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order corrections to semileptonic weak processes are related to the 

high energy behavior of lepton-lepton weak scattering amplitudes. The 
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cross sections for pure leptonic processes deviate significantly from 

the low energy phenomenological predictions. A phenomenology for 

describing similar deviations in high energy neutrino-nucleon reactions 

is developed. A sum rule relating such deviations is derived, as well 

as estimates of their order of magnitude using the parton model. 
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I. INTRODUCTION 

It cannot be questioned that the structure of weak interactions as we know 

them today will be modified at high energy. Modifications will certainly be 

important at center-of-mass energies of about 600 GeV, for which the present 

lowest order theory would violate unitarity, 192 and it is probable that they are 

important at considerably lower energies. 3 Most likely, new classes of states, 

such as intermediate bosons, will be produced at some characteristic center- 

of-mass energy A, which we may hope is within range of the present generation 

of accelerators. But in any case, the presence of important modifications at 

higher energy requires, through the dispersion relations, small modifications 

of the present picture at lower energy. The purpose of this paper is to study 

such modifications, mainly to semileptonic weak processes. The method of 

attack generalizes the approach used in a previous paper, 4 hereafter called I, 

in which pure lepton-lepton’ scattering amplitudes were studied from an S-matrix 

point of view. Here, as in I, we assume 

1. Electromagnetic effects can be neglected. 

2. Lepton masses can be neglected. 

3. The low energy limit of the lepton-lepton scattering ampli- 

tude takes the conventionally assumed charged current- 

current form. 

4. The full amplitudes exhibit the SU(2) symmetry present in 

the low energy (i. e. , few GeV) region, in which the SU(2) 

multiplets are (e, p) and ( ve, ZJ~) doublets. In addition, the 

amplitudes are symmetric under the interchange 

As a consequence of these assumptions, it was shown in I that all two-body 

lepton-lepton scattering amplitudes may be described by three helicity amplitudes, 
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A(s, t), B(s, t), and C(s, t). These amplitudes were parameterized as a double 

power series in s and t, plus small unitarity corrections, which are easily 

computed from Mandelstam’s iteration method. Thus, for s and t large enough 

that lepton mass can be neglected, but small enough that the series converges, 

we may write 

AW) = a10 Gs + CELL 2 + allG 2 st+ . . . 

B(s, 4 = P,, Gs + P20W 
2 

+ P,, G2 st + . . . (1.1) 

C(s, t) = ylo Gs + Yap 2 + yll G 2 st f . . . 

where alo= 2. We have neglected the unitarity corrections in (1.1) because 

at attainable energies they are quite small. However, the corrections pro- 

portional to Q! ij,pij, yij are not necessarily so small. Other than alo, these 

coefficients are poorly determined from present limits on lepton-lepton 

processes. \ 
These amplitudes (1.1) may be represented by an effective Lagrangian of 

the form 

+ 2 (fyp(l-y,)Q [l-G (@‘F;“) $1 Hp(1-y5)Q + (Q-v)) 

+ 2 n;l,(l-y,)Q k-Gry;;20) -3 2Cl-r,, v 

+ 2GFo ir 
P 

(l-y5)v ;rpv(l-y5)Q+ G'+ (Xrpv(1-~5)Q~~pV(l-~5)Q+(vc-Q)) 
10 

+ 2&i r (l-y,)i! ;rpv(i-y5)~ -k . . . 
50 pv 

(1.2) 
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where 

and 

r ’ 
PV 

=i (ypTv +rpyv 
) 

z,= . 

This Lagrangian describes many lepton-lepton processes in terms of a small 

number of parameters. Of course, we have paid for this economy of description 

with the strong assumption that the SU(2) and discrete symmetries which are 

-valid in the few GeV region will continue to hold at higher energy. 

One may inquire whether the number of parameters can be reduced further. 

Since we have only imposed the discrete symmetry v -Q, the effective Lagrangian 

is not invariant under the full SU(2) associated with the doublets Ce) and (>I * 

To achieve this SU(2) symmetry, it is necessary to impose the additional con 

constraints 

a mn+Ymn= pmn ’ (1.3) 

This, however, will force the existence of large neutral currents and will, in 

general, lead to trouble when we include hadrons. 5 We will return to this ques- 

tion in the next section. 

