent a problem such as radiative instability. In fact, generally speaking, in theories
with hidden sectors small values for the mixing couplings are technically natural,4 an idea
which is known as Poincaré protection [51]. In the limit ε → 0, the symmetry of the theory
is enhanced to GSM

P ⊗ G
HS
P , where GP denotes the Poincaré group. In other words, one can

perform independent Poincaré transformations on the SM and hidden sectors, while this
would not be possible in presence of mixing between the two.

2.1 Evolution of TγD
/Tγ

Outfitted with all the required tools, we now begin by examining the phenomenology of this
model in the early Universe, during the course of the radiation dominated era. At this time,
successful early Universe cosmology sets tight bounds on the contributions of new physics to

3Compare this case with how the proton mass arises from the ΛQCD scale in the Standard Model.
4In the sense of ’t Hooft, that is, a parameter is naturally small if in the limit of the parameter being set to

zero, the symmetry of the theory is increased.
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the energy density. This comes about because processes that take place in the early Universe,
chief among them BBN and the formation of the CMB, are extremely sensitive to the energy
density at that time. For instance, small modifications in the energy density could result in
changes in the predicted Helium fraction or the form of the CMB anisotropy spectrum.

Let us define the temperatures of the photon and dark photon to be Tγ and TγD
respec-

tively. The essence of the above discussion is that successful early Universe cosmology
requires X ≡ TγD

/Tγ � 1 to hold at some early time. How early? It is at most necessary
to require X � 1 at, for instance, the QCD phase transition (QCDPT), which occured when
the temperature of the visible sector was Tγ ∼ 100 MeV. Even if X ∼ 1 did hold prior to the
QCDPT, the heating of the visible sector which ensued from the QCDPT would have been
ample to establish X � 1 subsequently. There exist alternative ways by means of which
one can achieve such initial condition (X � 1) prior still to the QCDPT. For instance, within
inflationary models, asymmetric reheating is a possibility which has been discussed to a
great extent in the literature (see for example [52–54]).

As discussed previously, kinetic mixing bestows the dark particles with a tiny ordinary
electric charge, allowing them to couple to the visible photon and hence to ordinary matter,
albeit very weakly.5 Therefore, even if the Universe did begin with X = TγD

/Tγ ' 0, TγD

would be generated by way of kinetic mixing induced processes, which transfer energy and
entropy between the visible and dark sectors. We shall now study the evolution ofX, subject
to the initial condition X ' 0. This quantity is useful in evaluating the contribution of new
physics to the energy density in the early Universe, and hence will allow us to set bounds
on the available parameter space.

A note of caution is needed here: although the region of parameter space 0.01 MeV .
mF1 . 0.1 MeV is certainly allowed , here we will focus exclusively on the range 0.1 MeV .
mF1 . 100 MeV. The reason is that within the region 0.01 MeV . mF1 . 0.1 MeV, a series of
complications arise, both in the context of early Universe cosmology and galactic structure,
which time (and certainly not a lack of curiosity) did not allow us to consider. The issue of
dealing with the complications which arise in this region of parameter space is left for future
work.

We commence by considering the processes which allow for energy and entropy transfer
between the visible and dark sectors. Among these channels, to order ε2, we find ee →
F jF j, eF j → eF j, γγD → F jF j, γF j → γDF j, γ → F jF j (plasmon decay), and so forth. If F2

is significantly heavier than F1 [more specifically, if mF2 � Z′2 max(me,mF1), where me '

0.511 MeV is the electron mass], we can safely neglect processes involving F2. Plasmon
decay is expected to be important only for mF1 . ωP/2, where ωp =

√
4παT2/9 is the plasma

frequency (see e.g. [50]). During the period of interest (from BBN to the formation of
the CMB) plasmon decay is only important for mF1 . 50 keV, which is out of the range
we are considering, as discussed above. Finally, of the remaining processes, we expect
ee → F1F1 to dominate, since the rates for the other processes are suppressed by a factor
∼ nF1/ne ∼ (TγD

/Tγ)3 and, as we will show later in our work, we are typically constrained to
reside in the region of parameter space for which (TγD

/Tγ)3
� 1.6

The treatment that follows will be a generalization of the more specific MDM case anal-
ysed in [35], from which we will draw extensively, and which itself followed earlier works
[34, 50, 56]. The cross-section for the s-channel process ee → F1F1 is analogous to that of

5The term ”weak” here has nothing to do with the weak force, but refers exclusively to the coupling being
minuscule.

6While we were working on this thesis and on [1], the paper [55] which performed a similar analysis with
the inclusion of other channels appeared. As shown there, the net result of these extra channels is to strengthen
the bounds we will obtain by a factor of . 2. Nonetheless, it is worth pointing out that the bounds arising from
dark recombination, to be discussed in Chapter 2.3.3, are more stringent than the ones we will obtain here.
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Figure 2.1: Feynman diagram for the process ee→ F1F1.

muon pair production, with the prime difference consisting in the coupling of F1 to the or-
dinary photon being given by εe. The cross-section for this process (with Feynman diagram
depicted in Figure 2.17) is:

σ =
4π
3s3 ε

2α2

√
s − 4m2

F1

s − 4m2
e

(s2 + 2(m2
e + m2

F1
)s + 4m2

e m2
F1

) , (2.3)

where
√

s is the center-of-mass-energy, α ≡ e2/4π the fine-structure constant and me the
electron mass. Designating by R the scale factor, the process above allows for energy transfer
between the visible and dark sectors within a comoving volume R3 at a rate:

dQ
dt

= R3nene〈σvMølE〉 , (2.4)

where 〈σvMøl〉 is the relevant thermally averaged cross-section, E is the total energy of the
system and the electron and positron number densities can be found in e.g. [58]:

ne ' ne =
1
π2

ˆ
∞

me

dE

√
E2 −m2

e E

1 + e
E

Tγ

. (2.5)

In order to evaluate 〈σvMølE〉, we will trace the steps of [34, 59]. By replacing the exact
Fermi-Dirac distribution with a simpler Maxwellian one, laborious algebra, which we shall
not display here8, gives us the end result:

〈σvMølE〉 =
ω

8m4
e T2

γ[K2(me
Tγ

)]2

ˆ
∞

4M2

ds σ(s − 4m2
e )
√

s

ˆ
∞

√
s

dE+ e−
E+
Tγ E+

√
E2

+

s
− 1 , (2.6)

where ω ≈ 0.8 accounts for a number of approximations, such as the replacement of the
actual Fermi-Dirac distibution with the simpler Maxwell-Boltzmann one [34]. K2(z) is the
modified Bessel function of the second kind and argument z, andM ≡ max(me,mF1).

Given that the rates of self-interaction processes are bigger than the kinetic mixing in-
duced ones by many orders of magnitude (∼ 1/ε2), we can model the early Universe as
comprising two subsystems exchanging energy while remaining instantaneously in ther-
modynamical equilibrium: the visible sector, at a temperature Tγ, and the dark sector, at a
temperature TγD

. The conditions required to apply the second law of thermodynamics are
thus met. In principle we would have to take the neutrino subsystem (at a temperature

7Feynman diagram was drawn using Jaxodraw [57].
8This is a fairly standard result, widely used in high energy physics and cosmology. For the pure pleasure

of doing long calculations, we did verify this formula though!
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Tν) into account as well. Nevertheless, given that energy transfer to the dark sector occurs
primarily following neutrino kinetic decoupling, meaning dSν ' 0 (where Sν is the neutrino
subsystem entropy), the net transfer of energy to the neutrino subsystem can be safely ne-
glected. That said, we will still have to consider the evolution of Tν, which nonetheless
trivially scales as the inverse of the scale factor (see e.g. [58]).

We now proceed to express the 2nd law of thermodynamics. The variations in entropy
in the visible [dS] and dark [dS′] sectors are given by:

dS = −
dQ
Tγ

; dS′ =
dQ
TγD

. (2.7)

The entropy for a particle species with energy density ρ, pressure p and temperature T is
(see for instance [58]):

S =
ρ + p

T
R3 . (2.8)

Taking the derivative with respect to time in Eqs.(2.7) and combining the result with
Eqs.(2.4,2.8), after neglecting the neutrino contribution to the variation in entropy (which is
warranted since dSν ' 0), yields:9

d
dt

[
(ργ + pγ + ρe + pe)R3

Tγ

]
= −

nene〈σvMølE〉R3

Tγ
,

d
dt

 (ργD
+ pγD

+ ρF1 + pF1)R
3

TγD

 =
nene〈σvMølE〉R3

TγD

. (2.9)

To describe the evolution of the scale factor, we make use of the Einstein field equations,
which relate the geometry of the Universe to its energy content. The 00 component of the
Einstein field equations, which is known as first Friedmann equation, reads:10(

Ṙ
R

)2

=
8πGN

3

[
ργ + ρe + ρν + ργD

+ ρF1

]
. (2.10)

Denoting x ≡ me/Tγ, we can express energy densities and pressures for particle species in
the visible sector as (see e.g. [58]):

ργ =
π2

15
T4
γ , ρe =

2T4
γ

π2

ˆ
x

∞

du
(u2
− x2)

1
2 u2

1 + eu , ρν =
7π2

40
T4
ν ,

pγ =
π2

45
T4
γ , pe =

2T4
γ

3π2

ˆ
x

∞

du
(u2
− x2)

3
2

1 + eu . (2.11)

Similarly, for particle species in the dark sector, with x′ ≡ mF1/TγD
, we obtain:

ργD
=

π2

15
TγD

4 , ρF1 =
2TγD

4

π2

ˆ
x′

∞

du
(u2
− x′2)

1
2 u2

1 + eu ,

pγD
=

π2

45
TγD

4 , pF1 =
2TγD

4

3π2

ˆ
x′

∞

du
(u2
− x′2)

3
2

1 + eu . (2.12)

9For notational convenience, in Eqs.(2.9) and following, we have defined ρe ≡ ρe + ρe, and similarly for pe,
ρF1 and pF1 .

10The dot denotes a derivative with respect to time.
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As we previously remarked, the neutrino temperature scales as Tν ∝ 1/R, which can be
obtained straightforwardly from dSν ' 0. Since both sides of Eqs.(2.9) display the same
power of the scale factor R and hence all proportionality factors cancel (rather conveniently!),
we can effectively replace R in Eqs.(2.9) by 1/Tν, and therefore express Eqs.(2.9) as:

d
dt

[
(ργ + pγ + ρe + pe)

TγT3
ν

]
= −

nene〈σvMølE〉

TγT3
ν

,

d
dt

 (ργD
+ pγD

+ ρF1 + pF1)

TγD
T3
ν

 =
nene〈σvMølE〉

TγD
T3
ν

, (2.13)

and Eq.(2.10) as:

1
Tν

dTν
dt

= −

√
8πGN

3

(
ργ + ρe + ρν + ργD

+ ρF1

)
. (2.14)

What we have just written down [Eqs.(2.13,2.14)] is a system of three differential equations
for three unknowns: Tγ, TγD

and Tν. If we provide initial conditions we can trace the
evolution of these three quantities. Recall that our goal is to study the evolution of the
quantity X ≡ TγD

/Tγ, subject to initial condition X ' 0. With some manipulation we can
bring Eqs.(2.13) to the form:

ζ
dTγ
dt

+ κ
dTν
dt

= −
nene〈σvMølE〉

T3
γ

; ζ
′
dTγD

dt
+ κ

′ dTν
dt

=
nene〈σvMølE〉

T3
γD

, (2.15)

where we have defined:

ζ ≡
3ργ
T4
γ

+
3pγ
T4
γ

+
3ρe

T4
γ

+
3pe

T4
γ

+
2m2

e

π2T2
γ

ˆ
∞

x
du

(u2
− x2)−

1
2 u2 + (u2

− x2)
1
2

1 + eu ,

ζ
′

≡
3ργD

TγD

4 +
3pγD

TγD

4 +
3ρF1

TγD

4 +
3pF1

TγD

4 +
2m2

F1

π2TγD

2

ˆ
∞

x′
du

(u2
− x′2)−

1
2 u2 + (u2

− x′2)
1
2

1 + eu ,

κ ≡ −

(
3ργ
T3
γ

+
3pγ
T3
γ

+
3ρe

T3
γ

+
3pe

T3
γ

)
1
Tν

, κ
′

≡ −

3ργD

TγD

3 +
3pγD

TγD

3 +
3ρF1

TγD

3 +
3pF1

TγD

3

 1
Tν
. (2.16)

The system given by Eqs.(2.14,2.15) can now be solved numerically.11 An example of such a
solution is presented in Figure 2.2, where we plot the evolution of TγD

/Tγ as a function of Tγ
for different values of mF1 and for ε = 10−9. Note that time flows from the right to the left.

