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1
M OT I VAT I O N F O R T H E S E A R C H F O R A N E L E C T R I C
D I P O L E M O M E N T O F A PA R T I C L E

a history lesson

The Standard Model (SM) of particle physics, which was invented in the
middle of 1960s, successfully describes elementary particles and interac-
tions between them. The verification of the Standard Model was made
in several experiments such as the discoveries of top quark in 1995 [2],
[3] and tau neutrino in 2000 [58] along with the latest observation of
the Higgs boson in 2012 [29]. Despite of the great number of right pre-
dictions for many experimental results, the SM doesn’t provide the full
explanation for the baryon asymmetry of the universe.

Two Japanese theoreticians, M.Kobayashi and T.Maskawa, have com-
pleted the SM by adding CKM matrix in it that describes flavour-changing
in weak interactions in 1974 [57]. CP symmetry violation can be also char-
acterized by CKM matrix, but the predicted baryon asymmetry turns out
to be several orders of magnitude smaller than the observable one [42].
Thus, one cannot fully explain this phenomenon in the Standard Model
frame. Symmetries are the fundamental concepts in modern physics, there
are three of them in the Standard Model:

• C-symmetry — charge symmetry — all physical processes happen
identically, when the a particle becomes its antiparticle;

• P-symmetry — parity symmetry — invariance of physical processes
with respect to sign changing in all the particle coordinates;

• T-symmetry — time symmetry — invariance of the all physical
equations, when time changes sign.

In 1954 G.Lüders and W.Pauli, independently of each other, proved
the CPT-theorem, which reads: in all processes of quantum field theory
holds the CPT invariance (C-,P- and T-transformations performed simul-
taneously [67], [77]). The direct consequence of this theorem is the fact
that the breaking of CP-symmetry leads to T-symmetry violation, and vice
versa.

In 1964 J.Cronin and V.Fitch found the first evidence of CP-symmetry
breaking in K0 meson decay [32]: neutral kaons may turn into their an-
tiparticles, or the other way around; however, those transformations occur
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1.2 electric dipole moment 5

with different probability in both directions. Moreover, the violation of CP
invariance was detected in a series of other experiments such as NA31
[44], NA48 [39] in CERN, BaBar [16] in SLAC, Belle [4] in KEK. The CP
violation in c quarks was observed in LHCb experiment in 2011 in LHC
[1].

One of the essential problems of modern physics is the baryon asym-
metry of the Universe [28] that represents the fact of the prevalence of
matter over antimatter. The experiments COBE [43] and WMAP [49] have
proven that. In addition, cosmic detectors, which purpose is to search for
antimatter, PAMELA and AMS haven’t found any significant amount of
it in the Universe [78],[6] yet. The development of the new idea, that
claims one of the reasons for the baryon asymmetry is the breaking of
CP invariance, has begun soon after its discovery. A.Sakharov has shown
three necessary conditions for baryogenesis (initial creation of baryons)
in 1967 [82]:

• Baryon number violation;

• C-symmetry and CP-symmetry violation;

• Interactions out of thermal equilibrium.

Number of experiments have been taking place since the beginning
of 1980s, in which the baryon number violates, for instance, the proton
decay (Super-Kamiokande [75] and IMB [21]) and neutron oscillations
(Super-Kamiokande [5] and ILL [93]).

Many theories beyond the SM have been proposed in the follow-
ing years in order to solve that problem such as Weinberg multi-Higgs
[98], theory of "Natural" left-right symmetry [74] and supersymmetric ap-
proaches [76],[99],[34]. All those methods of so-called "New Physics" are
able to remove the difficulties, which one meets in the Standard Model,
but their experimental confirmation has yet to be found.

electric dipole moment

One of the possible arguments for the breaking of CP invariance is the
existence of non-vanishing electric dipole moments (EDM) of elementary
particles. Any object that has an electric charge distributed in volume V
with density ρ(~r) has an EDM:

~d =
∫

V
~rρ(~r)d3~r.

In the most simple case when the system consists of two points with
charges q and -q (for example, a NaCl molecule) an EDM vector has the
following representation:

~d = q ·~r,
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where ~r is the displacement vector pointing from the negative charge
to the positive charge.

It is well known that elementary particles have an intrinsic magnetic
moment ~µ, which exists due to the presence of an intrinsic angular moment
that is called spin ~S:

~µ = g · µ0 · ~S,

where g is the gyromagnetic ratio and µ0 is the Bohr magneton or
nucleon magneton [53].

If a nonzero EDM of an elementary particle exists, it violates both T-
and P-symmetries [79]. The demonstration of this process is presented
in Figure 1. The theory says that the EDM must be connected to the
spin, since it’s the only direction, relatively to which it can be defined for
an elementary particle. So the EDM is either parallel or anti-parallel to
the spin vector.

Figure 1: T- and P-symmetry violation in the presence of an EDM (from
A.Knecht [56]).

The magnetic moment of a particle is drawn in blue and lies along
the spin vector, it is the axis of the particle "rotation", "+" and "−" signs
denote the positive and the negative charge densities, which are spatially
separated, and the red vector is the EDM of the particle pointing from
the negative to the positive charge. After a parity transformation the
direction of the particle "rotation",i.e. spin direction, stays the same, since
it is an axial vector, but the EDM vector changes sign and, therefore,
breaks P invariance. The spin vector changes sign under a time reversal
transformation, but the EDM stays untouched that indicates the breaking
of T-symmetry. Thus if CPT-theorem holds, P- or T-symmetry violation
leads to CP violation.

