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ABSTRACT 

The necessary precision that future high-energy experiments have to realize in 

order to establish loop effects in the electroweak theory is discussed. The recent 

claim that the mass difference Mz - Mw is effective for analysis is criticized. 

The case with three observables, Mz, Mw and the Weinberg angle, is analyzed 

by the use of a generalized condition for the allowed errors. It is found that 

the information on the Weinberg angle with even 2.5%(5%) error improves the 

requirement for the errors of Mz  and Mw significantly in the 2a(la)-confidence 

test of the loop effects. 
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1. Introduction 

The Glashow-Weinberg-Salam theory[l’ has been accepted as the electroweak 

theory, especially after the remarkable discovery of the weak bosons.[21 Many 

calculations of higher order effects in the electroweak theory have been made. 

One of the most interesting subjects in this field is the experimental confirmation 

of loop effects, since this is indispensable for establishing the electroweak theory 

as a quantum field theory. However, almost all the data in the low energy regime 

(compared to the weak scale) can be explained by the tree level electroweak 

theory. In fact, loop corrections to various cross sections and other observables 

at low energies are negligible compared to experimental errors. PI 

In contrast, direct observations of the weak gauge bosons provide a good 

chance for confirming the loop effects. For this reason, many studies on the 

gauge boson masses, Mz and Mw , have been carried out.[4-61 As a result, the 

conditions on the experimental precisions of Mz , Mw measurements necessary 

for detection of the loop effects have been given, and it has been shown that the 

confirmation is possible in a realistic future. [“” Recently Grzadkowski et. al.“’ 

have argued that, in analyzing the mass difference (Mz - Mw) , less stringent 

conditions apply. Their argument, however, can be shown not to be applicable 

to usual experimental situation. In this paper we clarify this point and further 

determine the necessary experimental precision for testing loop effects for the 

three observables, Mz , Mw and sin2 0~. 

It is important to specify the property of the conditions we can obtain. We 

have two predictions; the zeroth order prediction and the prediction including 

the loop effects. We want to establish criteria by which one can say that the 

higher order calculation is a significantly better fit to the data than the leading 

order. This is achieved when, at a given confidence level, the experimental data 

is in agreement with at most one of the predictions. Thus we are interested in the 

level of accuracy required in order that this must necessarily so. As long as this 

condition is satisfied, the experiments provide useful information: It is of course 
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still interesting even if both predictions are rejected, since that would indicate 

the need for new ingredients in the theory (e.g. superpartners[lo”‘l ). 

The electroweak theory has three basic parameters, which are to be deter- 

mined by experimental data. (We neglect parameters in fermion and Higgs sec- 

tors, since they typically have relatively small effects.[12’ One exception is heavy- 

fermions’ contribution, which may become large due to the corresponding large 

Yukawa coupling constants.[131 This is rather a separate issue and will not be 

discussed in this paper.) We have two data with quite high accuracy, the fine 

structure constant (Y and the muon life time rP. We adopt these two quantities 

as input and hereafter regard them as definite parameters with negligible errors. 

Accordingly one parameter remains to be determined. Therefore at least two 

measurements are required to further test the theory. 

The observables we consider first are the weak-boson masses, Mz and Mw. 

Due to the remaining free parameter, the theory can predict only the inter- 

relation between Mz and Mw . At the tree level it is given as 

where GF is the Fermi coupling constant determined by 

(l-1) 

The higher order corrections are dominated by the leading logarithms. Summing 

the leading logarithm leads to the following relation,“’ 

Mg-“h?2 
2(2M,oj2 - M;) 

(l- yy) , (1.3) 

where o(k) is the running QED coupling constant defined by 
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For the full result of the one-loop plus leading-log, see e.g. Ref. 3. 

Illustrated in Fig. 1 are the tree relation (1.1) and the leading-log (1.3) plus 

one-loop relation. Recent experimental results[2’81 on MZ and MW (in GeV) are 

UAl : Mz = 95.6 f 1.5 f 2.9, Mw = 80.9 f 1.5 f 2.4, 

(1.5) 
UA2 : Mz = 92.7 f 1.7 f 1.4, Mw = 83.1 f 1.9 f 1.3. 

