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We provide a deep Boltzmann machine (DBM) for the AdS=CFT correspondence. Under the philosophy
that the bulk spacetime is a neural network, we give a dictionary between those, and obtain a restricted
DBM as a discretized bulk scalar field theory in curved geometries. The probability distribution as training
data is the generating functional of the boundary quantum field theory, and it trains neural network weights
which are the metric of the bulk geometry. The deepest layer implements black hole horizons, and an
employed regularization for the weights is an Einstein action. A large Nc limit in holography reduces the
DBM to a folded feed-forward architecture. We also neurally implement holographic renormalization into
an autoencoder. The DBM for the AdS=CFT may serve as a platform for studying mechanisms of
spacetime emergence in holography.
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I. INTRODUCTION

Deep Boltzmann machines [1] are a particular type of
neural network in deep learning [2–4] for modeling
probabilistic distribution of datasets. They are equipped
with deep layers of units in their neural network architec-
ture, and are a generalization of Boltzmann machines [5]
which are one of the fundamental models of neural net-
works. Deepening the architecture enlarges the representa-
tion power of the models, and recent advances in training
deep models in machine learning were initiated by ana-
logues of the deep Boltzmann machines.
The neural network of a deep Boltzmann machine

consists of visible units and hidden units. On those units
binary variables live, and they interact with each other
under a Hamiltonian called an energy function. Thus
basically the deep Boltzmann machine is an Ising model
in which spins only at a boundary layer are visible
(observable), and the Hamiltonian allows inhomogeneity
and nonlocality. For a given probability distribution of
the observed spin configurations at the boundary layer,
Ising bond strengths (called “weights”) in the model
Hamiltonian are trained to approximate the given dis-
tribution; that is the deep learning of the deep Boltzmann
machine. The training determines the weights automati-
cally, and a structure of the Hamiltonian emerges.
Efficient algorithms for the training [6] accelerated the
progress in deep learning.

In this paper we study a relation between the deep
Boltzmann machines and the AdS=CFT correspondence
[7–9] in quantum gravity. The AdS=CFT correspondence
is a holographic duality between a (dþ 1)-dimensional
quantum gravity and a d-dimensional quantum field theory
(QFT) without gravity. The latter lives at the boundary
of the gravitational spacetime of the former. From the
viewpoint of the QFT, the direction perpendicular to the
boundary surface is an “emergent” space direction.
Therefore, the aforementioned structure of the deep
Boltzmann machines suits the scheme of the AdS=CFT,
once we identify their visible layers with the QFT, and
the hidden layers as the bulk spacetime. See Fig. 1. The
trained weights are interpreted as the metric function of the
bulk geometry. We detail the relation between the two
schemes both of which are renowned independently in
different sciences.
A motivation to bring them together also comes from

recent progress in discretization of the AdS=CFT. Popular
toy models of the AdS=CFT a la quantum information use
MERA [10] and other tensor networks [11]. In the first
place, quantum gravity has a long history of Regge calculus
[12] and dynamical triangulation [13] where spacetimes are
approximated by networks. For formulating quantum
gravity, we need a dynamical network whose structure is
determined in a self-organized manner. In that view, neural
network architecture may provide a novel platform for
quantum gravity and the emergent spacetime.
We show that the AdS=CFT correspondence naturally

fits the scheme of the deep Boltzmann machines, where
the bulk spacetime geometry is reinterpreted as a sparse
neural network. We construct explicitly a deep Boltzmann
machine architecture which represents an example of
the AdS=CFT correspondence. Previously, in [14,15] a
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possibility of relating hidden variables of Boltzmann
machines to bulk fields was mentioned [16]. In [18], the
entanglement feature of a free fermion chain was trained at
a random tensor network as a deep Boltzmann machine.
The holographic interpretation for feed-forward deep neu-
ral networks was proposed and studied in [19,20] for
training QFT and QCD linear response functions, and
the obtained emergent bulk spacetime for large Nc QCD
exhibits interesting physical properties and computes other
observables as predictions. While our work here naturally
relates to these works, in this paper we concentrate on deep
Boltzmann machines as an AdS=CFT correspondence.
Although at first sight the two schemes look similar, in

detail they possess different characteristics. For example,
since deep Boltzmann machines have constraints for their
architecture and trainability, we need a careful discretiza-
tion of bulk field theories. In addition, the AdS=CFT
correspondence is well understood at the large Nc limit,
while that limit has not been studied in the Boltzmann
machines. Furthermore, generalization in deep learning
owes to degenerate sets of trained weights, while in the
AdS=CFT that degeneration is not expected. In this paper
we address these basic questions raised in relating the two
schemes. We provide a concrete expression of a deep
Boltzmann machine which satisfies the standard con-
straints, and find that the large Nc limit brings the
Boltzmann machine to a folded feed-forward architecture.
We propose an Einstein action as a regularization of
training to distinguish sets of weights to be interpreted
as a smooth spacetime.

The organization of this paper is as follows. In Sec. II, we
briefly review deep Boltzmann machines. In Sec. III, we
provide a dictionary of the deep Boltzmann machines
and the AdS=CFT, and construct a deep Boltzmann
machine for a bulk scalar field theory in generic curved
geometry. Discretization of the fields and the spacetime,
and also the properties at the deepest layer are studied. In
Sec. IV, we apply the standard large Nc limit (saddle point
approximation) to the deep Boltzmann machine and see the
consistency with the holographic linear response. In Sec. V,
we propose how to identify the weights interpreted as a
spacetime, through a regularization using Einstein action.
Section VI is devoted to our summary and discussions.
In the Appendix, we provide an autoencoderlike neural
network architecture for holographic renormalization.