The first method of measuring a neutron EDM was proposed in 1957
[94] and ever-since there are many ongoing experiments of measuring
an elementary particle EDM in the world. For example, there are a
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number of experiments that use ultracold neutrons: ILL [93], FRM-II [7]
and PNPI; electron EDM experiments: in ICL that uses YbF molecules
[96], in Harvard with ThO [97], etc. There are plans to conduct a proton
EDM experiment in BNL [95] and deuteron EDM investigation in IKP
FZJ [63].

The current interest for an EDM search is generated by the fact that the
SM predicts tiny non-vanishing values for EDMs of elementary particles,
for instance, neutron EDM |dn| ∼ 10−31 ÷ 10−32 e·cm, electron EDM
|de| ∼ 10−40 e·cm, muon EDM |dµ| ∼ 10−38 e·cm [55]. Nevertheless, the
theories beyond the Standard Model provides EDMs that are several
orders of magnitude higher such as SUSY models where neutron EDM
is of the order of |dn| ∼ 10−26 ÷ 10−30 e·cm [95]. So if one measures
an EDM, it opens the door to the "New Physics" and sheds light on the
mystery of our Universe creation. Despite of the efforts being made, an
EDM of any elementary particle has not been found yet, but the precision
of the experiments grows in time (Figure 2).

Figure 2: Measured upper limits of the neutron EDM. Given are also the
predictions stemming from the Supersymmetry and the Stan-
dard Model [56].

There are the following measured upper limits of the different particles
EDMs at the present time [97], [19], [22], [35]:

One of the problems of measuring such a small values is the necessity
of accumulation of gigantic amount of experimental data in order to reach
an acceptable confidence level. The "frozen spin" method of the proton
EDM measurement was proposed in 2004 [41]. It’s proposed to use a
storage ring with all electric elements and a special ("magic") energy, on
which a spin of a proton always points in the direction of its momentum,
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Particle EDM Confidence level
electron < 10−29 e·cm 90%
neutron < 2.9 · 10−26 e·cm 90%
muon < 1.8 · 10−19 e·cm 95%
proton < 5.4 · 10−24 e·cm NA

Table 1: The latest measured EDM limits for elementary particles.

hence the name is "the frozen spin". The signal is the polarization build
up out of the horizontal plane corresponding to the interaction of an
EDM with electric field. An electrostatic ring, with the radius of ∼
40m, the field of ∼ 10 MV/m and with ∼ 3 cm gap between the plates,
was proposed to construct for this search. The horizontally polarized
beam should be injected into the ring and the EDM kicks the spin out
of the plane, which causes the build up of the vertical polarization. The
polarization is detected with a polarimeter (Figure 3).

Figure 3: Polarimeter scheme.

The polarimeter detects protons that are elastically scattered on the
carbon target [73]. One should look into Up-Down asymmetry to measure
the horizontal polarization and into Left-Right asymmetry for the vertical
polarization, which is essentially the EDM signal. The sensitivity of the
polarimeter is proportional to the number of registered events. The ad-
vantage of using a storage ring for this investigation is that one can keep
a large amount of stored particles (109 ÷ 1010), that gives an efficiency
for a current polarimeter of about 1% [95].
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It is planned to reach the sensitivity of 10−29 e·cm for the proton EDM
in the proposed experiment that 5 orders of magnitude higher than in
the previous attempt, moreover, it will be the first direct measurements of
an EDM of a charged hadron. The build up of the vertical polarization
increases linearly with time. This rise must be detectable with a polarime-
ter, it means one must wait long enough to see the signal. If the proton
EDM equals to |dp| ∼ 10−29 e·cm, the electric field is ∼ 10 MV/m, then
the polarization build up per second is 3.2 nrad/s [95]. Modern polarime-
ters are able to see the polarization of 1 µrad. It means that one must
store the beam without loosing horizontal polarization for approximately
1000 seconds or 109 turns. This is a difficult task that has to be solved at
the first place, since as soon as the horizontal polarization vanishes, one
destroys the build up of the vertical polarization. Therefore, the time of
storage of a horizontally polarized beam is the main factor, which limits
the sensitivity of the experiment. This time, during which a beam stays
horizontally polarized, is called spin coherence time [63].

precursor at cosy

The Cooler Synchrotron (COSY) that is located in Forschungszuntrum
Jülich was chosen as a facility to perform the precursor charged particle
EDM experiment [68]. COSY is a storage ring, which operates with
polarized protons and deuterons in the kinetic energy range from 40 MeV
to 2.5 GeV. The length of the ring is 183 m. One can see the schematic
view of the ring in Figure 4. The EDDA detector at COSY, pictured

Figure 4: The scheme of COSY ring [68].

in Figure 5 analyzes polarization. Several methods for the precursor
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experiment at COSY were proposed in the recent years [64],[63]. One of
them will be discussed in chapter 5.

Figure 5: EDDA detectror at COSY.

Test runs for better understanding of polarized beams’ behavior, for
developing spin manipulation techniques and maximization of the spin
coherence time have been being performed for the last 7 years at COSY
[38], [48].

The development of a new ring for the final EDM experiment requires
a detailed beam dynamics analysis. The beam dynamics investigations
have the goal to find the precise solution of the equation of motion for
the short period of time and further analysis of the evolution of the beam
parameters in time. So the main subject of the accelerator physics is the
study of periodic structures such as storage rings and accelerators. All
these structures let one keep the beam for long periods of time, i.e. all
the processes take place inside the dynamics aperture of the accelerator.
The broad theory have been built throughout the decades, as well as the
appropriate mathematical methods for beam dynamics studies.

simulations

The motion of particles in the accelerator rings in the presence of electro-
magnetic fields is studied with numerical simulation approach. For this
purpose there were invented a number of programs, for instance, MAD
[47], COSY-Infinity [24], OptiM [61] and others. Modeling longstanding
processes as the evolution of spin-orbital motion, which is absolutely
necessary for a new EDM machine design, impose special criteria for
any simulation program such as symplecticity and energy conservation
[25], [36]. One of the methods of studying such long-lived systems is
the mapping approach [37], [26]. The advantage of this technique is the
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high computational speed that gives an opportunity to have a look at full
evolution of the process.