We now proceed to generalize this description to include the hadrons. The 

idea is to formulate the concept of lepton-hadron universality sufficiently 

strongly to allow a direct transcription of the effective Lagrangian (1.2) to in- 

clude hadronic processes. This is done by observing that the basic elements 

in that Lagrangian are two infinite towers of local operators of increasing tensor 

rank, one for electrons, and one for muons: 

jr-l=A- 
i 2 ~ ~Tit1-Y5)lll , f$” = Jj $rpv qi-y5)+, . . . 

. . . Si I-ll. * 4, = + i-j y +i+ . ..?$ 
CL1 CL2 

7-i(l-y5)?J, . . . (1.4) 
n 
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where zj equals either (“) or cr), ~~=l, and TV, i=l,2,3, are the Pauli 

matrices. The members of a tower close under equal-time commutation with 

one another, and a member of one tower commutes with all members of another. 

Mack’ has shown that a similar tower of hadronic operators hy, Tr” , . . . 

exists as a consequence of the scaling behavior of deep-inelastic lepton-hadron 

scattering. This tower consists of the coefficients of the expansion about equal 

times of the light-cone commutator of two hadronic currents. Upon adopting a 

free-field light-cone algebra, such as that of Fritsch and Gell-Mann, 7 the equal- 

time commutation relations of the elements of this hadronic tower of operators 

will likewise be those of free fields. All this suggests a complete isomorphism 

can be extended to the effective Lagrangian (1.2). Just as (1.2) is invariant 
V 

under the permutation 
00 

e4-+ v1-1 , 
,e- 

we assume it is also invariant under per- 
cl-1 

mutation of all the elements of a leptonic tower with corresponding elements of 

the hadronic tower. This indeed determines the form of the effective Lagrangian, 

now generalized to hadrons. One simply makes the replacement 

.i * . * - J’ 
j/J P 

= j; + h1 , 
P 

Si -+ ,$ = $ + Ti 
w PV IJV CLV 

, etc. 

The important feature is that no additional parameters are introduced in this 

generalization. 

We shall explicitly write down this effective Lagrangian through second 

order in G. We begin by writing down the lepton currents 

j!(x) E (j!(x))’ = v (x) F(l-q& Q(x) 

which satisfy the equal-time commutation relations 

[ f$, (0, jfto) 1 = 4jiE 0) S(;;i 

(1.6) 

(1.7) 
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and 

C 
j:i;;,O), jj (0) = 4&j jO,(Z, 0) S(Sij - 4ic - 1 ijk .k- 

JO@’ 0) St2 (1.8) 

where we have the definitions 

3 tx) 7’%-r,) v tx) - f(x) #%-Y~) Q(x) I 
(l-9) 

j:(x) zz -$ [; W 741-r,, v 64 + h> 4-br,, e(x)] 

V 
These four currents are each isoscalar in the SU(2) in which Q z ; and v = 

( ) 
e 

0 vP 
transform as doublets, while they form a triplet and a singlet under the SU(2) 

‘V 
associated with the doublets e E ee ! ) 

and /J G 
( 1 

VP . The second-order 
P 

effective Lagrangian (1.2) may be written in terms of these operators and the 

additional operator S1 TV defined in (1.4). The SLv appear in the equal-time 

commutators of the currents with their time derivatives. The vector part of 

the tensor s”” f $ rpv 1c) is just the stress-energy tensor for free, massless 

leptons . 

To introduce the hadrons, we begin with the usual Cabibbo current. In the 

quark mnemonic it is 

h:(x) z [h!(x)]’ = c(x) p(l-r,) n’(x) (1.10) 

where n1 has the Cabibbo mixing, n’ = n cos 9 c + h sin Bc, and p, n, h are the 

usual triplet of fractionally charged quarks. Upon postulating that B(x), h~(y~xo~yo 

satisfies the same algebra as the lepton currents, (1.7) and (1.8), we may define 

hP and hP 8 3 0’ More generally, when we postulate that these four hadronic currents 

satisfy the same light-cone algebra as the four lepton currents J,, ‘P jg, and jg, 

the remaining members of the tower of hadron operators are defined. In par- 

titular , the operators TyV corresponding to the lepton operators TV are, in 
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the quark mnemonic, just 

