
Bulg. J. Phys. 41 (2014) 180–186

Many-Body Composite Bosons from the
Viewpoint of Functional Renormalization ∗

Yuya Tanizaki1,2
1Department of Physics, The University of Tokyo
2Theoretical Research Division, Nishina Center, RIKEN

Received 31 August 2014

Abstract. Fermionic functional renormalization group is applied to describe
Bose–Einstein condensation of composite dimers in a two-component fermionic
system with a short-range interaction. Since fermions are bounded in dimers,
they do not affect long-range nature of the system. This requires us to invent
a renormalization group procedure, which controls the dispersion relation of
composite bosons without affecting that of fermionic excitations. In order to
realize it without introducing auxiliary bosonic fields, we introduce a vertex
infrared regulator so as to compute the critical temperature.
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1 Introduction

In this paper, we report our recent studies on applications of fermionic functional
renormalization group (fermionic FRG, or f-FRG) to many-body dimers of two-
component fermions [1, 2].

Wilson’s renormalization group [3] now becomes an important method of field
theories in order to connect physical phenomena at different length scales. FRG
[4–6] significantly improves this technology by relating Green functions at dif-
ferent energy scales instead of effective couplings. This generalization enables
us to take into account nonlocal behaviors of Green functions, which often ap-
pears in field theories at finite densities and finite temperatures.

Fermionic FRG provides an unbiased and systematic study of many-body
fermionic systems, and it is complementary to the auxiliary field method [7–11].
In previous studies, one controls low-energy fermionic excitations by adding an
infrared (IR) regulator as a fermion bilinear operator to the Hamiltonian, and
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computes fermionic Green functions using f-FRG. In this study, we consider a
new type of regulator, called the vertex IR regulator, and show its usefulness to
study low-energy bosonic excitations [1, 2]. We apply it to the two-component
fermionic system with a contact attractive interaction, described by

S[ψ,ψ] =

∫ 1/T

0

dτ

∫
d3x

[
ψ

(
∂τ −

∇2

2m
− µ

)
ψ + gψ↑ψ↓ψ↓ψ↑

]
, (1)

with T the temperature, µ the chemical potential, m the fermion mass, and g
the coupling constant. This system shows the BCS-BEC crossover [12, 13], and
we consider the region with a small positive scattering length, i.e., a deep BEC
regime.

2 FRG with a vertex IR regulator

We briefly describe the general formalism of FRG with the vertex IR regulator
[1, 2]. We consider a field theory with a classical action S[φ] of a field φ, which
contains a bare propagator and a four-point vertex:

S[φ] =
1

2
φα1G

−1,α1α2φα2 +
1

4!
gα1α2α3α4φα1φα2φα3φα4 , (2)

where αi denotes the label to be summed up, such as space-time coordinates,
particle species, and internal degrees of freedom. We add a vertex IR regulating
term δSk, which depends on a parameter k smoothly, to this action:

δSk[φ] =
1

4!
gα1α2α3α4

k φα1
φα2

φα3
φα4

, (3)

with the boundary conditions gk=∞ = −g and gk=0 = 0. Let us consider
the system described by the action S + δSk, and define the k-dependent one-
particle-irreducible (1PI) effective action Γk[ϕ] of this theory. The flow equation
of Γk[ϕ] is determined as [1, 2]

∂kΓk[ϕ] =
1

4!
∂kg

α1α2α3α4

k

(
ϕα1

ϕα2
ϕα3

ϕα4
+ 6ϕα1

ϕα2
Gk,α3α4

+ 3Gk,α1α2Gk,α3α4 + 4ϕα1Gk,α2β2Gk,α3β3Gk,α4β4Γ
(3),β2β3β4

k

+ Gk,α1β1
Gk,α2β2

Gk,α3β3
Gk,α4β4

Γ
(4),β1β2β3β4

k

+ 3Gk,α1β1
Gk,α2β2

Gk,α3β3
Gk,α4β4

Gk,γ1γ2
Γ

(3),β1β2γ1

k Γ
(3),γ2β3β4

k

)
,

(4)

with Gk[ϕ] =
(
δL
δϕ

δR
δϕΓk[ϕ]

)−1

the field dependent propagator, and Γ
(n)
k [ϕ] the

n-th functional derivative of Γk[ϕ]. By taking the vertex expansion of the 1PI
effective action Γk[ϕ] in terms of fields ϕ in (4), we can obtain the flow equation
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∂k = + + +

Figure 1. Flow equation of the four-point vertex function Γ
(4)
k in the vacuum with the

vertex IR regulator [1, 2]. Blobs and boxes denote ∂kgk and Γ
(4)
k , respectively.

for each 1PI vertex function. Since δSk=0[φ] = 0, Γk[ϕ] converges to the usual
1PI effective action at k = 0. On the other hand, since δSk=∞[φ] is the negative
of the interaction term in S[φ], the flow of FRG with the vertex IR regulator
starts from the free theory.

3 Fermionic FRG for many-body composite bosons

3.1 Flow of the four-point vertex in the vacuum

Before applying the f-FRG formalism with a vertex IR regulator to BEC of com-
posite bosons, we first consider its flow in the vacuum. In this limit, all the
diagram with a fermion closed loop vanishes automatically, since there are no
antiparticles in non-relativistic physics. Therefore, the fermionic self-energy
correction Σk(p) vanishes: Σk ≡ 0.