The reader can infer from Figure 2.2 that at late times TγD
/Tγ asymptotically approaches

a constant, for which we would like to find an approximate analytic expression. But before
doing so it is convenient to remind ourselves of the results obtained in the MDM framework,
which can be seen as a special case of our model where mF1 = me, with the main process
governing energy transfer between the sectors being ee → e′e′. In [34] it was determined
that, in the limit Tγ � me, the ratio Tγ′/Tγ (γ′ being the mirror photon, analogous, of course,
to our dark photon), subject to initial condition Tγ′ = 0 at Tγ = Ti, evolved according to:

Tγ′

Tγ
∝
√
ε

[
1

Tγ
−

1
Ti

] 1
4

. (2.17)

11We employed a straightforward numerical integration routine in FORTRAN77.
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Figure 2.2: Evolution of X ≡ TγD
/Tγ for mF1 = 10 MeV (dot-dashed line), mF1 = 1 MeV (solid line)

and mF1 = 0.1 MeV (dashed line).

For temperatures below me, Boltzmann suppression of e and e number densities means that
energy transfer to the mirror sector is halted, given that the rate for the relevant process
drops exponentially.

The result obtained for MDM can easily be generalized to the case we are analysing.
The rate for the relevant process here, ee → F1F1, drops significantly when the temperature
reaches Tγ ∼ M ≡ max(me,mF1) which, jointly with Eq.(2.17), suggests that the asymptotic
value of X is proportional to

√
ε(me/M)

1
4 . We corroborated this result numerically, by

studying the evolution of X for varying values of ε and mF1 , finding that the asymptotic
value of the ratio of the temperature in the two sectors, TγD

/Tγ, for parameters in the range
10−10 . ε . 10−7 and 0.1 MeV . mF1 . 100 MeV, can be expressed as12:

TγD

Tγ
' 0.31

√
ε

10−9

(me

M

) 1
4

, M ≡ max(me,mF1) . (2.18)

The shape of the curves in Figure 2.2 can be easily explained. At early times, that is, for
Tγ � M, the curves ascend following a (1/Tγ)

1
4 behavior, consistent with our analytical

considerations. A deviation from the analytic solution occurs for Tγ ∼ M. After then, the
characteristic bumps displayed by the curves can be brought back to annihilation processes (e-
e and F1-F1 annihilations) which heat the respective sectors at approximately the temperature
corresponding to the mass of the particle pair that annihilates. Once these annihilations are
over, X reaches its asymptotic value, for which we found an analytic estimate [Eq.(2.18)].

2.2 Constraints from additional energy density

Where to from here? As affirmed initially, early Universe cosmology (and in particular BBN
and LSS formation), as currently understood, places strong constraints on exotic contribu-
tions to the energy density during the radiation dominated era. In particular, the relativistic

12Unsurprisingly, we have recovered the same numerical factor as in MDM, where it has been found that
Tγ′ /Tγ asymptotically evolves to 0.31

√
ε/10−9 [35].
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energy density component is subject to tight bounds, which we here wish to exploit. For-
tunately for us, there is a relatively simple and useful way of parametrizing the relativistic
energy density component, that is, via an effective number of neutrino species. We have fairly
robust constraints on this quantity arising from cosmological observations. In the following
we consider the effects of extra energy density at the epoch of Hydrogen recombination first
and BBN afterwards, parametrizing it in terms of an effective number of neutrino species,
which we then use to set constraints on the available parameter space.

2.2.1 Calculation of δNeff[CMB]

We begin by computing the additional contributions to the relativistic energy density at
Hydrogen recombination. The relativistic energy density at this epoch can be expressed as:

ρrad =

1 +
7
8

( 4
11

) 4
3

Neff[CMB]

ργ , (2.19)

where the factor of 4/11 accounts for γ heating by e-e annihilation, following neutrino
kinetic decoupling, and the factor of 7/8 owes its presence to the different statistical nature
(fermionic instead of bosonic) of neutrinos with respect to photons (see [58] for more in-depth
discussions). But the quantity we really are interested in here is Neff, known as the effective
number of neutrino species. The SM, as is well known, makes the prediction Neff = 3.046.
Exotic contributions to the relativistic energy density at Hydrogen recombination are then
encoded via δNeff[CMB] ≡ Neff[CMB] − 3.046, which is constrained by several observations,
for instance that from WMAP [5], the Atacama Cosmology Telescope [60], the South Pole
Telescope [61] and the recent results from the Planck mission [9]. The observations are
consistent with the SM predictions and to an approximate 2σ limit provide the constraint
δNeff[CMB] < 0.84 [9]. Note that δNeff[CMB] can be conveniently expressed as:

δNeff[CMB] = 3

[ Tν(ε)
Tν(ε = 0)

]4

− 1

 +
8
7

( TγD
(ε)

Tν(ε = 0)

)4

, (2.20)

where all temperatures are evaluated at photon decoupling, Tγ ' 0.26 eV. Two effects
contribute to increasing Neff[CMB], and are accounted for by the two terms in Eq.(2.20):
the first is the increase of TγD

at the expense of Tγ, which reduces Tγ/Tν and has the net
effect of increasing the number of neutrino species at Hydrogen recombination; the second
is obviously the increase in Neff due to an increase in TγD

itself.
Making use of Eqs.(2.14,2.15,2.20), we evaluate δNeff[CMB] for some example parameter

choice, before proceeding to constrain the available parameter space by imposing the condi-
tion δNeff[CMB] < 0.84. We anticipate that the addition of extra energy density, parametrized
by δNeff[CMB], is not the only effect we have to consider for the CMB. Another, and for that
matter more important, piece of new physics to consider is that of dark acoustic oscillations,
which we will deal with in Chapter 2.3. In Figure 2.3 we plot δNeff[CMB] against ε keeping
mF1 fixed. We find that the bounds on ε arising from constraints on δNeff[CMB] (which will
be presented in Figure 2.4) can be expressed as:

ε . 3.5 × 10−9

(
M

me

) 1
2

. (2.21)

The ε ∝ M
1
2 dependence can be readily understood by referring to Eqs.(2.18,2.20). Note also

that, forM = me, we have recovered the numerical factor of 3.5× 10−9 obtained in analogous
studies in the MDM framework [30, 35].
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Figure 2.3: δNeff[CMB] versus ε for fixed mF1 values; going from up to down, mF1 = 0.1, 0.5, 0.7, 1, 10
MeV.

2.2.2 Calculation of δNeff[BBN]

We now inquire as to how the addition of energy density during the early Universe affects
BBN. Recall that BBN is the process during which light nuclei, notably Helium, were syn-
thesized (refer to Steven Weinberg’s book [62] for an in-depth review on the topic) It is well
known that an increase in the energy density by the addition of one neutrino species has the
effect of increasing the Helium fraction, Yp, by approximately 0.013 [63]. Ergo, the change in
neutrino species associated with BBN can be identified with:

δNeff[BBN] =
Yp(ε) − Yp(ε = 0)

0.013
. (2.22)

The synthesis of Helium proceeds via that of deuterium. This, in turn, depends on the
neutron abundance, Xn ≡ np/(nn + np), where nn[np] stands for the neutron [proton] number
density. The neutron abundance is affected by the following weak interaction processes:

n + νe ↔ p + e , n + e↔ p + νe , n→ p + e + νe . (2.23)

Initially, at equilibrium (that is, for Tγ � mn), Xn ' (1+eQ/T)−1, where Q = mn−mp ' 1.293 MeV
is the mass difference between the neutron and the proton.

The four processes which affect Xn (excluding neutron decay) proceed at the following
rates, which can be found in e.g. [62]:

λ1 ≡ λ(n + νe → p + e) = B

ˆ
∞

0

dPν E2
e P2

ν

1

e
Eν
Tν + 1

1

e−
Ee
Tγ + 1

, (2.24)

λ2 ≡ λ(n + ē→ p + ν̄e) = B

ˆ
∞

0

dPe E2
νP

2
e

1

e
Ee
Tγ + 1

1

e−
Eν
Tν + 1

, (2.25)

λ3 ≡ λ(p + e→ n + νe) = B

ˆ
∞

√
Q2−m2

e

dPe E2
νP

2
e

1

e
Ee
Tγ + 1

1

e−
Eν
Tν + 1

, (2.26)

λ4 ≡ λ(p + ν̄e → n + ē) = B

ˆ
∞

Q+me

dPν E2
e P2

ν

1

e
Eν
Tν + 1

1

e−
Ee
Tγ + 1

. (2.27)
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In the above we have indicated by Ee[Eν], Pe[Pν] the electron [neutrino] energy and mo-
mentum respectively, and have obtained the extremals of the integrals from straightfor-
ward kinematical considerations. The other factors within the integrals take into account
the effects of Fermi-Dirac statistics and Pauli blocking; the constant B is given by B =
G2

F(1 + 3g2
A) cos2 θc/(2π3), where GF = 1.166 × 10−5 GeV−2, gA = 1.257 and cosθc = 0.97456.

Defining λ−1
n = τn ' 886.7 s to be the neutron lifetime, the evolution of the neutron fraction

is governed by the following differential equation:

dXn

dt
= −(λ1 + λ2 + λn)Xn + (λ3 + λ4)(1 − Xn) . (2.28)

We evolve the neutron fraction down to the deuterium bottleneck temperature (DBT), Tγ '
0.07 MeV (see e.g. [6]), by solving Eq.(2.28) simultaneously with Eqs.(2.14,2.15); the latter
two are employed to obtain the modified time-temperature relation. The helium fraction,
Yp, is twice the value of the neutron fraction at the DBT, and we can thus evaluate δNeff[BBN]
via Eq.(2.22). At around 95% confidence level, the data constrains δNeff[BBN] < 1 [64], which
we make use of to set bounds on the available parameter space. In Figure 2.4 we display
the constraints which follow from this analysis together with those set from δNeff[CMB]
considerations. As is visually clear, the bounds deriving from δNeff[CMB] are more stringent
than those arising from δNeff[BBN].
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Figure 2.4: Exclusion limits derived from the requirements δNeff[CMB] < 0.84 (above solid line) and
δNeff[BBN] < 1 (above dashed line) in ε-mF1 parameter space.

2.3 Dark recombination

In an endeavor to set constraints on our dark matter model, we have probed a piece of
new physics which affects the CMB. That is, the additional energy density at Hydrogen
recombination, as parametrized by δNeff[CMB]. Still, another and yet more momentous
bit of new physics affecting the CMB is represented by dark acoustic oscillations. As the
temperature of the Universe drops, it becomes increasingly energetically unfavourable for
dark matter to remain ionized. Eventually, F1 and F2 will combine into neutral dark states,
in a process known as dark recombination. Prior to dark recombination, though, dark matter
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behaves as a tightly coupled fluid which undergoes dark acoustic oscillations. This should
not come as a surprise, given that an analogous phenomenon takes place in the visible
sector prior to Hydrogen recombination. Clearly, these oscillations suppress power on small
scales, and hence represent a noteworthy deviation from collisionless CDM. Eventually, such
a suppression of power on small scales might provide aid in addressing the missing satellite
problem, that is, the observed shortage of dwarf galaxies in the neighborhood of the Milky
Way [13].

Nevertheless, successful LSS formation sets sturdy constraints on the physics of dark
acoustic oscillations. As long as dark matter remains ionized, interactions with dark photons
will wash out dark matter overdensities which, the reader will recall, provide the potential
wells within which the photon-baryon fluid oscillates. Given that overdensities driven
by gravitational attraction can only begin to grow substantially following matter-radiation
equality, it is important to require that dark recombination occurs before then. Delaying
the onset of structure formation would result in LSS formation which is inconsistent with
observations. Hence, in this work we derive bounds on our model by requiring Tdr &
Teq, where Tdr and Teq denote the temperatures in the visible sector at the time of dark
recombination and matter-radiation equality respectively. This condition has been used in
the literature (see for instance [65], which followed from other works in the MDM framework,
e.g. [33, 66, 67]) and ensures that dark acoustic oscillations do not tamper with the early
growth of LSS.