TI-l’ = i 
i 2 rpv (I-~~) x (1.11) 

where x = (p,n’). Our assumption that the U(2) quartet h! satisfies a free 

Fermion light-cone algebra is just a weakened version of the Fritzsch and 

Gell-Mann proposal for the U(3) x U(3) nonets. 7 

Defining $3 jy + hy and 8” z Syv + TrV, 
1 

we state our complete second- 

order effective Lagrangian: 

“’ Jkp’ +- 
4Y11-3Y20 a2 

050’o 3 \ 
1-G 

490 3X2 

(JoP I- J3P\+ 2G - a2o #Q 
(“10 - +clv 

+ 2G F. (19;’ 0 oE.lv + 6zv 8 3pv) + 2G ~o-(O~v -et’) (eopv+ G3pv 

(1.12) 

It is important to observe that in using the quark mnemonic, one implicitly 

excludes the possibility that hi Ti 
P’ PV’ 

and the rest of the tower are a sum of 

independent pieces, each of which is isomorphic to the lepton tower. Our results 

can be greatly modified if this is the case. An important example is the SU(4) 

structure advocated by Glashow, Iliopoulos, and Maiani. In that scheme, 

there are two hadron towers, The first contains the Cabibbo current formed 

tiom ( “,,‘ , and the second is built from ( ) St! 9 where q is an SU(3) singlet and 

A’ = A cos Bc - n sin ec. This has important implications for the structure of 

the neutral-current part of the effective Lagrangian, because anywhere an 

operator of structure ii1 rn’ appears, our symmetry assumptions require it to 
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appear in the combination 

iiTnf + htrhf = iirn + An . (1.13) 

Thus in such a case, the effective Lagrangian contains no AS= 1 neutral-current 

terms. 

The Lagrangian (1.12) generalizes the leptonic effective Lagrangian which 

neglected lepton mass. In the presence of lepton mass, the effective Lagrangian 

contains additional terms which destroy its V-A structure and p-e universality. 

In the hadronic generalization, there are very likely similar additional terms 

in the effective Lagrangian as a consequence of chiral and SU(3) symmetry 

breaking. While it is important to recognize the possibility of such terms, this 

problem is beyond the scope of the present paper. 

In the rest of this paper, we shall apply the effective Lagrangian (1.12) to 

semileptonic processes, generally assuming the “quark” light-cone algebra of , 

Fritsch and Gell-Mann. In Section II, we study the limits on p,, and yIo from 

experiment, in particular the decays KL - p’p-, K+ -+ ~+v v and the K-K mass 

difference. We then study the consequent stringent limits on processes involving 

AS=0 neutral currents, such as vP +p - vicL + hadrons. By relating PI0 and ylo 

to high energy lepton-lepton scattering and using the dispersion relations in I, 

we are able to estimate the “weak cutoff” A. We find A 5 4 -16 GeV. This 

low cutoff implies a lower bound on the parameter crzo and/or allo 

In Section III, we discuss the modification of high energy neukrino processes, 

both elastic and deep inelastic, which follow from the nonvanishing of a20 and 

aI1. We derive a sum rule which relates the modifications in deep inelastic 

neutrino scattering due to the o!2o correction in (1.9) to the equal-time com- 

mutator [J”+, BCyP]. There is a large family of related sum rules which can be 

obtained from the other equal-time and light-cone commutators. The content 
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of these sum rules can also be obtained simply from parton model estimations, 

which we present. 

II. LlMITS ON THE PARAMETERS cz, p, y 

The extension of the formalism of I to include hadrons can lead to much 

stronger constraints on the theory. The success of the conventional theory for 

I AQ I = 1 transitions dictates that alo = 4 &, and for these processes we will be 

interested in the higher order corrections proportional to c”Il and cz20. Upper 

bounds for p,, and ylo are easily obtained from the experimental upper 

bounds’ ’ I0 for the AS=l, aQ=O processes KL--p+~- andK+- 7r+v;, 

respectively, provided the hadron currents satisfy the r7quark11 algebra. The 

small K -K mass differences provide another, more stringent, upper bound L s 

on P,,. We will calculate these bounds below and then translate them into an 

estimate of the cutoff A and a lower bound for 01 2. a.Wor all. 