The current errors are rather large for the purpose of confirmation of higher order 

effects. For illustration of this situation, a circle is drawn in Fig. 1 for errors of 

AM, = AMw = 2Gev. It is evident that the experimental precision has to 

be greatly improved. By adding other observables in the analysis, the precision 

required for Mz and Mw can be reduced. Low energy data give some information 

on the Weinberg angle,[5’ which limits the allowed region to be intervals in both 

lines as seen in Fig. 1. 

This paper is organized as follows. In section 2, we investigate the case 

where Mz and Mw are the only data to be observed. We follow and criticize 

the argument of Ref. [9] and find a correct condition. We further show that, by 

analyzing the data in (Mz, Mw)-plane, two kinds of conditions are obtained. The 

one obtained before is the weakest of them. Section 3 is devoted to numerical 

analyses with three-observables (M z , MW and the Weinberg angle) by the use of 

general formulas. We examine how much improvement (over the condition given 

in section 2) can be obtained by using this additional input. The appendix A 

gives a brief description of the multi-variate confidence region. In appendix B 

we derive N-kinds of conditions suitable for the case with N-observables, which 

is used in section 3. The contents similar to the appendices may be found in 

appropriate mathematical literatures, but is presented here for completeness. 



2. Conditions on Mz , MW Measurements 

The electroweak theory (either at tree level or including loop corrections) 

gives a relation between the W -boson mass Mw and the Z-boson mass Mz . 

Consequently, there are two ways to analyze the conditions on allowed errors. 

One is to project all data on one of the masses ( or a particular linear combination 

of them), the other is an analysis on the (Mz, Mw)-plane. In this section we will 

discuss both methods. 

2.1 ERROR ANALYSIS 

Consider predicting Mw by the use of an experimental value of Mz (using a 

formula at the tree level or including loop effects). The error in this “predicted” 

value of Mw due to an error AMz (E MFrue) - My*)) in Mz measurement is 

zAMz(= aAMz), (2.1) 

within the first order approximation. The slope a may be considered to be 

common for two predictions, since the difference is effectively of higher orders in 

the approximation we adopted in Eq.(2.1). The measurement of Mw also suffers 

from an error AMw . The error of the observed Mw relative to the predicted 

value MW (M,“b”‘)) is then 

A = aAMz - AMw. (2.2) 

We assume that the errors AMz and AMw are regarded as statistical variables, 

for which the normal distributions have variances a$ and a& respectively. In 

cases when AMz and AMw are independent, the variance of the statistical vari- 

able A is 

(2.3) 

Denoting by dw the difference between the tree-level and loop-corrected predic- 
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tions of Mw , a criterion for allowed experimental errors is given by the following, 

dw > 4azw. (2.4 

This enables the experiment to reject (at least) one of the predictions at the 

95%(2a)-confidence level, since this assures that there is no region of Mw simul- 

taneously belonging to the 2a-confidence territories of both predictions.* 

Grzadkowski et. al. claim that by using an another variable (Mz -Mw) a con- 

straint weaker than (2.4) is obtained. However, this statement is rather against 

intuition, and in fact can be proven to be wrong under the assumption stated 

above that the measurements of the MZ and MW are uncorrelated. Consider 

using a variable MC instead of Mw , 

MC-Mw-cMz, (2.5) 

where c is a constant parameter. In the same manner as before, the relative error 

between the observed MC and predicted MC is 

AC = (a - c)AMz - AM,. P-6) 

Note that AMz and AM, are not statistically independent under the current 

assumption. In any case, since Ae = A, the variance of A, is exactly equal to 

a&,, given in (2.3). Since the difference d, between two predictions of MC is 

equal to dw, one obtains the exactly same condition (2.4). The constraint is 

independent of the parameter c. 