Let us consider the f-FRG flow of four-point vertex function. Its diagrammatic
expression is greatly simplified in this limit and given in Fig.1. Since there are no
explicit relative momentum dependence in the contact interaction, the solution
depends only on the center-of-mass momenta p, which is denoted as Γ

(4)
k (p).

We define a p-dependent function M(p) by

M(p) =

∫ Λ d3l

(2π)3

∫
dl0

2π

1

G−1(p2 + l)G−1(p2 − l)
, (5)

where Λ is the UV cutoff of the spatial momentum. The flow equation in Fig. 1
takes the form

∂kΓ
(4)
k (p) = ∂kgk(p)

[
M(p)Γ

(4)
k (p)− 1

]2
. (6)

We can integrate the differential equation (6) with the initial conditions
Γ

(4)
k=∞(p) = 0 and gk=∞(p) = −g so as to find that

1

Γ
(4)
k (p)

=
1

g + gk(p)
+M(p). (7)

Now, we can choose the explicit form of the vertex IR regulator gk(p) so as to
realize the dispersion relation given in Fig. 2. By setting gk = g2Rk/(1−gRk),
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Figure 2. Dispersion relations of single-atom excitations and composite-boson excita-
tions before and after introduction of the vertex IR regulator. The dashed line in each
figure shows the dispersion relation of fermionic excitations, and they are gapped by half
of the binding energy Eb/2(= −µ). The solid line shows the dispersion relation of
composite-boson excitations. The vertex IR regulator only affects the composite-particle
excitation significantly.

we get [1, 2]

Γ
(4)
k (p) = − (4πas/m)(√

1 +ma2
s

(
ip0 +

p2

4m

)
− 1

)
+ (4πas/m)Rk(p)

. (8)

In order to obtain this expression, we perform the coupling renormalization
1/g = m/4πas − Λ/2π with the positive scattering length as > 0, and take
the continuum limit Λ → ∞. In order to realize the vacuum condition, we put
the chemical potential equal to the half of the binding energy: µ = −1/2ma2

s .

Therefore, the fermionic four-point vertex function Γ
(4)
k (p) represents the in-

verse propagator of composite bosons, and the IR regulating function Rk(p)
inside gk(p) can control low-energy bosons as we expected in Fig. 2.

3.2 Fermionic self-energy in the BEC limit through f-FRG

Let us consider the many-body effect of the fermionic self-energy to find the
number density of particles in the BEC limit. In this section, we simply approx-
imate Γ

(4)
k by the one discussed in Sec.3.1.

Since we are interested in the low-density system, the flow equation for the self-
energy can be simplified only by taking into account a single closed loop, and
we get Fig.3. By substituting the solution Γ

(4)
k (p) of the flow equation given in

Fig.1 into the flow of self-energy in Fig.3, we obtain

∂kΣk(p) =

∫ (T )

l

∂kΓ
(4)
k (p+ l)

G−1(l)− Σk(l)
. (9)

As an approximation, let us neglect Σk on the r.h.s. of (9), then the solution of
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∂k = +

+ +

Figure 3. Approximate flow equation of the self-energy Σk for a low-density system with
the vertex IR regulator [1, 2].

the flow equation (9) is given by

Σk(p) = T
∑
l0

∫
d3l

(2π)3

Γ
(4)
k (p+ l)

G−1(l)

'
∫

d3q

(2π)3

(8π/m2as)nB

(
q2/4m+ R̃k(q)

)
ip0 + q2/4m+ R̃k(q)− (q + p)2/2m− 1/2ma2

s

,

(10)

with nB the Bose-Einstein distribution function, µ = −1/2ma2
s, and R̃k =

(8π/m2aS)Rk. In order to justify this approximation, we evaluate the magni-
tude of the self-energy:

|Σk(p)| . 1

2ma2
s

× (
√

2mTas)
3 × nB(k2/4m), (11)

which is much smaller than that of the chemical potential |µ| = 1/(2ma2
s) when

as → 0+ as long as nB(k2/4m) ∼ 1. Therefore, Σk on the r.h.s. of (9) is
negligible for the most part of the flow in the deep BEC limit [1, 2].

In order to determine the ratio between the critical temperature Tc and the Fermi
energy εF (:= (3π2n)2/3/2m), we must calculate the number density n of
fermions. In this formulation, it is determined as

n = T
∑
p0

∫
d3p

(2π)3

−2e−ip
00+

G−1(p)− Σ0(p)
. (12)

When we expand the integrand in terms of Σ0(p), the main contribution of this
integration comes from the term G(p)Σ0(p)G(p), which gives

n ' 2

∫
d3q

(2π)3
nB(q2/4m) =

(2mTc)
3/2

π2

√
π

2
ζ(3/2). (13)

We get the critical temperature Tc/εF = 0.218, which is nothing but the BEC
transition temperature of free Bose gas, without introducing auxiliary bosonic
fields [1, 2].
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4 Summary

A new formalism of f-FRG is proposed by introducing a vertex IR regulator in
the four-fermion interaction, and its exact evolution equation of the 1PI effective
action is considered. This enables us to describe BEC of composite particles in
a systematic way without using auxiliary fields [1, 2].

As a concluding remark, let us mentions that establishing the universal descrip-
tion of f-FRG for the whole region of the BCS-BEC crossover is very impor-
tant [2] (see also Refs. [14, 15] for the study on the BCS region in this context).
To deepen our understandings on the BCS-BEC crossover from FRG viewpoints,
it is also important to relate these studies of fermionic FRG with that of FRG
with partial bosonization techniques [16–21].
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