
INTEGRATION OF THE VACUUM SCADA WITH

CERN’S ENTERPRISE ASSET MANAGEMENT SYSTEM

A. Rocha, S. Blanchard, J. Fraga, G. Gkioka, P. Gomes, L. Gonzalez, G. Riddone, T. Krastev,

D. Widegren, CERN, Geneva, Switzerland

Abstract
With over 128Km of vacuum chambers, reaching pres-

sures as low as in interstellar space, CERN is home to the

largest vacuum system in the world. Its underlying archi-

tecture comprises approximately 15 000 pieces of control

equipment, supervised and controlled by 7 Supervisory

Control And Data Acquisition (SCADA) servers, and over

300 Programmable Logic Controllers (PLCs). Their con-

figuration files are automatically generated from a set of

ORACLE databases (vacDB) using a Java application

(vacDB-Editor).

The maintenance management of such an amount of

equipment requires the usage of an Enterprise Asset Man-

agement system (EAM), where the life cycle of every

equipment is tracked from reception through decommis-

sioning.

The equipment displayed in the vacuum SCADA is au-

tomatically integrated in its user interfaces (UIs) based on

data available on vacDB. On the other hand, the equipment

available in Infor-EAM for maintenance management ac-

tivities (creation of work-orders, stock management, loca-

tion tracking) resides in its own database. This leaves room

for mismatches between what users see on the SCADA and

in Infor-EAM. Although manual imports of equipment lists

from vacDB to Infor-EAM are possible, the process is time

consuming, error prone, and only guarantees the correct-

ness of data while no equipment is added, deleted or mod-

ified in vacDB. Aiming to solve this issue, a web-based ap-

plication called vacDM was developed to ensure continu-

ous consistency between vacDB, Infor-EAM and CERN’s

dictionary database for equipment descriptions, the nam-

ing-DB.

Following the implementation of vacDM, the vacuum

SCADA was updated to allow the generation of Infor-EAM

work orders.

INTRODUCTION

Vacuum at CERN

Since the foundation of CERN in 1954 that its accelera-

tor complex has been in constant growth. As new acceler-

ators are designed and built to achieve higher energy

beams, the requirements on the vacuum levels in the accel-

erator chambers become stricter. In order to achieve the

specified beam lifetimes and also to reduce thermal con-

duction on cryogenic systems, the accelerator chambers at

CERN operate at pressures between 10#$ and 10#%&mBar,

achieved by a multitude of pumps, valves and gauges.

In order to meet the operational requirements, the vac-

uum control system has evolved over the years to what is

now a multi-tier architecture as illustrated in Figure 1.

Figure 1: Vacuum controls architecture at CERN [1].

Data from field devices is acquired by the PLCs that are

interconnected in CERN’s technical network. The PLCs

communicate with the SCADA server on the supervision

layer, where the incoming data is archived, processed and

displayed to the end user via dedicated consoles.

Data Engineering

The configuration of the SCADA and PLCs is performed

through the vacDB-Editor, where equipment can be added,

modified and deleted (Figure 2). The vacDB-editor stores

persistent data in vacDB, a set of ORACLE databases that

contains all of the required configuration parameters for

every device. From the data in vacDB the export module

of vacDB-Editor generates automatically the configuration

for the SCADA and PLCs, mapping SCADA datapoints to

memory locations in the PLC.

vacDB-Editor

SCADA	Configuration	Files

PLC	Configuration	Files

vacDB

SCADA	SERVER

PLCs

Figure 2: Control System Configuration Workflow.

The Need for an EAM System

With the increase over the last years on the number of

equipment under the responsibility of the vacuum group,

the task of tracking the location, stock levels and relation-

ships between equipment became almost impossible using

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA044

TUPHA044
490

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

traditional methods such as excel sheets. Several commer-

cial products are available in the market to aid in this task,

and the official product at CERN is Infor-EAM [2].

Infor-EAM provides functionality for vacuum in three

domains:

• Equipment Management – allows tracking of the

equipment under the responsibility of the vacuum

group for: location, works performed, and hierarchical

relationships (control hierarchy and installation hier-

archy).

