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Abstract

In this thesis we discuss a possible dependence of the chiral magnetic effect

on the elliptic flow using fluid-gravity duality. We first study this in a hy-

drodynamic model for a static anisotropic plasma with multiple anomalous

U(1) currents. In the case of two charges, one axial and one vector, the

CME formally appears as a first-order transport coefficient in the vector

current. We compute this transport coefficient and show its dependence on

v2. We also determine the CME coefficient from first-order corrections to

the dual anti-de Sitter background using the fluid-gravity duality. For small

anisotropies, we find numerical agreement with the hydrodynamic result.

In dieser Arbeit diskutieren wir eine mögliche Abhängigkeit des chiralen

magnetischen Effekts vom elliptischen Fluss, indem wir die Dualität zwis-

chen Flüssigkeit und Gravitation benutzen. Zunächst analysieren wir dies

in einem hydrodynamischen Modell mit einem statischen anisotropischen

Plasma welches mehrere anormale U(1) Ströme besitzt. Anschliessend berech-

nen wir die Transportkoeffizienten und zeigen ihre Abhängigkeit von v2.

Weiterhin bestimmen wir die CME Koeffizienten in erster Störungsordnung

im dualen anti-de Sitter Hintergrund, indem wir erneut die Flüssigkeit-

Gravitation-Dualität benutzen. Für kleine Anisotropien finden wir nu-

merische Übereinstimmung mit dem hydrodynamischen Modell.
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Chapter 1

Introduction

Recently, STAR [1] and PHENIX [2] collaborations at Relativistic Heavy Ion Collider

and ALICE [3] collaboration at Large Hadron Collider reported experimental observa-

tion of charge asymmetry fluctuations in heavy-ion collisons. The interpretation of the

observed effect is still under intense discussion. In the last couple of years the chiral

magnetic effect (CME) has attracted much attention as a candidate for the explanation

of the charge asymmetry.

The chiral magnetic effect, in its simplest version, states that in chirally asymmetric

quark matter in the presence of a magnetic field ~B, an electric current is generated along
~B [4, 5]. This due to the fact that, the strong magnetic field aligns the quark’s spins

along ~B. In this case right-handed positive fermions move along the direction of the

magnetic field, while the negative ones move in the opposite direction (see Fig. 1.1).

But since in presence of nontrivial gluonic background there are unequal densities of

left- and right-handed fermions, there should be an electric current and a separation

of electric charge [5, 6]. Note that analogous effects were found earlier in neutrino [7],

electroweak [8] and condensed matter physics [9]. Lattice QCD results [10, 11, 12]

suggest the existence of the effect, although the magnitude of the CME-induced charge

asymmetry may be too small to explain the observed charge asymmetry [13].

The hydrodynamical approach to the CME and CME-related phenomena was pro-

posed in [14, 15, 16, 17, 18, 19, 20]. There, the CME appears in form of a nonvanishing

transport coefficient in the electric current, ~j = κB ~B, which measures the response of

the system to an external magnetic field [14, 21]. In [20], the chiral magnetic conduc-

tivity in an isotropic fluid was determined as

κB = Cµ5

(

1− µρ

ǫ+ P

)

. (1.1)

The first term is the standard term for the CME and depends only on the axial anomaly

coefficient C and the axial chemical potential µ5. The second term proportional to the

1



1. INTRODUCTION

factor ρ
ǫ+P depends on the dynamics of the fluid and has a chance to depend on v2 in

the anisotropic case.

Figure 1.1: In chiral limit the right-handed particles have spin and momentum parallel to
each other, while the left-handed particles have spin and momentum anti-parallel, therefore
(Nl −Nr)∞ − (Nl −Nr)−∞ = 2NfQ. For a detailed explanation see [4, 5]

In non–central heavy ion collisions secondary particles emerge with a nontrivial el-

liptic flow pattern1 [25]. A convenient way of characterizing the various patterns of the

anisotropic flow is to use the so–called elliptic flow coefficient which is the second coef-

ficient of Fourier expansion, v2 = 〈cos(2φ)〉, of the azimuthal momentum distribution

dN

dφ
∼ 1 + 2v2cos(2φ), (1.2)

where φ is the azimuthal angle.

In a recent experiment, the charge separation is measured as a function of the

elliptic flow coefficient v2 [26]. The data is taken from (rare) Au+Au collisions with

20 − 40% centrality but different v2. In this way v2 is varied while at the same time

the number of participating nucleons (and therefore the magnetic field) is kept almost

constant. The plots in [26] suggest that the charge separation is proportional to v2. If

this holds true, the charge separation will depend on the event anisotropy.

In this thesis we discuss the question of whether and how the CME depends on the

elliptic flow v2. We study this both in hydrodynamics and in context of a fluid/gravity

duality.

We study a hydrodynamic model for an anisotropic fluid with multiple anomalous

U(1) charges 2. We compute the CME coefficient κB and express the result in terms

of the momentum anisotropy εp [27] defined as

εp =
〈PT − PL〉
〈PT + PL〉

, (1.3)

1Even in central collisions there is a strong asymmetry.
2This model extends those in [22, 23, 24].

2
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Figure 1.2: Sketch of the time evolution of the momentum anisotropy εp (based on [28]).
The small figure shows the orientation of PL and PT with respect to the reaction plane.

where PT and PL are the pressures in the plane transverse to the beam line1. A

sketch of εp as a function of the proper time τ is shown in Fig. 1.2. εp describes the

build-up of the elliptic flow in off-central collisions. Our model describes a state after

thermalization with unequal pressures PT 6= PL. At freeze-out εp roughly equals v2,

and we find that for small anisotropies the CME-coefficient κB increases linearly with

v2.

We perform also a holographic computation of κB in the dual gravity model. A

similar computation was previously done by Kirsch and Kalaydzhyan in [20] for the

STUmodel [29], a string-theory-inspired prototype of an (isotropic) anti-de Sitter (AdS)

black hole solution with three U(1) charges. Other holographic approaches to the CME

can be found in [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40].

In the anisotropic case, we first need to construct an appropriate gravity back-

ground. As an ansatz, we choose a multiply charged AdS black hole solution with some

additional functions wL and wT inserted which will make the background anisotropic

and εp-dependent. Since analytical solutions for charged anisotropic backgrounds are

notoriously difficult to find, we will use shooting techniques to find a numerical solution.

Other AdS backgrounds dual to anisotropic fluids are constructed in [41, 42, 43, 44, 45].

As the AdS solution in [43], the background is static and does not describe the

process of isotropization. Even though such models have some limitations [43], they

are nevertheless useful for the computation of transport coefficients. We show this,

following [20], by determining κB from the first-order corrections to this background

using the fluid-gravity duality [46]. For small anisotropies, we find numerical agreement

1In our conventions the indices L and T refer to the longitudinal and transverse direction with
respect to an anisotropy vector vµ normal to the reaction plane, see Fig. 1.2.

3
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1. INTRODUCTION

with the hydrodynamic result for κB. Other (dissipative) transport coefficients in

strongly-coupled anisotropic plasmas are discussed in [47, 48, 49, 50].

The thesis is organized as follows:

• Chapter 2 consists largely of a necessary review of relativistic hydrodynamics. In

particular we review the hydrodynamics of an anisotropic fluid and derive some

thermodynamical identities for this case.

• In chapter 3 we review the hydrodynamics of an isotropic relativistic fluid with

triangle anomalies. We extend our consideration to the anisotropic case and

compute the CME coefficient.

• In chapter 4 we briefly present basics of the AdS/CFT correspondence and discuss

the fluid/gravity duality.

• In the last chapter we construct the holographic dual of the anisotropic fluid

dynamics and present a numerical solution. We use this background to per-

form a holographic computation of the vortical and magnetic conductivities of an

anisotropic fluid.

The work in chapter 5 and the part of the work in chapters 2 and 3 were performed

in collaboration with Tigran Kalaydzhyan and Ingo Kirsch [51], and results have been

published in the journal Physical Review D.
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Chapter 2

Review of relativistic
hydrodynamics

In this chapter we will give some necessary information about relativistic fluid dynamics

for the study of fluid/gravity dual models. There is a huge amount of review articles

on relativistic hydrodynamics (see e.g. [52], [53]), on applications of fluid dynamics to

heavy-ion collisons [54]. We also refer to [55] for details of the subject.

2.1 Ideal hydrodynamics

We will work in four-dimensional Minkowski space with the metric ηµν = diag{-1,1,1,1}.
The fluid is described by its energy density ǫ(x, t), its pressure field P (t, x) and its four-

velocity uµ defined as:

uµ(t, x) =
dxµ

dτ
, (2.1)

where xµ = (t, x, y, z) and τ is the proper time. The four-velocity is expressed as

uµ = γ(1, v), (2.2)

where γ =
√
1− v2 and v is the three-velocity of the fluid element. The four-velocity

is e time-like, normalized vector

uµu
µ = −1 (2.3)

In the local rest frame it has the only non-vanishing time component

uµ = (1, 0, 0, 0) . (2.4)

Also one can define the local rest frame of the fluid as the frame in which uµ has the

form of (2.4).

5



2. REVIEW OF RELATIVISTIC HYDRODYNAMICS

We consider a fluid with n global U(1) charges. The hydrodynamic equations are

simply the conservation of energy-momentum and U(1) currents

∂µT
µν = 0, (2.5)

∂µj
µ
a = 0. (2.6)

In thermal equilibrium the energy-momentum tensor Tµν and the current are given by

Tµν = (ǫ+ P )uµuν + Pgµν , (2.7)

jµa = ρau
µ, (2.8)

where ρa are the global U(1) charge densities and a = 1, ..., n. In the local rest frame

the energy-momentum tensor has a diagonal form:

Tµν =









ǫ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P









. (2.9)

2.2 Thermodynamics

Let us consider the combined first and second laws of thermodynamics of a fluid with

a single charge (n = 1):

dE = TdS − PdV + µdN, (2.10)

where E, S, V and N are total energy, entropy, volume, particle number, respectively.

As we will show now, one can derive this equation from the equation of state

E = E(S, V,N) (2.11)

using the following definitions of the temperature, pressure and chemical potential:

T =
∂E

∂S

∣

∣

∣

∣

V,N

, P = − ∂E

∂V

∣

∣

∣

∣

S,N

, µ =
∂E

∂N

∣

∣

∣

∣

S,V

. (2.12)

Let us rescale thermodynamic variables when S, V , and N in the following way

S̃ = λS , Ṽ = λV , Ñ = λN . (2.13)

From thermodynamics we know [52]

Ẽ(S̃, Ṽ , Ñ) = λE(S, V,N) . (2.14)

6



2.3 First order corrections to hydrodynamics

Then

dẼ = T̃dS̃ − p̃dṼ + µ̃dÑ

= λ (TdS − PdV + µdN) + (TS − PV + µN) dλ

= λdE + Edλ, (2.15)

and we obtain the Euler relation

E = TS − pV + µN . (2.16)

If ǫ = E/V denotes the total energy density, s = S/V the total entropy density, and

ρ = N/V the total particle number density, then

P + ǫ = Ts+ µρ . (2.17)

One can reduce by one the number of parameters required for a complete specification

of the thermodynamic state by setting λ = 1/V , then S̃ = s, Ṽ = 1, Ñ = ρ and

Ẽ = E/V = ǫ. (2.18)

The first law of thermodynamics thus becomes

dẼ = T̃dS̃ − P̃dṼ + µ̃dÑ (2.19)

= Tds+ µdρ , (2.20)

and we find that

dǫ = Tds+ µdρ. (2.21)

2.3 First order corrections to hydrodynamics

If the fluid is dissipative, one must modify the energy–momentum tensor and entropy

current:

Tµν = (ǫ+ P )uµuν − Pgµν + τµν , (2.22)

jµ = ρuµ + νµ, (2.23)

where τµν and νµ are the first order corrections (dissipative part).

In presence of the dissipative corrections, the definition of the flow velocity is more

arbitrary. In other words, the form of the dissipative terms τµν and νµ depends on the

definition of the local rest frame of the fluid [56]. One natural definition of the rest

frame is the so called Landau frame1 [55], where we have

uµτ
µν = 0, uµν

µ = 0. (2.24)

1Sometimes this frame is called also Landau–Lifshitz frame.