The newly developed program MODE [52], written by A. Ivanov and S.
Andrianov from Saint-Petersburg State University, was used in the work
presented in this thesis. It solves the equations of motion and the gen-
eralized Thomas-BMT [20],[45] equation and generates maps, which are
used later for tracking in Matlab [71]. More detailed program description
will be presented in chapter 2.

outline

The main subject of this thesis is the investigation of systematic errors for
the future electric dipole moment experiment. Two possible ring designs
for the "final" ring and the design for the precursor experiment will be
considered in this work. The sensitivity limits for the precursor search
and for both methods, which aim to measuring an EDM with the highest
possible precision, will be set.

The second chapter is dedicated to the mathematical model of spin-
orbital dynamics. An overview to the equations that are essential for the
understanding of the physics considered in the thesis will be made. The
equations of spin-orbital motion will be derived in canonical coordinates,
as well. The map formalism, which is used in the simulation program, will
be discussed.

The concept of spin coherence time is shown in chapter 3. The mech-
anisms that lead to depolarization of a particle bunch are studied. The
fundamental sources of systematic errors, which appear in any storage
ring EDM experiment, are briefly represented, too.

Chapter 4 is assigned to benchmarking of MODE program, which was
the primary simulation tool in this research. A quick introduction to
MODE environment is made and the structure of the program is discussed.
Experimental results from a testing run in 2014 are shown and compared
with simulations made with MODE.

The next chapter of the is devoted to the methods for a hadron EDM
measurement at a storage ring. The base ideas for the frozen and the
quasi-frozen spin methods that require a new ring are explained in this
chapter. The radio frequency Wien filter approach, which is planned to
be the one for the precursor experiment, is investigated, too.

The sixth describes the systematic errors for the "final" experiment and
for the precursor separately, since they differ in some details. The pos-
sible ways that can be used to overcome the systematics are considered.
Simulations are performed and their results are thoroughly examined and
the sensitivity limits are set.

In conclusion, one finds the description of the results that were obtained
during this research, as well as, the future outlook.



2
M AT H E M AT I C A L M O D E L I N G O F S P I N - O R B I TA L
DY N A M I C S

introduction

The present chapter gives an overview of the working principle of MODE
program and general consideration of spin-orbital particle dynamics at
an accelerator. The mathematical formalism is discussed in detail. Equa-
tions of spin-orbital dynamics are derived in canonical coordinates. The
coordinate choice is caused by the physical side of the task and the
convenience of code implementation in the program.

spin-orbital dynamics

This section gives an overall introduction to the spin-orbital dynamics at
a storage ring.

The orbital motion

One can define the orbital motion as a variation of spacial coordinates of
the particle, which travels in the electromagnetic fields of a storage ring,
in time. The electromagnetic fields are described by the vectors of electric
field strength ~E and magnetic induction ~B. The laws of electromagnetism
are defined as Maxwell equations [81]

∇·~E =
ρ

ε0
, ∇×~E = −∂~B

∂t
,∇·~B = 0, ∇×~B =

1
c2

∂~E
∂t

+ µ0~J, (2.2.1)

where ρ is the overall charge density, ~J is the vector of overall electric
current density, ε0 and µ0 are electric and magnetic constants, which are
vacuum permittivity and vacuum permeability, c is the speed of light. If
the charges and currents do not change in time, the equations become
more simple and have the form

∇·~E =
ρ

ε0
, ∇×~E = 0,

∇·~B = 0, ∇×~B = µ0~J
(2.2.2)

12
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When the fields are static the electric and the magnetic components
are independent of each other, and the electric field strength can written
via the scalar potential u

~E = −∇u (2.2.3)

Inserting this formula into Maxwell’s equations one can get Poisson equa-
tion ∆u = ρ

ε0
, and when ρ = 0 this equations is called Laplace’s equation,

which has the following form in generic orthogonal curvilinear coordinates

∆u =
1

h1h2h3

3

∑
i=1

∂

∂qi

(h1h2h3

h2
i

∂u
∂qi

)
, (2.2.4)

where q1, q2, q3 are generic curvilinear coordinates, h1, h2, h3 are metric
Lamé coordinates [102] that characterize a certain reference system, and
the potential u is the function of generic coordinates u = u(q1, q2, q3).
One considers q3 as a time dependent variable q3 = q3(t) and two other
coordinates as the functions q1 = q1(q3), q2 = q2(q3). In case of ac-
companying reference system, which is usually used in beam dynamics
simulations [106], [107], the role of independent variable plays the path
length s of a reference particle.

The Lorentz force acts on the particle with the charge q and the velocity
~v, which propagates through the electromagnetic field. The equation of
motion in that case is

d
dt
~p = q

(
~E +~v× ~B

)
, (2.2.5)

where ~p = m0γ~v is the particle momentum, m0 is the rest mass. The
coefficient γ is Lorentz factor and is equal to γ = (1− v2

c2 )
−1/2. The

absolute value of the velocity of particle v and the speed of light c will
be used in later discussion.