II. BRIEF REVIEW OF THE
BOLTZMANN MACHINE

Boltzmann machines in machine learning are a network
model for giving a probabilistic distribution PðviÞ of the
input variables vi ∈ f0; 1g for i ¼ 1;…; n. The probability
PðviÞ of the Boltzmann machine is defined by

PðviÞ ¼ exp ½−EðviÞ� ð1Þ

with an energy function EðviÞ given by

EðviÞ≡
X
i

aivi þ
X
i≠j

wijvivj: ð2Þ

Here ai and wij are real parameters, and are called bias
and weight, respectively. The structure of the Boltzmann
machine is specified by a network graph (see Fig. 2 left) in
which n units each of which takes the value vi are denoted
by circles while the weights w are denoted by lines
connecting the circles. Obviously, in physics P is a
Boltzmann distribution of a canonical ensemble of a
classical Ising model, after which the name Boltzmann
machine was named.
As (2) is quadratic in vi, even if one varies the biases and

the weights, the class of the probability distributions
obtained by (2) is quite limited. Making the network
deep enlarges the representation power of the architecture.
Adding hidden variables hi, we have

PðviÞ ¼
X

hi∈f0;1g
exp ½−Eðvi; hiÞ� ð3Þ

with the energy function

Eðvi; hiÞ≡
X
i

ðaivi þ bihiÞ þ
X
ij

wijvihj: ð4Þ

The layer consisting of vi (hi) is called the visible (hidden)
layer, and here, weights connecting units in the same layer

FIG. 1. Top: The AdS=CFT correspondence. The horizontal
coordinate z is the emergent spatial direction. Bottom: A deep
Boltzmann machine. Circles are units and lines are weights.
Double circles are visible units. It has a layered structure, and
“deep” means that they have many layers toward the right
direction in the figure.
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are set to zero, so the network graph is restricted to
having only limited connection lines (see Fig. 2 center).
Equation (4) is called a restricted Boltzmann machine.
Suppose one has measured events and obtained many

sets of fvig. From that one can calculate a statistical
probability distribution PevðviÞ. In machine learning, one
trains the machine to mimic PevðviÞ. In the function PðviÞ
of the Boltzmann machine, the weights and biases are
trained parameters. The difference measure between the
two probability distributions called the error function is the
relative entropy [alternatively called Kullback-Leibler (KL)
divergence in machine learning]

DKLðPevðviÞjjPðviÞÞ≡
X
fvig

PevðviÞ log
PevðviÞ
PðviÞ

ð5Þ

and one tries to minimize it by changing the parameters.
When this divergence is minimized, the machine is well
trained.
The reason why the restriction in the graph of the

Boltzmann machines is important is the conditional inde-
pendence. In (4), when fhig is given, E is linear in vi, so the
probability P factorizes to a product of each unit vi, then
the training requires a lot less computational resource. Note
that without losing this conditional independence we can
add a term

P
i;jwiδ

j
ihihj; the Kronecker delta δ

j
i means that

this is a self-interaction within the same unit. What is not
allowed for the conditional independence is a term like hihj
or vivj with i ≠ j in the same layer.
Due to the hidden variables, the representation power of

the restricted Boltzmann machines is greater. It is proven
that with a sufficiently large number of hidden units any
probability distribution is well approximated [21], which is
called a universal approximation theorem for the restricted
Boltzmann machines. Adding more hidden layers can help
the representation power [22], and the following is called a
deep Boltzmann machine [1],

E ≡X
i;j

wð0Þ
ij vih

ð1Þ
j þ

XN−1

k¼1

�X
i;j

wðkÞ
ij h

ðkÞ
i hðkþ1Þ

j

�
; ð6Þ

where the index k labels the hidden layers k ¼ 1; 2;

3;…; N. The hidden variables hðkÞi in N hidden layers,
taking binary values, are summed as in (3):

PðviÞ ¼
X
hðkÞi

exp ð−Eðvi; hðkÞi ÞÞ: ð7Þ

The visible layer consisting of units whose values are
the input vi may be thought of as k ¼ 0, which means

vi ¼ hð0Þi . The weights are again restricted as in the
restricted Boltzmann machines; see Fig. 2 right.
Although the number of units in each hidden layer may

not be equal to each other, in this paper we consider the
case of having the same number of units in each layer, for
structural simplicity.

III. AdS=CFT AS A BOLTZMANN MACHINE

A. Dictionary

Let us first describe the similarity between the AdS=CFT
correspondence and the deep Boltzmann machine, and
construct a dictionary for the two schemes. In the
AdS=CFT correspondence [7], the fundamental formula
relating the boundary and the bulk is the Gubser-Klebanov-
Polyakov-Witten (GKPW) relation [8,9] which is

ZQFT½J� ¼ exp ð−Sgravity½ϕ�Þ: ð8Þ

This expression is for the large Nc limit of the QFTwith its
generating functional Z½J�, while for the finite Nc this
expression should be replaced by [23]

ZQFT½J� ¼
Z
ϕðz¼0Þ¼J

Dϕ exp ð−Sgravity½ϕ�Þ: ð9Þ

Here z is the emergent bulk coordinate, and z ¼ 0 is the
boundary of the asymptotically AdS bulk, where the
boundary condition ϕðz ¼ 0Þ ¼ J is put for the bulk
field ϕðx; zÞ.
The deep Boltzmann machine approximates a given

probability distribution by the formula (1) with the energy

FIG. 2. A schematic picture of Boltzmann machines. Double circles are visible units, and single circles are hidden units. Left:
Boltzmann machine. Center: Restricted Boltzmann machine. Right: Deep Boltzmann machine.
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function (6). The similarity between the quantum gravity
version of the GKPW relation (9) and the definition
equation of the deep Boltzmann machine is obvious.
The identification rules are as follows: The source function
JðxÞ is the input value vi of the visible layer, the bulk field

ϕðx; zÞ is the hidden variables hðkÞi , the emergent bulk
coordinate z is the label for the hidden layers k, the
generating function Z½J� of the QFT is the probability
distribution PðviÞ, and the bulk action S½ϕ� is the energy

function Eðvi; hðkÞi Þ. See Table I for a summary of the
correspondence. The path integral of the bulk field ϕ is

replaced by the summation over the hidden variables hðkÞi ,
so in general the quantum bulk of the AdS=CFT corre-
spondence is a deep Boltzmann machine.
The resemblance is basically the fact that the deep