7



2. REVIEW OF RELATIVISTIC HYDRODYNAMICS

With the first constraint and with requirement that entropy increases with time, the

most general form of τµν is

τµν = −ηPµαP νβ(∂αuβ+∂βuα)−
(

ζ−2
3η
)

Pµν∂ · u, (2.25)

where Pµν = gµν + uµuν .

There are also other frames, particularly, the Eckart definition of the rest frame.

Note that the Eckart frame is ill–defined for the systems with vanishing net baryon

number [56], so we use the Landau frame.

2.4 Anisotropic fluid

The energy-momentum tensor of an ideal anisotropic fluid has the general form [57]

Tµν = ǫuµuν + Pxx
µxν + Pyy

µyν + Pzz
µzν , (2.26)

where Px, Py, Pz are three different pressure components. The four vectors uµ, xµ, yµ

and zµ satisfy the following normalization conditions

uµu
µ = −xµxµ = −yµyµ = −zµzµ = −1, (2.27)

uµx
µ = uµy

µ = uµz
µ = xµy

µ = xµz
µ = yµz

µ = 0. (2.28)

In the local rest frame of the fluid element these vectors have the following forms,

uµ = (1, 0, 0, 0), (2.29)

xµ = (0, 1, 0, 0), (2.30)

yµ = (0, 0, 1, 0), (2.31)

zµ = (0, 0, 0, 1), (2.32)

and the energy-momentum tensor has the following diagonal form

Tµν =









ǫ 0 0 0
0 Px 0 0
0 0 Py 0
0 0 0 Pz









. (2.33)

For boost-invariant and cylindrically symmetric systems the fluid four-velocity uµ has

the following parametrization

u0 = cosh θ⊥ cosh η‖,

u1 = sinh θ⊥ cosφ,

u2 = sinh θ⊥ sinφ,

u3 = cosh θ⊥ sinh η‖, (2.34)

8



2.4 Anisotropic fluid

where θ⊥ is the transverse fluid rapidity defined by the formula

v⊥ =
√

v2x + v2y = tanh θ⊥, (2.35)

η‖ is the space-time rapidity,

η‖ =
1

2
ln
t+ z

t− z
, (2.36)

and φ is the azimuthal angle

φ = arctan
y

x
. (2.37)

For the longitudinal direction zµ, the transverse direction to the beam xµ and the

second transverse direction yµ we may use the following parametrization

z0 =sinh η‖, x0 =sinh θ⊥ cosh η‖, y0 =0, (2.38)

z1 =0, x1 =cosh θ⊥ cosφ, y1 =− sinφ, (2.39)

z2 =0, x2 =cosh θ⊥ sinφ, y2 =cosφ, (2.40)

z3 =cosh η‖, x3 =sinh θ⊥ sinh η‖, y3 =0. (2.41)

gµν is the metric with signature (−,+,+,+). It can easily be shown that

gµν + uµν = xµxν + yµyν + zµzν . (2.42)

Using this expression one can rewrite the energy-momentum tensor (2.26) as follows:

Tµν = (ǫ+ Px)u
µuν + Pxg

µν −∆1v
µvν −∆2w

µwν , (2.43)

with

∆1 = Px − Py, ∆2 = Px − Pz, (2.44)

and here we introduced new variables vµ = yµ and wµ = zµ.

For simplicity we will consider an anisotropic relativistic fluid with Pz = PL and

Px = Py = PT . The hydrodynamic equations are the same, while the stress-energy

tensor Tµν and U(1) currents jaµ now have the following form

Tµν = (ǫ+ PT )u
µuν + PT g

µν −∆vµvν + τµν , (2.45)

jaµ = ρauµ + νaµ , (2.46)

where ∆ = PT − PL, and PT and PL denote the transverse and longitudinal pressures,

respectively [22, 23, 24]. τµν and νaµ denote higher-gradient corrections, for which we

require uµτ
µν = 0 and uµν

aµ = 0. For PL = PT = P we recover the hydrodynamic

equations of the isotropic fluid (2.7)–(2.8).

9



2. REVIEW OF RELATIVISTIC HYDRODYNAMICS

The four-vectors uµ and vµ describe the flow of the fluid and the direction of the

longitudinal axis, respectively. The vector vµ is space-like and orthogonal to uµ,

uµu
µ = −1 , vµv

µ = 1 , uµv
µ = 0 . (2.47)

It is convenient to define the proper time τ by ∂ν ln τ ≡ vµ∂µv
ν [23]. In the rest frame

of the fluid, uµ = (1, 0, 0, 0) and vµ = (0, 0, 0, 1), the stress-energy tensor becomes

diagonal,

Tµν =









ǫ 0 0 0
0 PT 0 0
0 0 PT 0
0 0 0 PL









. (2.48)

In conformal fluids, the stress-energy tensor is traceless, Tµµ = 0, and ε = 2PT + PL.

The thermodynamical identities for an anisotropic fluid can be found [51] by com-

puting I0 = uν∂µT
µν + µ∂µj

µ which is zero because of conservation laws. Using

∂µ(su
µ) = 0, we get

uν∂µT
µν = −uν∂µε− (ε+ PT )∂µu

µ −∆uν∂
ν ln τ

= −uµ∂µε+
ε+ PT
s

uµ∂µs−
∆

τ
uµ∂µτ , (2.49)

µ∂µj
µ = µ(∂µρ)u

µ − µρ

s
uµ∂µs . (2.50)

As in [23], we consider a generalized energy density ε = ε(s, ρ, τ), which depends not

only on the entropy density s and particle density ρ but also on the new variable τ . Its

differential is

dε =

(

∂ε

∂s

)

ρ,τ

ds+

(

∂ε

∂ρ

)

s,τ

dρ+

(

∂ε

∂τ

)

s,ρ

dτ , (2.51)

with
(

∂ε

∂s

)

ρ,τ

= T ,

(

∂ε

∂ρ

)

s,τ

= µ ,

(

∂ε

∂τ

)

s,ρ

= −∆

τ
. (2.52)

The temperature and the chemical potential are defined in the usual way. If we also

impose (∂ε/∂τ)s,ρ = −∆/τ and substitute (2.51) into (2.49), then I0 = 0 implies the

following thermodynamical identities for an anisotropic fluid:

ε+ PT = Ts+ µρ , (2.53)

dPT =
∆

τ
dτ + sdT + ρdµ , (2.54)

dε = Tds+ µdρ− ∆

τ
dτ , (2.55)

in agreement with [23] for µ = 0.

10



Chapter 3

Fluids with triangle anomalies

The chiral magnetic effect can be derived in several ways, in particular by using holo-

graphic models. In their remarkable paper [14] Dam Son and Piotr Surowka modified

the hydrodynamics equations in order to take into account quantum triangle anomalies.

These additional kinetic transport coefficients in the case of real electromagnetic fields

describe the chiral magnetic and chiral vortical effects [16, 20]. We have extended the

works [14, 20] to the anisotropic case and rederived the transport coefficients, relevant

for the chiral magnetic effect.

This chapter provides a review of triangle anomalies, including the so–called Adler–

Bell–Jackiw anomaly, in quantum field theory and in relativistic hydrodynamics. We

follow [14] and discuss how the triangle anomalies arise in relativistic hydrodynamics.

We then compute the vortical and magnetic conductivities of an anisotropic fluid and

show the dependence of the transport coefficients on the elliptic flow v2 [51].

3.1 Adler-Bell-Jackiw anomaly

We briefly derive the Adler-Bell-Jackiw anomaly, for detailed discussion, see [58] and

also [59] for the mathematical aspects of anomalies.

Let ψ be a massless Dirac field interacting with a non-abelian gauge field Aµ. We

start with the generating functional for the fermions:

Z[η, η̄] =

∫

DψDψ̄ei
∫

(ψ̄iγµDµψ)d4x. (3.1)

Here ψ, ψ̄ are Dirac spinors and Dµ = ∂µ − igAµ is a covariant derivative.

Now let us make a chiral transformation of variables

ψ(x) → eiαγ
5
ψ, (3.2)

ψ̄(x) → ψ̄eiαγ
5
, (3.3)

11



3. FLUIDS WITH TRIANGLE ANOMALIES

where α is an infinitesimal parameter. Under these transformations the action changes

in the following way
∫

d4xψ̄′(iγµDµ)ψ
′ =

∫

d4x[ψ̄(iγµDµ)ψ − ∂µα(x)ψ̄γ
µγ5ψ] (3.4)

=

∫

d4x[ψ̄(iγµDµ)ψ + α(x)∂µ(ψ̄γ
µγ5ψ)]. (3.5)

The path–integral measure for gauge–invariant fermion theory is not invariant under

γ5 transformations. From integration measure comes an extra Jacobian factor which

gives rise to the ABJ anomaly

Z[η, η̄] =

∫

DψDψ̄|J |exp{i
∫

d4x[ψ̄(iγµDµ)ψ + α(x)∂µ(ψ̄γ
µγ5ψ)]}. (3.6)

One can calculate the Jacobian and find

|J | = exp

[

−i
∫

d4xα(x)

(

e2

32π2
ǫµνλσFµνFλσ

)]

. (3.7)

If we now replace the Jacobian in the functional integral by the above expression, we

get

Z[η, η̄] =

∫

DψDψ̄e
i
∫

(

ψ̄iγµDµψ+α(x)
(

∂µjµ5+
e2

16π2 ǫ
µνλσFµνFλσ

))

(3.8)

Varying the exponent with respect to α(x) we find the Adler–Bell–Jackiw anomaly

∂µj
µ5 = − e2

16π2
ǫανβλFανFβλ. (3.9)

3.2 Hydrodynamics of isotropic fluids with anomalies

The hydrodynamic regime of isotropic relativistic fluids with triangle anomalies we

discussed above has been studied in [14, 15, 16, 17, 18, 19], and much can be taken over

to the anisotropic case. Such fluids typically contain n anomalous U(1) charges which

commute with each other. The anomaly coefficients are given by a totally symmetric

rank-3 tensor Cabc. The hydrodynamic description exhibits interesting effects when a

global symmetry is broken by anomalies of QFT. As explained in the previous section,

in presence of the triangle anomalies the hydrodynamic equations are

∂µT
µν = F aνλjaλ , ∂µj

aµ = CabcEb ·Bc , (3.10)

where Eaµ = F aµνuν , B
aµ = 1

2ǫ
µναβuνF

a
αβ (a = 1, ..., n) are electric and magnetic fields,

and F aµν = ∂µA
a
ν − ∂νA

a
µ denotes the gauge field strengths. This leads to modification

of the currents [14, 21]

jaµ = ρauµ + σab
(

Eµb − TPµν∂ν
µb
T

)

+ ξaωµ + ξabB Bbµ, (3.11)

12



3.3 Hydrodynamics of anisotropic fluids with triangle anomalies

where Eµa = Fµνa uν , B
aµ = 1

2ǫ
µνλρuνF

a
λρ, ω

µ ≡ 1
2ǫ
µνλρuν∂λuρ and ρa, T , µa and σba

are the charge densities, temperature, chemical potentials and electrical conductivities

of the medium. One can compute the new coefficients ξa and ξabB exactly from the

requirement that the entropy current has a nonnegative divergence, ∂µs
µ ≥ 0 [14, 18,

16, 20]. They read

ξa = Cabcµbµc + 2βaT 2 − 2ρa

ǫ+ p

(

1

3
Cbcdµbµcµd + 2βbµbT

2

)

,

ξabB = Cabcµc −
ρa

ǫ+ p

(

1

2
Cbcdµcµd + βbT 2

)

. (3.12)

The coefficients βa are presumably related to gravitational anomaly [60]. Remarkably,

these coefficients have been discovered in the context of the fluid/gravity duality [14,

18, 21, 20]. In the case of two charges (n = 2) the new hydrodynamic terms describe

the physical chiral magnetic and chiral vortical effects in heavy ion collisions, as will

be explain in section (3.3.3).

Note that the anomaly–induced effects arise also in the superfluids [39, 61, 62, 63]

and in the Fermi liquids [64].

3.3 Hydrodynamics of anisotropic fluids with triangle anoma-
lies

We now repeat the computation of Son and Surowka [14] for the case of an anisotropic

fluid. Recall that in anisotropic relativistic fluids, the hydrodynamic equations are

again given by (3.10) but the stress-energy tensor Tµν and U(1) currents jaµ now have

the more general form1

Tµν = (ǫ+ PT )u
µuν + PT g

µν −∆vµvν + τµν , (3.13)

jaµ = ρauµ + νaµ . (3.14)

For simplicity, we restrict to the case of a single charge in Sec. 3.3.1, n = 1. In

Secs. 3.3.2 and 3.3.3 we generalize our findings to arbitrary n and discuss the case

n = 2, which is relevant for the CME.