Using Lagrangian mechanics [108], the equation 2.2.5 can be rewritten
in arbitrary curvilinear coordinate system. The equations of motion will
be

dpi

dt
+
( q̇i

hi+1

∂hi

∂qi+1
− q̇i+1

hi

∂hi+1

∂qi

)
pi+1 +

( q̇i

hi+2

∂hi

∂qi+2
− q̇i+2

hi

∂hi+2

∂qi

)
pi+2 =

= q(Ei + hi+1q̇i+1Bi+2 − hi+2q̇i+2Bi+1,

i = 1, 2, 3,
(2.2.6)

where the indices change cyclically (q4 = q1, q5 = q2) and ” · ” is the
operator of time differentiation. Equations (2.1.6) describe the evolution
of curvilinear coordinates in time. For beam dynamics purposes the time
differentiation is changed to differentiation with respect to the chosen
coordinate, usually with respect to s.
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Using the formula for elementary path length in curvilinear reference
system,

d
dt

=
v

(h2
1q′1

2 + h2
2q′2

2 + h2
3

d
dq3)1/2 (2.2.7)

Momenta projections will be

pi = him0γq̇i = hi
m0γv

(h2
1q′1

2 + h2
2q′2

2 + h2
3)

1/2
q′i (2.2.8)

Inserting 2.2.8 into 2.2.6 one can obtain the resulting expressions for
trajectory equations

q′′1 + γ−1(
HD

v
q′1) +

(
q′2(2q′1

∂h1

∂q2
− h2q′2

h1

∂h2

∂q1
) +

∂h1

∂q1
q′1

2
+ 2q′1

∂h1

∂q3
−

−h3

h1

∂h3

∂q1

)
/h1 =

qH
h1m0γv

(
HE1

v
+ h2q′2B3 − h3B2),

q′′2 + γ−1(
HD

v
q′2) +

(
q′1(2q′2

∂h2

∂q1
− h1q′1

h2

∂h1

∂q2
) +

∂h2

∂q2
q′2

2
+ 2q′2

∂h2

∂q3
−

−h3

h2

∂h3

∂q2

)
/h2 =

qH
h2m0γv

(
HE2

v
− h1q′1B3 + h3B1),

(2.2.9)

where ~E = (E1, E2, E3) and ~B = (B1, B2, B3), H and D are functions of
generic coordinates

H = (h2
1q′1

2
+ h2

2q′2
2
+ h2

3)
1/2,

D =
q

m0h3
(h1q′1B2 − h2q′2B1 +

HE3

v
)−

− γv
Hh3

(
h1q′1(

2
h1

∂h3

∂q1
− q′1

h3

∂h1

∂q3
) + h2q′2(

2
h2

∂h3

∂q2
− q′2

h3

∂h2

∂q3
) +

∂h3

∂q3

)
.

(2.2.10)

Equation 2.2.6 transforms into two equations for two projections onto
two perpendicular planes, and they are relativistic trajectory equations in
general orthogonal coordinate system. For the trajectory, as it was said
before, one should pick some curve, for instance, the path of the reference
particle, and the length of this curve will be the variable of integration.
Coordinate axes q1 = x, q2 = y will be perpendicular to the path of the
reference curve. So, the coordinate system is an accompanying coordinate
system, which is moving along the given curve.

One has to use the energy conservation law for calculation of the
absolute value of the velocity from equation 2.2.9

m0c2(γ− γ0) + q(u− u0) = 0, (2.2.11)

where potential u is given by formula 2.2.3, γ0 is the particle velocity in
the place with potential u0 and γ - with potential u.
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T-BMT equation

Spin is a fundamental characteristic of a particle and is expressed by a
quantum number. However, in a frame of Hamiltonian formalism it is more
convenient to work with ordinary differential equation. Quasi-classical
approach for spin dynamics representation is maintained by the Thomas-
Bargmann-Michel-Telegdi (the T-BMT) equation [20]

d
dt
~S =

−q
m0γ

(
(1 + Gγ)B⊥ + (1 + G)B‖ + (Gγ +

γ

γ + 1
)
~E× ~β

c

)
× ~S,

(2.2.12)
where G is the dimensionless anomalous magnetic factor, ~βc = ~v, B⊥
and B‖ are perpendicular and longitudinal components with respect to
the direction of the velocity of a particle. The given equation can be writ-
ten in terms of the magnetic induction vector ~B. Indeed, the longitudinal
component of the magnetic field one can present as a projection onto the
direction of particle’s momentum B‖ = (~B,~p) ~p

~p2 . The perpendicular com-
ponent in this notation will be B⊥ = ~B− B‖. Inserting those expressions
into 2.2.12 one obtains the frequency of spin precession

~Ω =
−q

m0γ

(
(1 + Gγ)(~B− B‖) + (1 + G)B‖ + (G +

1
γ + 1

)
~E× ~p
m0c2

)
=

=
−q

m0γ

(
(1 + Gγ)~B− G

γ + 1
(~B,~p)~p

m2
0c2

− (G +
1

γ + 1
)
~p× ~E
m0c2

)
.

(2.2.13)

The T-BMT equation, which has the following form

d
dt
~S = ~Ω(~p,~B,~E)× ~S, (2.2.14)

can be written in accompanying coordinate system. When the curve is
plane and has the constant curvature k the equation is

~S′ =

 0 0 k
0 0 0
−k 0 0

~S +
H
v
~Ω× ~S. (2.2.15)

Equations 2.2.14 2.2.15 describe the spin motion in arbitrary fields.

Homogeneous vertical magnetic field

When one takes a look at equation 2.2.5, it is clear that in the presence
of the vertical homogeneous magnetic field ~B = (0; B0; 0), where B0 =

(m0γv)/(qR), a particle will be moving along the circumference with
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radius R and with the constant absolute value of the velocity. Inserting
the frequency of spin precession in 2.2.14

~Ω =
−q

m0γ
(1 + γG)~B =

−q
m0γ

(1 + γG)(0;
m0γv

qR
; 0)

and taking into account that k = 1/R, one obtains

S′x =
1
R

Ss +
1
v

m0γv
qR

Ss
−q

m0γ
(1 + γG) = −γG

R
Ss,

S′s = −
1
R

Sx −
1
v

m0γv
qR

Sx
−q

m0γ
(1 + γG) =

γG
R

Sx.