* In [9] the coefficient of the right hand side of Eq. (2.4) is given as 3 instead of 4. This is 
because it is assumed that the data point is (with 100% probability) located in la region 
of the loop prediction. However, such an assumption is statistically invalid and the correct 
2a criterion should be Eq.(2.4). 
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Next let us assume a (quite unlikely) case where MC is measured indepen- 

dently (i.e. directly). In such a case, the corresponding condition is 

dw > 4d(a - c)“oz + a?. P-7) 

The c = 1 case of this condition is given in Ref. [9]. In such a case, (a-c)2 becomes 

very small compared to a2, since the actual numerical value of a is about 1.19. 

Accordingly as is demonstrated in Ref. [9], th e allowed area in (a~, a,)-plane is 

much wider than that of (a~, aw)-plane determined by (2.4). One should note, 

however, that the above improvement is very superficial and does not immediately 

mean the superiority of the variable (Mz - Mw) to Mw : The conditions (2.4) 

and (2.7) apply to totally different experiments and therefore does not allow 

direct comparison with each other without dealing with the details of “actual” 

experimental situations. 

A case where the same systematic error contributes to measurements of both 

Mz and Mw can also be discussed within the present framework. The errors 

AMz and AMw consist of two parts respectively: 

AMz = AMit + AMMSys, AMw = AM% + AMars. (2.8) 

Also in this case the relative error in MC is independent of the parameter c, 

AC = aAM$ - AM% + (a - l)AMsYB, (2.9) 

and the condition is written as 

dw > 4 4 a20i + a& + (a - 1)2~~y, 

where oiyB is the variance of AMarS. 

(2.10) 



2.2 ANALYSIS IN THE (Mz,Mw)-PLANE 

It is convenient to introduce a vector notation in the (Mz, Mw)-plane and 

denote the errors as 2 = (AMZ, AMw). We assume a general covariance matrix 

Vii G (xixj) for th ese variables. The probability distribution function is then 

given by the following, 

(2.11) 

where K is the inverse matrix of V and SKii! E CxiKiixi. In the region we are 

concerned with, the predictions of the tree level’ind loop-corrected electroweak 

theory give parallel straight lines (& and 421 in Fig. 2). 

A condition can be obtained by neglecting the variable along these parallel 

lines. Namely, we decompose the vector Z into the direction parallel to the lines 

.& and er (given by a unit vector Z) and the orthogonal direction (given by a unit 

vector G), 

z= s?i+ tv’. (2.12) 

Integrating P(x) over the variable s, we can obtain the “projected” probability 

distribution function F of t, 

where 

L-K- 
Kii . i.iK 

U’Kii ’ 
det’L= d$$. 

(2.13) 

(2.14) 

The matrix L has a zero eigenvalue since 

Lii=iiL=O. (2.15) 

The prime on the determinant means that this zero eigenvalue is excluded from 

the calculation of the determinant. Since the two predictions are projected to two 



points in the Csubspace, the condition at no-confidence level is that the distance 

between these two points is greater than 2nx [standard deviation calculated 

from L]. Because of (2.15), we can write this condition using any vector z(not 

necessarily parallel to v3 that runs between the lines lo and er as follows, 

cCLcC> 4n2. (2.16) 

It should be stressed that this condition is invariant under general linear trans- 

formation of the coordinates (i.e. data) x + Ux, since by definition K is simul- 

taneously transformed as 

K + U-ltKU-‘. (2.17) 

In particular, the previous analysis on the variable MC corresponds to the analysis 

in the coordinate system obtained by the transformation 

(2.18) 

Therefore it is obvious that the parameter c is irrelevant. 

Using the gradient a defined in (2.1), the unit vector ii is given by 

1 
4=&2 a * 0 (2.19) 

In this case, we find that 

iZLZ(= t25+LC’) =det ‘L (;g$)’ 
(2.20) 

1 
= V22 - 2aVl2 + a2Vl, 

(x2 - ax1)2. 

For the errors given by (2.8), the covariance is 

v= ( 4 + 2 4ys ui3ys 

b,ys 
4 + 2 

4y, > 

. (2.21) 
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A distance vector u?is given by 

(2.22) 

Using Eqs. (2.20), (2.21) and (2.22), we find that in this case the condition (2.16) 

for n = 2 reproduces the condition (2.10) exactly. 