1The symmetries allow in principle for more general currents jaµ = ρauµ + cavµ + νaµ with some
coefficients ca. Here we switch off all the ‘electric’ background currents, ca = 0.
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3. FLUIDS WITH TRIANGLE ANOMALIES

3.3.1 Vortical and magnetic coefficients (n = 1)

We now discuss corrections to the U(1) current jµ ≡ j1µ (n = 1). In anisotropic fluids

the transport coefficients are usually promoted to tensors such that one should consider

first-derivative corrections of the type

νµ = (ξω)
µ
νω

ν + (ξB)
µ
νB

ν , (3.15)

where ωµ = 1
2ǫ
νρσµuν∂ρuσ is the vorticity, and Bµ is an external magnetic field. In

Landau frame uµν
µ = 0 and therefore uµ(ξω)

µ
νω

ν = 0 (and similar for (ξB)
µ
ν). This is

satisfied e.g. for (ξω)
µ
ν = ξωδ

µ
ν , since uµω

µ = 0 (We do not consider other components

of ξω here). We therefore restrict to consider corrections of the type

νµ = ξωω
µ + ξBB

µ , (3.16)

as in the isotropic case [14]. Our goal is to compute the vortical and magnetic conduc-

tivities ξω and ξB. These transport coefficients can be found by assuming the existence

of an entropy current sµ with a non-negative derivative, ∂µs
µ ≥ 0. The computation

closely follows that of [14].

The hydrodynamic Eqs. (3.10) imply that the quantity

I1 = uν∂µT
µν + µ∂µj

µ + Eµνµ − µCEµBµ (3.17)

vanishes at first order, I1 = 0. Substituting the explicit expressions for the stress-energy

tensor and U(1) currents into I1 and using the thermodynamical identities (2.53) and

(2.55), we find

∂µ

(

suµ − µ

T
νµ
)

= − 1

T
∂µuντ

µν − νµ
(

∂µ
µ

T
− Eµ

T

)

− C
µ

T
E ·B , (3.18)

which is exactly the same equation for the entropy production as in the isotropic case

[14].

In the following, we will need the identities

∂µω
µ = − 2

ǫ+ PT
ωµ(∂µPT −∆∂µ ln τ − ρEµ) , (3.19)

∂µB
µ = −2ωµEµ −

Bµ

ǫ+ PT
(∂µPT −∆∂µ ln τ − ρEµ) . (3.20)

Let us derive them. To find an explicit expression for ∂µω
µ, we compute the term

ων∂µT
µν in two ways. First, using the hydrodynamic equations, we get

ων∂µT
µν = ωνF

νµjµ = ρωνF
νµuµ = ρωνE

ν . (3.21)
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3.3 Hydrodynamics of anisotropic fluids with triangle anomalies

Next, substituting the stress-energy tensor (3.13) in this expression, we find

ων∂µT
µν = (ǫ+ PT )u

µων∂µu
ν + ωνg

µν∂µPT −∆ωνv
µ∂µv

ν

− vνωνv
µ∂µ∆−∆vνων∂µv

µ

= −(ǫ+ PT )u
µuν∂µων + ωµ∂µPT −∆ων∂

ν ln τ

− vνωνv
µ∂µ∆−∆vνων∂µv

µ . (3.22)

Using the identity

uµuλ∂µωλ = −1

2
∂µω

µ , (3.23)

we find

∂µω
µ = − 2

ǫ+ PT
ωµ(∂µPT −∆∂µ ln τ − ρEµ

− vµv
ν∂ν∆−∆vµ∂νv

ν) . (3.24)

Similar manipulations of the term Bν∂µT
µν lead to

Bν∂µT
µν = BνF

νµjµ = ρBµE
µ , (3.25)

Bν∂µT
µν = −(ǫ+ PT )u

µuν∂µBν +Bµ∂µPT

−∆Bνv
µ∂µv

ν −Bνv
νvµ∂µ∆−∆Bνv

ν∂µv
µ

= −(ǫ+ PT )(∂µB
µ − 2ωµEµ)−∆Bµ∂

µ ln τ

−Bνv
νvµ∂µ∆−∆Bνv

ν∂µv
µ , (3.26)

where we used

uµuλ∂µBλ = ∂µB
µ + 2ωρEρ . (3.27)

From (3.25) and (3.26) we obtain the following expression:

∂µB
µ = −2ωµEµ −

Bµ

ǫ+ PT
(∂µPT −∆∂µ ln τ − ρEµ

− vµv
ν∂ν∆−∆vµ∂νv

ν) . (3.28)

To simplify the computation we assume that the fluid satisfies

∂µv
µ = 0 , vµ∂µ∆ = 0 . (3.29)

The first equation is basically a “continuity equation” for the vector vµ. There are

no sources for the generation of anisotropy. The second equation imposes an orthog-

onality relation between the gradient of the pressure difference ∆ = PT − PL and vµ.

Substituting (3.29) into (3.24) and (3.28) we get (3.19) and (3.20), respectively.

15



3. FLUIDS WITH TRIANGLE ANOMALIES

Now we have all the ingredients to complete our computation. As in [14], we assume

a generalized entropy current of the form

sµ = suµ − µ

T
νµ +Dωµ +DBB

µ, (3.30)

where ξω, ξB, D, and DB are functions of T , µ and τ . We now compute ∂µs
µ, using

(3.18) and (3.19) and impose ∂µs
µ ≥ 0. Since the coefficients in front of ωµ, Bµ, ωµE

µ

and EµB
µ inside ∂µs

µ can have either sign, we require them to vanish and obtain the

following four differential equations:

∂µD − 2D

ǫ+ PT
(∂µPT −∆∂µ ln τ)− ξω∂µ

µ

T
= 0 , (3.31)

∂µDB − DB

ǫ+ PT
(∂µPT −∆∂µ ln τ)− ξB∂µ

µ

T
= 0 , (3.32)

2ρD

ǫ+ PT
− 2DB +

ξω
T

= 0 , (3.33)

ρDB

ǫ+ PT
+
ξB
T

− C
µ

T
= 0 . (3.34)

For ∆ = 0, these equations reduce to those in the isotropic case [14].

Let us solve solve (3.31)–(3.34) for D, DB, ξω and ξB. Following [14], we change

variables from ln τ , µ, T to ln τ , µ̄ = µ/T and PT . From (2.53) and (2.54), we derive

the thermodynamic expressions
(

∂µ̄

∂T

)

PT , ln τ

= −ǫ+ PT
ρT 2

, (3.35)

(

∂PT
∂T

)

µ̄, ln τ

=
ǫ+ PT
T

, (3.36)

(

∂ ln τ

∂T

)

µ̄, PT

= − 1

∆

ǫ+ PT
T

. (3.37)

Using

∂µD =
∂D

∂PT
∂µPT +

∂D

∂µ̄
∂µµ̄+

∂D

∂ ln τ
∂µ ln τ , (3.38)

∂µDB =
∂DB

∂PT
∂µPT +

∂DB

∂µ̄
∂µµ̄+

∂DB

∂ ln τ
∂µ ln τ , (3.39)

the first two equations, (3.31) and(3.32), can be rewritten as

−ξω +
∂D

∂µ̄
= 0 , −ξB +

∂DB

∂µ̄
= 0 , (3.40)

∂D

∂PT
− 2D

ǫ+ PT
= 0 ,

∂DB

∂PT
− DB

ǫ+ PT
= 0 , (3.41)

∂D

∂ ln τ
+

2∆D

ǫ+ PT
= 0 ,

∂DB

∂ ln τ
+

∆DB

ǫ+ PT
= 0 . (3.42)
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3.3 Hydrodynamics of anisotropic fluids with triangle anomalies

Note that (3.41) and (3.42) are related by the thermodynamic identities (3.36) and

(3.37). Using the ansatz

D = T 2d(µ̄, ln τ) , DB = TdB(µ̄, ln τ) , (3.43)

and (3.35), we obtain two differential equations from (3.33) and (3.34),

0 =
2ρD

ǫ+ PT
− 2DB +

ξω
T

= T (∂µ̄d(µ̄, ln τ)− 2dB(µ̄, ln τ))) , (3.44)

0 =
ρDB

ǫ+ PT
+
ξB
T

− Cµ̄

= ∂µ̄dB(µ̄, ln τ)− Cµ̄ . (3.45)

These equations can be integrated to give

dB(µ̄, ln τ) =
1

2
Cµ̄2 + β(ln τ) , (3.46)

d(µ̄, ln τ) =
1

3
Cµ̄3 + 2µ̄β(ln τ) + γ(ln τ) , (3.47)

where β(ln τ) and γ(ln τ) are arbitrary functions of ln τ . Substituting this back into

(3.33), (3.34), we obtain

ξω = C

(

µ2 − 2

3

ρµ3

ǫ+ PT

)

+ O(T 2) ,

ξB = C

(

µ− 1

2

ρµ2

ǫ+ PT

)

+ O(T 2) , (3.48)

where O(T 2) denotes terms proportional to T 2. These terms are presumably related to

gravitational triangle anomalies [18, 60] and may, in the anisotropic case, depend on

the proper time τ . In the absence of gravitational anomalies, which we do not discuss

in this thesis, the conductivities do not depend on τ . Apart from these changes in

O(T 2), the relations have the same form as in the isotropic case but with P replaced

by the transverse pressure PT .

3.3.2 Multiple charge case (arbitrary n)

The generalization of the previous computation to a fluid with multiple anomalous U(1)

charges is straightforward, and we only state the result here. The corrections νaµ of

the currents jaµ in (3.14) are

νaµ = ξaωω
µ + ξabB B

bµ , (3.49)
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3. FLUIDS WITH TRIANGLE ANOMALIES

with [terms of order O(T 2) ignored]

ξaω = Cabcµbµc − 2

3
ρaCbcd

µbµcµd

ǫ+ PT
, (3.50)

ξabB = Cabcµc − 1

2
ρaCbcd

µcµd

ǫ+ PT
. (3.51)

These are simple generalizations of the corresponding conductivities in the isotropic

case [14, 18]. If P = PT = PL, then (3.51) reduces to (3.12)

3.3.3 Chiral magnetic and vortical effect (n = 2)

Physically, the most interesting case is that involving two charges (n = 2) [16, 17, 20].

The chiral magnetic effect [4] can be described by one axial and one vector U(1),

denoted by U(1)A × U(1)V . A convenient notation for the gauge fields and currents is

(a, b, ... = 1, 2)

AAµ = A1
µ , AVµ = A2

µ ,

jµ5 = j1µ , jµ = j2µ . (3.52)

Let us now derive the chiral magnetic and vortical effects from (3.50) and (3.51).

C−parity allows for two anomalous triangle diagrams, (AAA) and (AVV), shown in

Fig. 3.1, while diagrams of the type (VVV) and (VAA) vanish. Accordingly, the

anomaly coefficients are

C121 = C211 = C112 = 0 , (V AA)

C222 = 0 , (V V V )

C111 6= 0 , (AAA)

C122 = C221 = C212 6= 0 . (AV V ) (3.53)

The hydrodynamic Eqs. (3.10) then imply nonconserved vector and axial currents

∂µj
µ = −1

4(C
212FAµνF̃

V µν + C221F VµνF̃
Aµν) ,

∂µj
µ
5 = −1

4(C
111FAµνF̃

Aµν + C122F VµνF̃
V µν) , (3.54)

where we rewrote Eb ·Bc = −1
4F

b
µνF̃

c µν (with F̃ aµν = 1
2ε
µνρσF aρσ).

To restore conservation of the vector current, we add the (topological) Bardeen

term to the gauge theory,

SB = cB

∫

d4x ǫµνλρAAµA
V
ν F

V
λρ . (3.55)
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3.3 Hydrodynamics of anisotropic fluids with triangle anomalies

(AAA) (AVV)

Figure 3.1: Anomalous diagrams corresponding to C111(left) and to C122 = C221 = C212

(right). Dashed (wavy) lines denote the axial (vector) currents/fields.