• Work Management - creation of work orders on

equipment and post-analysis – who did what and

when.

• Stock Management - tracking of inventory levels and

equipment locations within the stock.

In addition, equipment is distinguished into three cate-

gories:

• Assets – physical equipment, labelled with a unique

barcode identifier. Assets can be installed in func-

tional positions or associated to other assets, forming

a hierarchical relationship.

• Functional Positions – placeholders for physical

equipment. The names of functional positions corre-

spond to the names of equipment seen in the SCADA.

• Systems – a logical grouping of assets or functional

positions.

The following terminology is also required for the un-

derstanding of the coming chapters

• Equipment Code – identifier for the type of equip-

ment. Example: HCVRGPT300 (TPG300 crate)

• Asset Code – identifier for a physical unique piece of

equipment. Asset codes contain the equipment code,

a manufacturer code and a sequence of digits. An ex-

ample of an asset code is HCVRGPT300-CR000056,

where HCVRGPT300 is the equipment code (in this

case a TPG300 crate), CR the manufacturer (CERN),

and 000056 the sequence number.

• Functional Position Code – an identifier for a func-

tional position. The construction of functional posi-

tion codes is subject to the naming conventions on

where the functional positions are inserted.

Problems When Managing Assets

Prior to the usage of vacDM, when new equipment was

received or manufactured, an asset code would be gener-

ated and a label printed and attached to the device for future

identification. The equipment would then be manually de-

clared in Infor-EAM so that the information about the new

asset could be introduced and the device tracked for loca-

tion and works performed on it.

According to registries held in excel sheets on the num-

ber of labels printed for each asset type, it was observed

that the number of labels printed did not match the number

of assets declared in Infor-EAM by several thousands, pos-

ing an issue for the traceability of vacuum assets. It was

determined that this issue arose due to the lack of tight link-

ing between the printing of labels and the declaration of

assets.

Problems When Managing Functional Positions

While it is possible to manually import all equipment

available in vacDB to Infor-EAM, this operation is time-

consuming, error prone, and frequently needed, due to con-

tinuous upgrades on the vacuum system of CERN acceler-

ators.

The Solution

In order to ensure that asset declaration in Infor-EAM is

tightly linked with barcode printing, and that functional po-

sitions are synchronized with vacDB with the correct de-

scriptions defined in CERN’s naming database, a web-

based application was developed. This application is called

vacuum data manager, referred to as vacDM. This paper

describes the functionalities implemented as well as the ar-

chitecture and the technologies involved.

OVERVIEW OF FUNCTIONALITIES

Asset Management in vacDM

Via a web interface (Figure 3), users are able to request

labels for new assets by choosing the equipment code. The

equipment codes available for label printing are displayed

in a tree structure, linked with CERN’s naming database to

ensure that only official, approved codes, are used.

After a user selects the equipment code and number of

assets to be created, vacDM accesses the Infor-EAM data-

base to check the latest asset sequence number printed for

this equipment code. The sequences of the new asset codes

are then calculated, combined with the official equipment

code description for the asset available in the namingDB,

and the assets are created using Infor-EAM’s SOAP API.

In parallel with the creation of assets, an email is sent to

the user responsible for printing the labels and a ticket is

created in JIRA for the printing job.

vacDM	Web	UI

vacDM	Server

namingDB

vacDM-DB

inforEAM	Server

inforEAM-DB

SOAP	APIJDBC

JDBC

REST	API EMAIL	API

MVIEW	GRANT
JDBC

Figure 3: Asset Management sub-system architecture.

The historical records of all asset requests, along with the

status of the creation attempts for each asset in Infor-EAM

are kept in the vacDM-DB. For assets that failed to be cre-

ated, a further import can be launched.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA044

Data Management and Processing
TUPHA044

491

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Functional Positions Management in vacDM

For functional positions, the main objective set for

vacDM was the elimination of discrepancies between data

stored in the vacuum SCADA, Infor-EAM, and the naming

portal. To achieve that (Figure 4), a materialized view on

the vacDM-DB joins the functional positions declared in

vacDB and Infor-EAM-DB, with the equipment code de-

scriptions in the naming-DB. This materialized view pro-

vides a transversal view on functional positions data and is

used by vacDM to check for inconsistencies between the

three databases. This materialized view is refreshed daily

or on-demand, and a scheduled job updates Infor-EAM

with the differences detected with respect to vacDB or

naming portal.

vacDM	Web	UI

vacDM	Server

namingDB

vacDM-DB

inforEAM	Server

inforEAM-DB

SOAP	APIJDBC

REST	API

MVIEW	GRANT
JDBC

vacDB

MVIEW	GRANT

MVIEW	GRANT

Figure 4: Functional positions sub-system architecture.