Boltzmann machine tries to reproduce the probability
distribution whose input is the values at the visible layer,
and in the AdS=CFT in the same manner, the bulk path
integration tries to reproduce the generating functional of
the boundary QFTwhere the input is the boundary value of
the bulk field.
In order to make the probability interpretation of the

QFT generating functional, we normalize it as

PQFT½J�≡ ZQFT½J�=Z0; Z0 ≡
Z

DJZQFT½J�: ð10Þ

Then, using the deep Boltzmann machine representation of
the bulk, training of the bulk theory is possible to reduce the
error function which is given by the Kullback-Leibler
divergence of the QFT partition function and the model
probability of the Boltzmann machine,

Error fn ¼ DKLðPQFT½J�jjPðviÞÞ: ð11Þ
As the deep Boltzmann machine allows arbitrary archi-

tecture for its neural network, it is naturally expected that
the AdS=CFT correspondence may be included as an
example of the Boltzmann machine. Below we shall
demonstrate that a typical AdS=CFT model allows a deep
Boltzmann machine architecture.

B. Bulk as a neural network

The simplest bulk action is for a free massive scalar field
in an asymptotically AdSdþ1 bulk geometry,

S ¼
Z

ddxdz
1

2

�
aðzÞð∂zϕÞ2 þ bðzÞ

Xd−1
I¼1

ð∂IϕÞ2

þdðzÞð∂τϕÞ2 þ cðzÞm2ϕ2

�
: ð12Þ

We chose a Euclideanized signature so that the AdS=CFT
correspondence can fit the scheme of Boltzmann machines.
The dth coordinate τ≡ xd is the Euclideanized time co-
ordinate. Local interaction terms such as ϕn can be treated
similarly below, but in this paper we consider only the
free case.
We assumed for simplicity that the metric depends

only on the bulk emergent direction z and is diagonal,
and assumed also a homogeneous spacetime about
xIðI ¼ 1; 2;…; d − 1Þ, then g11ðzÞ ¼ � � � ¼ gd−1;d−1ðzÞ.
We find

aðzÞ ¼ ½g11ðzÞd−1gddðzÞ=gzzðzÞ�1=2; ð13Þ

bðzÞ ¼ ½g11ðzÞd−3gddðzÞgzzðzÞ�1=2; ð14Þ

cðzÞ ¼ ½g11ðzÞd−1gddðzÞgzzðzÞ�1=2; ð15Þ

dðzÞ ¼ ½g11ðzÞd−1gzzðzÞ=gddðzÞ�1=2: ð16Þ

There exists a relation among them,

ðaðzÞdðzÞÞ2 ¼ ðcðzÞ=dðzÞÞd−1: ð17Þ

In the standard Poincaré coordinate system, the asymp-
totically AdSdþ1 geometry is

ds2 ¼ L2
dz2 þP

d
μ¼1ðdxμÞ2
z2

ðz ∼ 0Þ ð18Þ

with the AdS radius L, so we have the condition

a ∼ b ∼ d ∼ ðL=zÞd−1; c ∼ ðL=zÞdþ1 ð19Þ

near the AdS boundary z ∼ 0.
Let us discretize the action (12) to make it written like the

energy function E of the deep Boltzmann machine [24].
First, the bulk geometry is discretized to a regular lattice
whose sites are labeled by ðk; i; lÞ; the label k refers to the
discretized bulk emergent direction z,

zk ≡ kΔz ðk ¼ 0; 1; 2;…Þ ð20Þ

where Δz is the lattice spacing. In the same manner, we
discretize xI and τ≡ xd by the lattice spacing Δx and Δτ,
giving the label i and l respectively, as xi;l. This simplest
regularization scheme replaces the integration over ddxdz
by a sum

P
k;i;l.

TABLE I. A dictionary between the AdS/CFT and the deep
Boltzmann machine.

AdS=CFT Deep Boltzmann machine

Bulk coordinate z Hidden layer label k
QFT source JðxÞ Input value vi
Bulk field ϕðx; zÞ Hidden variables hðkÞi
QFT generating function Z½J� Probability distribution PðviÞ
Bulk action S½ϕ� Energy function Eðvi; hðkÞi Þ
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The bulk field ϕðx; zÞ at the sites is written as

hðkÞi;l ≡ ϕðxi;l; zkÞ: ð21Þ

Thus the bulk scalar field is the variables in the hidden
units. Naturally, we identify the label k as the label for the
layers of a deep Boltzmann machine. We define our visible
layer as the AdS boundary value of the scalar field, i.e., the
first k ¼ 0 component of h,

vi;l ≡ hð0Þi;l : ð22Þ

The z-derivative term in the bulk Lagrangian is
replaced by

ð∂zϕÞ2 ¼ lim
Δz→0

ðϕðzkþ1Þ − ϕðzkÞÞ2
ðΔzÞ2 : ð23Þ

As for the derivative terms concerning ∂τ (and similarly
for ∂I), we choose

ð∂τϕÞ2 ¼ lim
Δτ;Δz→0

�
ϕðxi;lþ1; zkÞ − ϕðxi;l; zkÞ

Δτ

·
ϕðxi;lþ1; zkþ1Þ − ϕðxi;l; zkþ1Þ

Δτ

�
: ð24Þ

Note the dependence on the label k; the reason we chose
this discretization will be clear below.
The background metric functions are discretized in the

same manner,

ak ≡ aðz ¼ zkÞ; bk ≡ bðz ¼ zkÞ;
ck ≡ cðz ¼ zkÞ; dk ≡ dðz ¼ zkÞ: ð25Þ

Then the bulk action is written as

S ¼
X
k;i;l

�
ak

1

2ðΔzÞ2 ðh
ðkþ1Þ
i;l − hðkÞi;l Þ2 þ ck

m2

2
ðhðkÞi;l Þ2

þ bk
1

2ðΔxÞ2 ðh
ðkÞ
iþ1;l − hðkÞi;l Þðhðkþ1Þ

iþ1;l − hðkþ1Þ
i;l Þ

þ dk
1

2ðΔτÞ2 ðh
ðkÞ
i;lþ1 − hðkÞi;l Þðhðkþ1Þ

i;lþ1 − hðkþ1Þ
i;l Þ

�
: ð26Þ

This is recast as the following Boltzmann machine form:

S ¼ E ≡X
k

�X
i;j

X
l;m

fwðkÞ
ij;lmh

ðkÞ
i;l h

ðkþ1Þ
j;m þw̃ðkÞ

ij;lmh
ðkÞ
i;l h

ðkÞ
j;mg

�
;

ð27Þ

where the weights are given as

wðkÞ
ij;lm ≡−

ak
ðΔzÞ2 δ

j
iδ

m
l þ bk

2ðΔxÞ2 ð2δ
j
iδ

m
l − δjiþ1δ

m
l − δjþ1

i δml Þ

þ dk
2ðΔτÞ2 ð2δ

j
iδ

m
l − δjiδ

m
lþ1 − δjiδ

mþ1
l Þ; ð28Þ

w̃ðkÞ
ij;lm ≡

�
ak þ ak−1
2ðΔzÞ2 þm2

ck
2

�
δjiδ

m
l : ð29Þ

These weights are symmetric.
The path integral over the bulk field ϕðxI; τ; zÞ is

equivalent to the integration over all the hidden variables

hðkÞi;l ðk ¼ 1; 2;…Þ; therefore the GKPW relation (9) is
written as

ZQFT½J� ¼
X
h

exp ð−EÞ ð30Þ

where E is defined by (27). And through (22) we have

Jðxi;lÞ ¼ vi;l ¼ hð0Þi;l : ð31Þ

This is a deep Boltzmann machine representation of the
AdS=CFT correspondence. See Fig. 3 for our architecture.
The background metric appears as the weights of the

Boltzmann machine. As is understood from (28) and (29),
the weights are not all independent. They form quite a
sparse neural network. The trained variables are aðzkÞ,
bðzkÞ, cðzkÞ and dðzkÞ ðk ¼ 0; 1; 2;…Þ, under the con-
straint (17). The bulk scalar field appears as the hidden
variables to be summed, at which the boundary value of the
bulk scalar field is identified with the visible units.
Note that, because we chose the discretization scheme

(24), the weights w̃ connecting the units in the same layer

FIG. 3. The architecture of the deep Boltzmann machine for the
AdS=CFT. The thick lines mean weights. The difference from the
standard Boltzmann machines in Fig. 2 is that we allow a weight
connecting the same unit, denoted as a curved line just above each
unit in the figure. We omit drawing the l direction.
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are completely diagonal (of the form δjiδ
m
l ) as seen in (29).

As explained earlier, this does not violate the conditional
independence of the units in the same layer, which is
important for the training of the Boltzmann machine.

C. Discretized values of the bulk field

Standard Boltzmann machines allow binary values for
the variables h, while the AdS=CFT correspondence
requires continuous values for the bulk field ϕðx; zÞ. To
bridge these two, we need to discretize also the field value
space. Suppose that typical values necessary for training the
Boltzmann machines are in the range jϕj < A. Then a
natural discretization of the values is given as

ϕ ¼ A
u
u0

ð32Þ

where u ¼ −u0;−u0 þ 1;…; 0;…; u0 − 1. In this discre-
tization, we have 2u0 different values for ϕ to take. To bring
them to a set of binary-valued variables, we introduce the
binary variable sðũÞ ∈ f0; 1g as

ϕ ¼ A

�
−1þ 2ũ

u0
þ 1

u0
sðũÞ

�
: ð33Þ

Here we divided the single entry ϕ into u0 entries sðũÞ with

ũ ¼ 0; 1;…; u0 − 1. In effect, each unit referring to hðkÞi;l in
the Boltzmann machine is split into u0 different units s. All
of those split units need to share the same weight for every
original connection with different unit h. In this manner,
binary-valued Boltzmann machines can be constructed
from the continuous-valued Boltzmann machines.

D. The deepest layer is the end of space

In the AdS=CFT correspondence, the IR end of the
geometry is important, as it directly reflects the properties
of allowed spectra of the QFT. Popular holographic
geometries are confining geometries and black holes,
and they have specific boundary conditions at the IR
end of the geometry. Except for the cases of conformal
field theories as the boundary QFT, the bulk geometry
naturally terminates at some IR scale z ¼ zIR. In the
terminology of the deep Boltzmann machines, this means
that the layers terminate at k ¼ N with N ≡ zIR=Δz. Let us
rephrase those geometric boundary conditions to the treat-
ment around the deepest layer k ¼ N of the deep
Boltzmann machine.
First of all, the layers actually terminate at k ¼ N, and

there is no additional layer at k ¼ N þ 1. In terms of the

weights, this condition means wðNÞ
ij;lm ¼ 0, which is

aðzNÞ ¼ bðzNÞ ¼ dðzNÞ ¼ 0: ð34Þ
The confining geometry refers to the Dirichlet boundary

condition for the bulk field ϕ, as it simply means that the

bulk field ϕ needs to vanish in the spacetime in the region
specified by z > zIR. This location is called a “hard wall” in
holography. In general, the condition of the hard wall
means that the metric function which the scalar field feels
has a special behavior there. In fact, to impose ϕðzIRÞ ¼ 0

we just need that the mass cðzÞm2 at z ¼ zIR diverges. So,
in this case we can rephrase the Dirichlet boundary
condition in terms of the metric function:

cðzNÞ ¼ ∞: ð35Þ

Next, consider the black hole horizon condition instead.
At the black hole horizon the zz component of the metric
diverges, while the temporal dd component vanishes. Thus
aðzÞ ¼ 0, and dðzÞ diverges, while bðzÞ and cðzÞ, and
aðzÞdðzÞ remain finite and nonzero. Therefore, the black
hole boundary condition is

aðzN−1Þ ∝ Δz; dðzN−1Þ ∝
1

Δz
; ð36Þ

with infinitesimally small Δz.
The confining condition (35) and the horizon condition

(36) are examples of more general constraints. We can
impose other boundary conditions if they are consistent
with the large Nc limit of the AdS=CFT, as we shall study
in the next section.
For the pure AdS geometry, there is no IR end of the

space, and the z direction is extended to z ¼ ∞. So, to
host all possible asymptotically AdS spacetimes in our
Boltzmann machine architecture, we need to prepare
infinitely deep Boltzmann machines [26].