Combining the corresponding Bardeen currents

jµB = cBε
µνλρ(AVν F

A
λρ − 2AAν F

V
λρ) ,

jµ5,B = cBε
µνλρAVν F

V
λρ , (3.56)

with the vector and axial currents,

j′µ ≡ jµ + jµB , j′µ5 ≡ jµ5 + jµ5,B , (3.57)

we obtain the anomaly equations

∂µj
′µ = −

(

C122

2
+ cB

)

F VαβF̃
Aαβ , (3.58)

∂µj
′µ
5 = −C

111

4
FAαβF̃

Aαβ −
(

C122

4
− cB

)

F VαβF̃
V αβ .

The electric current j′µ is conserved if cB = −C122/2. Setting C111 = C122 ≡ C/3, the

hydrodynamic Eqs. (3.10) become

∂µT
µν = F V νλj′λ + FAνλj′5λ ,

∂µj
′µ = 0 ,

∂µj
′µ
5 = CE ·B + (C/3)E5 ·B5 . (3.59)

Using the derivative expansion

j′µ = ρuµ + κωω
µ + κBB

µ + κ5,BB
µ
5 , (3.60)

where κω ≡ ξ2ω, κB ≡ ξ22B and κ5,B ≡ ξ21B , we obtain from (3.50) and (3.51) the

conductivities (µ5 ≡ µ1, µ ≡ µ2)

κω = 2Cµ5

(

µ− ρ

ǫ+ PT

[

µ2 +
µ25
3

])

,

κB = Cµ5

(

1− µρ

ǫ+ PT

)

,

κ5,B = Cµ

(

1− 1

2

µρ

ǫ+ PT

[

1 +
µ25
3µ2

])

. (3.61)
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3. FLUIDS WITH TRIANGLE ANOMALIES

There are analogous transport coefficients in the axial current jµ5 [20]. The axial fields

E5µ and B5µ are not needed and can now be switched off. The first term in κB and κω,

κB = Cµ5 and κω = 2Cµµ5, is the leading term in the chiral magnetic (CME) [4, 5]

and chiral vortical effect [65], respectively.1 They are in agreement with those found

in the isotropic case [16, 17, 20]. The second term proportional to ρ/(ǫ+ PT ) actually

depends on the dynamics of the fluid2 and therefore on εp.

Recall that our goal in this section is to show how the transport coefficients depend

on the elliptic flow v2. The dependence of κB on εp can be made more visible by

introducing an average pressure P̄ = (2PT + PL)/3 such that ǫ = 3P̄ . Assuming εp to

be small (see Fig. 1.2), we expand the CME-coefficient κB to linear order in εp,

κB ≈ Cµ5

(

1− µρ

ǫ+ P̄

[

1− εp
6

]

)

. (3.62)

At freeze-out the elliptic flow coefficient v2 ≈ εp/2 [27]. Now we see that for small

momentum anisotropies, the CME thus increases linearly in v2.

One should keep in mind that we consider an oversimplified case of a fluid filling the

entire space3. Nevertheless, the result (3.62) is the first and hence valuable example of

anisotropic corrections to CME.

1κ5,B represents another effect, which we added for completeness, but it seems to be not realized
in heavy-ion collisions.

2In [15] this term was considered as a one-loop correction in an effective theory and (ǫ+ P )/ρ was
interpreted as the corresponding infrared cutoff in the energy/momentum integration.

3 We ignore the finiteness of the fireball, as well as possible pressure inhomogeneities and details of
the initial conditions.
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Chapter 4

Holographic duality

To understand the rest of the thesis we take a birds eye view to explain the AdS/CFT

correspondence [66, 67, 68]. Further information can be found in the following reviews

and lectures [69, 70, 71, 72].

The AdS/CFT correspondence is a great tool to study strongly coupled gauge

theories [73, 74]. There is one important caveat that this duality was found for QCD–

like theories, not for real QCD. Nevertheless there is a possible connection between

gravity/gauge duality and QCD [75]. In order to achieve a description of QCD–like

theories it is necessary to deform and modify the standard AdS/CFT correspondence.

There are two ways to do this: top-down models and bottom-up models. The former

corresponds to the models derived directly from the string theory constructions, while

the latter refers to giving a gravity dual by hand. We do not discuss here1 these two

models because we will not use them, except the fact that they exist and our gravity

construction in Chapter 5 is a bottom-up model.

4.1 Basics of AdS/CFT Correspondence

The gauge/gravity duality is initially formulated for maximally supersymmetric four-

dimensional conformal N=4 gauge theory. The N = 4 Super Yang–Mills theory contains

a vector field, six real scalars and four fermions. All fields are in the adjoint represen-

tation of SU(N). The action of the theory can be schematically written as

SN=4 =
1

g2YM

∫

d4xTr[F 2
µν + (DΦi)

2 + [Φi,Φj ]
2] + fermions (4.1)

It has a vanishing beta function and is a conformal field theory. The action of the

theory is uniquely determined by the coupling constant gYM and the rank of the gauge

1We refer to [76] [77] for details.
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4. HOLOGRAPHIC DUALITY

group SU(N). When the number of colors is large, i.e. N → ∞ it is the ’t Hooft

coupling λ = g2YMN that controls the perturbative expansion.

On the string theory side, we have type IIB string theory, which contains a finite

number of massless fields, including the graviton, the dilaton Φ, some other fields

(forms) and their fermionic superpartners, and an infinite number of massive string

excitations. On the string theory side, the parameters are gs, ls, and radius R of the

AdS space. The AdS/CFT parameters are related through the following relations:

g2 = 4πgs, (4.2)

g2Nc =
R4

l4s
. (4.3)

Equations (4.2) and (4.3) tell us that, at λ ≪ 1 the gauge theory is pertubatively

calculable, while the dual string theory is defined in AdS5 × S5 with R ≪ ls. In the

long-wavelength limit, when all fields vary over length scales much larger than ls, the

massive modes decouple and string theory is well approximated by supergravity, which

can be described by an action [78]

SSUGRA =
1

2κ210

∫

d10x
√−ge−2Φ

(

R+ 4 ∂µΦ∂µΦ (4.4)

+ contributions from the other fields
)

, (4.5)

where κ10 is the 10-dimensional gravitational constant,

κ10 =
√
8πG = 8π7/2gsl

4
s , (4.6)

and R is the curvature scalar. The AdS5 × S5 solution is given by the metric

ds2 =
r2

R2
(−dt2 + dx21 + dx22 + dx23) +R2dr

2

r2
+R2dΩ2

5 (4.7)

where dΩ2
5 is the metric of S5.

4.2 Black hole solutions

The AdS/CFT correspondence says that a thermal state of the gauge theory in the

regime when λ→ ∞ is the same as those of the black hole [79]. We begin with a brief

review of the black hole solutions in general relativity and proceed with discussion of

the black hole in AdS background and a charged black hole1.

1In particular we have followed [80] and [81] in this section.
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4.2 Black hole solutions

One of the simplest black hole solutions is the Schwarzschild black hole in four

dimensions [80]. It is a spherically symmetric solution of the free Einstein-Hilbert

equations

Rµν −
1

2
gµνR = 8πGTµν ≡ 0 (4.8)

with asymptotically flat boundary conditions. It corresponds to the line element:

ds2 = −
(

1− 2GM

r

)

dt2 +
(

1− 2GM

r

)−1
dr2 + r2dΩ2

2, (4.9)

where

dΩ2
2 = dθ2 + sin2(θ)dφ2, (4.10)

andM is the black hole mass measured by asymptotics of the energy-momentum tensor

at infinity.

The Schwarzschild solution has a coordinate singularity at r = r0 = 2GM . This

singularity can be avoided by a coordinate change, because the curvature is finite at

r = r0. Also there is a curvature singularity at r = 0, which cannot be avoided by any

coordinate transformation.

While pure empty AdS is a ground state for gravity, finite-temperature states cor-

respond to black holes inside AdS. The simplest asymptotically–AdS black hole is the

AdS–Schwarzchild black brane,

ds2 =
R2

z2

(

−f(z)dt2 + d~x2 +
1

f(z)
dr2
)

, (4.11)

with factor

f(z) = 1− zd

zdH
. (4.12)

Near the asymptotic boundary at z → 0, we have f → 1, so this metric is asymp-

totically AdSd+1. At z = zH , however, f → 0, signaling the presence of a black hole

horizon. This horizon in turn shields us from a physical singularity at z → ∞ by ensur-

ing that nothing which is inside the horizon, and thus sensitive to the singularity, can

ever escape to influence events in the rest of the spacetime. Since the entire solution

is translationally invariant in the (d− 1) spatial directions, ~x, this black brane is not a

compact object, but rather extended in all directions other than z.

A black hole in AdS as a classical black hole is a thermodynamic object with a

definite temperature, energy and entropy, as shown by Bekenstein and Hawking (see [82]

and references therein). The Hawking temperature T , energy density ǫ and entropy
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4. HOLOGRAPHIC DUALITY

density s of the black hole (4.11) are calculated in terms of the inverse of the period in

the corresponding Euclidean solution

T =
d

4πzH
, (4.13)

ǫ =
d− 1

16πzdH

(

R

ℓp

)d−1

, (4.14)

s =
1

4zd−1
H

(

R

ℓp

)d−1

, (4.15)

where ℓp is the Planck length and R
ℓp

measures the AdS-scale in Planck units.

Now let us consider the charged (Reissner–Nordstrøm) AdS black hole which plays

a significant role in the applied holography. The Reissner–Nordstrøm black hole is the

most general solution of the Einstein-Maxwell action

IME =
1

16πGN

∫

ddx
√−g

(

−2Λ + R− R2

4e2
F 2

)

, (4.16)

The action admits the following charged black hole solutions for the bulk metric

ds2 = R2
−f(z)dt2 + d~x2 + 1

f(z)dz
2

z2
, (4.17)

A = At(z)dt , (4.18)

with

f = 1−M zd +Q2 z2(d−1) , (4.19)

and electromagnetic scalar potential

At(z) = µ

(

1−
(

z

zH

)d−2
)

, (4.20)

where µ = 2Q
C
zd−2
H and C =

√

2(d−2)
d−1 .

In this geometry, the horizon lies at the radial position z = zH implicitly defined as

the value of z where f(z) vanishes. M and Q then determine the Hawking temperature

of the horizon,

T =
d

4πrH

(

1− d− 2

d
Q2z2d−2

H

)

, (4.21)
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as well as its energy, entropy and charge densities,

ǫ =M
d− 1

16π

(

R

ℓp

)d−1

, (4.22)

s =
1

4zd−1
H

(

R

ℓp

)d−1

, (4.23)

ρ = Q
d− 1

8πC

(

R

ℓp

)d−1

. (4.24)

One can show that these variables satisfy the first law of thermodynamics (see (2.21)),

i.e.

dǫ = Tds+ µdρ. (4.25)

4.3 Fluid–Gravity duality

The fluid/gravity duality is a map between black brane solutions of Einstein equations

with a negative cosmological constant and conformal fluid flows in one lower dimension1

[84, 85, 86, 87]. A useful starting point is a so-called holographic renormalization which

links the boundary energy–momentum tensor to the behavior of the bulk metric near

the AdS boundary.

Let us consider a general background involving an asymptoticAdS metric in Fefferman–

Graham coordinates,

ds2 =
gµνdx

µdxν + dz2

z2
. (4.26)

Following [88] we look for solutions of the vacuum Einstein equations with negative

cosmological constant Λ = −6 and the large z–expansion of gµν(z, x)

gµν = g(0)µν + g(2)µν z
2 + g(4)µν z

4 + ..., (4.27)

where g
(0)
µν is the 4-dimensional metric for the gauge theory on the boundary, g

(2)
µν is

equal to zero and g
(4)
µν is proportional to the VEV of the energy–momentum tensor2

[88, 89]:

Tµν =
1

4πG5
g(4)µν (4.28)

Now let us see how the fluid/gravity prescription works in practice. We give here

only a sketch of the fluid/gravity calculation which we will do in the next chapter.

The basic idea is that for a given black-brane solution with certain parameters such

1Note that this map originally motivated by string theory becomes independent of it. The gravity
side is nothing but solutions of Einstein’s equations [46, 83].

2One can consider also a gauge field A, and find the boundary current in same way jµa = ηµνA
(2)
aν

8πG5
+ĵµa .
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as temperature, charges etc, one simply considers those parameters as slowly-varying.