The elementary path length ds = Rdφ, where φ is the angle of the
rotation of the particle momentum in the ring. Considering this fact the
frequency of the spin rotation with respect to the momentum vector will
be

ω = γG. (2.2.16)

Homogeneous longitudinal magnetic field

The spin precession in the longitudinal homogeneous magnetic field ~B =

(0; 0; Bz) is considered. Also, Bρ = B0R = (m0γv)/q. Thus, the spin
precession frequency is

~Ω =
−q

m0γ
(1 + γG)~B− G

γ + 1
Bz

γ2v2

c2 .

Inserting this again in equation 2.2.14 and taking into account that for
the straight section k = 0, one gets

S′x =
Bz

Bρ
(1 + G)Sy,

S′y = − Bz

Bρ
(1 + G)Sx, S′s = 0.

The spin vector in the presence of the longitudinal field Bz rotates with
the frequency

ω =
Bz

Bρ
(1 + G). (2.2.17)

Homogeneous radial electric field

In the radial homogeneous electric field E0 = (m0γv2) a particle moves
with the constant velocity and constant radius R of the circumference.
The so-called magic energy is the energy of the particle when its spin
rotates in the horizontal plane with the same frequency as the momentum.
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This magic condition could be easily obtained if the frequency of spin
precession in the electric field equals to zero. The T-BMT equation,
then, has the form

S′x =
1
R

Ss +
H
v

ΩySs = ωSs,

S′s = −
1
R

Sx −
H
v

ΩySx = ωSx,

where S′y = 0, and that means that the frequency is

ω =
1
R

(
1− γβ2(G +

1
1 + γ

)
)

. (2.2.18)

Setting this value of the frequency to zero, one can write the formula
linking the magic energy (γm) and the magnetic factor G

G =
1

γ2
m − 1

. (2.2.19)

The value of the magic energy is especially important for studies of
the spin-orbital motion in electric storage rings because it allows one
to freeze the spin [83], [84]. In such an experiment the spin vector lies
along the momentum for all the time in the case of zero EDM. If there is
a non-vanishing EDM, one will observe a rise of the vertical polarization
in time.

Conclusion

In this section, the main equations of spin-orbital dynamics were consid-
ered in curvilinear coordinate system. These equations are used in the
building of the mathematical model of particle motion, which is needed
for the simulation made in this work.

trajectory equations in beam dynamics

Equation 2.2.9 describes the trajectory dynamics in arbitrary orthogonal
curvilinear coordinates. The accompanying coordinate system follows
the path of the reference particle, when one works with models for beam
dynamics calculation. This path is usually a straight line or an arc. The
choice of the reference trajectory is connected to the symmetry of the
field. The reference particle in a such coordinate system is a stationary
point. When there are no perturbations, for instance, field errors or fringe
fields, a given stationary point lies in the beginning of the coordinates.
In general, such stationary point is the state with zero coordinates in that
reference frame, and this state evolves into itself again after one full turn
around the storage ring.
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Derivation of the equations for accompanying coordinate system

In the trivial case of Cartesian coordinate system all the Lamé coefficients
are equal to one, and the equations of motion have the following form [105]

x′′ =
q

m0v

(
(1− v2

c2 )(1 + x′2 + y′2)
)1/2(

(1 + x′2 + y′2)1/2(Ex − x′Ez)/v−

−(1 + x′2)By + y′(x′Bx + Bs)
)

,

y′′ =
q

m0v

(
(1− v2

c2 )(1 + x′2 + y′2)
)1/2(

(1 + x′2 + y′2)1/2(Ey − y′Ez)/v−

−(1 + y′2)Bx + x′(y′By + Bs)
)

.

(2.3.1)

When the motion trajectory is an arc the equations have more com-
plicated form. Firstly, the derivation of the transformation formulas from
Cartesian to curvilinear reference system will be considered. At a certain
point of the circumference x and y axes are perpendicular ( x in the bend
plane, y perpendicular to the bend plane) to the path of the reference
particle, s is tangent to the reference trajectory. When s = 0 the Carte-
sian and curvilinear reference systems coincide, and x > −R (Figure 6).

Figure 6: Cartesian and curvilinear coordinate systems.
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Using the given notation one can write down the coordinate transfor-
mations [54]

x̂ = −R + (R + x)cos(s/R)

ŷ = y

ẑ = (R + x)sin(s/R),

which satisfy the condition of orthogonality.

∂x̂
∂x

∂x̂
∂x

+
∂ŷ
∂x

∂ŷ
∂x

+
∂ẑ
∂x

∂ẑ
∂x

= 0 + 0 + 0 ≡ 0

∂x̂
∂x

∂x̂
∂y

+
∂ŷ
∂x

∂ŷ
∂y

+
∂ẑ
∂x

∂ẑ
∂y

= 0 + 0 + 0 ≡ 0

∂x̂
∂y

∂x̂
∂s

+
∂ŷ
∂y

∂ŷ
∂s

+
∂ẑ
∂y

∂ẑ
∂s

= 0− R + y
R

cos(
s
R
)sin(

s
R
)+

R + y
R

cos(
s
R
)sin(

s
R
) ≡ 0

(2.3.2)

In this case Lamé coefficients are

hx = hy = 1

hs = 1 +
x
R

(2.3.3)

To generalize all the derivable equations for the situation when an
arbitrary plane trajectory is used one can use the following function [102]:

hs(x) =

{
1, when the motion is along the straight line
1 + kx, when the motion is along the arc.