2.3.1 Saha equation

In the dark matter model under inspection, dark recombination consists of the process during
which |Z′| F1 particles combine with one F2 particle to form a neutral dark state, which we call
D0. The crucial moment, that is, the transition from ionized to neutral dark matter, occurs
when the last F1 particle combines with the dark state consisting of (|Z′| − 1) F1 particles and
one F2 particle. Following the convention where F1 has charge -1 and F2 has charge |Z′|, it is
natural to denominate this state D+, and hence the process we wish to examine is:

F1 + D+
↔ D0 + γD . (2.29)

In order to inspect the process in Eq.(2.29) and determine when dark recombination occurs,
we trace the abundances of the species in question. A handy way of doing so is by writing
down the relevant Saha equation, which is given by (see e.g. [6]):

nD0

nD+nF1

=
nD0

(0)

nD+ (0)nF1
(0)
, (2.30)

with the superscript (0) denoting an equilibrium value. The reader should be wary of the fact
that Eq.(2.30) arises as the equilibrium limit of the Boltzmann equations. As a consequence,
the Saha equation does not follow the abundances of particle species correctly through non-
equilibrium processes, for instance freeze-out. Nevertheless, it does a good job in establishing
the redshift of dark recombination, which is the quantity we are interested in determining
[6].

As it turns out, it is actually more befitting to express Eq.(2.30) in a different form, by
tracing the ionization fraction of F1, rather than its number density; ergo, we introduce the
ionization fraction of F1, χ:

χ ≡
nF1

nF2

=
nF1

nF1 + nD0
=

nF1

nD+ + nD0
, (2.31)
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where nF1 is the number density of free F1 particles and nF2 is the total number density of
F2 particles. The last equality follows from assuming U(1)′ neutrality. Correspondingly,
the left-hand side of Eq.(2.30) is simply (1 − χ)/nF2χ

2. The right-hand side of Eq.(2.30) can
also be manipulated into a more useful form. Consider a particle species P of mass mP

and temperature TP. Its equilibrium number density, in the limit where mP � TP, can be
expressed as (see e.g. [6]):

nP = gP

(mPTP

2π

) 3
2

e−
mP−µP

TP , (2.32)

where µP denotes the chemical potential and gP is a degeneracy factor which customarily
accounts for multiple spin states. Given that µγD

= 0 to good approximation then, as long
as equilibrium holds, µF1 + µD+ = µD0 applies. Additionally, we define the ionization energy
of D0 to be I′ = mF1 + mD+ − mD0 . Under the approximation mD+ ' mD0 (which follows from
mF2 � mF1) and making use of the fact that gF1 gD+ = gD0 , we can rearrange the right-hand
side of Eq.(2.30) to being (2π/mF1TγD

)3/2eI′/TγD , and hence express Eq.(2.30) as follows:

1 − χ
χ2 = nF2

(
2π

mF1TγD

) 3
2

e
I
′

TγD . (2.33)

To make progress, we have to provide an expression for the F2 number density. We note that
it simply scales as the number density of baryons in the visible sector, nb:

nF2 =
(
Ωdm

Ωb

) ( mp

mF2

)
nb =

(
Ωdm

Ωb

) ( mp

mF2

) (
nb

nγ

) (
nγ
nγD

)
nγD

. (2.34)

In the above mp ' 0.94 GeV is the proton mass and η ≡ nb/nγ is the baryon-to-photon ratio.

By using Ωdm/Ωb ' 5.4 [9], η ' 6 × 10−10 [68], nγ/nγD
=

(
Tγ/TγD

)3
[with Tγ/TγD

evaluated
using Eq.(2.18)] and nγD

= π2T3
γD
/45, Eq.(2.33) can be put to the form:

1 − χ
χ2 = A

(TγD

I′

) 3
2

e
I
′

TγD , (2.35)

where we have defined:

A ' 3.5 × 10−7

(
10−9

ε

) 3
2
(
M

me

) 3
4
(

GeV
mF2

) (
I′

mF1

) 3
2

. (2.36)

The final step is to switch to the variable ξ ≡ I′/TγD
, so that Eq.(2.35) becomes:

1 − χ
χ2 = Aξ−

3
2 eξ . (2.37)

We can solve Eq.(2.37) to determine the redshift of dark recombination, which takes place
when the ionization fraction of F1 is approximately 10%, i.e. for χ ' 0.1. Substituting χ = 0.1
into Eq.(2.37), it follows that the equation we have to solve is:

ξ =
3
2

ln ξ + ln
(90
A

)
. (2.38)

It is straightforward to solve Eq.(2.38) numerically (for example by iteration). The temper-
ature of the visible sector at dark recombination, Tdr, is found by inverting Eq.(2.18), with
T′dr = I′/ξ, where ξ solves Eq.(2.38):

Tdr ' 3.2
(

10−9

ε

) 1
2
(
M

me

) 1
4 I′

ξ
. (2.39)
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2.3.2 Binding energy of the dark bound state

We are not quite there yet, for the value of the constant A in Eq.(2.36) contains I′, the
ionization energy of the dark bound state, which is a priori unknown. We note that our
bound system of one F2 particle with N F1 particles is analogous to that of ordinary nuclei
with N electrons. It then follows that the binding energy of D0 assumes the general form:

I′ = Z
′

eff

2α′2

2
µR , (2.40)

where µR = mF1mD+/(mF1 + mD+) is the reduced mass of the F1-D+ system. In the limit where
mF2 � mF1 , we obtain that I′ ' Z′eff

2
α′2mF1/2. Therefore, the problem of determining I′ (and

hence being able to solve the Saha equation) has been reduced to the problem of determining
Z′eff

. Alas, this is by no means a simple issue, as Z′eff
depends on the shielding caused by the

(|Z′| −1) F1 particles, which partially conceal the charge of the F2 particle. Understanding the
exact details of this shielding mechanism would require solving a complicated many-body
problem! Nevertheless, let us remark that the exact same phenomenon occurs in ordinary
nuclei with atomic number Z, where (Z−1) electrons shield the nucleus from the last electron.
Even though exact analytic expressions for Z′eff

are generally unknown, we note that it only
depends on the chemistry of the bound state, that is, on the arrangement of F1 particles in
orbitals.

The above realisation justifies the claim that I′ is related to I, the binding energy of the
corresponding ordinary element with atomic number Z = Z′, by a simple scaling relation:

I′ =
(
α′

α

)2 (mF1

me

)
I . (2.41)

In Figure 2.5 we plot the binding energies of the elements of the periodic table as a function
of the atomic number Z. We see that, apart from isolated cases such as Helium and Neon
and, more generally, excluding noble gases, the binding energies of the various elements
reside in a fairly narrow range centered at about 10 eV, to within a factor of uncertainty of
approximately 2. For Z & 10, the dependence of I on Z is weaker still. In other words, Z′eff

≈ 1
(and hence I′ ≈ α′2mF1/2) in Eq.(2.40), which should not come as a surprise given that, to first
rough approximation, the dark charge seen by the last F1 particle is approximately 1.
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Figure 2.5: Ionization energy as a function of atomic number for ordinary elements.
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2.3.3 Exclusion limits

Having devised a way of obtaining the binding energy of D0, we now proceed to place
bounds on the parameter space of our model. Recall we do so by requiring Tdr & Teq, where
Teq is the temperature of the visible sector at matter-radiation equality, which occurs at a
redshift zeq = 3200 ± 130 [68]. This leads to a lower limit on the matter-radiation equality
temperature of Teq ' 0.72 eV.

In principle we would have to examine a 5-dimensional parameter space, spanned by
mF1 , mF2 , α

′, Z′ and ε. Nevertheless, we claim that it will be sufficient to examine three of them
to obtain a good understanding of the physics of dark recombination. In fact, a numerical
analysis of our solution exhibits a weak dependence on mF2 . This is not surprising, since
one can easily check that an iterative solution of Eq.(2.38) presents a log-like dependence
on the value of the constant A, which is the only place where the mass of the F2 particle
appears. Moreover, as we have discussed in the previous section, the dependence on Z′

is also reasonably minor, given that it affects the binding energy in a limited way. These
considerations appear to justify, to reasonable approximation, our claim that the physics of
dark recombination is dictated solely by three parameters: mF1 , α

′ and ε. We now proceed
to examine the relevant 3-dimensional parameter space.

Recall we began by solving the Saha equation to obtain Tdr, following which we imposed
Tdr & Teq. From Eq.(2.41) we see that T′dr ∝ I′ ∝ α′2mF1 . Employing Eq.(2.18) it then follows
that Tdr = T′dr(Tdr/T

′

dr) ∝ α
′2mF1M

1
4 /
√
ε, and hence the upper limit on ε scales as α′4m2

F1

√
M.

The analytical analysis just presented is indeed confirmed by our numerical results, which
we present in Figure 2.6, where we display the upper bound on ε for a fixed mF1 and varying
α′.
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Figure 2.6: Exclusion limits from the constraint on the temperature of dark recombination (discussed
in text). The limits are for fixed values of mF1 for (going from upper to lower line)
mF1 = 100, 10, 1, 0.1, 0.01 MeV (excluded region is above the line).

In fine, we find that the upper bound on ε arising from the analysis of dark acoustic
oscillations (subject to an uncertainty of a factor of approximately 2, which arises from
having neglected the dependence on Z′) can be expressed as:

ε . 10−8
(
α′

α

)4 ( mF1

MeV

)2
(
M

me

) 1
2

, (2.42)

where we remind the reader thatM ≡ max(me,mF1).
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CHAPTER 3

THE STRUCTURE OF SPIRAL GALAXIES

3.1 Dynamical halo model and halo scaling relations

While a variety of hidden sector dark matter models have been studied in the context of
early Universe cosmology, the vast and fascinating area of galaxy formation and structure
remains to a great extent uncharted. Ultimately, a compelling dark matter model is required
to explain a series of small scale structure observations, in a manner which is still to be
determined. For instance, observations have inferred the presence of cores in the dark
matter halos of spiral galaxies; furthermore, the product of the core densities and core radii
appears to be approximately constant along their spectrum. Another puzzling observational
feature of spiral galaxies is the Tully-Fisher relation, which correlates their luminosities
and asymptotical rotational velocities. Collisionless CDM as currently understood appears
unable to address these issues. It is possible (and likely) of course that our understanding of
collisionless CDM is incomplete; for instance, a more thorough grasp of baryonic feedback
processes and baryonic physics in general could provide aid in tackling these problems.

On the other hand, it is possible that a richer dark matter structure, comprising for instance
self-interactions and dissipation, could be the key to explaining some of the observational
properties listed above. In this Chapter, we delve into a study of spiral galaxies, in an
attempt to verify whether our dissipative HS dark matter model is capable of explaining
their structure and dynamics (and, to a lesser extent, that of irregular and elliptical galaxies).
Not only will we find this to be possible, but we will demonstrate how it has the potential
to unravel the origin of a series of unexplained properties of these galaxies (some of which
have already been mentioned above). Before doing so, let us review some of the features of
spiral galaxies.

Different components make up spiral galaxies. The main luminous one is a flat disk
of baryonic matter, with spiral-shaped density enhancements in it, which give rise to the
characteristic observed spiral pattern. These spirals are quasi-stationary traits, whose expla-
nation involves density waves1. In some spiral galaxies, a spheroidal bulge resides in the
middle of the disk. Within the bulge mostly old stars and globular clusters are present. The
galactic center of spiral galaxies encompasses a supermassive black hole (SMBH) of mass
106
− 109M�. The accretion of matter onto the SMBH results in a very strong emission in the

radio and X-ray frequencies. In addition, the mass of the SMBH is correlated to the velocity
dispersion of the stars in the bulge via what is known as the M-σ relation.

Finally, the entire baryonic disk is surrounded by a dark matter halo, which extends
well beyond the visible regions of the galaxy, and is responsible for the inferred flat rotation
curves. A simple application of Kepler’s law allows us to establish that, far from the galactic
center, the mass enclosed within a radius r increases linearly with r, and hence the density
profile drops as ρ ∝ r−2. The nature, behaviour and dynamics of the dark matter halo in
spiral (and, to a lesser extent, irregular and elliptical) galaxies will be our topic of discussion
for the rest of the Chapter.