Say we know the black brane solution with multiple charges

ds2 = −A(r)dt2 + 2B(r)dtdr + C(r)(dxi)2 , (4.29)

AI = D(m, qI , r)uµdx
µ, (4.30)

where for simplicity of explanation we write A(r), B(r), C(r) and D(m, qI , r) as arbi-

trary functions and (I = 1, .., n).

Now we slowly vary parameters uµ, m, and qI up to first order in derivates,

uµ = (−1, xµ∂µui), (4.31)

m = m(0) + xµ∂µm, (4.32)

qI = q
(0)
I + xµ∂µqI . (4.33)

Of course, if we now replace uµ, m and qI in the metric by (4.31)-(4.33) the above

charged black brane solution will no longer be a solution of the Einstein–Maxwell

equations. To be a solution, we have to add corrections g
(1)
MN and A

I(1)
M to the zero’th

order solution with varying parameters, which should be chosen to satisfy the equations

of motion. Then the metric up to the first order in derivatives including the correction

g
(1)
MN looks as1

ds2 = −A(r)dt2 + 2B(r)dtdr + C(r)(dxi)2

+
[

−xµ (∂µA) + g
(1)
tt (r)

]

dt2 + 2
[

xµ (∂µB) + g
(1)
tr (r)

]

dtdr

+ 2 [−xµ (∂µui)B(r)] drdxi + 2
[

xµ (∂µui) (A(r)− C(r)) + g
(1)
ti (r)

]

dtdxi

+
[

xµ (∂µC) δij + g
(1)
ij (r)

]

dxidxj , (4.34)

and the gauge fields become

AI = −D(m, qI , r)dt

+
[

−xµ∂µD(m, qI , r) +A
I(1)
t (r)

]

dt

+
[

xµ (∂µui)D(m, qI , r) +A
I(1)
i (r)

]

dxi, (4.35)

The task is to insert the above into the original equations of motion to obtain the

equations for the first order corrections g
(1)
MN , A

I(1)
M and then to solve them. After

obtaining the full solution at first order in derivatives, one can read off physical quan-

tities at that order via AdS/CFT dictionary, such as energy-momentum tensor and

charge currents2. In principle one can go to an arbitrary order in derivative expansion

systematically.

1Following [90], we choose a gauge, such that g
(1)
rr = 0, g

(1)
rµ ∼ uµ, A

I(1)
r = 0 and

∑3
i=1 g

(1)
ii = 0.

2We will discuss this in detail in Chapter 5.
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Chapter 5

Gravity model for an anisotropic
hydrodynamics

In this chapter we construct the dual gravity background and present a numerical

solution for its gauge field and metric functions. The holographic computation of the

transport coefficients is very similar to that in the isotropic case.

5.1 Fluid-gravity model

We construct the gravity dual of a static anisotropic plasma with diagonal stress-energy

momentum Tµν = diag(ǫ, PT , PT , PL) and charge densities ρa.

We start from a five-dimensional U(1)n Einstein-Maxwell theory in an asymptotic

AdS space. The action is

S =
1

16πG5

∫

d5x
√−g

[

R− 2Λ− F aMNF
aMN (5.1)

+
Sabc
6
√−g ε

PKLMNAaPF
b
KLF

c
MN

]

,

where Λ = −6 is the cosmological constant. As usual, the U(1) field strengths are

defined by

F aMN = ∂MA
a
N − ∂NA

a
M , (5.2)

whereM,N, ... = 0, ..., 4 and a = 1, ..., n. The Chern-Simons term A∧F∧F encodes the

information of the triangle anomalies in the field theory [14]. In fact, the Chern-Simons

coefficients Sabc are related to the anomaly coefficients Cabc by

Cabc = Sabc/(4πG5) . (5.3)
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The corresponding equations of motion are given by the combined system of Einstein–

Maxwell equations,

GMN − 6gMN = TMN , (5.4)

∇MF
aMP = − Sabc

8
√−g ε

PMNKLF bMNF
c
KL , (5.5)

where the energy-momentum tensor TMN is

TMN = −2

(

F aMRF
aR

N +
1

4
gMNF

a
SRF

aSR

)

. (5.6)

5.1.1 AdS black hole with multiple U(1) charges

A gravity dual to an isotropic fluid (ǫ = 3P ) with multiple chemical potentials µa
(a = 1, ..., n) at finite temperature T is given by an AdS black hole solution with mass

m and multiple U(1) charges qa. In Eddington-Finkelstein coordinates, the metric and

U(1) gauge fields of this solution are

ds2 = −f(r)dt2 + 2drdt+ r2d~x2 ,

Aa = −Aa0(r)dt , (5.7)

where

f(r) = r2 − m

r2
+
∑

a

(qa)2

r4
,

Aa0(r) = µa∞ +

√
3qa

2r2
. (5.8)

The constants µa∞ can be fixed such that the gauge fields vanish at the horizon. In case

of a single charge (n = 1), the background reduces to an ordinary Reissner-Nordstrøm

black hole solution in AdS5 [91].

The temperature T and chemical potentials µa of the fluid are defined by

T =
κ

2π
=
f ′(r+)

4π
=

2r6+ −∑a(qa)
2

2πr5+
, (5.9)

µa = Aa0(r+)−Aa0(r∞) , (5.10)

where r+ is the outer horizon defined by the maximal solution of f(r) = 0, and r∞ indi-

cates the location of the boundary. The temperature of the fluid is the Hawking temper-

ature of the black hole and is computed from the surface gravity κ =
√

∂M |χ|∂M |χ||r+ ,
where |χ| = (−χMχM )(1/2) is the norm of the timelike Killing vector χM = δM0 [here

|χ| =
√

f(r)].
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5.1 Fluid-gravity model

5.1.2 Anisotropic AdS geometry with multiple U(1) charges

We now construct a solution for an anisotropic fluid (ǫ = 2PT + PL). An ansatz for an

anisotropic AdS black hole solution is given by

ds2 = −f(r)dt2 + 2drdt

+ r2(wT (r)dx
2 + wT (r)dy

2 + wL(r)dz
2) ,

Aa = −Aa0(r)dt . (5.11)

The anisotropies are realized via wT (r) and wL(r), which are functions of the momen-

tum anisotropy εp as defined in (1.3),

εp =
〈PT − PL〉
〈PT + PL〉

. (5.12)

In the isotropic case (εp = 0), these functions are required to be one, wT (r) = wL(r) =

1, and the background reduces to the AdS black hole geometry (5.7).

An analytical solution of the type (5.11) is difficult to find, and we resort to numerics

in the next subsection. For this, we need to know the solution close to the boundary.

An asymptotic solution (r → ∞) is given by the four functions

Aa0(r) = µa∞ +

√
3qa

2r2
+ O(r−8) ,

f(r)/r2 = 1− m

r4
+
∑

a

(qa)2

r6
+ O(r−8) ,

wT (r) = 1 +
w

(4)
T

r4
+ O(r−8) ,

wL(r) = 1 +
w

(4)
L

r4
+ O(r−8) , (5.13)

where w
(4)
L = −2w

(4)
T = −mζ/2, µa∞ = const., and ζ is related to the momentum

anisotropy εp by

ζ =
2εp
εp + 3

. (5.14)

The functions wT (r) and wL(r) have been introduced in view of the structure of

the anisotropic fluid stress-energy tensor. More precisely, in (5.13) we fixed the r−4

coefficients w
(4)
T and w

(4)
L such that the fluid stress-energy tensor is of the diagonal

form (2.48), Tµν = diag(ǫ, PT , PT , PL) with ǫ = 2PT + PL. Computing the stress-

energy tensor in the standard way from the asymptotic solution (5.13) via the extrinsic
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curvature, see e.g. [92], we find the transverse and longitudinal pressures

PT =
m− 4w

(4)
T − 4w

(4)
L

16πG5
=
m(1 + ζ)

16πG5
, (5.15)

PL =
m− 8w

(4)
T

16πG5
=
m(1− 2ζ)

16πG5
. (5.16)

Note that if (5.14) holds true, the pressures PT and PL satisfy (5.12). Likewise, the

charge densities are

ρa =

√
3qa

16πG5
. (5.17)

From these relations, we find the useful identity

ρa

ǫ+ PT
=

√
3qa

4m(1 + 1
4ζ)

, (5.18)

which we will need later.

Numerical solution

We now use shooting techniques to solve the system of ordinary differential equations

(ODE) which follows from the equations of motion (5.4) and (5.5) upon substituting

the ansatz (5.11). The idea is to vary the metric and gauge fields at some minimal

value r+ in the radial direction, integrate outwards and find solutions with the correct

asymptotic behavior (5.13). A similar method was previously applied in [42].

We first need to study the asymptotic solution near r+ and near the boundary at

r∞ ≫ r+ (we choose r∞ = 50 in our numerics). We define r+ by the maximal solution

of

f(r+) = 0 (5.19)

and use scale invariance to set r+ = 1. We then expand the functions in the metric and

gauge fields near r+ in powers of the parameter ε = r
r+

− 1 ≪ 1 and substitute them

into the equations of motion. In this way, we find that the only independent variables

are {f ′(r+), wT (r+), wL(r+), w′
L(r+)} since the gauge field parameters Aa0(r+) can be

set to zero using gauge invariance, Aa0(r+) = 0. The other parameters at r+ can be

expressed in terms of these four parameters, e.g. w′
T (r+) = wT (r+)w

′
L(r+)/wL(r+).
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5.1 Fluid-gravity model

The near-boundary solution is given by (5.11) with (5.13) and is parameterized by

the values (ζ,m, qa, µa∞). The final set of data is summarized in the following table:

r = r+ = 1 r = r∞ ≫ r+
Aa0(r+) = 0 µa∞
f(r+) = 0 f(r∞)

f ′(r+) = fixed Aa′0 (r∞)
wL(r+) = var wL(r∞)
wT (r+) = var wT (r∞)
w′
L(r+) = var

Parameters not listed are related to those in the table by the equations of motion.

To integrate the equations we proceed as follows. We fix ζ and vary three parameters

at r+, namely wT (r+), wL(r+) and w′
L(r+), by choosing a grid with suitable number

of sites (in our case 203 − 403). The value f ′(r+) can be thought of as the temperature

of the system and will simply be fixed to some value. It turns out that the form of

the functions wL,T (r) does not depend on this parameter. For each site in the grid we

numerically solve the system of ODEs and determine the pair (m, qa) from the known

asymptotics of Aa′0 (r = r∞) and f(r = r∞). This ensures that the analytical and

numerical values for these quantities coincide.

We then calculate the combined residual

res∞[wT (r+), wL(r+), w
′
L(r+))]

= (w#
L (r∞)− w∗

L(r∞))2 + (w#
T (r∞)− w∗

T (r∞))2, (5.20)

where w#
L,T (r∞) are the numerical values, and w∗

L,T (r∞) are the analytical values given

by (5.13). We interpolate the residual by a piecewise linear function and find its global

minimum by the simulated annealing method [93]. The result of the minimization is

shown in Fig. 5.1, which depicts numerical plots of f(r), A0(r), wT (r) and wL(r) for

n = 1.

We conclude this section with a comment on r+. In the isotropic case, r+ is simply

the size of the horizon of the AdS black hole geometry. For nonvanishing anisotropies

and vanishing U(1) charges, a naked singularity was found at r+ [43], implying that the

static background does not exist indefinitely. The singularity is mild in the sense that

there is a notion of ingoing boundary conditions and possible instabilities are absent

at the linear level in the anisotropy parameter [43]. This behavior may persist even

for nonvanishing U(1) charges, even though it was difficult to see the singularity in our

numerics, cf. Figure 5.2. Despite this subtlety, we show in the next section that, at least

for small anisotropies where the bulk geometry approximates a black hole solution, the

singular geometry may be used to compute some transport coefficients of the fluid.
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Figure 5.1: Numerical plots of f(r), A0(r), wT (r) and wL(r) for ζ = 10 (r+ = 1). We
get wL(r+) = 12.42.

5.2 Holographic vortical and magnetic conductivities

We will now compute the chiral vortical and magnetic conductivities ξaω and ξabB from

first-order corrections to the numerical AdS geometry (5.11) using the fluid-gravity

correspondence [46].