Work Order Generation from the SCADA

Having vacDB functional positions automatically syn-

chronized with Infor-EAM allowed for the development of

a Work-Order generation tool in the vacuum SCADA (Fig-

ure 5). Accessible with a right-click on every equipment,

the work order generation tool provides a subset of vacuum

relevant work order options (Figure 6) in relation to all

available fields in Infor-EAM.

Figure 5: Work Order generation in the vacuum SCADA.

Figure 6: Work Order Generation Tool.

After the user pushes the button Create WorkOrder, the

SCADA application opens a web browser with a pre-filled

WorkOrder.

ARCHITECTURE AND TECHNOLOGIES

The vacDM application is built around the Spring

Framework (Figure 7), and therefore it inherits many of its

architectural traits. Spring is a Java EE open source frame-

work created to address the complexity of enterprise appli-

cations development [3], and relies on the principle of In-

version of Control (IoC) by automatically managing bean

creation and dependency injection [4].

Figure 7: vacDM architecture.

This approach enables the development of java classes

in a loosely coupled fashion, promoting single-responsibil-

ity and separation of concerns. Several spring modules

were bundled together to address the requirements of

vacDM:

• Spring core – provides the basic functionalities of

spring such as bean dependency injection, lifecycle

management, auto-wiring, etc…

• Spring web-mvc – provides web functionalities on top

of the spring core using a model-view-controller ar-

chitecture.

• Spring security – provides authentication and author-

ization management.

• Spring LDAP – provides wrappers that simplify

LDAP operations, used to authenticate users against

CERN’s active directory database.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA044

TUPHA044
492

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

• Spring Data – provides functionality for database ac-

cess and support for transactions.

Taking into consideration Spring design principles,

vacDM was developed into a four-tier architecture, com-

posed of the presentation, business, persistence, and data-

base layers.

Presentation Layer

The presentation layer is responsible for the visual part

of the application. It runs partially on the web-server and

partially on the client’s browser. Once the static content of

the webpage is rendered by the server and sent over to the

client, the client then issues web-service requests to get,

update and delete data, according to the user inputs.

In the presentation layer, vacDM makes use of the

Apache Tiles view resolver on the server-side and of Boot-

strap, CSS, Jquery and Javascript on the client-side to han-

dle the aspect, animations, and API requests to the backend

server.

Business Layer

The business layer implements spring controllers for

handling web resources, restful web-services, and general

business logic. After receiving an HTTP request, the busi-

ness layer controllers might access data-access object

(DAO) functions in the persistence layer to get database

data. After the data is processed according to the business

logic and, depending on the requested URL, the business

layer controllers return a view, later processed by a view

resolver on the presentation layer, or JSON objects that will

trigger a renderization of the concerned module on the cli-

ent’s browser.

Persistence Layer

The persistence layer implements the DAO objects that

provide abstraction to the business layer of the database de-

tails. The classes in this layer follow the DAO pattern,

providing a Java interface to the business layer, and allow-

ing an easy swap of the implementation classes in case

needed.

Database Layer

The database layer is composed of Spring JDBC tem-

plate beans and CERN hosted ORACLE databases. DAO

classes access database parameters through the Java Nam-

ing Directory Interface (JNDI).

Security

The application is secured using Spring Security, a

Spring module that provides the backbone for managing

authorization and authentication, being customizable to ad-

dress specific user needs. The vacDM spring security mod-

ule was customized to obtain user authentication from

CERN’s active directory database. This was done to avoid

the duplication of accounts between CERN’s infrastructure

and the vacDM service.