1This mechanism is quite analogous to that of a traffic jam, through which the motion of the slower moving
cars leads to a density enhancement. Furthermore, the collective motion of the traffic jam is not related to the
speed of the cars within it (see e.g. [69]).
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Within the framework of our model, the dark matter halo consists of a plasma of F1 and F2

particles. The masslessness of the dark photon implies that energy can be lost to dissipative
interactions between dark matter particles, such as thermal dark bremsstrahlung. The careful
reader will then have realized that the model faces essentially the same problem as MDM
does in this context, the radiative cooling problem. The dissipative interactions entail energy
loss on a timescale which is significantly less than the Hubble time. The picture we have
presented requires a sizeable heat source that can replace the energy lost. As in the MDM
framework, we will argue that it is possible for ordinary supernovae to provide the halo
with the required heat source: kinetic mixing induced processes are expected to convert
a relevant fraction (. 1/2) of the core-collapse energy into F1-F1 pairs and γDs, ultimately
reprocessed solely into dark photons. These dark photons can then heat the halo via a
number of mechanisms, which we will discuss in more depth in the following pages. As we
outlined in Chapter 2, this argument suggests that mF1 . 100 MeV, else its pair production
mechanism becomes Boltzmann suppressed.

The dynamics of the dark plasma are dictated by the Euler equations of fluid dynamics:

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

∂v
∂t

+ (v · ∇)v = −

(
∇φ +

∇P
ρ

)
,

∂
∂t

[
ρ

(
v2

2
+ E

)]
+ ∇ ·

[
ρ

(
v2

2
+

P
ρ

+ E

)
v
]
− ρv · ∇φ =

dΓheat

dV
−

dΓcool

dV
. (3.1)

In the above P, ρ, v and E denote the pressure, mass density, velocity and internal energy per
unit mass of the fluid respectively. The heating and cooling rates are given by Γheat and Γcool.
The above equations are notoriously hard to solve! If we wish to get some analytical insight
from them, we will have to make some simplifying assumptions, together with having an eye
for symmetry. Let us assume, to begin with, that the system evolves to a static configuration
(whether this can be achieved, or whether it is indeed a reasonable assumption, will be
discussed in more depth in the pages to come), so that all time derivatives in Eqs.(3.1) cancel.
Additionally, assuming spherical symmetry, Eqs.(3.1) reduce to two much simpler equations:

dP(r)
dr

= −ρ(r)g(r) , (3.2)

and:

dΓheat(r)
dV

=
dΓcool(r)

dV
. (3.3)

In Eq.(3.2), g(r) = ∇φ is the local gravitational acceleration. Together with the pressure
profile, P(r), it can be related to the density profile ρ(r) via the following:

g(r) =
v2

rot

r
=

G
r2

ˆ r

0
dr′ 4πr′2ρT(r′) ; P(r) =

ρ(r)T(r)
m

, (3.4)

having assumed local thermal equilibrium in relating P to T, with m = (nF1mF1 +nF2mF2)/(nF1 +
nF2) being the mean mass of the dark plasma. In the above, ρT(r) denotes the total mass
density, thus comprehensive of dark plasma [with mass density ρ(r)], baryonic components
(stars and gas) and possibly dark stars.

There are a few points worth commenting with respect to Eqs.(3.2,3.3). The former catches
the eye as simply being the hydrostatic equilibrium equation. The latter is instead an energy
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balance equation, with Γcool taking into account dissipative interactions (the details of which
are determined by the particle physics underlying our model), and Γheat encoding the heating
of the halo which takes place through dark photons, originating from kinetic mixing induced
processes within the core of ordinary supernovae. Both hydrostatic equilibrium and energy
balance are required for a static configuration to be achieved.

One can legitimately raise the question as to whether the system can actually reach a
static configuration; we believe this is possible, if not fairly plausible. Let us assume that
at an earlier time, prior to ordinary star formation, the system was in a more compact
arrangement. The star formation activity that would follow is expected to heat the halo, so
that ∆Γ = Γheat − Γcool > 0 initially. As the halo expands, a series of feedback processes are
expected to modify ∆Γ, until the equilibrium situation ∆Γ = 0 is achieved. As an example
of what such a feedback mechanism might be, the weakening gravity which follows from
the expansion of the halo causes a reduction in the star formation rate, Σ̇?, and hence in the
supernovae rate, as is expressed by the Schmidt-Kennicutt empirical law [70]:

Σ̇? ∝ nN
gas , N ∼ 1 − 2 . (3.5)

There are other processes which could work in the same direction as the above, that is,
leading to a net reduction in ∆Γ as the halo expands, and a net increase in ∆Γ when the halo
contracts, until finally ∆Γ = 0 is reached.2

To acquire some preliminary insight, we now solve the hydrostatic equilibrium equation
[Eq.(3.2)] assuming an isothermal halo, i.e. dT/dr = 0, and making the approximation
ρT(r) = ρ(r). In the outskirts of the galaxy, where the dark matter component dominates
over the baryons, both approximations are reasonable. Combining Eqs.(3.2,3.4) and using
the isothermal approximation, we can express the hydrostatic equilibrium equation in the
following form:

dρ
dr

= −
mρ(r)G

Tr2

ˆ r

0
dr′4πr′2ρ(r′) . (3.6)

We solve Eq.(3.6) by a polynomial of the form ρ = λ/rp, from which we obtain p = 2 and
λ = T/2πGm, and hence:

ρ(r) =
T

2πGmr2
. (3.7)

Combining Eqs.(3.4,3.7) results in a relation between the rotational velocity profile and the
temperature of the halo:

v2
rot =

G
r

ˆ r

0
dr′ 4πr′2

T
2πGmr′2

=
2T
m

=⇒ T =
1
2

mv2
rot ≡

1
2

mv2
∞
. (3.8)

Accordingly, we find that the rotational velocity is constant at a value v∞ (the asymptotic
rotational velocity), in agreement with the asymptotically flat rotational curves of spiral
galaxies.

3.1.1 Toy model

As we have just determined, the approximation of an isothermal halo has allowed us to
solve the hydrostatic equilibrium equation. One is obviously brought to question whether

2As another example, as the halo expands, the less dense plasma becomes more optically thin to the heating
dark photons; these then find it easier to escape, decreasing the heating rate.
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such an approximation is in fact justified. To address this issue, we now expose how, within
the assumption of an isothermal halo, not only can we solve the hydrostatic equilibrium
equation, but also satisfy the energy balance condition. We consider a toy model, in which all
supernovae act as a point source located at the galactic centre and produce a total dark photon
luminosity LSN. Applying the energy balance condition requires being able to express the
energies absorbed and dissipated within a volume element dV, and subsequently matching
them.

We make the assumption that thermal dark bremsstrahlung of F1 off F2 is the main
dissipation avenue. The dark photons radiated can escape and hence cool the halo. We do
not consider bremsstrahlung of F1 off itself (or of F2 off itself, for that matter) since it is well
known that, in the dipole approximation, the amplitude for bremsstrahlung of a particle off
itself is zero (see e.g. [71] for more thorough discussions). Under this assumption, the energy
dissipated per unit time within a volume element dV is given by:

dΓcool = Λ(T)nF1nF2dV , (3.9)

where Λ(T) is the cooling function for bremsstrahlung (Λ(T) ∝
√

T, see e.g. [71]) and from
here on nF1 will denote the number density of free F1 particles. Two remarks are in order
at this point. In primis, other cooling mechanisms which could be important sources of
dissipation can be considered: for instance, line emission, recombination and inverse dark
Compton scattering. Their effect can be taken into account simply by modifying Λ(T).3

Further, a more exhaustive analysis of the cooling process would have to account for the
fact that not all dark photons have sufficient mean free path so as to escape the halo and
contribute to cooling. This effect can be modelled by means of a cooling efficiency, which is
a function of both the wavelength and the location of the dark photons in the halo. For the
sake of simplicity, we shall neglect the complications mentioned above, which anyhow are
not crucial for our discussions.

As outlined previously, the ultimate effect of kinetic mixing induced processes within
the core of ordinary supernovae is to reprocess . 1/2 of the core-collapse energy into dark
photons (whose spectrum is of course uncertain) in the region surrounding the supernovae.
The end result is that these dark photons can carry away a considerable amount of energy,
which is then injected into the halo via heating mechanisms to be discussed here. One can
in principle consider two suitable mechanisms: dark photoionization and dark Thomson
scattering. In Appendix A we demonstrate that dark Thomson scattering is an efficient
heating mechanism only for mF1 . 0.1 MeV, which is outside of the range of parameter space
we are considering (refer to Chapter 2). This happens because dark Thomson scattering, in
addition to being kinematically inefficient, has a cross-section which is too small. The end
result is that, for the range of parameter space we are exploring, only dark photoionization
is expected to be an important heating process.

Two notes of caution are needed here: for dark photoionization to occur, we have to as-
sume that the two K-shell F1 states are occupied, and hence the plasma will not be completely
ionized. At the one and only scope of simplicity, we will assume that the remaining (|Z′| − 2)
F1 states are free, leaving the discussion of consistency conditions which are hereby implied
for later discussion. Finally, the requirement that the two K-shell F1 states be occupied,
in addition with the requirement that the plasma be partially ionized, clearly requires that
|Z′| ≥ 3. Having made these preliminary considerations, we can now express the energy
being absorbed per unit time within a volume element dV via dark photoionization, whose

3In the case of inverse dark Compton scattering, F1γD → F1γD (where γD is a dark microwave background
[dark!] photon) we find that such a process can be safely neglected, given the examined range of paramer
space and physical conditions. This, however, ceases to be true at an earlier epoch, z & 3.
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cross-section is σDP (see e.g. [30]):

dΓheat =
LSNe−τ

4πr2 σDPnF2dV , (3.10)

where τ is the optical depth. In principle we would have to integrate over the (unknown!)
spectrum of dark photons. For the purpose of our discussion, this detail is not essential.

We are now ready to apply the energy balance equation. We do so by matching the
heating and cooling rates given in Eqs.(3.9,3.10), which yields:

nF1 =
LSNe−τ

Λ(T)4πr2σDP . (3.11)

Under the assumption of the halo being optically thin, that is, τ � 1, we recover nF1 ∝ 1/r2,
from which ρ ∝ 1/r2 follows. This signifies that the isothermal halo approximation is
simultaneously a solution to the energy balance and hydrostatic equilibrium conditions. In
essence, at large distances from the galactic centre, where the supernova heat source can be
described as a point source and ρT(r) ' ρ(r), the isothermal approximation is a reasonable
one, as foreseen.

3.1.2 A more realistic model: solution to the core-cusp problem

Although the toy model did a good job in solving the equations of hydrostatic equilibrium
and energy balance, it presents a weakness that should not be overlooked: it is clearly
unphysical at r = 0. While approximating the supernova heat source as a point source is
justified in the outskirts of the galaxy, this is certainly not the case in the proximity of the
galactic centre! We here seek to describe the supernova distribution within the galaxy in
a manner which is both simple and does not incur into problems as per above. It is not
unreasonable to presume that such a heat source has a similar distribution to the mass of
the galactic disk. In the end, it is dying stars (which reside in the galactic disk) that we are
dealing with. If this is the case, we would expect the ρ ∝ 1/r2 solution to hold only far from
the galactic centre, that is, for r� rD.

To proceed, we approximate the mass of the galactic disk by a Freeman disk profile,
whose surface density is given by [72]

Σ(̃r) =
mD

2πr2
D

e−
r̃

rD , (3.12)

where rD and mD are the length scale and the total mass of the disk respectively. We employ
cylindrical coordinates (̃r, θ̃, z̃), with the galactic disk residing at z̃ = 0. It then follows that
the flux at a point P = (r1, 0, z1), for an optically thin halo, is given by (see e.g. [30]):

f (r, cosφ) =
LSN

4πmD

ˆ
dθ̃
ˆ

d̃r r̃
Σ(̃r)

r̃2 − 2̃rr1 cos θ̃ + r2
1 + z2

1

, (3.13)

with r =
√

r2
1 + z2

1 and cosφ ≡ r1/r. One can show that:

f (r, cosφ) ∼

log r, r . rD ,
1
r2 , r� rD .

(3.14)

In this more realistic model, the energy absorbed per unit time within a volume element dV
is given by:

dΓheat = f (r, cosφ)σDPnF2dV , (3.15)
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while the energy dissipated per unit time within the same volume element via thermal dark
bremsstrahlung is still given by Eq.(3.9).