5.2.1 First-order corrected background

In order to become a dual to a multiply charged fluid, the AdS geometry (5.11) must

be boosted along the four-velocity of the fluid uµ (µ = 0, ..., 3). The boosted version of

(5.11) is

ds2 =
(

r2wT (r)Pµν − f(r)uµuν
)

dxµdxν − 2uµdx
µdr

− r2(wT (r)− wL(r))vµvνdx
µdxν ,

Aa = (Aa0(r)uµ +A
a
µ)dx

µ , (5.21)
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5.2 Holographic vortical and magnetic conductivities

Figure 5.2: Numerical plots of (RMNPQ)
2 for ζ = 10, q 6= 0 (red), ζ = 10, q = 0

(orange), and ζ = 0, q = 0 (blue).

where Pµν = gµν + uµuν , and f(r), Aa0(r), wT (r) and wL(r) are numerically known

functions. As in hydrodynamics, the four-vector vµ determines the direction of the

longitudinal axis, cf. Sec. 2. Following [14, 20], we have formally introduced constant

background gauge fields Aa
µ to model external electromagnetic fields, such as the mag-

netic fields Baµ needed for the chiral magnetic effect.

The transport coefficients ξaω and ξabB can now be computed using standard fluid-

gravity techniques [46]. We closely follow [14, 90, 20], in which these transport coef-

ficients were determined for an isotropic fluid with one and three charges (n = 1, 3).

We work in the static frame uµ = (−1, 0, 0, 0), vµ = (0, 0, 0, 1), and consider vanishing

background fields Aa
µ (at xµ = 0). The transport coefficients ξaω and ξabB measure the

response of the system to rotation and the perturbation by an external magnetic field.

We therefore slowly vary the velocity uµ and the background fields Aa
µ up to first order

as

uµ = (−1, xν∂νui) , A
a
µ = (0, xν∂νA

a
i ) . (5.22)

We may also vary m and q in this way, but it turns out that varying these parameters

has no influence on the transport coefficients ξaω and ξabB .

Because of the dependence on xµ, the background (5.21) is no longer an exact

solution of the equations of motion. Instead with varying parameters the solution

(5.21) receives higher-order corrections, which are in this case of first order in the

derivatives.
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An ansatz for the first-order corrected metric and gauge fields is given by

ds2 = (−f(r) + g̃tt) dt
2 + 2 (1 + g̃tr) dtdr

+ r2(wT (r)dx
2 + wT (r)dy

2 + wL(r)dz
2)

+ g̃ijdx
idxj − 2xν∂νuidrdx

i

+ 2
((

f(r)− r2
)

xν∂νui + g̃ti
)

dtdxi ,

Aa =
(

−Aa0(r) + Ãat

)

dt

+
(

Aa0(r)x
ν∂νui + xν∂νA

a
i + Ãai

)

dxi , (5.23)

where the first-order corrections are denoted by

g̃MN = g̃MN (r) , ÃaM = ÃaM (r) . (5.24)

As in [90], we work in the gauge

g̃rr = 0 , g̃rµ ∼ uµ , Ãar = 0 ,
3
∑

i=1

g̃ii = 0 . (5.25)

The first-order corrections can be obtained by substituting the ansatz (5.23) into the

equations of motion (5.4) and (5.5). We denote the resulting Maxwell equations,

Eqs. (5.5) byMa
N (a = 1, ..., n) and the components of the Einstein equation, Eqn. (5.4)

by EMN M,N = 0, ..., 4 [xM = (t, x1, x2, x3, r)]. Then, from grtEti + grrEri = 0, we

find ∂tui = 0, and Ett, Ert, Err, Ett, M
a
t , and M

a
r are solved by

∂iui = g̃tr = g̃tt = Ãat = 0 . (5.26)

The remaining equations are Eij , Eti, M
a
i .

From Eij we get

−∂r
(

r3f(r)∂r

(

g̃ij(r)

r2

))

= 3r2(∂iuj + ∂jui) . (5.27)

From Eti we get

[

f ′(r)

f(r)

(

2

r
+
w′
T (r)

wT (r)

)

+
4

3f(r)

(

n
∑

a=1

Aa0
′(r)2 − 6

)]

g̃ti(r)

+

(

1

r
+

w′
L(r)

2wL(r)

)

g̃′ti(r) + g̃′′ti(r) = 4
n
∑

a=1

Aa0
′(r)Ãai

′(r) , (5.28)

where a prime denotes the partial derivative ∂r with respect to r.
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From Ma
i we get

∂r

[

wL(r)
1/2r

(

f(r)Ãai
′ − g̃ti(r)A

a
0
′
)]

= ∂r

(

1

2
SabcA

b
0A

c
0ǫ
ijk (∂juk) + SabcA

b
0ǫ
ijk (∂jA

c
k)

)

≡ ∂rQ
a
i (r) . (5.29)

Equation (5.27) depends only on g̃ij(r) and can easily be solved. The integration

of (5.29) leads to

wL(r)
1/2
(

rf(r)Ãai
′(r)− rg̃ti(r)A

a
0
′(r)
)

= Qai (r) + Cai . (5.30)

Here Cai are some integration constants, which can be fixed as

Cai = −Qai (r+)− CiwL(r+)
1/2r+A

a
0
′(r+) , (5.31)

with r+ as in (5.19) and Ci = g̃ti(r+). This can be solved for Ãai (r),

Ãai (r) =

∫ r

∞
dr′

1

r′f(r′)wL(r′)1/2

[

Qai (r
′)−Qai (r+)

− Cir+A
a
0
′(r+)wL(r+)

1/2 + r′g̃ti(r
′)Aa0

′(r′)
]

. (5.32)

We still need to determine the constants Ci. Using (5.30), we replace Ãai
′ in (5.28)

and obtain

[

f ′(r)

f(r)

(

2

r
+
w′
T (r)

wT (r)

)

− 8

3f(r)

(

n
∑

a=1

Aa0
′(r)2 + 3

)]

g̃ti(r)

+

(

1

r
+

w′
L(r)

2wL(r)

)

g̃′ti(r) + g̃′′ti(r) =
1

wL(r)1/2rf(r)
I(r) , (5.33)

where

I(r) =
n
∑

a=1

4Aa0
′(r)
(

Qai (r)−Qai (r+)

− Cir+wL(r+)
1/2Aa0

′(r+)
)

. (5.34)

A homogeneous solution of this equation g̃ti(r) = g
(0)
tt (r) = f(r) can be generated by

the infinitesimal coordinate transformation

dt→ dt− ǫ(dx+ dy + dz) , dz → dz + ǫ
dr

r2wL
,

dx→ dz + ǫ
dr

r2wT
, dy → dy + ǫ

dr

r2wT
. (5.35)
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Then, using this homogeneous solution and techniques used in Appendix D of [51]

[P (r) = f(r) and E(r) = rwL(r)
1/2 there], we bring (5.33) to the integrable form

∂r

(

wL(r)
1/2rf2(r)∂r

(

g̃ti(r)

f(r)

))

= I(r) . (5.36)

Solving this equation for g̃ti(r) and fixing the integration constants at r+, we get

g̃ti(r) = f(r)

∫ r

∞
dr′

1

wL(r′)1/2r′ (f(r′))
2

(

∫ r′

r+

dr′′ I(r′′)

− wL(r+)
1/2r+f

′(r+)Ci

)

. (5.37)

In the Landau frame we require uµτ
µν = 0, which in particular implies the absence

of corrections to T ti. Holographic renormalization [94] translates this into a constraint

for the r−2 coefficient of g̃ti(r) which is proportional to the first correction of T ti,

lim
r→∞

r2 g̃ti(r) = 0 . (5.38)

In the limit r → ∞, we have the asymptotics

f(r) = O(r2) , wL(r) = O(1) ,
∫ r

r+

dr′ I(r′) = O(1) , (5.39)

and, from the vanishing of the r−2-coefficient of g̃ti(r), we obtain the following equation

for Ci:

wL(r+)
1/2r+f

′(r+)Ci =

∫ ∞

r+

dr′ I(r′) ≡ I1 + I2 · Ci , (5.40)

where we defined the integrals

I1 ≡ 4

∫ ∞

r+

dr′
n
∑

a=1

Aa0
′(r′)

(

Qai (r
′)−Qai (r+)

)

=
4

3
SabcA

a
0(r+)A

b
0(r+)A

c
0(r+)ǫ

ijk (∂juk)

+ 2SabcA
a
0(r+)A

b
0(r+)ǫ

ijk (∂jA
c
k) (5.41)

and

I2 ≡ 4

∫ ∞

r+

dr′
n
∑

a=1

Aa0
′(r′)

(

−wL(r+)1/2r+Aa0 ′(r+)
)

= 4wL(r+)
1/2r+

n
∑

a=1

Aa0(r+)A
a
0
′(r+) . (5.42)
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Solving this for Ci, we eventually get

Ci =
4

r+(f ′(r+)− 4
∑

aA
a
0(r+)A

a
0
′(r+))

· 1

wL(r+)1/2

×
(

1

3
SabcA

a
0(r+)A

b
0(r+)A

c
0(r+)ǫ

ijk (∂juk)

+
1

2
SabcA

a
0(r+)A

b
0(r+)ǫ

ijk (∂jA
c
k)

)

. (5.43)

5.2.2 Holographic conductivities

On the boundary of the asymptotic AdS space (5.23), the metric and gauge fields

couple to the fluid stress-energy tensor and U(1) currents, respectively. Holographic

renormalization [94] provides relations between these currents and the near-boundary

behavior of their dual bulk fields. For the magnetic and vortical effects, we need the

U(1) currents jaµ, which are related to the bulk gauge fields Aaµ by [94, 95]

jaµ = lim
r→∞

r2

8πG5
ηµνAaν(r) . (5.44)

Expanding the solution in 1
r and substituting only the corrections Ãaµ, we get the

currents

j̃aµ = lim
r→∞

r2

8πG5
ηµνÃaν(r)

=
1

16πG5
ηµν

(

Qaν(r+) + r+A
a
0
′(r+)Cν

)

. (5.45)

Note that, in the isotropic case (wL = 1, PT = PL = P ), the prefactor of the second

term of (5.45) is simply

r+A
a′
0 (r+)c(r+) =

√
3

4m
qa , (5.46)

as can be seen by substituting the Reissner-Nordstrøm solution (5.8) into the left-hand-

side of this equation. In the anisotropic case, we need to show that

r+A
a′
0 (r+)c(r+) · wL(r+)−1/2 =

√
3qa

4m
· 1

1 + 1
4ζ
, (5.47)

which, by (5.18), is equivalent to ρa/(ǫ+ PT ). This equation holds in particular if the

first and second factors on both sides agree individually. The first factors correspond to

(5.46), which is expected to hold, at least approximately for small anisotropies ζ. The

second factors are identical if wL(r+, ζ) = (1 + 1
4ζ)

2. We find numerically (for n = 1)

37



5. GRAVITY MODEL FOR AN ANISOTROPIC HYDRODYNAMICS

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0  2  4  6  8  10  12

w
L(

r +
)

anisotropy ζ

hydrodynamics
holography, numerics

Figure 5.3: Values of wL(r+) as a function of the anisotropy ζ. The numerically deter-
mined values for wL(r+) lie on the solid curve, which represents the function (1 + 1

4
ζ)2.

that wL(r+) indeed satisfies this equation, see Fig. 5.3. Thus (5.47) holds numerically,

at least in the limit of small ζ.

Comparing (5.45) with the general expansion

j̃aµ = ξaω ω
µ + ξabB Bbµ

= ξaω
1
2ǫ
νρσµuν∂ρuσ + ξabB ǫ

νρσµuν∂ρA
b
σ , (5.48)

we finally obtain the coefficients

ξaω =
4

16πG5

(

Sabcµbµc − 2

3

ρa

ǫ+ PT
Sbcdµbµcµd

)

, (5.49)

ξabB =
4

16πG5

(

Sabcµc − 1

2

ρa

ǫ+ PT
Sbcdµcµd

)

, (5.50)

with µa ≡ Aa0(r+) [since Aa0(∞) = 0]. Using the relation (5.3), we find that the

holographically computed transport coefficients (5.49) and (5.50) coincide exactly with

those found in hydrodynamics, (3.50) and (3.51).

5.2.3 Subtleties in holographic descriptions of the CME

The conservation of the electromagnetic current requires the introduction of the Bardeen

counterterm into the action. In AdS/QCD models of the CME, this typically leads to

a vanishing result for the electromagnetic current [33, 35]. The problem is related to
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the difficulty of introducing a chemical potential conjugated to a nonconserved chi-

ral charge [33, 34]. It is possible to modify the action to obtain a conserved chiral

charge [33]. This charge is however only gauge-invariant when integrated over all space

in homogeneous configurations.