The variable “s” along the direction parallel to the lines 6 and !r contains 

meaningful information. Actually, it corresponds to the third parameter, for 

example, the Weinberg angle. The projection discussed above disregards this 

information. If one is interested in finding the value of s, one needs to use the 

2-dimensional nu-confidence region in (Mz, Mw)-plane, which is an ellipsoidal 

region defined by 

(2.23) 

The definition and some values of the constants Rz,~ are given in the appendix 

A. If one of the lines .& or !r passes this region, the (tree or loop-corrected) 

prediction with the values of s belonging to the region (2.23) is accepted in the 

test at nu-confidence level. Thus, in order to have only one of the predictions 

to be valid, the confidence region (2.23) has to be such that the lines f!e and A!, 

cannot pass this region simultaneously. From elementary analysis, we find the 

width h of this ellipsoidal region (2.23) in the G-direction to be 

(2.24) 

Thus by using (2.15) g a ain we can express the appropriate condition in terms of 

an arbitrary difference vector dt as 

c?L&- 4R;,, , 

Note that the left-hand side of the above coincides with that of (2.16). (In the 

appendix B we prove this to be true in general.) Since Rz,~ > n, (2.25) is a more 
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stringent condition than (2.16). A n experiment has to satisfy this condition 

(2.25) ultimately to provide a definitive test of the loop effects. 

There is an alternative way to derive the condition (2.25). That is to regard 

the matrix K as a “metric” in the (Mz, Mw)-plane and obtain the “proper dis- 

tance” between lines .f$ and L!r under this metric. The condition is then that the 

proper distance should be bigger than the “proper diameter” R2+ of the region 

(2.23). This method gives a simpler derivation of (2.25) than the above elemen- 

tary method. It is also easily generalizable and is therefore used in the appendix 

B. 

3. Analysis with Additional Observables 

The analysis in the last section can be generalized to the situation of a theory 

with M free parameters when N (2 M + 1) quantities are to be experimentally 

measured. As before, the predictions can be judged in a projected subspace. The 

direction of the projection has to be chosen so that the resulting condition is most 

effective in discriminating the two predictions. Since the projected subspaces can 

be of 1 to N dimensional, N kinds of conditions result (at a given confidence 

level). In appendix B, we examine the above procedure and derive the following 

condition for the nu-confidence test in k-dimensional optimized subspace, 

DU’J) > 2Rk,, (k = 1 - N). P 13) 

The general definition of D (N) (the statistical distance between predictions) is 

given in Eq. (B3). For M=l, (B13) is a simple generalization of (2.16) and 

(2.25), since D2 (NJ is simply equal to (N-dimensional) 2Ld: The constant Rk,, 

is the radius of the nu-confidence region of the k-dimensional multi-variate nor- 

mal distribution (see appendix A and Table 1). The test in a smaller subspace 

requires a weaker condition for errors and thus is more effective than a test in 
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a bigger subspace (note Eq.(B14)), since it uses less number of independent ob- 

servables for testing. The weakest condition is given by the most effective test 

for discriminating two predictions, the k = 1 test (Rk,, 2 RI,, = n). 

Now let us return to the electroweak theory and apply the general formula 

(B13) to evaluate how the conditions on uz and ow are loosened by introducing 

additional variables to the analysis. For practical reason we assume that the 

errors are independent, 

(3-l) 

We denote a vector that gives the direction of the predicted parallel straight lines 

(to and &) by (ai)* , and a difference vector by (di). Then the condition (B13) 

is reduced to 

DfN) = > 4&z , (k = 1 - N) , (3.2) 

where rij s aidj - aidi. In this expression, it is evident that the component 

of d parallel to a is irrelevant. The normalization of the vector (ai) is also seen 

to be irrelevant. We observe that by dividing (3.2) by Ri,, the left hand side 

becomes a function of Rk,nui’~ (for fixed a and d). Thus in the following we plot 

the numerical results for the variables Rk,pi’s. As the third variable we adopt 

the Weinberg angle defined by’15’ 

M& sin2 8w = 1 - - 
M; ’ (3.3) 

and analyze the case with three variables (Mz , Mw and sin2 8~). Needless to 

say that the Weinberg angle defined above is to be measured independently, not 

being calculated from MZ and MW , so as to satisfy the assumption (3.1). 