IV. SADDLE POINT OF THE
BOLTZMANN MACHINE

The AdS=CFT correspondence has been studied in the
large Nc limit of the QFT, because it is the classical limit of
the bulk which is the only reliable gravity calculation, in the
absence of satisfactory quantum gravity formulation. The
large Nc limit, or the classical limit of the gravity theories,
is equivalent to the zero-temperature limit of the Boltzmann
machine, E replaced by E=T and T → 0. At the limit,
gravity theory can be well approximated by saddle points—
the solutions of the classical equations of motion, and the
on-shell action is simply substituted in the right-hand side
of (8).
The zero-temperature limit of Boltzmann machines has

not been studied extensively, because the hidden/visible
variables in ordinary Boltzmann machines take only binary
values and the saddle approximation is not effective. In our
case, as described in Sec. III C, we consider a certain limit
of binary-valued Boltzmann machines to acquire continu-
ous-valued variables. There the equations of motion, and
the saddle points, make sense. In this section, we study the
consistency conditions of the classical limit (equivalently,
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the zero-temperature limit, or the saddle point approxima-
tion) of the deep Boltzmann machine given in the previous
section. For simplicity we treat the variables h as continu-
ous variables.
First, let us consider the standard restricted Boltzmann

machine (4) with continuous-valued variables, and how the
classical limit causes an inconsistency. The saddle point
equation is

0 ¼ δE
δhi

¼ bi þ
X
j

wjivj: ð37Þ

Since bi and wji are the parameters to be fixed after the
training with various sets of fvig, this equation cannot be
satisfied. Therefore, restricted Boltzmann machines with
continuous hidden variables do not allow the saddle point
approximation, contrary to physical intuition.
Adding more hidden layers can resolve the issue.

Suppose we have another hidden layer to the restricted
Boltzmann machine,

E ≡X
i

ðaivi þ bih
ð1Þ
i þ cih

ð2Þ
i Þ

þ
X
ij

ðwð0Þ
ij vih

ð1Þ
j þ wð1Þ

ij h
ð1Þ
i hð2Þj Þ: ð38Þ

Then the saddle point equation is

0 ¼ δE

δhð1Þi

¼ bi þ
X
j

ðwð0Þ
ji vj þ wð1Þ

ij h
ð2Þ
j Þ; ð39Þ

0 ¼ δE

δhð2Þi

¼ ci þ
X
j

wð1Þ
ji h

ð1Þ
j : ð40Þ

The first equation determines hð2Þj for any given training
value of vi, so it gives a consistent saddle point equation.
The second equation simply shows that the middle layer
variable hð1Þ takes a fixed value −½½wð1Þ�T �−1c. So, sub-
stituting these for the original energy function (38), we
obtain the saddle point approximation of the restricted
Boltzmann machine,

Eon-shell ¼ E0 þ
X
i

aeffi vi; ð41Þ

E0 ≡ −
X
ij

ðwð1ÞÞ−1ij cibj; ð42Þ

aeffi ≡ ai −
X
j

cjððwð1ÞÞ−1ðwð0ÞÞTÞji: ð43Þ

Here it should be noted that the obtained energy function is
linear in v, so it does not have the form of the standard
Boltzmann machines whose energy functions are bilinear

in v. The reason for the linearity is that the saddle point
equations for the k-odd and the k-even layers decouple
from each other.
Instead of adding more layers, we can introduce a self-

coupling δjihihj as described earlier in Sec. II. For the case
with just a single hidden layer with a uniform self-coupling
weight, we have

E ≡X
i

ðaivi þ bihiÞ þ
X
ij

ðwijvihj þ cδijhihjÞ: ð44Þ

The saddle point equation is

0 ¼ δE
δhi

¼ bi þ 2chi þ
X
j

ðwjivjÞ; ð45Þ

which determines the value of the hidden unit hi in terms of
the input vi, so it gives a consistent solution. The on-shell
value of the energy function is

Eon-shell ¼ E0 þ
X
ij

aeffi vi þ
X
ij

weff
ij vivj; ð46Þ

where

E0 ≡ −
1

4c

X
i

bibi; ð47Þ

aeffi ≡ ai −
1

2c

X
j

wijbj; ð48Þ

weff
ij ≡ −

1

4c
ðwwTÞij: ð49Þ

Thus, as is expected, the effective energy function is
bilinear in vi.
Keeping these results in mind, we consider the deep

Boltzmann machine which we defined in the previous
section. The saddle point condition is

0 ¼ E

δhðkÞi;l

¼
X
j;m

½wðk−1Þ
ji;ml h

ðk−1Þ
j;m þ wðkÞ

ij;lmh
ðkþ1Þ
j;m þ w̃ðkÞ

ij;lmh
ðkÞ
j;m�:

ð50Þ

So, the variables at the layer k are related to those of the
layer kþ 1 and of the layer k − 1. The equation has both
the properties of the cases of (38) and (44).
Let us study the consistency with the IR boundary

condition, the deepest layer. For simplicity, to look at
the consistency, we consider the case with a homogeneous
ϕ in xI and xd, which is equivalent to ignoring the terms
with bðzÞ and those with dðzÞ. The architecture of the deep
Boltzmann machine is shown in Fig. 4. At the deepest layer
k ¼ N, the saddle point equation gives
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hðN−1Þ ∼ hðNÞ ð51Þ

where the symbol ∼ denotes a linear relation whose
coefficients are given by weights. Similarly, using the
saddle point equation at k ¼ N − 1 gives

hðN−1Þ þ hðN−2Þ ∼ hðNÞ ð52Þ

where we omit the coefficients. Then altogether, they give
hðN−2Þ ∼ hðN−1Þ. Repeating this backwards in layers, we
finally obtain

hð0Þ ∼ hð1Þ ð53Þ

which can also be written as

v ∼
hð1Þ − hð0Þ

Δz
: ð54Þ

In the continuum limit, this relation is

ϕðz ¼ 0Þ ∼ ∂zϕðz ¼ 0Þ: ð55Þ

In the boundary QFTof the AdS=CFT correspondence, this
relation is equivalent to the linear response relation [27],