In AdS black hole models of the CME, one usually introduces a chiral chemical po-

tential dual to a gauge-invariant current, despite it being anomalous [34, 20]. The prize

to pay is the appearance of a singular bulk gauge field at the horizon, a phenomenon

which seems to be generic in AdS black hole models of the CME.

Careful holographic renormalization shows that, in the presence of Chern-Simons

terms, there is an additional term on the right-hand side of (5.44) [95]. This term is of

the form

ĵµa = − Sabc
8πG5

ǫµνρσA
(0)
bν (x)∂ρA

(0)
cσ (x) , (5.51)

where A
(0)
aµ (x) are the 0th-order coefficients in a 1

r expansion of the bulk gauge fields

Aaµ(r, x). In (5.22) we expanded the background gauge fields Aa
µ around zero and set

A
a(0)
ν = µa∞uν = 0. This allowed us to ignore terms in (5.44) coming from (5.51) (at

least to first order in the derivatives).

Problems arise if µa∞ 6= 0. To see this, let us restrict again to two charges (n = 2)

as in Sec. 3.3.2 and define axial and vector gauge fields by AAµ = A1
µ and AVµ = A2

µ.

Then ĵµ = ĵµ2 gives rise to additional contributions of the type

ĵµ ⊃ εµνρσAA(0)ν (x)F V (0)
ρσ (x) , (5.52)

which are forbidden by electromagnetic gauge invariance [33], unless A
A(0)
ν (x) = 0.

However, in general A
A(0)
ν (x) = µ∞5 uν (at x = 0) with some constant µ∞5 . We should

thus set µ∞5 = 0 [Note that this does not imply µ5 = AA0 (r∞) − AA0 (r+) = 0]. This

corresponds to a nonvanishing gauge field at the horizon, as noticed also in [34, 20].
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Chapter 6

Summary and Outlook

The chiral magnetic effect can be derived in several ways, in particular by using fluid-

gravity dual models. Using holographic duality we studied an anisotropic hydrodynam-

ics with multiple anomalous U(1) charges and found the dependence of CME coefficient

on the momentum anisotropy.

We discussed two descriptions of the chiral magnetic effect in the anisotropic quark-

gluon plasma. We first computed the vortical and magnetic conductivities of the

anisotropic fluid. We found that CME coefficient increases linearly with elliptic flow

coefficient. We then constructed the dual gravity background of the anisotropic fluid.

Finally, we used this background to perform a holographic computation of the vortical

and magnetic conductivities and found numerical agreement with the hydrodynamic

result for small anisotropies.
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[13] B. Müller and A. Schäfer, “Charge Fluctuations from the Chiral Magnetic Effect

in Nuclear Collisions,” Phys. Rev. C 82, 057902 (2010) [arXiv:1009.1053]. 1

[14] D. T. Son and P. Surowka, “Hydrodynamics with Triangle Anomalies,” Phys.

Rev. Lett. 103, 191601 (2009) [arXiv:0906.5044]. 1, 11, 12, 13, 14, 16, 18, 27, 33

[15] A. V. Sadofyev, V. I. Shevchenko and V. I. Zakharov, “Notes on chiral hydro-

dynamics within effective theory approach,” Phys. Rev. D 83 (2011) 105025

[arXiv:1012.1958]. 1, 12, 20

44

http://www.arXiv.org/abs/arXiv:hep-ph/9708303
http://www.arXiv.org/abs/arXiv:hep-ph/9710234
http://www.arXiv.org/abs/arXiv:cond-mat/9803346
http://www.arXiv.org/abs/arXiv:0907.0494
http://www.arXiv.org/abs/arXiv:1003.2180
http://www.arXiv.org/abs/arXiv:1011.3795
http://www.arXiv.org/abs/arXiv:0911.1348
http://www.arXiv.org/abs/arXiv:1111.4681
http://www.arXiv.org/abs/arXiv:1105.0385
http://www.arXiv.org/abs/arXiv:1009.1053
http://www.arXiv.org/abs/arXiv:0906.5044
http://www.arXiv.org/abs/arXiv:1012.1958


BIBLIOGRAPHY

[16] A. V. Sadofyev and M. V. Isachenkov, “The Chiral magnetic effect in hydrody-

namical approach,” Phys. Lett. B 697, 404 (2011) [arXiv:1010.1550]. 1, 11, 12,

13, 18, 20

[17] S. Pu, J. h. Gao and Q. Wang, “Kinetic approach to triangle anomaly in hydro-

dynamics,” Phys. Rev. D 83, 094017 (2011) [arXiv:1008.2418]. 1, 12, 18, 20

[18] Y. Neiman and Y. Oz, “Relativistic Hydrodynamics with General Anomalous

Charges,” JHEP 1103, 023 (2011) [arXiv:1011.5107]. 1, 12, 13, 17, 18

[19] M. Lublinsky and I. Zahed, “Anomalous Chiral Superfluidity,” Phys. Lett. B 684

(2010) 119 [arXiv:0910.1373]. 1, 12

[20] T. Kalaydzhyan and I. Kirsch, “Fluid/gravity model for the chiral magnetic ef-

fect,” Phys. Rev. Lett. 106 (2011) 211601 [arXiv:1102.4334]. 1, 3, 11, 13, 18, 20,

33, 39

[21] J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, “Fluid dynamics of R-

charged black holes,” JHEP 0901, 055 (2009) [arXiv:0809.2488]. 1, 12, 13

[22] R. Ryblewski and W. Florkowski, “General formulation of transverse hydrody-

namics,” Phys. Rev. C 77, 064906 (2008) [arXiv:0804.2427]. 2, 9

[23] W. Florkowski, “Anisotropic fluid dynamics in the early stage of relativistic

heavy-ion collisions,” Phys. Lett. B 668, 32 (2008) [arXiv:0806.2268]. 2, 9, 10

[24] R. Ryblewski and W. Florkowski, “Highly-anisotropic and strongly-dissipative

hydrodynamics with transverse expansion,” Eur. Phys. J. C 71 (2011) 1761

[arXiv:1103.1260]. 2, 9

[25] R. Snellings, “Elliptic Flow: A Brief Review,” New J. Phys. 13 (2011) 055008

[arXiv:1102.3010]. 2

[26] Q. Wang, “Charge Multiplicity Asymmetry Correlation Study Searching for Local

Parity Violation at RHIC for STAR,” [arXiv:1205.4638]. 2

[27] P. F. Kolb, J. Sollfrank and U. W. Heinz, “Anisotropic transverse flow and

the quark hadron phase transition,” Phys. Rev. C 62, 054909 (2000) [hep-

-ph/0006129]. 2, 20

[28] P. Huovinen and P. Petreczky, “QCD Equation of State and Hadron Resonance

Gas,” Nucl. Phys. A 837, 26 (2010) [arXiv:0912.2541]. 3

45

http://www.arXiv.org/abs/arXiv:1010.1550
http://www.arXiv.org/abs/arXiv:1008.2418
http://www.arXiv.org/abs/arXiv:1011.5107
http://www.arXiv.org/abs/arXiv:0910.1373
http://www.arXiv.org/abs/arXiv:1102.4334
http://www.arXiv.org/abs/arXiv:0809.2488
http://www.arXiv.org/abs/arXiv:0804.2427
http://arxiv.org/abs/arXiv:0806.2268
http://www.arXiv.org/abs/arXiv:1103.1260
http://www.arXiv.org/abs/arXiv:1102.3010
http://www.arXiv.org/abs/arXiv:1205.4638
http://www.arXiv.org/abs/hep-ph/0006129
http://www.arXiv.org/abs/arXiv:0912.2541


BIBLIOGRAPHY

[29] K. Behrndt, M. Cvetic and W. A. Sabra, “Non-extreme black holes of

five dimensional N = 2 AdS supergravity,” Nucl. Phys. B 553, 317 (1999)

[arXiv:hep-th/9810227]. 3

[30] G. Lifschytz and M. Lippert, “Anomalous conductivity in holographic QCD,”

Phys. Rev. D 80, 066005 (2009) [arXiv:0904.4772]. 3

[31] H. U. Yee, “Holographic Chiral Magnetic Conductivity,” JHEP 0911, 085 (2009)

[arXiv:0908.4189]. 3

[32] A. Gorsky, P. N. Kopnin and A. V. Zayakin, “On the Chiral Magnetic Effect in

Soft-Wall AdS/QCD,” Phys. Rev. D 83, 014023 (2011) [arXiv:1003.2293]. 3

[33] V. A. Rubakov, “On chiral magnetic effect and holography,” [arXiv:1005.1888].

3, 38, 39

[34] A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, “Holographic

Anomalous Conductivities and the Chiral Magnetic Effect,” JHEP 1102, 110

(2011) [arXiv:1005.2587]. 3, 39

[35] A. Rebhan, A. Schmitt and S. A. Stricker, “Anomalies and the chiral magnetic

effect in the Sakai-Sugimoto model,” JHEP 1001, 026 (2010) [arXiv:0909.4782].

3, 38

[36] L. Brits and J. Charbonneau, “A Constraint-Based Approach to the Chiral Mag-

netic Effect,” Phys. Rev. D 83, 126013 (2011) [arXiv:1009.4230]. 3

[37] I. Amado, K. Landsteiner and F. Pena-Benitez, “Anomalous transport coefficients

from Kubo formulas in Holography,” JHEP 1105, 081 (2011) [arXiv:1102.4577].

3

[38] C. Hoyos, T. Nishioka, A. O’Bannon, “A Chiral Magnetic Effect from AdS/CFT

with Flavor,” arXiv:1106.4030. 3

[39] J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, “A Theory of

first order dissipative superfluid dynamics,” arXiv:1105.3733. 3, 13

[40] Y. -P. Hu, P. Sun and J. -H. Zhang, “Hydrodynamics with conserved current

via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity,” Phys. Rev.

D 83 (2011) 126003 [arXiv:1103.3773] • Y. -P. Hu, “Chern-Simons effect on the

dual hydrodynamics in the Maxwell-Gauss-Bonnet gravity,” arXiv:1112.4227. 3

46

http://www.arXiv.org/abs/arXiv:hep-th/9810227
http://www.arXiv.org/abs/arXiv:0904.4772
http://www.arXiv.org/abs/arXiv:0908.4189
http://www.arXiv.org/abs/arXiv:1003.2293
http://www.arXiv.org/abs/arXiv:1005.1888
http://www.arXiv.org/abs/arXiv:1005.2587
http://www.arXiv.org/abs/arXiv:0909.4782
http://www.arXiv.org/abs/arXiv:1009.4230
http://www.arXiv.org/abs/arXiv:1102.4577
http://www.arXiv.org/abs/arXiv:1106.4030
http://www.arXiv.org/abs/arXiv:1105.3733
http://www.arXiv.org/abs/arXiv:1103.3773
http://www.arXiv.org/abs/arXiv:1112.4227


BIBLIOGRAPHY

[41] M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, “Drag force in a

strongly coupled anisotropic plasma,” arXiv:1202.3696 • D. Mateos and D. Tran-

canelli, “The anisotropic N=4 super Yang-Mills plasma and its instabilities,”

Phys. Rev. Lett. 107, 101601 (2011) [arXiv:1105.3472] • D. Mateos and D. Tran-

canelli, “Thermodynamics and Instabilities of a Strongly Coupled Anisotropic

Plasma,” JHEP 1107, 054 (2011) [arXiv:1106.1637]. 3

[42] J. Erdmenger, P. Kerner and H. Zeller, “Transport in Anisotropic Superfluids: A

Holographic Description,” JHEP 1201, 059 (2012) [arXiv:1110.0007]. 3, 30

[43] R. A. Janik and P. Witaszczyk, “Towards the description of anisotropic plasma

at strong coupling,” JHEP 0809, 026 (2008) [arXiv:0806.2141]. 3, 31

[44] K. B. Fadafan and H. Soltanpanahi, “Energy loss in a strongly coupled anisotropic

plasma,” arXiv:1206.2271. 3

[45] A. Rebhan and D. Steineder, “Probing Two Holographic Models of Strongly

Coupled Anisotropic Plasma,” JHEP 1208 (2012) 020 [arXiv:1205.4684]. 3

[46] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, “Nonlinear

Fluid Dynamics from Gravity,” JHEP 0802, 045 (2008) [arXiv:0712.2456]. 3, 25,

32, 33

[47] A. Rebhan and D. Steineder, “Electromagnetic signatures of a strongly coupled

anisotropic plasma,” JHEP 1108 (2011) 153 [arXiv:1106.3539]. 4

[48] A. Rebhan and D. Steineder, “Violation of the Holographic Viscosity Bound in

a Strongly Coupled Anisotropic Plasma,” Phys. Rev. Lett. 108 (2012) 021601

[arXiv:1110.6825]. 4

[49] D. Giataganas, “Probing strongly coupled anisotropic plasma,” [arXiv:1202.4436.