Imposing the energy balance condition, and hence equating Eqs.(3.9,3.15), it follows that
nF1 = f (r, cosφ)σDP/Λ(T), which in turn implies that ρ ∝ f (r, cosφ). The behavior of f (r, cosφ)
[Eq.(3.14)] suggests that we can approximate ρ(r) by means of a quasi-isothermal profile:

ρ(r) '
ρ0r2

0

r2 + r2
0

, (3.16)

where r0 ∼ rD, given that rD is the only length scale which is present. This scaling relation is
indeed implied by measurements of high-resolution rotation curves, which found [73]:

log r0 = (1.05 ± 0.11)rD + (0.33 ± 0.04) . (3.17)

In Figure 3.1 we compare the radial dependence of the solution ρ ∝ f (r, cosφ), the quasi-
isothermal profile given by Eq.(3.16) and a ρ ∝ 1/r2 profile. We find good agreement between
the first two up to a scale r ' rD. Below this scale (that is, approaching the galactic center),
baryonic physics plays a dominant role in the dynamics being discussed and it is not possible
to further understand the physics governing the density profile without prior appropriate
modelling of the baryons.
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Figure 3.1: Comparison between the radial dependence of ρ ∝ f (r, cosφ), the quasi-isothermal profile
given by Eq.(3.16), and a cuspy profile ρ ∝ 1/r2 (in arbitrary units). The dotted lines
correspond to f (r, cosφ) for (going from upper to lower line) φ = π/4,π/3,π/2. The solid
line corresponds to a cored density profile (with r0/rD = 1.4), while the dot-dashed line
corresponds to the cuspy profile.

An observation is necessary at this stage: the profile obtained in Eq.(3.16) is cored and not
cuspy (ρ ∝ 1/r2). The core arises because the supernova heat source has been smeared over
a finite volume, rather than being treated as an unphysical point source. As we explicated in
Chapter 1, the presence of cores in the halos of spiral galaxies has been inferred by a number
of observations, whereas collisionless CDM simulations appears unable to account for such
a cored profile, predicting a cuspy one instead. Whether the profile is actually cored is still
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argument of debate; nevertheless, the fact that observations reveal a dark matter density
profile towards the center of spiral galaxies which is lower than what current collisionless
CDM simulations predict is undeniable [12].

Astroparticle physicists typically bring back this reduction in the dark matter density
profile to two possible explanations: self-interactions between dark matter particles (which
collisionless CDM cannot encompass), which are expected to redistribute the energy equally
among these particles towards the center of the galaxy; and baryonic feedback mechanisms,
although rarely is it gone into depth as to discussing what exactly such mechanism might
be. In our work we have shown how the approach adopted by these two explanations is
indeed a well-founded possibility, and have specified an exact feedback mechanism too:
self-interactions, although not redistributing the energy in question, contribute to its dis-
sipation; baryonic feedback processes, arising from core-collapse supernovae, supply the
energy lost to the aforementioned dissipative self-interactions. The end result is that the
dark matter density profile is lower than that predicted by collisionless CDM, consistent
with observations.

So far, we have only made use of the requirement that energy balance hold within a given
spiral galaxy. We have yet to exploit the fact that the energy balance condition is to hold for
every spiral galaxy. Given that the heating rate is proportional to the supernovae rate and
the cooling rate is related to properties of the dark matter halo (ρ0 and r0, for instance), we
anticipate that the energy balance condition will suggests a connection between the baryonic
and dark matter components within spiral galaxies. As we will see shortly, it will indeed
result in a scaling relation which has been observed to hold for some time now, but has never
been properly explained and has remained somewhat mysterious.4

3.1.3 Tully-Fisher relation

Let us now require that the energy balance condition holds for every spiral galaxy. The
differential cooling rate has been expressed in Eq.(3.9), which in a moment we will proceed
to integrate. As anticipated, the cooling rate is expected to depend on the parameters defining
the dark matter density profile, that is, ρ0 and r0. This happens because the density profile,
ρ, can be related to the the F1 and F2 number densities [which appear in Eq.(3.9)] via:

ρ = nF2(mF2 + |Z′|mF1) ≡
nF2

κ
. (3.18)

Hence, under the assumption that the plasma is not fully ionized but retains its K-shell
F1 states (in order for dark photoionization to occur), we have that nF1 ≈ ρκ(|Z′| − 2) and
nF2 = ρκ.5 Integrating Eq.(3.9) and bearing in mind the previous observations results in:

Γcool = Λ(T)κ2(|Z′| − 2)ρ2
0r4

0

ˆ
∞

0
dr′

4πr′2

(r′2 + r2
0)2

= π2κ2(|Z′| − 2)Λ(T)ρ2
0r3

0 . (3.19)

For the purpose of the coming discussion, explicitly writing out Λ(T) will not be neces-
sary. One just needs note that, assuming the main dissipation route being thermal dark
bremsstrahlung, Λ(T) ∝

√
T ∝ v∞, where we have related the temperature T to the rotational

velocity far from the galactic center, v∞, via Eq.(3.8) (the reason why we choose to express the
dependence on the asymptotic rotational velocity will be appreciated shortly). If we neglect

4Hopefully the reader will feel otherwise in this respect after reading the following section.
5In order to account for partial ionization of the remaining atomic states, we could write in a more general

way nF1 = fρκ(|Z′| − 2), with f ≤ 1.
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baryonic contributions, the rotational velocity profile, vrot(r), can be related to the quantities
defining the dark matter density profile, ρ0 and r0, via Eq.(3.4):

v2
rot =

G
r

ˆ r

0
dr′ 4πr′2

ρ0r2
0

r′2 + r2
0

= 4πGρ0r2
0

[
1 −

r0

r
tan−1

( r
r0

)]
, (3.20)

from which we obtain that the asymptotic rotational velocity (r� rD ∼ r0) is:

v∞ = 2
√
πGρ0r2

0 . (3.21)

We now proceed to express the heating rate, which is proportional to the supernovae rate,
and hence to properties of the baryonic component. For a given spiral galaxy, the heating
rate is given by:

Γheat = fSN〈ESN〉RSN , (3.22)

where fSN is the fraction of the total energy output which is absorbed by the halo and ESN is
the total energy output from each supernova, which occur at a rate given by RSN. It is useful
to relate fSN to the relevant optical depth, via:

fSN = RγD
〈(1 − e−τ)〉 . (3.23)

Here RγD
≡ ED/ESN is the fraction of the total supernova energy output which is converted

into dark particles (where ED is the quota of energy released from the supernova which is
converted into creation of dark photons). To obtain a measure of the average optical depth,
let us consider dark photons propagating from the galactic center to the edge of the galaxy
(which we approximate as r→∞):

τ =

ˆ
∞

0
dr σDPnF2 =

ˆ
∞

0
dr σDPρκ =

πσDPκρ0r0

2
. (3.24)

For an optically thin halo (that is, for τ � 1), combining Eqs.(3.18,3.22,3.23,3.24) results in
the following expression for the total heating rate:

Γheat =
πRγD

σDPκ〈ESN〉

2
ρ0r0RSN . (3.25)

We now enforce the energy balance condition, and hence equate Γcool [Eq.(3.19)] and Γheat

[Eq.(3.25)], yielding:

RSN =
2πκ(|Z′| − 2)
RγD

σDP〈ESN〉
Λ(T)ρ0r2

0 . (3.26)

As forecasted, we have extracted a scaling relation connecting baryonic properties (via RSN)
to dark matter properties (via ρ0, r0), which is independent of the one obtained earlier, r0 ∼ rD.
Aside from the numerical factors at the front, the genuinely interesting aspect of this scaling
relation is RSN ∝ Λ(T)ρ0r2

0, where Λ(T) ∝ v∞ ∝ (ρ0r2
0)

1
2 . It follows that we can express Eq.(3.26)

as a relation connecting the supernovae rate to the asymptotic rotational velocity for every
(emphasis on ”every”!) spiral galaxy:

RSN ∝ v3
∞
. (3.27)
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To better appreciate what we have obtained, let us note that observational studies on super-
novae have related the supernovae rate to the B−band luminosity of the respective spiral
galaxy, via RSN ∝ (LB)0.73 [74] which, combined with Eq.(3.27), gives:

LB ∝ v4
∞
. (3.28)

The scaling relation we have just written down is better known as the Tully-Fisher relation
(TFR hereafter). The TFR is an empirical relation that is observed to hold for all spiral galaxies
and finds a very useful application in astronomy, where it is used to measure the distance to
galaxies up to ∼ 100 Mpc away from us (see e.g. [69]). The general form of the Tully-Fisher
relation is L ∝ (v∞)α, where α depends on the bandpass through which the luminosity is
measured. For instance, for the K-band (near-infrared) α = 4.35 ± 0.14 has been measured,
while for the optical B-band (which we have used above) α = 3.91 ± 0.13 has been found
[75]. The scaling relation we have derived is consistent with the value of αmeasured, within
error bars. This is really exciting, given that the TFR, as it stands, is unexplained, despite
the fact that most astrophysicists believe it suggests a deep connection between baryonic
and dark matter components in spiral galaxies. The model we have provided implements
such a connection explicitly by means of the nontrivial dissipative dynamics at play. The
TFR is equivalent to the energy balance condition: Γheat arises from supernovae heating and
Γcool from dissipative dynamics, inherent to our particle model for dark matter. This picture
is expected to hold within all galaxies that have ongoing star formation, and hence among
irregular galaxies as well.

As a final remark, we elucidate how this model can explain another puzzling observa-
tional feature of spiral galaxies: the product of the inferred core densities and radii of dark
matter halos is roughly constant, that is, ρ0r0 ≈ const [76]. Note however that this scaling re-
lation is not independent of the two previously determined (r0 ∼ rD and the TFR). To see how
this scaling relation can be obtained, recall the TFR: LB ∝ (v∞)4

∝ ρ2
0r4

0. Observational studies
of spiral galaxies have obtained the scaling relations mD ∝ (LB)1.3 [77] and rD ∝ (mD)0.38 [78].
Combining these four relations one easily obtains ρ0r0 ≈ const, quod erat demonstrandum.

3.1.4 Elliptical galaxies: the Faber-Jackson relation

What about elliptical galaxies? Is our model capable of addressing some of their unusual
properties? Ellipticals, unlike spirals, are significantly more tridimensional (with the motion
of the stars being mostly radial, rather than circular), and contain a considerable amount of
dark matter. But their most bizarre property is the fact that they are almost entirely devoid of
interstellar matter, that is, they possess almost no baryonic matter or dust. Unsurprisingly,
then, elliptical galaxies are inhabitated by very few young stars, and have a very low star
formation rate. Their population is made up predominantly of old, low-mass stars, and they
are typically surrounded by several globular clusters.

The suppressed star formation rate implies that the dynamical halo model formulated for
spiral (and irregular) galaxies does not appear to be viable here. To make progress, it might
be useful to speculate as to the origin of elliptical galaxies. The commonly accepted (but by
no means final) picture regarding the formation of elliptical galaxies sees them as the result
of a merger of spiral galaxies. We will here take a more unconventional stand and claim that
it is instead possible for ellipticals to represent the final evolutionary stage of spirals. Some
time into their evolution, spirals are expected to exhaust their baryonic gas, meaning that
the ordinary supernovae rate is no more sufficient to support the dark matter halo against
cooling. Let us now conjecture as to what this might mean in terms of the future evolution
of this (by now dead?) spiral.
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Denoting by tcool and tff the cooling and free-fall timescales for the dark matter halo, we
will now consider the limiting case where tcool � tff. Under this assumption, it is possible
for the dark matter halo to cool, and potentially fragment into dark stars. When the heating
has stopped and the halo has begun to cool (but not collapse), we can approximate its total
energy as being solely the gravitational potential energy, since the velocity dispersion of the
dark matter particles is now negligible:

Ui = −

ˆ R

0
dr 4πr2 GMr

r
ρ(r) ' −4πρ0r2

0GMt , (3.29)

where Mr =
´ r

0 dr′ 4πr′2ρ(r′) ' 4πρ0r2
0r is the mass enclosed within a radius r and Mt =´ R

0 dr 4πr2ρ(r) ' 4πρ0r2
0R is the total mass. In evaluating the relevant integrals above, we

have made use of the density profile given by Eq.(3.16), which is justified since the limit we
are considering (tcool � tff) does not allow for sufficient ”time” for the dark matter halo to
change.