First consider yIo. The rate for K+ - 7r+v V is very simply related to the 1 

rate for Ke3 decay: 

r(K+-r+, ; ) r(K+ - nfveGe) YlO ’ 
2 

= 
r (K+ - 7r”e+ve) 

+ = 2 cos2 8 - 
I I 

(2.1) 
F(K - 7r”e+ve) c 90 

where ec is the Cabibbo angle. The experimental upper bound’ on (2.1) is 

- 8 x 1O-6 , and the upper bound on ylo is then 

IyloI 3 

I I 
< 2x10 . 

90 - 

We may similarly bound p,, by considering 

r(KL - cL+/-a ’ PlO 

r oc+ - 4 p) 
= 4 cos2 ec - 

I I 90 
(2.3) 
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The experimental upper bound 10 may be smaller than the bound given by 

unitarity and TCP. If such a limit is confirmed, clearly something is lacking 

in the description we give here. Here we take the result of Carithers et al., 10 

- 1 x 1o-8 for the branching ratio I?(KL - pp)/I’(KL - all), and we find 

’ PlO 1 I -53x10 -5 

90 
(2.4) 

A more stringent bound on PI, can be obtained by exploiting the smallness 

of the KL - KS mass difference. 11 We relate the mass difference to the non- 

leptonic AI= 3/2 Hamiltonian responsible for the decay K+ - 7r+n”. Our strategy 

is to use soft pion techniques 12 to relate the K+ - 7r’7r” amplitude to the matrix 

element < K I (J+ . J- )27 I 7~ . We then assume exact SU(3) symmetry to relate 

that matrix element to the K”-go transition amplitude. We neglect the contri- 

butions of the p,, and ylo terms in LZ’ to K’ - ~T+T’, since, according to (2.2) 

and (2.4)) these are small compared to the factor of - l/20 which characterizes 

the suppression of AI= 3/2 in the J+. J product. We also neglect possible elec- 

tromagnetic contributions to K’- *+7r”, although they are important in some 

model calculations. 13 Because of all these approximations, it is clear that the 

result should not be regarded as anything more than a guide to the order of 

magnitude of PI,. 

The K+ decay amplitude is 

&49P,,P+) = -1 - G<K+~k)lJ~*J+I?p~o~nf~+~, . 
$z 

(2.5) 

The amplitude has AI= 3/2 because of the Bose statistics of the pions, so it is 

important to carry out the soft pion calculation in a way which respects Bose 
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symmetry. By the usual soft pion techniques, we have 

~&O,p+) = - G Fn -l’K+F,I[Q;, J-• J+]I&+b , P-6) 

where QF and Qi are axial vector and vector charges, respectively and F*N .95 mn 

is the 7r* decay constant. Since Qz+Q3 commutes with J 0 J+, we may replace 

QE by -Q3 and let it act on the states. The result is 

d(k,O,p+) = g <K+@)IJ-• J+‘T+@+)> 
7r 

(2.7) 

and, similarly, 

II 
(2.8) 

Now, in order to maintain Bose symmetry and to isolate the AI= 3 2 conlribu- 

tion to <KI J+ * J I r>, we consider the amplitude , 

(2.9) 

Upon performing an SU(2) rotation, followed by a V-spin rotation, we find, using 

the quark mnemonic for the currents, that 

ddO%P) = & cos 13~ sin Bc <K’(k) Inrc,(l-y5)h ii?j*(l-y,)pI T?@) > 
71 

N - & cos ec sin Oc <K”lGyP(l-y5)h kf(l-y,)A IITf”> 
?T 

(2.10) 

We now may relate AY to the KL-KS mass difference, which is 

2e 
’ <K”lii~~(1-y5)h n#$-y5)AIKo> (2. 11) 

Using the experimental values for AZ and AmK, 14 we find that 

-6 . (2.12) 
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Sum Rules 

We now use the dispersion relations stated in I to relate p,, to cross 

sections for lepton-lepton scattering. The relevant amplitude is for the process 

v +v -v +v 
P e P e’ 

which is described by the amplitude B(s, t). As in I, we 

evaluate dB (s , O)/ds 1 s=. , assuming an unsubtracted dispersion relation for 

B(s, 0). The result is the sum rule 
co 

1 
P,oG=?r o 

J 1 
+ 

‘pVe 
(s) - ‘3 - (s) . 