(2.3.4)

So using equation 2.2.10 and taking into account that ∂hs(x)
∂x = k and

∂hs(x)
∂s = kx′ one can write the functions H and D in the following form

H = (x′2 + y′2 + hs
2)1/2,

D =
q

mohs
(x′By − y′Bx +

HEs

v
)− γv

Hhs
3kx′,

(2.3.5)

and, finally, generalize the equations 2.3.1 for the motion along arbitrary
plane curve [103]

x′′ = −HD
γv

x′ +
qH

moγv

(HEx

v
+ y′Bs − hsBy

)
+ khs,

y′′ = −HD
γv

y′ +
qH

moγv

(HEy

v
+ hsBx − x′Bs

)
.

(2.3.6)
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Canonical transformations

Equation 2.3.1 describes the orbital dynamics in terms of generic coordi-
nates x, y and velocities x′, y′. For the purpose of beam dynamics simula-
tions one usually uses momenta projections px, py, which are included in
canonically conjugate pairs of coordinates. In addition, it is inconvenient
to use equation 2.3.1 directly because the absolute value of velocity v,
which consists in the equation explicitly, is the function of spacial coordi-
nates v = v(x, y, s), and it must be constantly recalculated with according
to the energy conservation law 2.2.11. There is a derivation of orbital
motion equations in six-dimensional phase-space x, y, t, px, py, W below,
where t is the actual time of flight of a particle through an arbitrary elec-
tromagnetic field, W is the particle kinetic energy. These given coordi-
nates are canonically conjugate pairs P = {x, y, t} and Q = {px, py, W},
and the resulting equations are convenient for the further integration in
nonlinear matrix form.

With the usage of 2.2.6 one can write momenta projections onto the
axes of the new curvilinear reference system 2.3.3, which is moving along
the plane curve 2.3.4,

px =
m0γv√

x′2 + y′2 + hs
2

x′ py =
m0γv√

x′2 + y′2 + hs
2

y′, (2.3.7)

and clearly see that pxy′ = pyx′. Solving the last equation with respect
to y′, one gets for the x component of the momentum the formula without
dependence on y′

px =
m0γv√

x′2 + x′2 py2/px2 + hs
2

x′.

Now one can solve the obtained equation with respect to x′

(m0γv)2x′2 = px
2(x′2 + x′2

py
2

px2 + hs
2),

x′2 =
px

2hs
2

(m0γv)2 − px2 − py2 .

Taking into account that the velocity and momentum vectors are collinear
and the denominator (m0γv)2 − px

2 − py
2 = ps

2 is always positive, one
reads

x′ =
pxhs√

(m0γv)2 − px2 − py2
. (2.3.8)

If one does the same derivation for y′, one obtains

y′ =
pyhs√

(m0γv)2 − px2 − py2
. (2.3.9)
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As soon as the further derivation is the same for px and py momenta
projections up to sign, it is handy to use a new variable ξ ∈ {x, y}. The
derivatives of momenta described by equations 2.3.7 will be equal to

p′ξ =
m0γv′ξ ′

H
+

m0γ′vξ ′

H
+

m0γvξ ′′

H
+m0γv′ξ ′(−1

2
)H−3(2x′x′′+ 2y′y′′+ 2hsh′s).

Using formula 2.3.7 again one gets

p′ξ = pξ

( v
v′
− γ

γ′

)
+ m0γv

ξ ′′

H
− pξ

( px

m0γv
x′′

H
+

py

m0γv
y′′

H
+

hsh′s
H2

)
(2.3.10)

One must take into consideration that pξ is the function of only canonical
variables x, y, t, px, py, W. The values x′′ and y′′ are defined by equation
2.3.6 and the first derivatives - by equations 2.3.8 2.3.9. The function H
is

H =
√

x′2 + y′2 + h2
s =

m0γvx′

px
=

m0γvhs√
(m0γv)2 − p2

x − p2
y

. (2.3.11)

The next step is to show that the values v, γ, v′, γ′ also depend only on
canonical coordinates. From the formula for kinetic energy of a relativistic
particle

W = m0γc2 −m0c2 (2.3.12)

one directly writes the equations for Lorentz factor and its derivative

γ =
W + m0c2

m0c2 , γ′ =
W ′

m0c2 (2.3.13)

On the other hand, kinetic energy may be written via the law of full
energy conservation, which has the following differential form

W ′ = −qu′(x, y, s) = q(Exx′ + Eyy′ + Es). (2.3.14)

Let us have a look at the velocity v and its derivative v′. From equation
2.3.12 the velocity is

v =
c

W + m0c2

√
W2 + 2Wm0c2, (2.3.15)

and its derivative is

v′ =
c

W2 + m0c2
1
2
(W2 + 2Wm0c2)−1/2(2WW ′ + 2W ′m0c2)+

+c
√

W2 + 2Wm0c2(−1)(W + m0c2)−2W ′ =

= cW ′(m0c2)2
(
(W + m0c2)2

√
W2 + 2Wm0c2

)−1

(2.3.16)
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Equations 2.2.7, 2.3.8 - 2.3.10 ,2.3.14 construct the ODE system for
orbital motion in accompanying reference system, and all-together with
the T-BMT equation fully describe the spin-orbital dynamics of a charged
particle [103], [105]. To summarize:

x′ =
pxhs√

(m0γv)2 − px2 − py2
,

y′ =
pyhs√

(m0γv)2 − px2 − py2
,

t′ =
H
v

,

p′x = px

( v
v′
− γ

γ′

)
+ m0γv

x′′

H
− px

( px

m0γv
x′′

H
+

py

m0γv
y′′

H
+

hsh′s
H2

)
,

p′y = py

( v
v′
− γ

γ′

)
+ m0γv

y′′

H
− px

( px

m0γv
x′′

H
+

py

m0γv
y′′

H
+

hsh′s
H2

)
,

W ′ = −qu′(x, y, s) = q(Exx′ + Eyy′ + Es),

S′x = kSs +
H
v

(
(k1(BySs − BsSy) + k2(pySs − psSy)+

+k3
(
(psEx − pxEs)Ss − (pxEy − pyEx)Sy

))
,

S′y =
H
v

(
(k1(BsSx − BxSs) + k2(psSx − pxSs)+

+k3
(
(pxEy− pyEx)Sx − (pyEs − psEy)Ss

))
,

S′s = −kSx +
H
v

(
(k1(BxSy − BySx) + k2(pxSy − pySx)+

+k3
(
(pyEs− psEy)Sy − (psEx − pxEs)Sx

))
,

(2.3.17)

where x′′ and y′′ are given by equation 2.3.1, the function H is character-
ized by formula 2.3.11, γ, γ′ are described by equation 2.3.13 and, finally,
the velocity v with its derivative v′ are calculated through kinetic energy
with formulas 2.3.14 - 2.3.16,

k1 =
−q

m0γ
(1 + γG),

k2 =
q

m3
0c2γ

G
1 + γ

(Bx px + By py + Bs ps),

k3 =
q

m2
0c2γ

(G +
1

1 + γ
).
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matrix integration of differential equations

Equations 2.3.17 build a system of non-linear differential equations [104]

d
ds

X = F(s, X)

with the state vector X = (x, y, t, px, py, W, Sx, Sy, Ss). The solution of
this ODE system can be written in matrix form of Taylor series [23], [9],
[15]

X = R0 + R1X0 + R2X0
[2] + ... + RkX0

[k]. (2.4.1)

The fields E and B in equations 2.3.17 are tuned in the way, that the
reference particle does not oscillate around the reference orbit. Therefore,
usually the vector R0 equals to zero, except for one element R0(3, 1) = t0,
which defines the real time of flight of the particle in the electromagnetic
fields. When a whole ring is taken into account t0 shows the time particle
needs to make one revolution. Rk(i, j) is the matrix element of Rk that
stands in i-th row and j-th column.

Modeling of particle beam dynamics

Each element of the ring is defined by the distribution of E and B fields
inside it, the beam dynamics is described by system of equations 2.3.17.
Also, each element can be mapped with a M = {R0, R1, ..., Rk} of a
specified order of non-linearity [10], [11], [12]. Assuming that all the
elements are determined by the matrices of the same order will not spoil
the generality. So, mathematically a storage ring can be represented
as a sequence of maps M1,M2, ...,MN , where N is the overall number
of elements. The state vector X may be either written iteratively via
sequence of maps mentioned above

X1 =M1 ◦ X0,

X2 =M2 ◦ X1,

...

X =MN ◦ XN−1,

or found using the following formula

X =MN ◦MN−1 ◦ ...M1 ◦ X0 =M◦ X0,

where the resulting map M is built by simple concatenation of all the
maps for a single element, and this procedure is reflected by equation
2.4.1.

All the spin-orbital dynamics in the storage ring one can describe with
a number of numerical matrices with the desired order of non-linearity.
So in order to get the final state vector of the particle one simply should
use the resulting map M and an initial state vector X0. That map is a
one-turn map but it’s easy to build a many-turn mapMn =M◦Mn−1.
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Moreover, matrix form of the map allows to investigate the dynamics of
an ensemble of particles also in matrix form

[X1, ..., Xw] = R0 + R1[X0,1, ..., X0, w] + ... + Rk[X
[k]
0,1, ..., X[k]

0,w], (2.4.2)

where the operation of multiplication of a state vector by a matrix changes
to the multiplication of a matrix of different state vectors by a corre-
sponded matrix [105], [13].

Calculation of beam parameters

The matrix R1 in 2.4.1 is a matrix of linear transformation. This matrix is
a basis, which is sufficient for finding parameters of a storage ring such
as beta-functions and dispersion.

Beta-function is an envelope of the beam in x and y directions [100].
The motion only in x – x′ plane is considered, for y – y′ plane all the
derivation is analogous. The beta-function formation is based on the
analysis of the beam envelope that in general form has the following
representation

γx2
0 + 2αx0x′0 + βx′0

2
= 1,

or in matrix form (
x0

x′0

)T (
γ α

α β

)(
x0

x′0

)
= 1.

The linear part of the transfer map is(
x
x′

)
= R1

(
x0

x′0

)
,
(

x0

x′0

)
= R−1

1

(
x
x′

)
,

where R1 is the 2× 2 matrix, which is a small inner part of the full matrix
of the linear order, R−1

1 is the inverse one. Inserting this map into the
formula for the envelope one obtains(

x
x′

)T

(R−1
1 )T

(
γ α

α β

)
R−1

1

(
x
x′

)
= 1. (2.4.3)

For beta-function calculation one has to find a phase-space ellipse,
which transforms into itself after one turn in a storage ring

(R−1
1 )T

(
γ α

α β

)
R−1

1 =

(
γ α

α β

)
,

(R−1
1 )T

(
γ α

α β

)
=

(
γ α

α β

)
R1

For simplicity one defines (R−1
1 )T = {mi,j}2

i,j=1 and R1 = {ni,j}2
i,j=1.

Thus, if to write the last formula by elements, one gets(
m11γ + m12α m11α + m12β

m21γ + m22α m21α + m22β

)
−
(

n11γ + n21α n12γ + m22α

m11α + n21β n12α + n22β

)
= 0
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(
(m11 − n11)γ + (m12 − n21)α (m11 − n22α + m12β− n12γ

m21γ + (m22 − n11)α− n21β (m21 − n12α + (m22 − n22)β

)
= 0.