* This corresponds to the vector p in the appendix B, but with wrong normalization. 
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For later convenience, we rescale all the variables xi’s so that they represent 

relative errors in the percentage unit at a reference point. The reference point to 

normalize the variables is chosen as 

Mz = 94.00 Gev, (3.4 

which determines other reference values through tree relations,+ 

Mw = 84.28 Gev, (3.5) 

sin’ 8w = 0.196. (3.6) 

To get a parallel vector, we differentiate the variables (normalized by the above 

reference values) with respect to Mz (/lGeV). The results read 

(3.7) 

where we have used Eqs.(l.l) and (3.3). 

For a difference vector d, we need a result of the loop corrections. Since 

any difference vector suffices, the corrections evaluated in any renormalization 

condition can be adopted as a difference vector. We take the renormalization 

condition in which Mz is fixed. As for the loop-corrections we include all the 

leading logarithmic terms[lG1 in addition to the pure one-loop terms. PI These 

terms dominate the corrections to the gauge boson masses and also the Weinberg 

angle defined by (3.3).[“’ We take 83.36 Gev[” as the corrected Mw in this 

t We use the pure tree relations which does not include even the so-called QED corrections 
to the muon decay width. 
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case. The resulting difference vector is 

’ dz 
dw 

. 4 

0.00 

-1.09 

8.90 
(34 

The numerical results are presented in Figs.3-5 by the use of the scaled vari- 

ables &cri’s. (Subscripts n and k are omitted in the figures.) In the following 

we mainly refer to the most effective k = 1 tests for the confidence levels of n=2 

(95% confidence) and n=l (68% confidence). It should be noted that in a very 

lucky situation in which the mean of the experimental data coincides with the 

one prediction, our conditions (for n=2 and n=l) effectively correspond to those 

of two times higher confidence levels (n=4 and n=2 respectively) to reject the 

other prediction. 

In Fig.3, allowed regions for errors of Mz , Mw and sin2 8w are illustrated. 

Horizontal sections of Fig.3 are expressed in Fig.4. It is readily seen that with 

an input of the information of the Weinberg angle, the requirement for errors 

are loosened. For example, one sees that at a precision of &+a0 = 5 in the 

Weinberg angle, the allowed errors for Mz and Mw are drastically increased. 

This corresponds to 2.5% error of the Weinberg angle measurement for 2a-test 

and 5.0% error for la-test. Since the relevant error range of MZ and MW are 

about 0.2% (n=2), ‘t 1 is at first surprising that an additional input with an order 

of magnitude larger error (2.5%, n=2) improves the situation. This, however, is 

explained by the fact that in (Mz , MW and sin2 Bw)-space the plane defined by 

the two parallel lines, A!$ and er, is almost parallel to the sin2 @w-axis, whereas 

the lines to and 41 themselves are not parallel to any of the axis. In fact, we have 

’ 9.49 

-9.43 

L -1.15 

and Eq. (3.7). Th e vector (3.9) gives the coefficients 7ii in (3.2). Since 712 is 

smaller than the other components by an order of magnitude and all ai’s are of 
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the same order, a a6 can contribute to D(N) with an amount comparable to that 

of ten-times smaller trz and aw . 

In order to illustrate the magnitudes of improvement more clearly, we take the 

following two special cases: 1. a~ = ow, which roughly corresponds to the present 

experimental situation, 2. Rk,noz = 0, which gives almost the same results with 

the Rk,+az - 0.2 (az - 0.1% for n=2) case expected in future experiments at 

Z-factories. [7’8’111 In both cases we define the improvement factor as the following 

I(Rk,d’tI) = 
uw (&,d’e) 

aw(m) * 
(3.10) 

where aw(Rk,,ae) represents the maximum allowed error for MW as a function 

of the error of the Weinberg angle. (Consequently, aw(oo) is the maximum al- 

lowed error without additional information on the Weinberg angle.) The function 

.I(Rk,,oe) is plotted in Fig.5. In case 1 the improvement becomes remarkable if 

ag < 2.0% (a0 < 4.0%) f or n=2 (n=l) test, where the improvement factor is larger 

than 2.3. Similar results are obtained in case 2. (The result for &az - 0.2 

is the same with this case within the thickness of the line in Fig. 5.) In this 

case the error of Mw becomes irrelevant if a@ < 2.2% (a~ < 4.4%) in n=2 (n=l) 

test. This indicates that in such region the two predictions can be completely 

discriminated only by the data of Mz and the Weinberg angle. 