At this point the system can begin to contract and eventually form dark stars. If this
occurs, two events are expected to take place here. To begin with, dark stars can eventually
produce dark supernovae. Via kinetic mixing induced processes (proceeding the other way
round, this time!), these dark supernovae will convert a significant fraction of their core-
collapse energy into ordinary photons, which could not only heat the ordinary matter, but
also blow it out of the galaxy. This might potentially explain both why there is so little
baryonic gas in ellipticals and why the little gas that is present appears to be distributed in
three dimensions rather than as a flat disk as it would be in spirals. Next, the newly formed
dark stars will fall into the gravitational well as the system contracts. In doing so they
attain kinetic energy, and hence velocity dispersion. Their final kinetic energy, T f , can be
related to the final potential energy, U f , via the virial theorem, which states that U f = −2T f .
Conservation of energy implies that Ui = U f + T f = −T f [with Ui given by Eq.(3.29)], and
hence expressing T f in terms of the dark star velocity dispersion σ via T f = 3Mtσ2/2, we
obtain:

σ2 =
8πGρ0r2

0

3
. (3.30)

If we now make a more bold assumption, namely that the ordinary stars thermalize with
the dark ones, it follows that their velocity dispersion too is σ. In addition, given that the
now elliptical has evolved from a spiral, the parameters ρ0 and r0 will still obey the scaling
relations previously deduced. By using ρ0r0 ≈ const and r0 ∼ rD ∝

√
LB, which has been

derived from the previous mD ∝ (LB)1.3 [77] and rD ∝ (mD)0.38 [78], we infer a scaling relation
connecting the B-band luminosity of the newly formed elliptical galaxy with the velocity
dispersion of its stars:

LB ∝ σ
4 . (3.31)

The above [Eq.(3.31)] is known as Faber-Jackson relation [79], and is very similar in form to
the TFR. It is observed to hold for elliptical galaxies, and is part of a series of empirical
correlations known as the fundamental plane.

3.2 Consistency conditions and energy balance

In the preceding sections we have derived scaling relations which connect the baryonic
and dark matter components in spiral galaxies, building on the assumption that the system
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evolves to a static configuration, which translates to an energy balance condition. The bary-
onic properties were encoded in RSN (or equivalently LB), while the dark matter properties
were described by ρ0 and r0. On the other hand, there are other parameters still which
characterize the dark matter properties; that is, the 5 parameters of our dark matter particle
model: mF1 , mF2 , α

′, ε and Z′. Our next objective is then to understand how the energy
balance argument can constrain the relevant parameter space in question.

Let us start by re-examining the cooling rate [Eq.(3.19)]. To make further progress, we
have to display the explicit dependence of the cooling function on the 5 parameters of the
underlying dark matter model. Under the assumption of thermal dark bremsstrahlung of
F1 off F2 being the preeminent dissipation mechanism, the energy lost per unit time per unit
volume is given in e.g. [71] and is:

dΓcool

dV
= 16α′3

√
2πT

27m3
F1

Z′2nF1nF2 gB , (3.32)

where gB ' 1.2 is the frequency average of the velocity-averaged Gaunt factor for thermal
bremsstrahlung. The temperature, T, is related to both the mean mass of the dark plasma and
the asymptotic rotational velocity, v∞. Working in the limit where mF2 � mF1 and assuming
neutrality of the plasma so that nF1 = (|Z′| − 2)nF2 holds, we can make the approximation:

m =
nF1mF1 + nF2mF2

nF1 + nF2

≈
mF2

|Z′| − 1
. (3.33)

Using Eqs.(3.8,3.16,3.18,3.21,3.32,3.33) then results in the total cooling rate being:

Γcool = 32π3gBα
′3Z′2(|Z′| − 2)κ2

√
GmF2

27(|Z′| − 1)m3
F1

(ρ0r0)
5
2 r

3
2
0 . (3.34)

Concerning the heating mechanism, as explained previously, only dark photoionization
is expected to be important for the range of parameter space we are considering. Dark
photoionization is possible if the dark bound state (D0), albeit being close to fully ionized,
retains its K-shell F1 atomic states. This is, of course, completely analogous to the MDM
case where the heating of the halo occurs via photoionization of the K-shell mirror electrons
of a mirror metal component. The cross-section for dark photoionization, σDP , can easily be
obtained by adapting that for ordinary photoionization (which can be found in e.g. [71]):6

σDP =
g′16
√

2π
3m2

F1

α′6|Z′|5
(

mF1

EγD

) 7
2

. (3.35)

3.2.1 Cooling timescale

The validity of the picture presented earlier calls for a series of consistency conditions to hold,
which we now discuss before specifying in what way they constrain the relevant available
parameter space. The first of these conditions is related to the halo cooling timescale. If such
a timescale were larger than the Hubble time, clearly our dynamical equilibrium picture
would have to be modified. For instance, the required heating rate would be diminished.
From Eq.(3.34), recalling that κ = (mF2 + |Z′|mF1)

−1, it is straightforward to see that this
requirement sets an upper bound on the allowed mass of the F2 particle. Let us now derive
the cooling timescale, tcool. If we denote by nT the total number density of dark particles,

6The quantity g′ = 1, 2 counts the number of K-shell F1 atomic states present.
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E = 3nTT/2 and Ė = Λ(T)nF1nF2 , the cooling timescale is given by tcool = E/Ė. If, in addition,
we make the approximation nT ≈ nF1 , we obtain:

tcool ≈
3T

2Λ(T)nF2

≈
9

64gB

√
3mF2m3

F1

π(|Z′| − 1)
v∞

κρα′3Z′2
. (3.36)

The cooling time displays a dependence on position, r, through the dependence on ρ(r).
Since less dense regions cool more slowly, the most stringent limit we can obtain will arise
from regions where ρ(r) is lowest, that is, in the outskirts of the galaxy. On the other hand,
our knowledge of the properties of the dark matter halo far from the galactic center is limited,
and hence we cannot push ourselves too far. As a compromise, we will obtain an upper
limit on the mass of the F2 particle by requiring that tcool . few billion years for r . ropt,
where ropt ≈ 3.2rD ∼ 2r0 is the optical radius, within which the majority of the baryons reside
(see e.g. [80]). Hence we will obtain the most stringent limit for ρ(r ≈ 2r0) ≈ ρ0/5. From
Eq.(3.36) the reader can also infer that the most rigid bound (i.e. the longest cooling time)
stems from the largest spiral galaxies, for whom v∞ ≈ 300 km/s. In the following we assume
typical values for large spiral galaxies of ρ0r0 ' 100 M�/pc2 and r0 ' 20 kpc, from which
ρ0/5 ' 10−3 M�/pc3. Requiring tcool(r ' 2r0) . few billion years then yields the following
upper limit:

mF2 . 200
(

MeV
mF1

) (
α′

10−2

)2 (
|Z′|
10

) 5
3

GeV . (3.37)

3.2.2 Ionization state of the halo

The dynamical halo model, governed by a balance between heating and cooling, built on
two additional vital assumptions. First off, the halo is assumed to be ionized, that is, at least
one free F1 particle per (partially ionized) bound state. This requirement allows for efficient
cooling via thermal dark bremsstrahlung, and sets a lower bound on the temperature of the
halo. On the other hand, that D0 retain its K-shell F1 particles is the conditio sine qua non for
adequate heating to take place via dark photoionization. This condition sets an upper bound
on the same temperature.

In addition, we require that the two conditions outlined above hold for all spiral galaxies.
That is, the dark plasma of the halo in all spirals is required to be in similar ionization states,
regardless of the size of the galaxy. Why so? Because the physics of our model depends
strongly on the fact that such particular ionization state be attained, so as to allow for the
dynamical picture of balance between heating and cooling (from which, recall, the most
important results and scaling relations were obtained) to be viable. If, say, only the biggest
spirals were ionized (T ∝ v2

∞
is greater for bigger spirals), we would expect sudden sharp

observational differences in moving along the spectrum of spiral galaxies, with a cut-off at
the scale for which the transition between two different ionization states occurs.

The transition between two ionization states, given the relevant ionization energy I,
occurs at a temperature T = I/ξ, where recall T = mv2

∞
/2 ≈ mF2v2

∞
/[2(|Z′| − 1)]. The value ξ

assumes is fairly dependent on the parameters in question, and hence there will be a range
of possible values for ξ. The exact details of such a calculation, which we carried out in [1],
are not essential for our discussion, so we refer the reader to Appendix A of [1] should he
wish to find out more. There we estimated that for the transition from a neutral to an ionized
halo (at an ionization energy I, and which allows us to set a lower bound on the mass of
the F2 particle), ξ ≈ 7 − 28. A simple glance at the relevant equations [Eqs.(3.38)] shows
us that in order to obtain a conservative lower bound on the mass of the F2 particle we are
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interested in the maximum value ξ can assume, ξmax ≈ 28. On a similar note, when working
out an upper bound on the mass of the F2 particle, which is determined by the process of
K-shell photoionization (with ionization energy J), we require the minimum value ξ can
obtain in relation to this process (which is slightly different to that of D0 ionization, given
that the central F2 particle is almost unshielded!). In the same Appendix we estimate this to
be ξmin ≈ min[1/(α′3Z′4), 1]. The gist of this lengthy discussion is that demanding all spirals
share a similar ionization state corresponds to the following requirements:

T &
I

ξmax
=⇒

mF2

GeV
&

(
|Z′|
10

) (
α′

10−2

)2 ( mF1

MeV

) (50 km/s
v∞

)2

,

T .
J

ξmin
=⇒

mF2

GeV
. 100

(
|Z′|
10

)3 ( α′
10−2

)2 ( mF1

MeV

) (300 km/s
v∞

)2

g(α′,Z′) , (3.38)

where g(α′,Z′) ≡ max(α′3Z′4, 1). Noting that the bounds in Eq.(3.38) have to hold for all
spirals, one grasps that the most stringent lower bound on the mass of the F2 particle is set
by the smallest spiral/irregular galaxies, for which v∞ ≈ 50 km/s, while the most stringent
upper bound arises from the biggest spirals, with v∞ ≈ 300 km/s. Hence the bounds on mF2

arising from ionization physics can be expressed in a more concise way as:(
|Z′|
10

) (
α′

10−2

)2 ( mF1

MeV

)
.

mF2

GeV
. 100

(
|Z′|
10

)3 ( α′
10−2

)2 ( mF1

MeV

)
g(α′,Z′) . (3.39)

Let us note that it is possible for either or both the above inequalities to actually be equalities.
In this case we are dealing with a limiting situation. That is, ionization physics could be
responsible for establishing the scale of spiral and irregular galaxies (via vmax

∞
, vmin
∞

). This
is a possible explanation for why both very big spirals and very small irregulars are not
observed. If we equate the upper and lower bounds in Eq.(3.39) we obtain that this plight
takes place for |Z′| ∼ 1.

Prior to moving on, we here demand that the upper bound derived on the mass of the F2

particle from the cooling timescale argument in Eq.(3.37) be greater than that derived from
ionization physics arguments in Eqs.(3.38). Doing so results in most factors conveniently
cancelling, leaving us with the following lower bound on the magnitude of the F2 and F1

charge ratio:

|Z′| & 4
( mF1

10 MeV

)3

. (3.40)

3.2.3 Energy balance

Let us now return to the energy balance condition, that is, Γheat = Γcool. We have already
derived the total cooling rate for the dark matter halo, under the assumption of the main
dissipation path being thermal dark bremsstrahlung [Eq.(3.34)]. A complete understanding
of the heating rate is actually a very complicated matter. The issue here is that one would
have to integrate over the spectrum of dark photons which arise from kinetic mixing induced
processes in the core of ordinary supernovae and, it is professed, heat the dark matter halo.
Of course, such a spectrum is unknown, and is very hard to predict!7 Here we simply observe
that we can set an upper limit on the heating rate:

Γheat . RγD
RSN〈ESN〉min(τmax, 1) . (3.41)

7In the framework of MDM work has been done parametrizing such spectrum via a power law and a cut-off
energy somewhat higher than the binding energy of the K-shell mirror electron of the relevant mirror metal
component. This approach is somewhat justified by observing that the behavior of the photoionization cross-
section with energy (σ ∝ E−7/2) suggests that it is mainly the low energy part of the spectrum that contributes
to the heating of the halo [30].
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In the above, τmax is the maximum value the optical depth [Eq.(3.24)] can assume, having
allowed for all possible forms for the spectrum of dark photons. Eq.(3.24), jointly with
Eq.(3.35), suggests that the optical depth assumes its maximum value when the dark photon
energy is the lowest possible. That is, when EγD

= I′, where I′ ≈ Z′2α′2mF1/2 is the binding
energy of the relevant K-shell F1 particle. In this case we obtain:

τmax =
256π2

3
ρ0r0

m2
F1

mF2α
′Z′2
& 40

(
MeV
mF1

)3 (10−2

α′

)3 ( 10
|Z′|

)5 1
g(α′,Z′)

, (3.42)

where in order to obtain the inequality we have exploited the fact that for spiral galaxiesρ0r0 ≈

const, with an indicative value for this quantity being ρ0r0 ≈ 100 M�/pc2
' 4.6 × 10−6 GeV3,

and additionally made use of the upper bound on mF2 given in Eq.(3.39). Eq.(3.42) suggests
that τmax & 1 should hold for an important fraction of parameter space.