‘pVe 1 (2.13) 

where CJ 
VpVe 

is the total vPve cross section. The leading contribution to the 

integral at low and intermediate energies is the allowed first-order process 

‘pVe - p-e+, the cross section for which is 2 G2s/37r in first order. 

Let us define the ltcutoffll A as the center-of-mass energy at which the 

correction terms become as important as the first-order term of the Fermi 

theory. Then the low energy portion of the dispersion integral s 5 A2 can be 

estimated, We consider it unreasonable that it be >> the total integral. 

Consequently 

9 = 2 G2A2 

3a2 
(2.14) 

Using the bounds on PI,, we estimate that 

16 GeV KL - /-@ 
As (2.15) 

5 GeV L?‘mK 

This result implies that the low energy region does not account for the magnitude 

Of 90 calculated according to the sum rule 

(Q!~~+~~~)G 2 alOG = f (2.16) 
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It is not too hard to account for the remainder coming from s 2 A2 if there is 

e.g., an intermediate-boson resonance in tee scattering. 

With an additional %moothness” assumption about the convergence of the 

series (1. l), we can show that an upper bound on A implies an estimate of 

a20 and/or all, which increases as A decreases. We assume that for s = A2, 

the lower-order correction terms, such as Quip or alI are much 

larger than the higher-order corrections, such as E~~(GS)~ with n > 2. Then 

in 

A(s,t) z cxlo(Gs) + CZECH + oII(Gs)(Gt) + . . . 

we expect that for s cz A’, the second and/or third term is of the same order 

of magnitude as the first, implying 

‘%-I1 1 
I I cYIO =Gfl2 and,‘or ‘\cLq_ 

F- 
1 

101 GA2 
(2,17) 

Thus, if the Lagrangian (1.9) is correct and if A is accurately expressed by 

Eq. (2.15)) it may be feasible to find deviations from the Fermi theory in cur- 

rently planned high energy neutrino experiments. Notice that this last quali- 

tative conclusion is independent of whether or not (1.1) converges smoothly. 

That is, if there are pathologies such that ‘YANG A2 -CC al0 and orlIGA 2 << olo, 

then corrections will be present due to the higher-order terms in (1.1). How- 

ever, we emphasize again that these estimates all depend crucially on the assump- 

tion of the “quark” current algebra. With the SU(4) mechanism of Glashow, 

Iliopoulos, and Maiani, 5 the neutral currents have no AS= 1 contribution (apart 

from symmetry-breaking effects neglected throughout this paper), and this 

entire section becomes null and void. In addition, our estimates rely on the 

unsubtracted dispersion relation (2.13), an equally hazardous assumption. 15 
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The implications of a large value of cr20 for high energy neutrino reactions 

lie in the breakdown of the “locality theorems” used in the analysis of these 

reactions. 16,17 In particular, one of the methods which has been proposed to 

determine the neutrino flux at NAL is to use the predicted constancy in Ev of 

the cross section for an exclusive process (such as Vp -) ,& or vp --) FA*) or 

a group of such processes as a method of normalizing neutrino flux. ‘* There 

will be corrections of the form 
[ 
1 + K @20 

- t-4 
o10 1 with the constant K of order 

unity and proportional to the (model-dependent) matrix element of I” between 
P 

the hadron states in question. Thus K will vary from process to process, and 

a test for the presence of such a locality-breaking term is measurement of the 

dependence upon neutrino energy of ratios of exclusive cross sections. 

III. NEUTRINO-NUCLEON INTERACTIONS 

A. Kinematics 

We consider the terms in the effective Lagrangian (1.9) responsible for 

the process 

up + N - ~1~ + hadrons 

where N is a nucleon. Those terms are 

9 eff 

+2G~fiPpu(l-y) v TFv 
90 5 /J+ 

where hcl and Tpv are stated, in the quark mnemonic, in (1. 10) and (1.11) and 

PCLV is defined following (1.2). 