In conclusion we have evaluated the requirements for errors of Mz and Mw 

which can establish the loop effects in the electroweak theory. By addition of 

the data on the Weinberg angle whose error is less than 2.5% in n=2 test, or 

equivalently 5.0% in n=l test, the allowed error for Mw is loosened by factor 1.5 

(in a~ = aw case) to 2.3 (in a~ - 0% case). 
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APPENDIX A 

In this appendix, we give definitions of constants RN,, for completeness. The 

no confidence region of an N-dimensional distribution P(x) is defined by 

where the constants RN,~ is the solution of the following equation, 

/ 

P(x)dNx = qn . (A2) 
RON+ 

The constant qn is the no-confidence level defined through the one-dimensional 

standard normal distribution: 

n 
-‘Zadx . a w 

After appropriate diagonalization and scaling, we find that Eq. (A2) is reduced 

to 
RN,,, 

-b2 N-l&. 
e a ?- 

. (A4 

Some of the numerical results are given in Table 1. 
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APPENDIX B 

In this appendix, we derive the conditions for the generalized case involving 

N-observables and M free parameters (in theory). The covariance and the prob- 

ability distribution functions for errors are as in section 2. We define a (positive 

definite) metric in N-space by the inverse-covariance matrix K: 

XY E xiyi G xiKi’yj, X2 Z XX. w 

(Summation over repeated indices is always assumed.) This metric is appropriate 

in the sense that the resulting proper distance is an effective difference (statistical 

distance) determined by the errors of the corresponding direction.* Hereafter 

geometrical properties, e.g., orthonormality, are to be defined through this metric. 

We have two predictions, each of which has M free parameters. These pre- 

dictions define two M-dimensional subspaces, which are assumed to be parallel 

(under the linear approximation as is explained in section 2) and characterized 

by an orthonormal basis {pa} (pa pp = 6,~) and a displacement vector, (di). 

In order to test a theory, one should determine in what space or by which 

variables a test will be performed. Tests are classified by the dimension k of 

the relevant space. A test in k-dimensional space (k-test) means that (N-k)- 

dimensional set of variables are integrated out and remaining k-variables are 

to be used for the test. In other words the original N-space is projected onto 

k-space. Since we are working in the linear approximation, it is sufficient to 

consider only linear projection. Hence we have N-kinds of tests performed in 

1 - N-dimensional spaces. 

In a selected k-space, the necessary precision is obtained by requiring the 

statistical distance D(k) between the projected subspaces is larger than no-radius, 

* This metric is invariant under general l inear-transformation of coordinates due to (2.17). 
By choosing an appropriate U, the metric K’j is transformed to 6’j. The following formulas 
may be understood intuitively in such a coordinate system. 
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& (its defi ni ion and numerical values are given in Table 1). The power to t 

discriminate theories can be maximized by choosing the direction of the projection 

SO that D(k) is maximized. 

First let us consider N-test or a test in N-space without projection. The 

distance D(N) between the two M-spaces is obtained by minimizing the norm 

of a vector d + sapa with respect to the parameters {sa}. One finds that the 

resulting distance vector is obtained by taking the component 6 of d normal to 

vectors p,, 

6 = d - (pad)pa , w 

and the distance is 

DfN) = b2 = d2 - (pad) (pad). w 

Thus the N-test condition for avoiding the situation that neither of two predic- 

tions can be abandoned, is given by 

D(N) > 2RN,n- w 

Next we proceed to a k-test. The induced probability distribution function 

is obtained by integrating out the variables spanned by ul (1 = 1 - N-k, 

qu, = 6l,) and is a function of the remaining variables v in the k-space; 

k _ 4det’ L 
j(v)d v - (2r)k,2 exp w 

where the reduced metric Lij is defined by 

. . . . . . 
La3 zz K1” _ +;, P6) 

and det’ L means the determinant taken in k-space. This reduced metric has 
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(N-k)-zero-eigenvectors: 