4

[50] A. Gynther, A. Rebhan and D. Steineder, “Thermodynamics and phase diagram

of anisotropic Chern-Simons deformed gauge theories,” arXiv:1207.6283. 4

[51] I. Gahramanov, T. Kalaydzhyan and I. Kirsch, “Anisotropic hydrodynamics,

holography and the chiral magnetic effect,” Phys. Rev. D 85 (2012) 126013

[arXiv:1203.4259]. 4, 10, 11, 36

[52] N. Andersson and G. L. Comer, “Relativistic fluid dynamics: Physics for many

different scales,” Living Rev. Rel. 10 (2005) 1 [gr-qc/0605010]. 5, 6

[53] T. Hirano, N. van der Kolk and A. Bilandzic, “Hydrodynamics and Flow,” Lect.

Notes Phys. 785 (2010) 139 [arXiv:0808.2684]. 5

47

http://www.arXiv.org/abs/arXiv:1202.3696
http://www.arXiv.org/abs/arXiv:1105.3472
http://www.arXiv.org/abs/arXiv:1106.1637
http://www.arXiv.org/abs/arXiv:1110.0007
http://www.arXiv.org/abs/arXiv:0806.2141
http://www.arXiv.org/abs/arXiv:1206.2271
http://www.arXiv.org/abs/arXiv:1205.4684
http://www.arXiv.org/abs/arXiv:0712.2456
http://www.arXiv.org/abs/arXiv:1106.3539
http://www.arXiv.org/abs/arXiv:1110.6825
http://www.arXiv.org/abs/arXiv:1202.4436
http://www.arXiv.org/abs/arXiv:1207.6283
http://www.arXiv.org/abs/arXiv:1203.4259
http://www.arXiv.org/abs/gr-qc/0605010
http://www.arXiv.org/abs/arXiv:0808.2684


BIBLIOGRAPHY

[54] J. -Y. Ollitrault, “Relativistic hydrodynamics for heavy-ion collisions,” Eur. J.

Phys. 29 (2008) 275 [arXiv:0708.2433]. 5

[55] L. D. Landau and E. M. Lifshitz, “Fluid Mechanics,” PergamonPress , London,

1959 5, 7

[56] P. Danielewicz and M. Gyulassy, “Dissipative Phenomena in Quark Gluon Plas-

mas,” Phys. Rev. D 31 (1985) 53. 7, 8

[57] W. Florkowski and R. Ryblewski, “Projection method for boost-invariant and

cylindrically symmetric dissipative hydrodynamics,” Phys. Rev. C 85 (2012)

044902 [arXiv:1111.5997]. 8

[58] M. A. Shifman, “Anomalies and Low-Energy Theorems of Quantum Chromody-

namics,” Phys. Rept. 209 (1991) 341 [Sov. Phys. Usp. 32 (1989) 289] [Usp. Fiz.

Nauk 157 (1989) 561]. 11

[59] A. Y. Morozov, “Anomalies In Gauge Theories,” Sov. Phys. Usp. 29 (1986) 993

[Usp. Fiz. Nauk 150 (1986) 337]. 11

[60] K. Landsteiner, E. Megias and F. Pena-Benitez, “Gravitational Anomaly and

Transport,” Phys. Rev. Lett. 107, 021601 (2011) [arXiv:1103.5006]. 13, 17

[61] Y. Neiman and Y. Oz, “Anomalies in Superfluids and a Chiral Electric Effect,”

JHEP 1109 (2011) 011 [arXiv:1106.3576]. 13

[62] V. P. Kirilin, A. V. Sadofyev and V. I. Zakharov, “Chiral Vortical Effect in

Superfluid,” Phys. Rev. D 86 (2012) 025021 [arXiv:1203.6312]. 13

[63] T. Kalaydzhyan, “Chiral superfluidity of the quark-gluon plasma,”

arXiv:1208.0012. 13

[64] V. P. Kirilin, Z. V. Khaidukov and A. V. Sadofyev, “Chiral Vortical Effect in

Fermi Liquid,” arXiv:1203.6612. 13

[65] D. E. Kharzeev and D. T. Son, “Testing the chiral magnetic and chiral vor-

tical effects in heavy ion collisions,” Phys. Rev. Lett. 106, 062301 (2011)

[arXiv:1010.0038]. 20

[66] J. M. Maldacena, “The Large N limit of superconformal field theories and super-

gravity,” Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200]. 21

[67] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from

noncritical string theory,” Phys. Lett. B 428 (1998) 105 [hep-th/9802109]. 21

48

http://www.arXiv.org/abs/arXiv:0708.2433
http://www.arXiv.org/abs/arXiv:1111.5997
http://www.arXiv.org/abs/arXiv:1103.5006
http://www.arXiv.org/abs/arXiv:1106.3576
http://www.arXiv.org/abs/arXiv:1203.6312
http://www.arXiv.org/abs/arXiv:1208.0012
http://www.arXiv.org/abs/arXiv:1203.6612
http://www.arXiv.org/abs/arXiv:1010.0038
http://www.arXiv.org/abs/hep-th/9711200
http://www.arXiv.org/abs/hep-th/9802109


BIBLIOGRAPHY

[68] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2

(1998) 253 [hep-th/9802150]. 21

[69] I. R. Klebanov, “TASI lectures: Introduction to the AdS / CFT correspondence,”

hep-th/0009139. 21

[70] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N field

theories, string theory and gravity,” Phys. Rept. 323 (2000) 183 [hep-th/9905111].

21

[71] A. Gorsky, “Gauge theories as string theories: The First results,” Phys. Usp. 48

(2005) 1093 [hep-th/0602184]. 21

[72] E. T. Akhmedov, “Introduction to the AdS / CFT correspondence,” hep-

-th/9911095 • E. T. Akhmedov, “Correspondence between supersymmetric Yang-

Mills and supergravity theories,” Phys. Usp. 44 (2001) 955 [Usp. Fiz. Nauk 44

(2001) 1005]. 21

[73] V. Schomerus, “Strings for Quantumchromodynamics,” Int. J. Mod. Phys. A 22

(2007) 5561 [Conf. Proc. C 060726 (2006) 151] [arXiv:0706.1209]. 21

[74] K. Peeters and M. Zamaklar, Eur. Phys. J. ST 152 (2007) 113 [arXiv:0708.1502].

21

[75] Y. Kim, I. J. Shin and T. Tsukioka, “Holographic QCD: Past, Present, and

Future,” arXiv:1205.4852. 21

[76] J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, “Mesons in Gauge/Gravity

Duals - A Review,” Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467]. 21

[77] J. Erlich, “How Well Does AdS/QCD Describe QCD?,” Int. J. Mod. Phys. A 25

(2010) 411 [arXiv:0908.0312]. 21

[78] E. T. Akhmedov, “Review of modern string theory,” Phys. Atom. Nucl. 72 (2009)

1574 [Yad. Fiz. 72 (2009) 1628]. 22

[79] S. R. Wadia, “Gauge/Gravity Duality and Some Applications,” Mod. Phys. Lett.

A 25 (2010) 2859 [arXiv:1009.0212]. 22

[80] E. T. Akhmedov, “Black hole thermodynamics from the point of view of super-

string theory,” Int. J. Mod. Phys. A 15 (2000) 1 [hep-th/9711153]. 22, 23

[81] A. Adams, L. D. Carr, T. Schaefer, P. Steinberg and J. E. Thomas, “Strongly Cor-

related Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic

Plasmas, and Holographic Duality,” [arXiv:1205.5180]. 22

49

http://www.arXiv.org/abs/hep-th/9802150
http://www.arXiv.org/abs/hep-th/0009139
http://www.arXiv.org/abs/hep-th/9905111
http://www.arXiv.org/abs/hep-th/0602184
http://www.arXiv.org/abs/hep-th/9911095
http://www.arXiv.org/abs/arXiv:0706.1209
http://www.arXiv.org/abs/arXiv:0708.1502
http://www.arXiv.org/abs/arXiv:1205.4852
http://www.arXiv.org/abs/arXiv:0711.4467
http://www.arXiv.org/abs/arXiv:0908.0312
http://www.arXiv.org/abs/arXiv:1009.0212
http://www.arXiv.org/abs/hep-th/9711153
http://www.arXiv.org/abs/arXiv:1205.5180


BIBLIOGRAPHY

[82] R. Bousso, “The Holographic principle,” Rev. Mod. Phys. 74 (2002) 825 [hep-

-th/0203101]. 23

[83] S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma,

“Conformal Nonlinear Fluid Dynamics from Gravity in Arbitrary Dimensions,”

JHEP 0812 (2008) 116 [arXiv:0809.4272]. 25

[84] D. T. Son and A. O. Starinets, “Viscosity, Black Holes, and Quantum Field

Theory,” Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240]. 25

[85] N. Banerjee and S. Dutta, “Holographic Hydrodynamics: Models and Methods,”

arXiv:1112.5345. 25

[86] A. Meyer, “Relativistic Holographic Hydrodynamics from Black Hole Horizons,”

arXiv:1107.0853. 25

[87] V. E. Hubeny, S. Minwalla and M. Rangamani, “The fluid/gravity correspon-

dence,” arXiv:1107.5780. 25

[88] K. Skenderis, “Lecture notes on holographic renormalization,” Class. Quant.

Grav. 19 (2002) 5849 [hep-th/0209067]. 25

[89] R. A. Janik and R. B. Peschanski, “Asymptotic perfect fluid dynamics as a con-

sequence of Ads/CFT,” Phys. Rev. D 73 (2006) 045013 [hep-th/0512162]. 25

[90] M. Torabian and H. U. Yee, “Holographic nonlinear hydrodynamics from

AdS/CFT with multiple/non-Abelian symmetries,” JHEP 0908, 020 (2009)

[arXiv:0903.4894]. 26, 33, 34

[91] A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, “Holography, ther-

modynamics and fluctuations of charged AdS black holes,” Phys. Rev. D 60,

104026 (1999) [arXiv:hep-th/9904197]. 28

[92] T. Kalaydzhyan and I. Kirsch, “Holographic dual of a boost-invariant plasma

with chemical potential,” JHEP 1102, 053 (2011) [arXiv:1012.1966]. 30

[93] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by Simulated An-

nealing,” Science 220 (1983) 671 • V. Cerny, “A Thermodynamical Approach To

The Traveling Salesman Problem: An Efficient Simulation Algorithm,” Print-82-

0540 (COMENIUS). 31

[94] M. Bianchi, D. Z. Freedman and K. Skenderis, “Holographic Renormalization,”

Nucl. Phys. B 631, 159 (2002) [arXiv:hep-th/0112119]. 36, 37

[95] B. Sahoo and H. U. Yee, “Electrified plasma in AdS/CFT correspondence,” JHEP

1011, 095 (2010) [arXiv:1004.3541]. 37, 39

50

http://www.arXiv.org/abs/hep-th/0203101
http://www.arXiv.org/abs/arXiv:0809.4272
http://www.arXiv.org/abs/arXiv:0704.0240
http://www.arXiv.org/abs/arXiv:1112.5345
http://www.arXiv.org/abs/arXiv:1107.0853
http://www.arXiv.org/abs/arXiv:1107.5780
http://www.arXiv.org/abs/hep-th/0209067
http://www.arXiv.org/abs/hep-th/0512162
http://www.arXiv.org/abs/arXiv:0903.4894
http://www.arXiv.org/abs/arXiv:hep-th/9904197
http://www.arXiv.org/abs/arXiv:1012.1966
http://www.arXiv.org/abs/arXiv:hep-th/0112119
http://www.arXiv.org/abs/arXiv:1004.3541


Declaration

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und keine
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