For authorization, vacDM implements a concept of user

roles. A set of roles is associated with each user, being the

roles what defines which pages or web services the user

will have access to.

Out of the box and with minimal configuration required,

spring security provides a login/logout mechanism, and

protection for cross-site request forgery (CSRF), session

fixation, and the ability to secure the application at the

method level.

Servlet Container

The servlet container chosen for the application was

Apache Tomcat 8, an open source implementation of the

Java Servlet, JavaServer Pages, Java Expression Language

and Websocket technologies. It is used in several large-

scale and mission-critical web applications across a diverse

range of industries and organizations [5]. Tomcat is as of

2017 the most widely used application server for Java [6],

having a large developer community and plenty of online

support resources.

DEVELOPMENT STRATEGY

In order to minimize the risk of propagation of software

faults to the production server, a continuous integration

pipeline was set up using a Continuous Integration (CI)

server (replica of the production server) and the gitlab plat-

form (Figure 8). After every git push, the vacDM CI server

pulls the affected branch, runs units tests, builds the appli-

cation using maven, and deploys it locally to http://vacdm-

dev/{branchName}. This allows developers to test their

feature branches in an environment similar to the produc-

tion server.

vacdm	servervacdm-dev	server

Development	Machine

GitLab	Server

git	push

git	pull

deployment deployment

http://vacdm-dev/{branchName} http://vacdm/

Master	branch	copy

vacDM-DB	dev vacDM-DB

Figure 8: Continuous Integration architecture.

All git push commands on the master branch are auto-

matically deployed to http://vacdm-dev/, allowing devel-

opers to test the next release of the application. From

Gitlab’s user interface, developers can trigger an automatic

deployment to production. Upon a deployment to produc-

tion, the CI server stops the tomcat service on the produc-

tion server, copies the web application and restarts it. This

enables an automatic application deployment in less than a

few minutes.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA044

Data Management and Processing
TUPHA044

493

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

CONCLUSION

The first version of vacDM was successfully put in pro-

duction and is now managing over 9000 pieces of vacuum

equipment in the LHC. With no further developments re-

quired, the SPS and CPS machines will also be integrated

in vacDM, after the completion of an on-going database

consolidation campaign. This will enable the vast majority

of vacuum equipment to be managed in Infor-EAM, im-

proving the tracking of equipment throughout its lifecycle.

After 6 months of usage of vacDM, the number of ghost

assets (with label printed, but not declared in Infor-EAM)

has been reduced to zero. Similarly, 100% of the SCADA

functional positions targeted to be managed in Infor-EAM

have been successfully imported.

FUTURE WORK

To ensure further consistency with CERN’s layout data-

base, vacDM needs to be updated to also import layoutDB

names as aliases on the equipment it creates in Infor-EAM,

along with the database links between Infor-EAM and lay-

outDB, to allow the navigability between the layoutDB

portal and Infor-EAM.

On the SCADA side, several new features will be devel-

oped to improve the user experience:

• Direct links from the equipment menu in the SCADA

to the layoutDB webpage

• Direct links from the equipment menu in the SCADA

to the Infor-EAM webpage

• Automatic WorkOrder creation upon detection of ab-

normal conditions, such as equipment failure or over-

pressure.

REFERENCES

[1] P. Gomes et al., “The control system of cern accelerators vac-

uum [current status & recent improvements]”, in Proc. In-

ternational Conference on Accelerator and Large Experi-

mental Physics Control Systems 2011 (ICALECPS’11),

Grenoble, France, Oct 2011, pp. 354-357.

[2] D. Widegren, “Asset & Maintenance Management at CERN

with Infor EAM”, private communication.

[3] A. Mukherjee, Z. Tari, P. Bertok, “A Spring Based Frame-

work for Verification of Service Composition”, in 2011

IEEE International Conference on Services Computing

(SCC).

[4] Spring Docs,
https://docs.spring.io/spring/docs/cu-
rrent/spring-framework-refe-
rence/html/beans.html

[5] Tomcat, https://tomcat.apache.org/index.html

[6] Plumbr, https://plumbr.eu/blog/java/most-popu-
lar-java-application-servers-2017-edition

,

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA044

TUPHA044
494

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