J ∼ hOi: ð56Þ

Thus, the deep Boltzmann machine is found to be con-
sistent with the standard analysis in the classical bulk side
of the AdS=CFT correspondence.
It is intriguing that the saddle point approximation

provides explicitly the relation between the variables at
the adjacent layers. This relation is expected for neural
networks of the feed-forward type. So, we find that the
saddle point approximation of the deep Boltzmann machine
provides a feed-forward architecture. A subtle difference
from the standard feed forward is that the linear relation
starts at the deepest layer, not at the visible layer. In fact,
looking at only the first hidden layer we find that the
relation is just like (52), so it is not a linear relation between
just the adjacent two layers. In fact, the scalar field equation
is the second-order differential equation, so, there is a
backward wave in addition to the forward wave. These two
waves satisfy the consistency condition at the deepest layer.
Therefore, the saddle point approximation provides a
“folded feed-forward” structure. Unfolding the folded
structure is possible, and in the Appendix we provide an

architecture of the unfolded type, which looks like an
autoencoder.

V. REGULARIZATION AND EINSTEIN ACTION

In this section we study the condition for the trained
weights to be interpreted as a bulk spacetime. The training
should be performed in the following manner. First,
prepare a quantum field theory for which one wants to
know whether a gravity dual exists or not. Then calculate
ZQFT½J� and its probability interpretation PQFT½J� by (10)
[28]. Prepare the deep Boltzmann architecture given in
Sec. III B, and by updating the weights to reduce the KL
divergence (11). Once the KL divergence decreases to
enough accuracy, we say that the bulk is learned.
The metric function is encoded in the sparse weights

w; w̃ in the deep Boltzmann machine given in (28) and (29).
Although it can be easily reconstructed, there is one issue:
Generically, the training ends up with various sets of
weights, because the error function may have many almost
degenerate local minima. Each of the local minima can
approximate PQFT very well—which is related to the notion
of “generalization” in machine learning.
We are looking for a gravity dual. For the trained

Boltzmann machine weights to be interpreted as a bulk
spacetime, we need a criterion to pick up a certain set of
weights among the degenerate local minima. The criterion
is simple: use an Einstein action for a regularization of the
deep Boltzmann machine [29].
Basically, the generic trained weights take quite scattered

values, and they are not a smooth function of z in the
continuum limit Δz → 0. For those configurations of
weights, the Einstein action takes a large value. On the
other hand, smooth metric functions of z, and so a set of
weights whose values do not drastically vary as one sweeps
the depth of the layers, have lower values of the Einstein
action. Therefore, the Einstein action can be used for
selecting a proper set of weights which has a bulk
spacetime interpretation.
A proposed regularization term is a discretization of the

Einstein action with a negative cosmological term,

Ereg ¼
Z

ddxdz
ffiffiffiffiffiffiffiffiffi
det g

p �
Rþ dðd − 1Þ

L2

�
: ð57Þ

To obtain the explicit discretization, for simplicity we
consider a conformal spacetime

gμμ ¼ gzz ¼
L2

z2
ð1þ αðzÞÞ: ð58Þ

When αðzÞ ¼ 0, the metric reduces to the pure AdS
metric. So the asymptotically AdS spacetimes allow only
limz→0αðzÞ ¼ 0. In terms of the previous aðzÞ, bðzÞ, cðzÞ
and dðzÞ, this ansatz leads to

FIG. 4. The simplified deep Boltzmann machine at which the
i and l dependence are ignored.
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a ¼ b ¼ d ¼ ðL=zÞd−1ð1þ αðzÞÞðd−1Þ=2;
c ¼ ðL=zÞdþ1ð1þ αðzÞÞðdþ1Þ=2: ð59Þ

So, the discretization of the z direction as z ¼ zk provides a
lattice on which αk ≡ αðzkÞ is defined for k ¼ 0; 1; 2;….
For d ¼ 3 as an example, the Einstein action becomes

Ereg

3L2
¼

Z
ddxdz

�
−2
z4

þ 2

z2
αðzÞ2 þ 1

2z2
ðα0ðzÞÞ2
1þ αðzÞ

�
: ð60Þ

Discretizing this action, we obtain that the regularization
term is the error function

Ereg ¼ c
X∞
k¼1

�
2

k2
α2k þ

1

2k2
ðαkþ1 − αkÞ2

1þ αk

�
: ð61Þ

Here c is a positive constant, and we ignored an additive
constant term which is irrelevant for the training. The
additive constant comes from the first term in (60), that is,
the cosmological constant for the pure AdS spacetime.
It is easy to see that this regularization in fact favors a

smoother distribution of the weights, due to the second term
in (61). Using this regularization, during the training, the
Boltzmann machine tries to minimize also the Einstein
action at the same time. When the error decreases to a
satisfactory small value, the weights can be interpreted as
an Einstein spacetime [30].
When Ereg ¼ 0, we have a pure AdS geometry. In

generic AdS=CFT correspondence, the bulk action can
take various forms; it may have more supergravity fields,
and it may suffer from higher derivative terms coming from
quantum gravity corrections or stringy corrections.
Therefore, in general, the regularization needs to allow
more generic actions, such as

Ereg ¼
Z

ddxdz
ffiffiffiffiffiffiffiffiffi
det g

p
ðc0 þ c1Rþ c2R2 þ c3R3 þ � � �Þ;

ð62Þ

or more with tensorial structures. This can be discretized by
the same method, and we obtain a more general Einstein
regularization. Note that here in the expression the coef-
ficients ci are trained variables. In general we do not know
the bulk gravity action, so we need to allow general action.
When we say that the bulk is a spacetime, it means that it
reduces the value of this general action. When the powers
of the Riemann tensors stop at some fixed value, a low
energy effective spacetime interpretation is possible.