We now proceed from the effective Lagrangian to the differential cross 

section, using the method of Lee and Yang 19 and the notation and approximation 

of Bjorken and Paschos. 20 We work in the laboratory frame and choose the 

- 14 - 



z axis along the direction of the momentum transfer q between lepton system 

and hadron system. We define n to be 

77 =-G 4all- 3a20 3 = -G 

4alo dx2 
\ Q2 

in momentum space. Then the amplitude is 

Ih~tO) IN> (1 + 7)) 
(3.2) 

+;G z [(p+pl,, j&P,p’) + (P+p’L jv@,p’)] <nlTy” IN> 

where n is the hadronic final state. 

We will be interested in the interference term between hll and T PV 
; since 

hp supports only AJz = 0, kl transitions, only those pieces of TFv possessing 

AJz = 0, &tl will contribute. We decompose (p+p’), and the lepton current 

jcl (p, p’) into contributions of definite AJz , following the notation and approxi- 

mations of Ref. 20. 

j (p pt) g 4 xEE’Q2 I r- 
P ’ V 

(3.3) 

@+p’), = 
J- N -$ {(E’+E) e;+ L&-&- (,;+ $)} (3.4) 

with 

Es= v 
P f Q2 

CR = -L (0, 1, i, 0) 
p h 

4 = L (0, 1, -i, 0) 
lJ Lfz 

. 

P-5) 

If the states In> and IN> are eigenfunctions of Jz (as may be chosen for 

“elastic7’ processes without polarization measurements or for inelastic processes 
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\ 

without detection of final hadrons), then the contributions of the different heli- 

cities may be considered separately: 

G J=? d&ds = 4 - 
di v 

<nle s* h+(O) IN> tl+v) 

o-20 Q \r” 
++G-- 

90 v 
(3.6a) 

G&Zip AR=4- 
h v 

<nle R ’ h+(O) IN> (I+ rl) 
/ 

o20 Q P +;G-- 
@lo v 

(3E+E’) eEv + <nlTCIV(0) IN> (3.6b) 

<nle 
L l h+(O) IN> (I+ 11) 

+;G”zo $ (3E’+E) eL + 
90 PV 

<nlT”(O) IN> J (3.6~) 

where 

S 
% 

SE 2ESES + ER EL + EL CR 
PV PV PV 

R zz AR+ CR2 
I 

% I-1 v P v (3.7) I 

L 
Epv z AL+ EL2 pv pv * 

Thus the cross section for producing hadron system I?, averaged over azimuthal 

angles to remove interference terms, is (cf. Eq. (2.8) of Ref. 20): 

s d$ do 
2n dQ2dv dI’ 

2 $ $-$ 6-g) x {$$ [(1+2Re$+(E+E’) 6s(Q2,v,r)l 

E’ daR 
+ 2~ r (1+2Re r7)+ W-W $JQ2,v A] 

+ & $$- [(1+2Req) + (3E’+E) k(Q2, v , (3.8) 
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where 

di(Q2, v, r) = alo ’ pvnel? 
<N ley l h-lnxnlT~VIN>64@n-PN-q) 

2 
ncr 

I<nl ei. h+lN> 1264@n-PN-q) 

and 

d2 1 -= 
dr 2&v c 

ncl? 
l<nlei. h+lN>12 (2@364@n-PN-q) 

Our normalization of states, for both fermions and nucleons, is 

q lp’ > = 2p” (27r)3 63(p-py 

For antineutrino processes, we have a similar formula. Because the 

lepton current jp and the tensor S 
PV 

undergo a relative sign change in crossing 

from particle to antiparticle, the correction term changes sign: 

‘dcJ dG G2 E’ Q2 =2Ev [I-&) n~$$S[(l+2Re$-(E+E1)&S(Q2,v,F)] 
2n dQ’dvdI’ - 2n 

+ g ‘$ [(1+2Req) - (3E+E’) 8,(Q2, v , Fd 

with 

+ &,g [(1+2Req) - (3Et+E) 8,(Q2, v ,F) 
I) 

(3.9) 

Re Go” ’ PC i -- 

6i(Q2,v,r)= 
crio ’ ncr % 

<N le; * h+InxnlT?N> 64(pn-PN-9) 

c 
ncr 

I<nlei* h-lN>12 64@n-PN-q) 

and a definition of dFi/dI’ analogous to that of d$ /dF . 
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In the approximation of neglecting AS= 1 processes we have, from charge 

symmetry, relations between 6i and zi : 

$(vp) = $(Gn) 