Lq = 0. Pm 

The “induced” distance vector s” in the k-space is obtained as a component of 6 

normal to the vectors pp in the sense of L-norm: 

s” = 6 - (~LPc4(PcYLPp)-1Pp, W) 

where (p,Lpp)-’ means the matrix inverse with respect to suffices CY and p. Zero 

eigenmodes of the matrix (p,Lpp) are understood to be excluded in the sum of 

(Y and ,8. The distance D(k) between the two subspaces projected onto k-space is 

the L-norm of 8, 
.., I 

Dfk, = @Lb) = b2 - (6um)(6u~)Mm~, Pg) 

where the matrix, 

is positive definite, since (ppLp,) is positive definite after excluding zero modes. 

Therefore we obtain the inequality, 

The equality holds only if the direction of projection satisfies 

6ul=O (forallZ=l-(N-k)). W) 

For a given k, one can always choose ui’s to satisfy the condition (B12) and 

obtain the maximized distance in k-space. (In N = 2, k = 1 case discussed in 

section 2, the unique solution of (B12) is u = p.) 
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In conclusion the optimized k-test imposes the condition, 

D(N) > 2&n. W) 

A trivial inequality 

Rk,, < Rkl,n for k < k’, P 14 

suggests that a k-test with a smaller k gives a weaker condition on the allowed 

errors. Therefore the weakest condition for discriminating two predictions is 

obtained by the case k = 1: 

DW) > 2R l,n = 2n. W5) 

The k = 1 test obtained above is related to that referred to in the mathematical 

literature as the most powerful test. ‘14’* 

It should be noted that k-test with N-observables is not equivalent to k-test 

with N+N’-observables. In fact, any addition of new data increases the distance 

(D(N+N~) 2 D(N)), due to the inequality (Bll). For example, when an (N+l)th 

independent datum with the distance bN+r and the variance a$+, is added, one 

finds 

DfN+l) = DfN) + 
h&+1 

4+1- &+1’ 
UN 

where bN+r and pN+l are the N+l-th components of 6 and p respectively which 

are properly determined in N+l-space. Thus one can always weaken the condi- 

tion for the necessary precision in a fixed-k-test by adding new data. If the new 

data have large errors, then the improvement on the condition remains small as 

is seen in Eq. (B16). 

* Strictly speaking, the most powerful test is the k=l test but with the confidence region that 
is infinite on one side, while our condition (B15) is given by the usual symmetric confidence 
region. Accordingly, our condition is a little stronger than that for the most powerful test. 
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N\n 1 2 3 4 5 

11 2 3 4 5 

2 1.515 2.486 3.439 4.397 5.361 

1 3 Il.878 12.833 13.763 14.697 15.640 1 

1 4 12.172 13.117 14.031 14.950 15.890 1 

Table 1. Numerical values of RN,~. 
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FIGURE CAPTIONS 

1. The tree and loop-corrected Mz -Mw relations are drawn. The solid section 

shows the la-range of masses determined by low energy sin2 6~ data. The 

circle roughly represents the present measurements of masses: The center 

is at the average of the UAl and UA2 results and the radius (3 GeV) 

corresponds to la region resulting from AMz = AM, = 2Gev (note that 

in Table 1, &,I E 1.5). 

2. Illustration of the quantities defined in the section 2. R is an example of a 

confidence region (2.23). 

3. The region defined by the condition (3.2) for the three-variable case is 

illustrated. Every coordinate represents the scaled variable Rk,noi, and its 

maximum value is 8. The thin lines show the sections of the surface at 

intervals of 2 for &naz and &+ow, and at intervals of 1 for &nOe. 

4. A projection of Fig. 3 onto the (Rk+Dz, &naw) plane. 

5. Improvement factor I(R k,nog) defined by (3.10) for the two cases. For a~ = 

0, I diverges for &+a0 5 4.4. 
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