VI. SUMMARY AND DISCUSSION

In this paper, we have shown that the standard AdS=CFT
correspondence can be regarded as a deep Boltzmann
machine. The neural network architecture, once properly

defined, is interpreted as a bulk spacetime geometry. The
network depth is the emergent direction in the bulk, and the
network weights are metric components. Hidden variables
correspond to discretized fields in the bulk, and the
probability distribution given by the Boltzmann machine
is the generating functional of the QFT dual to the bulk
gravity.
For the mapping we have used a bulk scalar field theory

in curved geometries. The IR boundary conditions of the
bulk, such as the black hole horizon or the hard wall, can be
implemented to the weight behavior around the deepest
layer of the Boltzmann machine. The large Nc limit of the
AdS=CFT is argued in the scheme of the Boltzmann
machine, consistently giving an organized set of linear
equations among weights.
Among many degenerate vacua of the deep Boltzmann

machine, a set of weights which allows a spacetime
interpretation is selected by a regularization in the error
function in addition to the KL divergence. We have
introduced a natural regularization based on the Einstein
action and its generalization.
Our study has provided a relation between the AdS=CFT

correspondence and the deep Boltzmannmachine. In view of
the history of the quantum gravity, introducing discretization
of the spacetime is natural, and we hope that more concepts
on Boltzmann machines and deep learning can be imported
to quantum gravity, so that it may shed light on the mystery
of the bulk emergence in the holographic principle.
Several clarifications and comments are in order. First,

the discretization of the spacetime used in this paper favors
a certain coordinate system, and thus the general coordinate
transformation of the gravity theory is not seen in our
framework. Furthermore, even the isometry transformation,
which is the scale transformation in the QFT, is difficult to
be implemented in our formulation. A hyperbolic network
(as used in [18]) is better to be consistent with the isometry,
but is difficult to find a continuum limit. It would be
interesting to seek a more desirable discretization scheme.
In fact, a well-known approach for quantum gravity uses
dynamical triangulation [12] in which connection bond
topology (which is axon topology in neural networks) is
dynamical. On the other hand standard neural networks
have a fixed architecture while the weights are variable. We
may need a refined discretization architecture to have a
more unified view of the quantum gravity and the deep
learning. Generic quantum gravity may include even a
nongeometric landscape for which machine learning has
been applied [31–37], and a possible relation to our
approach of having a neural network as a spacetime would
be interesting.
Second, we have introduced the saddle point approxi-

mation in the evaluation of the deep Boltzmann machine,
based on the standard large Nc argument of the AdS=CFT
correspondence. At the limit, linear relations among
weights at layers close to each other are derived, and the
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information at the visible layer is processed through the
bulk, as if it propagates. This means that the saddle point of
the deep Boltzmann machine brings it to a folded feed-
forward-type deep neural network. The AdS=CFT inter-
pretation of a feed-forward neural network was studied in
[19,20] and the trained weights exhibit an interesting
physical picture.
On the other hand, at finite Nc (beyond the classical limit

of the bulk), the relation between the AdS=CFT and the deep
Boltzmann machine is a little ambiguous; in the bulk, only
the scalar field (∼ hidden variables h) is path integrated while
the metric (∼ weights w) is not. This situation can be
interpreted as that the scalar field is that of a probe brane in
the bulk. What is the metric path integral in the deep
Boltzmann machine? It is a statistical summation of the
network weights, which has been studied as statistical neural
networks [38]. It would be interesting to see more con-
nection between the holographic principle and the statistical
neural networks. In fact, in [39] a conformal transformation
of data space was found at a layer-to-layer propagation, and
it may allow a holographic interpretation.
Finally, we make a comment on a relation to quantum

information. It is known that the AdS=CFT correspondence
has a close relation to quantum information, in particular
AdS=CFT toy models based on tensor networks have been
studied. The structure of MERA [10] has a bulk hyperbolic
space interpretation, and tensor networks using perfect
tensors [11] provide a quantum correspondence between
the bulk and the boundary in the AdS=CFT. Since it is
known [40] that any quantum code allows its deep
Boltzmann machine interpretation, the AdS tensor net-
works can be mapped to deep Boltzmann machines. In
general obtained machine architecture tends to be compli-
cated [since the number of quantum gates necessary to
reproduce an A-leg tensor is ∼Oð22AÞ], so a continuum
limit to have a continuum field theory in the bulk, which we

have studied in this paper, is difficult to take. Further
studies for bridging the holographic principle and deep
learning are desired.
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Note added.—Recently, we noticed that Ref. [41] which
interprets the bulk as a deep generative model was sub-
mitted to arXiv.

APPENDIX: HOLOGRAPHIC AUTOENCODER

In this appendix we describe an implementation of the
AdS=CFT correspondence into a feed-forward deep neural
network of an autoencoderlike architecture. We discuss
only the classical limit of the bulk (the large Nc limit) to
make sure that the feed-forward structure is clear in
the AdS=CFT.
In [19,20], a deep neural network employs J and hOi as

the input at the initial layer while the black hole horizon
boundary condition is used as an output at the final layer.
Another natural implementation is to use J (the non-
normalizable mode of the AdS scalar field) as an input
and hOi (normalizable mode) as the output data. In this
case the data propagate from the AdS boundary toward the
black hole horizon first, then they bounce with the
boundary condition, then propagate back to the AdS
boundary again. Therefore the neural network is an
hourglass type, and is naturally interpreted as an autoen-
coder in machine learning; see Fig. 5. The neural network