Gi(vn) = Zi(Cp) . 
(3.10) 

B. An Analogue of the Adler Sum Rule 

All the techniques 21 which have been used to study the processes eN ‘-c eX 

and UN - PX in lowest order in electromagnetic and weak interactions may also 

be applied to the higher order corrections 6i. Thus there are analogues of 

1. The Adler sum rule, 22 

2. The asymptotic sum rules obtained from the equal-time 

commutators of the space components of the currents 23 

3. The sum rules of light-cone current algebra, 7 and 

4. The simple parton-model calculations. 24 

It would be premature at this time to present all these relations in full 

detail. We choose to confine our attention to the most important sum rule, the 

analogue of Adler’s* We will also consider the parton-model because it 

embodies the content of the sum rules, is simple, and may perhaps be a useful, 

relatively parameter-free guide to the order of magnitude to be expected for 

the corrections 6i. 

The Adler sum rule is easily obtained by the method of Fubini, Furlan, 

and Rossetti. 25 We consider the amplitude (spin-averaged) 

Tc”op(q, P) = -i sd4x eiq’x < P IT* K(x) T:@(O)) I P > (3.11) 

which may be written in terms of scalar form factors as 

Tclop(q, P) = #PcyPp A(q2, v) + q’PcyPp B(q2, v) + . . . (3.12) 
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TpaP - is the covariant T* product, with its divergence condition presumably 

free of Schwinger terms, so that we have just 

q 
P 

Tpap(q, P) = {d3x eeiG’ < P I [hy(??, 0), T:@(O)] I P > 

= 4 <PIT$O)IP> 

=4PaPPc+ . . . (3.13) 

In the sum rule, we are only interested in terms proportional to PaPp, so we 

QP may ignore the pseudotensor part of T3 . Now the strangeness-conserving 

part of T3 op has the SU(3) structure 

1 z 0 0 

tg= 0 -+ cos2 8 i cos Bc sin 0 \ 
C c ’ (3.14) 

0 Jjcos ec sin 8 -+ina 8 C C i 

which, if we neglect terms of order Bc , is just equal to the isospin matrix, 

l/2 

tb Lx t3 = -l/2 ) (3.15) 

0 

QQ In this approximation, T3 is the first of the tower of tensor operators which 

cause the inequality of the deep inelastic electron scattering scaling functions 

for the proton and the neutron. A simple calculation’ shows that the parameter 

C in Eq. (3.13) is then given by 

c=3 J1 dx (F2pw - F2,W) (3.16) 

and with the current data26 (which has sizable errors in the case of $ F2n), 

we have 
c-.17 e (3.17) 
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Now the divergence condition applied to Eq. (3.12) gives 

qPT clcup=AMv P”PP+Bq2P”PP+... (3.18) 

The next step is to equate (3.13) and (3.18). With the assumption (the analogue 

of which is also necessary for the derivation of Adler’s sum rule) that B(v ,q2 

Btv ,s2) -0 as v -03 atfixedq2, we find that 

lim Mu A(v ,q2) = 4C . (3.19) 
v-03 

According to Regge considerations, we can write an unsubtracted dispersion 

relation for A, 

A(v,q’) =+ dv, Im A(v’ , q 2 1 
v’ -v , 

-co 

and Eq. (3.19) becomes 

1 -- 
7r /” dv ImA(v,q2) =g 

-* 

(3.20) 

(3.21) 

Now we must relate Im A to the higher order correction terms, 6i and si. 

We consider the lepton-nucleon center-of-mass frame and take the energy very 

large with v and q2 fixed. In this approximation, both nucleon.and lepton have 

energy 8, the energy of the final lepton is 8 = G, the scattering angle is 8 = 0, 

and the lepton current is j’(p?,p) = 4#. The differential cross section for 

UN - p -t- hadrons is then 

da r2M -=- 
dQ2dv 

c 
16g4 n 

I An I 2 64(q+P-Pn) (3.22) 

where &ln is given by Eq. (3.2). We shall be interested in the higher order con- 

tribution to IAnI due to the interference term between the two terms in (3.2), i. e., 

6 I dtdn I 2 64(cl+P-pn) (3.23) 
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where 

‘6 a2O 61&$12zRe -- 
2 Yo 

<Plh~ln><nlT~PIP> 

Similarly for the antineutrino process, 

6 Iciznl 2 64(q+P-Pn) 

and 

(3.24) 