For definiteness, we shall now assume parameters where τmax & 1 hold and estimate
an upper limit for the heating rate, noting that this limit will hold even if τmax . 1, since
min(τmax, 1) ≤ 1. In this case we would simply be assuming a more conservative position.
The fraction of the total energy output in dark particles, RγD

, is a function of the kinetic
mixing parameter, ε. For ε . 10−9, RγD

∝ ε2, while for ε & 10−9, RγD
saturates at ∼ 1/2 [37].8

For ε . 10−9, inserting numbers into Eq.(3.41), we obtain the following upper limit on Γheat:

Γheat . 1044
(
ε

10−9

)2
(
〈ESN〉

3 × 1053erg

) (
RSN

0.03 yr−1

)
erg
s
. (3.43)

Doing the same for Γcool [Eq.(3.34)], we get:

Γcool ' 1044
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s
. (3.44)

By comparing Eqs.(3.43,3.44), we note that the following approximate relation has to hold:

C

(
10−9

ε

)2 (
α′

10−2

)3 (MeV
mF1

) 3
2 (
|Z′|
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) 5
2
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mF2

) 3
2

. 1 , (3.45)

having defined:

C ≡

 ρ0r0

100
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pc2


5
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r0
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) 3
2
(

3 × 1053 erg
〈ESN〉

) (
0.03 yr−1

RSN

)
. (3.46)

On the grounds of the scaling relations we derived for spiral galaxies in Chapters 3.1.2-3,
we expect C ≈ 1 to hold for all spirals. In fine, notice that combining the bounds from
Eqs.(3.37,3.45) results in all factors containing α′, mF1 , mF2 and |Z′| very conveniently can-
celling, leaving us with a lower bound on εwhich does not depend on any other parameter:

ε & 10−10 . (3.47)

The bound above is required to hold in order for the amount of energy converted into
dark photons via kinetic mixing induced processes in the core of ordinary supernovae to
be sufficiently large as to efficiently heat the halo. This lower bound is consistent with the
upper bounds obtained from early Universe cosmology and discussed in Chapter 2. Before
we delve further into a study of experimental signatures of this dark matter model, it is
beneficial to summarize the constraints we have obtained on the parameter space of our
model, whose fundamental physics, the reader will recall, is described by 5 parameters.

8That is, RγD
≈ min

[
1
2

(
ε

10−9

)2
, 1

2

]
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3.3 Summary of constraints on the model

An essential parameter in terms of new physics is the kinetic mixing parameter, ε. A
requirement for our dynamical halo model to be viable is that a hefty fraction of the energy
output from core-collapse supernovae be converted into the creation of light dark particles
(F1-F1 pairs), ultimately reprocessed into dark photons which can heat the halo. This allowed
us to determine the lower bound ε & 10−10 [Eq.(3.47)]. We obtained an upper bound on ε by
requiring that exotic contributions to the energy density during the radiation dominated era
be constrained. Our studies of δNeff[CMB] and δNeff[BBN] suggest ε . 5 × 10−8.

The mass of the lighter of the two particles, mF1 , obeys an upper bound of∼ 100 MeV, else
its pair production mechanism in core-collapse supernovae would be Boltzmann suppressed.
Studies of White Dwarfs and Red Giants have instead allowed us to set the lower bound
mF1 & 0.01 MeV. Below this value, the allowed region of parameter space for ε is in conflict
with the lower bound in Eq.(3.47).

In our study of dark recombination, we set bounds on the redshift at which this process
took place, requiring that it be greater than the redshift of matter-radiation equality. This
requirement in essence means that LSS formation is unaltered by dark acoustic oscillations on
scales which are still growing in the linear regime today. We derived useful bounds relating
ε, mF1 and α′ which, along with the limits on ε and mF1 discussed above (10−10 . ε . 5× 10−8,
0.01 MeV . mF1 . 100 MeV), indicate the lower bound α′ & 10−4. In addition, our study
assumed that we could safely make use of perturbation theory in all our calculations. This
of course requires α′ to be sufficiently small, and indicatively α′ . 10−1.

The heavier of the two particles, F2, really did enter our dynamics actively only in the
context of galactic structure. Recall that when considering energy and entropy transfer
between the visible and dark sectors in the early Universe we neglected channels involving
F2 particles on the grounds of the choice mF2 � mF1 . In relation to dark recombination the
crucial quantity in play, that is, the ionization energy of the bound state, was found to not
depend on mF2 (once more, provided mF2 � mF1). Galactic structure considerations allowed
us to obtain constraints on mF2 from two different arguments: the first in relation to the
cooling timescale of the dark matter halo, and the second concerning the ionization state of
the dark matter plasma. These constraints are given by Eqs.(3.37,3.39,3.45).

The bounds on the 5 fundamental parameters of the model we obtained in this work are
interrelated. We present them unitedly below:
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(3.48)

At this stage it might be useful to remind the reader thatM ≡ max(me,mF1) and g(α′,Z′) ≡
max(α′3Z′4, 1). Note that our studies indicate a favoured region of parameter space for the
masses of the two fermions, with the lighter (F1) in the MeV range and the heavier (F2) in the
GeV-TeV range.
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CHAPTER 4

EXPERIMENTAL SIGNATURES

4.1 Dark matter shielding radius

Hitherto, our analysis has focused on the phenomenology of this two-fermion dark matter
model in the context of early Universe cosmology and galactic structure. Our study has
revealed that the favoured scenario is that where the lighter fermion has mass in the MeV
range and the heavier in the GeV-TeV range. Two types of interactions, then, are expected to
be relevant for direct detection experiments: F1-electron scattering and F2-nuclei scattering,
while all other types of interactions are kinematically suppressed; for simplicity we will
focus exclusively on the latter. Given the self-interacting nature of the dark matter particles,
we could expect a number of them to be captured within the Earth and shield the halo dark
matter wind. In this Chapter we will determine whether this is the case and, if so, what
experimental signatures are expected to be associated. The following analysis will draw
from the similar one conducted in the MDM framework in [81].

In the present model, we expect F2 particles to be captured within the Earth, at first
through hard scattering processes. F2 particles will then pile up in the core of the Earth, and
once a significant number have accumulated, dark matter will be captured via self-interaction
processes. At this stage a shielding radius, Rs, will begin to build up. An F2 particle which
passes through the Earth at a distance r < Rs from the center will then be captured, and
hence these particles will accumulate at a rate approximately given by dN/dt ' πR2

s vrotnF2 .
Once a dark matter particle is captured, it loses energy quickly, decreasing its velocity. In
all of this, dark matter particles can also interact with ordinary nuclei via kinetic mixing
induced Rutherford scattering; given that the relevant cross-section goes as dσ/dΩ ∼ 1/v4,
we expect the captured dark matter particles to rapidly thermalize with ordinary matter. It
follows that their density [number density] profile ρ(r) [nF2(r)] can be obtained by imposing
the hydrostatic equilibrium condition: dP(r)/dr = −ρ(r)g(r). Using local thermal equilibrium
to relate P to T via P = nF2T and by expressing ρ = mF2nF2 , we can express the hydrostatic
equilibrium condition as:

dnF2(r)
dr

= −
nF2(r)
T(r)

(
mF2 g(r) +

dT(r)
dr

)
, (4.1)

where the local gravitationl acceleration is given by g(r) = G
r2

´ r
0 dr′ 4πr′2ρE(r′).

Solving Eq.(4.1) requires specifying a form for T(r), ρ(r). We do so by adopting a linear
approximation for the temperature and density profiles obtained from the Preliminary Ref-
erence Earth Model [82]. The profiles T(r), ρE(r) are depicted in Figure 4.1. We solve Eq.(4.1)
and determine that the number density profile of captured F2 particles, nF2(r), depends ex-
clusively on mF2 , and not on the other 4 parameters of our model. Once we have determined
the number density profile of the captured F2 particles, we can estimate the shielding radius
following the approach adopted in [81], which we here outline. An F2 particle is captured
when it loses the entirety of its energy. The key quantity in determining whether or not an
F2 particle gets captured is its distance of closest approach to the center of the Earth, dmin.
For a given point in parameter space, there will be a maximum value of dmin for which an F2

particle will be captured: such distance is the shielding radius, Rs.
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Figure 4.1: Earth’s temperature [T(r)] and density [ρE(r)] profiles adopted.

An incoming F2 particle interacts with the captured F2 particles via Rutherford scattering,
with differential cross-section per recoil energy:

dσ
dER

=
2πZ′4α′2

mF2E2
Rv2

. (4.2)

Consequently, F2 particles travelling along a path x lose energy at a rate:

dE
dx

= −nF2(x)
ˆ Emax

Emin

dER ER
dσ

dER
, (4.3)

where Emax = mF2v2
rot/2 is the maximum kinematically allowed recoil energy and Emin '

m2
F1
α′2/(2mF2) is determined by the scale at which atomic screening effects start to become

relevant. We approximate the trajectories of the F2 particles by straight lines, along which
the distance is traced by the coordinate q; at r = dmin, q = 0, and the trajectory is symmetric
around this point. Imposing that the energy lost equals the initial energy of the F2 particle,
we obtain that an F2 particle is captured if the following condition is satisfied:

ˆ x f

xi

dx nF2(x) '
ˆ qmax

qmin

dq nF2(r =
√

d2
min + q2) &

m2
F2

v4
rot

16πZ′4α′2 ln
[(

mF2
mF1

) (
vrot
α′

)] , (4.4)

where qmax,min = ±
√

R2
E − d2

min, and RE ' 6371 km is the Earth’s radius.
Eq.(4.4) can be solved numerically for a given point in parameter space by looking for the

value of dmin for which the right-hand side first exceeds the left-hand side. Our numerical
analysis shows that the solution displays a very weak dependence on mF1 , which enters
only logarithmically in Eq.(4.4), via the lower limit of the recoil energy integral. Hence, the
shielding radius due to dark matter self-interactions in our model depends only on three
parameters: mF2 , α

′ and Z′. We find that the shielding radius today (recall Rs builds up with
time) is given by:

Rs ' min
[
5300

(
α′

10−3

)0.06 ( mF2

10 GeV

)−0.55 ( |Z′|
10

)0.14

km , RE

]
. (4.5)
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4.2 Diurnal modulation signal

The captured dark matter particles can potentially shield the halo dark matter wind, sup-
pressing the rate of interactions with ordinary matter, and hence the signal observed in
DDEs. In particular, we will find that, for DDEs located in the Southern hemisphere, this is
expected to give rise to an observable diurnal modulation effect. Here a pivotal quantity is
the angle between the direction of the Earth’s motion through the dark matter halo and the
normal vector to the Earth’s surface at the relevant detector location, which we denote by ψ.
Owing to Earth’s rotation around its axis, this angle changes during the day, according to:

cosψ(t) = cosθl sin
(
2π

t
Td

)
sin〈θh〉 ± sinθl cos〈θh〉 . (4.6)

Here θh is the angle subtended by the Earth’s motion through the halo with respect to its
spin axis, θl denotes the detector latitude, and Td ' 23.9345 hrs is the length of a sidereal day.
Although θh varies slightly during the year due to the Earth’s motion around the Sun, we
shall not be concerned with such effect and will simply take the average value 〈θh〉 ' 43◦. In
Eq.(4.6) the +[−] sign holds for a detector situated in the Northern [Southern] hemisphere
respectively. A value ψ = 0◦ indicates that the dark matter halo wind is coming vertically
down towards the detector; per contra, ψ = 180◦ means that the wind is approaching from
the other side of the Earth relative to the detector, hence transiting near the Earth’s core,
and possibly being captured. The different sign according to the hemisphere in Eq.(4.6)
plays a major role, implying that ψ can be as big as 180◦ in the Southern (but not Northern)
hemisphere, and hence the diurnal modulation effect is expected to be more pronounced
there. In Figure 4.2 we plot the evolution of ψ during one sidereal day for a detector located
in the Stawell mine (Victoria, Australia) and one on the Gran Sasso d’Italia (Abruzzo, Italy).
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Figure 4.2: ψ(t) at the Stawell mine (solid line) and at Gran Sasso (dashed line).