FIG. 5. Holographic autoencoder. The depth of the lines show average weights, which decrease toward the black hole horizon (the
neck part of the neural network).
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looks similar to the two-sided black hole geometry which is
often used in finite temperature holography [42–45].
The important point for the construction is to use the

holographic renormalization group [46] to divide the
second-order differential equation in z to a set of two
first-order equations (for the non-normalizable and normal-
izable modes). Generic autoencoders have two important
features: Their weights are left-right symmetric, and they
reduce dimensions of the data space at the neck of the
network. In our holographic autoencoder, the left and right
are governed by the same metric, and the convolution near
the neck is redshifted so that the weights effectively reduce
at the neck.
Here we present details of a construction of the holo-

graphic autoencoder. First, we explain how the second-
order differential equation of the scalar field in the bulk can
be equivalently replaced by a set of two first-order differ-
ential equations. This is important for the implementation
of the scalar system in the form of a deep neural network,
because typically neural networks have the structure of the
interlayer propagation which is naturally interpreted as a
first-order differential equation when the continuum limit
of the layers is taken [47].
The decoupling among the non-normalizable and the

normalizable modes in the AdS=CFT correspondence with
the bulk scalar field ϕ works only for the free case, when
the interaction vanishes, V½ϕ� ¼ 0. This is possible at the
linear response level of the AdS=CFT correspondence. In
this appendix we use the coordinate system where the AdS
radial coordinate η is a proper coordinate,

ds2 ¼ −fðηÞdt2 þ dη2 þ gðηÞðdx21 þ � � � þ dx2d−1Þ; ðA1Þ

and define hðηÞ≡ ∂η log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðηÞgðηÞd−1

p
. Then the free

stationary scalar field equation is

½∂2
η þ hðηÞ∂η þ ð□ −m2Þ�ϕ ¼ 0; ðA2Þ

where □≡ gðηÞ−2Pd−1
i¼1 ∂2

i is a covariant Laplacian. As
opposed to the case in [19,20], here we included the spatial
(x) dependence of the external field and the response.
According to the holographic renormalization group [46],
Eq. (A2) can be rewritten as

½∂η − b�½∂η − a�ϕ ¼ 0; ðA3Þ

with

bðη;−□Þ þ aðη;−□Þ ¼ −hðηÞ; ðA4Þ

bðη;−□Þaðη;−□Þ − ∂ηaðη;−□Þ ¼ □ −m2: ðA5Þ

These constraint equations are simply

a2 þ hðηÞaþ ∂ηa ¼ −□þm2: ðA6Þ

This generically allows two solutions að−□Þ≡ f�ð−□Þ,
and with each of them, the scalar field equation reduces to a
first-order differential equation in η,

½∂η − f�ðη;−□Þ�ϕ ¼ 0: ðA7Þ

These two equations with f� govern the non-normalizable
and the normalizable modes, respectively. Therefore, once
a spacetime bulk metric is given, we find two functions
f�ð−□Þ, and use them to define the neural network by
discretizing the η direction as η ¼ nΔη. Noting that the
discretization of η gives

∂ηϕðη; xÞ ¼
ϕðηþ ΔηÞ − ϕðηÞ

Δη
; ðA8Þ

and the discretized spatial dependence is interpreted as a
convolution in the neural network,

∂2
iϕðxiÞ ¼

ϕðxi þ ΔxÞ − 2ϕðxiÞ þ ϕðxi − ΔxÞ
ðΔxÞ2 ; ðA9Þ

we find that the neural network is defined as

ϕðnþ1ÞðxiÞ ¼ WðnÞ
� ϕðnÞðxiÞ ðA10Þ

where the network weights are

WðnÞ
� ¼ 1þ Δηf�ðηðnÞ;−□Þ: ðA11Þ

Note that we also discretize the (d − 1)-dimensional
space of the boundary QFT, as in (A9), where the covariant
Laplacian□ can be identified as a convolution in the neural
network. Generically, spatial derivatives in field equations
are identified as a combination of weights connecting
nearby units. The locality of the bulk field theory is a
constraint of the weights of the neural networks. In this
way, we can always include spatial dependence of the
external field and the response as a convolutional neural
network. So, (A11) defines a convolutional neural network
equivalent to (A2), with a trivial activation function.
The left-hand side of the neural network is governed by

the propagation weight (A11) for the non-normalizable
mode. The input datum JðxÞ is placed at the initial layer

η ¼ ηini ∼∞. It propagates withWðnÞ
þ toward the black hole

horizon η ¼ 0, and is transformed to a datum ϕþðx; η ¼ 0Þ.
At the black hole horizon η ¼ 0, we need to impose the
boundary condition ∂ηϕ ¼ 0. Generically ϕþðx; η ¼ 0Þ
does not satisfy it, so we need to complement it as

∂η½ϕþðx; ηÞ þ ϕ−ðx; ηÞ�η¼0 ¼ 0: ðA12Þ

This defines the initial condition for the right-hand side
of the neural network, ϕ−ðx; ηÞ, which propagates toward
η¼∞ withWðnÞ

− . Then we identify the output ϕ−ðx;η¼∞Þ
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as hOðxÞi. We call this whole network shown in Fig. 5, a
holographic autoencoder.
In reality for the training, we may focus on slowly

varying external field and use the low momentum expan-
sion f� ¼ c�ðηÞ þ d�ðηÞ□þ � � �, then the weights are
given as

WðnÞ
� ¼ 1þ Δηðc�ðηðnÞÞ þ d�ðηðnÞÞ□Þ: ðA13Þ

We train the coefficient functions c� and d� with a
constraint that both consistently solve (A6).

Using the horizon behavior hðηÞ ∼ 1=η and gðηÞ ∼ const,
we find that (A6) has a universal solution

c� ∼ ηm2=2; d� ∼ −η□=2: ðA14Þ

This means that effectively the weight W near the black
hole horizon vanishes (except for the trivial “1þ” part), due
to the redshift factor via hðηÞ. Therefore, the effective
dimensions of the data space around the central part of the
holographic autoencoder decrease, which is suitable for the
name “autoencoder” usually used in machine learning.
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