(3.25) 

61Jzn12= -Re G3 o20 - - 
2 @lo 

<Plh~lns<nlT FPlP> 

x j, (j,@+P’+ + j,(p+P),) 
1 

(3.26) 

If we evaluate Eq. (3.26) at v + -v and add it to Eq. (3.24)) we find 

etm da ’ dc +e(-v) 6 - \ 

dQ2dv \dQ2dv -v 

= -G3M Im % Tpu’yp 

\ (167r)2&4 Yo 

X (3.27) 

Now with the approximations, valid as Q- 00, that Im TClaP z PCLPaPP Im A 

and j’ = 4pc1, we find that the sum rule (3.21) may be written in the form 

(3.28) 

where E is the laboratory energy. 

The left-hand side of Eq. (3.28) may also be evaluated using (3.8) and 

(3..9). Equating the expression obtained in this way to the right-hand side of 
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Eq. (3.28), we may express the sum rule in the Lorentz invariant form 

s mdv 
0 

!$ (I- &, ~s~s+~R~R+~L~L-Gs+?R6R-~L6L)= &&Re MC 

C. Parton Model 

The neutrino-parton cross sections are, for partons with quark quantum 

numbers, and with the Cabibbo angle taken to be zero for simplicity, 

do 

dQ2d(q* P) 
=$& 6 (1-g) (l-2Rec-’ GQ2+2Re\$j Gs) 

(3.30a) 

for v n and v 6 scattering, and 

dg 

dQ2d(s* W 
=$&6(l-&)y2~-2Re(~)GQ2-2Re~$)Gsy) 

(3.30b) 

for up and ip scattering. In the above, y = Et/E = -u/s. Now we let P - XP 
P P 

t S -xs, Y-Y, Q2 -Q2) and fold (3.25) over the parton momentum distribution 

function, $ fi(x), obtaining the cross sections for scattering from a nucleon: 

dcr’ G2 

dQ2dv n-v I( 

91 GQ2 l-2Re- / -=- 
90 > \ fnW 

+2Rek G xs 
(‘10 ( 

fn(x) - y3 f+x) 
11 

da’ G2 =- 
dQ2dv 7n, I( 

l-2 Re c’11 Qllo G-Q2 
) 

(fii(x)+ Y2 fp@‘) 

+2Re% G xs -y3 f,(x) ‘1 
Yo 1 

(3.31a) 

(3.3lb) 
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2 
With the identities xs = 2 Q2 + $- (3Et+E) and -xsy = 9 Q2 - $ (3E+E1), we 

find that the structure (3.31) is indeed compatible with (3.8) and (3.9), and 

we have 

6L = -aR = sL = -6, = 2(3 Re $= cTs=o (3.32) 

It is interesting that the correction term is independent of the parton momentum 

distributions. 

Conclusions 

Our major results are 

1. The generalization of the hypothesis of lepton-hadron 

universality in weak interactions as discussed in the 

introduction. 

2. Given universality, the definition of the “weak cutofP’ 

A in terms of high energy behavior of lepton-lepton 

total cross sections, and the new estimates of A from 

the properties of the K system. 

3. Introduction of a phenomenology for higher order cor- 

rections to weak processes, at present useful for high 

energy neutrino reactions. 

The first two points are at best of theoretical interest, and re-express in 

perhaps a more general way concepts which are old and widely discussed. If 

the universality as we have defined it is correct,. and the tower of hadronic 

current operators we have discussed are those of quarks, then the estimates 

of the cutoff A are so low that we may expect “locality violations” in v -N 

processes at accessible laboratory neutrino energies, in the 100 GeV range. 
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That is, the terms in the generalized neufrino cross sections (3.8 ) and ( 3.9) 

proportional to o!2o and Q! 11 may be of importance. 

While the assumption of universality is a very strong one, and the con- 

clusion regarding the low value of A fragile, it still remains very probable 

that in any case the phenomenological description of the deviations of v-N 

cross sections from the low energy limit will be very similar to what we have 

given. Consequently it is of importance to try to bound the magnitude of 

Q2o and a! 1 1 experimentally; 
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