Defining v to be the velocity of the halo dark matter particles relative to the Earth (v being
its magnitude) and vE the velocity of the Earth relative to the galactic halo (|vE| ' 220 km/s),
the interaction rate of dark matter particles with the target atoms in the detector depends on
the quantity (see e.g. [81]):

I ≡

ˆ 2π

0
dφ
ˆ 1

−1
dθ sinθ

ˆ
∞

vmin

dv ve
−

(v+vE)2

v2
0 . (4.7)
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Here v2
0 = v2

rotm/mF2 = 2σ2
F2
/3, σF2 being the velocity dispersion of the F2 particles and

vmin =
√

(mT + mF2)2ER/(2mTm2
F2

) is a lower limit determined by kinematics. The mass of the
target atoms is mT and ER is the recoil energy at which we wish to investigate the modulation
effect. Shielding is accounted for by modifying the integral in Eq.(4.7), as in [81], as follows:

I[ψ(t)] = I ≡

ˆ 2π

0
dφ
ˆ 1

−1
dθ sinθ

ˆ
∞

vmin

dv ve
−

(v+vE)2

v2
0 H[dmin(θ, φ, ψ) − Rs] , (4.8)

where we have multiplied the integrand of Eq.(4.7) by a Heaviside step function, which is
itself a function of the distance of closest approach, dmin, given by:

dmin =

RE
√

1 − g2(θ, φ, ψ), if g(θ, φ, ψ) ≥ 0 ,
RE, if g(θ, φ, ψ) < 0 ,

(4.9)

having defined g(θ, φ, ψ) ≡ sinθ sinφ sinψ − cosθ cosψ. We can now compute R, the per-
centage rate suppression due dark matter capture (R = 100% indicates a total suppression):

R = 100
(
1 −
I[ψ(t)]
I

)
%, (4.10)

Of course, the value of interest here is Rmax, the maximum percentage rate suppression
during the course of a sidereal day, since we wish to observe an all or nothing outcome.
We investigate this effect only for detectors located in the Southern hemisphere since, for
detectors located in the Northern hemisphere, Rmax is typically small (. 10%), so we do not
expect such effect to be observable in the near future. No dark matter experiments have
been conducted in the Southern hemisphere yet, although two are being planned: the first
in the Stawell mine (near Melbourne, θl ' 37.1◦), and the second in the Andes Lab (on the
Argentinean-Chilean border, θl ' 30.7◦). In Figure 4.3 we plot R for a detector located at the
Stawell mine versus time over the duration of a sidereal day, for some example parameter
choice. Numerically, we find that the maximum percentage rate suppression is to very good
approximation independent of the recoil energy (within the range 0.1 keV . ER . 20 keV)
and of the target mass, depending exclusively on α′, mF2 and |Z′|. For a detector located at
the Stawell mine, the maximum percentage suppression rate is found to be:1

Rmax ' min
[
55

(
α′

10−3

)0.1 ( mF2

50 GeV

)−0.9 ( |Z′|
10

)0.6

% , 100%
]
. (4.11)

4.3 Prospects for direct & indirect detection and collider pro-
duction

As we mentioned at the outset of the Chapter, two types of interactions are of notable
interest in the context of DDEs within the framework of our model. That is, F1-electron
and F2-nuclei scattering, with other interactions being kinematically suppressed. Previous
work had found that spin-independent elastic F2-nuclei scattering could explain both the
positive and negative results arising from direct detection experiments consistently, provided
ε ∼ 10−9 [43]. Then came LUX [44], bringing with her2 the negative search results which now

1For a detector located at the Andes Lab, simply replace the number ”55” in Eq.(4.11) with ”40”.
2In Latin, the word ”lux” (pronounced ”loox”), which means ”light”, is feminine.
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Figure 4.3: Percentage suppression rate for detectors situated at the Stawell mine for mF2=10 GeV,
100 GeV, 1 TeV (solid, dashed, dot-dashed line). We have assumed α′ = 10−2, |Z′| = 10, a
recoil energy of 2 keV and an Na target (m ' 23mp).

mean that an explanation of the DAMA annual modulation signal [83] in terms of nuclear
recoils is strongly disfavoured. Recent work within the MDM framework has shown that
it is still possible to explain the DAMA annual modulation signal in terms of a dark matter
particle with mass in the MeV range scattering off electrons [84]. In the framework of our
model we can then interpret the annual modulation signal observed by DAMA in terms of
F1-electron scattering, which could also explain the modulation observed by CoGeNT at low
recoil energies [85], and has the potential to be probed by large Xenon experiments such as
LUX [44] and XENON100 [86].

The prospects of producing F1 or F2 particles in colliders such as the LHC through kinetic
mixing induced processes are not the most promising. A rough calculation reveals that for
an integrated luminosity of ∼ 25 fb−1, at

√
s = 10 TeV, the expected number of events for

a process of the type SM+SM→DM+DM (where ”SM” and ”DM” denote Standard Model
and dark matter particles respectively), with cross-section σ ∼ ε2α2/s, is about 10−16 for
ε ∼ 10−9! The 1/s dependence of the cross-section, which follows from the masslessness of
the mediator (the photon), implies that raising

√
s will not improve things in this respect. It

is still possible to produce these particles in colliders if we introduce additional interactions
which we have not considered in this thesis, for instance a Higgs portal coupling.

We briefly comment on possible indirect detection signals. As emphasized at the start,
our model is an example of asymmetric dark matter, where the relic abundances are set
by a particle-antiparticle asymmetry. In the early Universe, annihilation processes of the
type F jF j → γDγD , with cross-section σann ∝ α′

2/m2
F j

, are expected to efficiently annihilate
the symmetric components of the F j particles. It is possible that for the heavier of the two
particles, F2, the annihilation rate might not be sufficiently high, so that we might end up
with a symmetric relic abundance of F2 and F2 on top of the asymmetric one. Given the
approach we adopted, that is, having started with X = TγD

/Tγ = 0 at early times, with X
(and hence the dark matter particles) subsequently generated via kinetic mixing induced
processes, such a scenario is certainly unlikely, but still possible. Should there indeed be
a leftover symmetric F2 component, we expect potential annihilation processes and hence
indirect detection signals. In [87] the reader will find more information on direct and
indirect detection of dissipative dark matter. For a recent study on annihilation signals from
asymmetric dark matter, we refer the reader to [88].
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CHAPTER 5

CONCLUSIONS

Even as these lines are being written, the origin and composition of the mysterious dark
matter which appears to pervade the Universe remains obscure. Although a multitude of
dark matter candidates have emerged from the most diverse frameworks, a compelling dark
matter theory has yet to be formulated. A number of astrophysical observations suggest
that, despite it performing magnificently on large scales, our current understanding of
collisionless cold dark matter suffers from a series of drawbacks on small scales. In fact,
such discrepancies might well be overtly pointing towards the need for a shift from the
collisionless cold dark matter paradigm towards, for instance, self-interacting dark matter.

From a particle physics mindset, a well motivated means of incorporating dark matter is
by appending a hidden sector to the Standard Model. Arguably, the simplest choice in this
respect is that of a hidden sector featuring a U(1) gauge symmetry, whose interactions are
mediated by a dark photon. This thesis has made a contribution to the vast literature already
present on this class of theories, by examining one where the entire dark matter content
is subject to sizeable dissipative interactions. The model considered features two charged
fermions and a dark photon which interacts via kinetic mixing with the ordinary photon. In
Chapter 2 we employed cosmological constraints on the energy density during the radiation
epoch to set bounds on the parameter space of the model.

Perhaps the most interesting part of our work was the one carried out in Chapter 3, where
we analysed this same model in the context of galactic structure. The dissipative nature of
the interactions mediated by the dark photon, which would make the dark matter halo cool,
calls for a heat source which can replace the energy lost. We found that kinetic mixing
induced processes arising within the core of ordinary supernovae can inject the required
heat, provided ε ∼ 10−9. Under the assumption that the dark matter galactic halo reaches a
static configuration, with the heating and cooling rates matching at each point in the halo, we
have shown that a series of unexplained scaling relation observed to hold for spiral galaxies
(chief among them the Tully-Fisher relation) all follow rather straightforwardly from this
energy balance condition.

A theoretical model is useless if it is not testable. In Chapter 4 we have expounded how
the self-interacting nature of this dark matter gives rise to an unique signature: a diurnal
modulation in the rate of interactions of the heavier dark fermion with nuclei in direct
detection experiments. This effect could be successfully exploited as a probe of the present
and other self-interacting dark matter models via, for instance, direct detection experiments
located in the Southern hemisphere.

Dissipative dark matter is an unconventional choice of dark matter candidate. Notwith-
standing the general inclination, we have demonstrated that it is not only a possibility, but
a rich and interesting one for that matter. It has the potential to allow us to elegantly bridge
the gap between theory and astronomical observations, and address a number of worrisome
shortcomings of collisionless cold dark matter. Given the status quo of confusion with respect
to direct detection experiments we are experiencing, a deeper understanding of these astro-
nomical observations could be a key to unraveling the puzzle of dark matter, and further
our understanding of its nature. Dark matter first appeared to us in the skies. Perhaps, then,
it is in the blue expanse that we should seek to better comprehend the mystery of its origin.
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APPENDIX A

WHY CAN DARK THOMSON SCATTERING BE
NEGLECTED?

In this Appendix we argue that, for mF1 & 0.1 MeV, dark Thomson scattering is an inefficient
heating mechanism, and hence uphold our approach of solely considering dark photoioniza-
tion. Recall, dark Thomson scattering consists of the process γDF1 → γDF1, where F1 denotes
a free F1 particle. The cross-section for dark Thomson scattering is:

σDT =
8π
3
α′2

m2
F1

. (A.1)

Making use of the relation between the free F1 number density and the dark matter density
profile, that is, nF1 = ρκ(|Z′| − 2), we obtain the optical depth for dark Thomson scattering
considering a photon which propagates from the galactic center to infinity being:

τ =

ˆ
∞

0
dr σDT nF1 =

ˆ
∞

0
dr σDTρκ(|Z′| − 2) =

4π2α′2κ(|Z′| − 2)ρ0r0

3m2
F1

. (A.2)

If we assume that the spectrum of dark photons heating the halo peaks significantly below
me, simple kinematic considerations imply that the only way for dark Thomson scattering
to be able to efficiently impart energy to the scattered particle is if τ � 1, that is, if the dark
photon remains trapped in the galaxy. Using the expression above for the optical depth, this
translates to:

mF2 �
4π2ρ0r0α′

2
|Z′|

3m2
F1

, (A.3)

where we have used κ ≈ 1/mF2 . Recall we obtained a lower bound on the mass of the
F2 particle by requiring that the halo be ionized [Eq.(3.39]. If we impose that the upper
bound obtained above be greater than the lower bound in question, we find this gives us the
following condition on the mass of the F1 particle:

m3
F1
�

4π2ρ0r0v2
∞
ξmax

3
, (A.4)

where recall ξmax ≈ 7 − 28. We find that Eq.(A.4) reduces to:

mF1

MeV
�

 ρ0r0

100
M�
pc2


1
3  v∞

300 km
s


2
3

. (A.5)

The above is the conditio sine qua non for dark Thomson scattering to be an important heating
mechanism. For this to not be the case for all spirals (v∞ . 300 km/s), we then find that
mF1 & 0.1 MeV is required, as anticipated.
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