If this system of equations has a solution and the envelope exists, the
following equations must be true

α =
n22 −m22

m21 − n12
β, γ =

(m12 − n21)(m22 − n22)

(m11 − n11)(m21 − n12)
β.

When the phase-space ellipse coefficients α, β, γ, i.e. optical functions,
are known it is possible to observe its dynamics when the beam travels
consecutively through the elements. One can define the ellipse matrix
as A0 [105] and the linear matrices of consecutive transformations as
R1,1, R1,2, ..., then

A0 → A1 = R−1
1,1

T
A0R−1

1,1 → A2 = R−1
1,2

T
A0R−1

1,2 → ...

↓ ↓ ↓
β0 β1 β2 .

The functions bx(s) that are defined in certain points s0, s1, s2, ..., which
coincide with the distance traveled by the beam on the reference orbit,
are called beta-functions along x coordinate.

Dispersion is another important function needed for an accelerator
structure studies. If a particle has any offset from the reference energy δp

p ,
it starts to oscillate around the new closed orbit. The value of deviation
in x or y directions of the new closed orbit with respect to the reference
orbit in each point of the ring is called dispersion.

It is convenient to consider the linearized transformation of the x, x′, δp
coordinates for one turn to build the dispersion function x

x′

δp

 =

a11 a12 a13

a21 a22 a23

0 0 1

 x0

x′0
δp0

 ,

where δp = (p− p0)/p0. The given transformation leads to the system
of equations

x = a11x0 + a12x′0 + a13δp0,

y = a21x0 + a22x′0 + a23δp0.

Taking into account the fact that the orbit must be closed x = x0,
y = y0, one obtains

(1− a11)x0 − a12x′0 = a13δp0,

−a21x0 + (1− a22)x′0 = a23δp0.
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If this system has a solution, it can be written in matrix form as(
x0

x′0

)
=

(
1− a11 −a12

−a21 1− a22

)−1 (
a13

a23

)
δp0 =

(
Dδp0

D′δp0.

)
The function D in the last equation is the dispersion and may be found

with the help of the above algorithm in each point of the accelerator or,
if the mapping approach is used, after each element.

Also, it is important to know two other characteristics of the acceler-
ator such as slip factor η and momentum compaction factor α. The first
coefficient defines the increase of the time of revolution with respect to
the change of initial momentum,

∆T
T

= (α− 1
γ2 )

∆p
p

= η
∆p
p

,

and the second one describes the orbit lengthening

∆L
L

= α
∆p
p

.

In order to find the momentum compaction factor one needs to add one
more equation L′ = H to system of equations 2.3.17, where L is the
length of the reference orbit. The solution of this equation in Taylor form
reads: L = L0 + kδp, and one immediately gets α = k/L0.

Conclusion

The derivation of nonlinear equations describing spin-orbital dynamics
of particles in the associated coordinate system was considered in this
section. The trajectory equations are represented in the canonical form,
which, on one hand, artificially complicates the analytical form but, on the
other hand, gives the opportunity for the following realization in program
code in the more convenient way. The main ideas of the non-linear matrix
approach for particle motion simulations were discussed.
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how mode integrates numerically

Introduction to MODE

The mathematical principles of matrix integration, which were discussed
in Chapter 2, are realized in newly developed spin-orbital tracking code
MODE [51]. The program is written in Saint-Petersburg State University.
MODE is an integrated development environment (IDE) that includes
(Figure 7) the system of project management, text and visual code editors
and the libraries containing all the logic of matrix integration of equa-
tions of spin-orbital dynamics. This environment works under Windows
operating system and is written with .NET 3.5 platform.

Figure 7: The structure of MODE program.

Although the usage of .NET platform almost excludes the possibility of
running the developed environment under Linux operating systems, the
given opportunities of the platform allows to reduce significantly time of
program codes development and to reach the high desired computational
performance [46]. One can point out some advantages of the chosen
.NET 3.5 platform. Firstly, one uses specific attributes in the code, which
allows to describe meta-data of the code. The programming process
transforms, in this case, from procedural into declarative one, which in-
creases the scalability of the program. For example, all the mechanism of
auto-completion and the tooltips that pop up automatically use particular
class attributes created in the description process of available elements.
When new elements are made and the capabilities of the environment
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are expanded all needed information will be automatically uploaded and
transported to the appropriate modules.

The second important property of .NET 3.5 is the possibility to use
dynamical data types. Starting from version 3.5 C# language contains
the data type called dynamic. The usage of this data type allows to skip
the check of an operator type and by doing this increase the speed of
code computation.

The last advantage of this platform, when the computational algorithms
are used, is the implementation of unmanaged code. The regime of com-
pilation unsafe of .NET gives the opportunity to use pointers and operate
with data arrays directly inside the memory. All the computational mod-
ules, which realize the matrix integration procedures, are written with the
usage of pointers without any additional capabilities of .NET platform.
This makes the code fully compatible with C ++ language and allows to
realize it as a cross-platform library in the future [105].

Mathematical formalism

Consider the system of ODE

d
dt

X = F(t, X), (2.5.1)

where X = (x1x2...xn) is the state vector of n-th order and F is the
analytical function in the vicinity of X = 0 and is measurable with respect
to t in the integration range. If the above conditions are fulfilled, this
function can be written as a Taylor series up to the given order of non-
linearity p. That expansion has more convenient representation in matrix
form of Taylor series

d
dt

X = P0(t) + P1(t)X + P2(t)X[2] + ... + Pp(t)X[p], (2.5.2)

where X[k] is the k-th Kronecker power [101], [9] of vector X with taken into
account dimension reduction. The given vector consists of monomials of
k-th order written in lexicographical order. For example, for two variable
case the required vector could be found using the following expression

(
x1

x2

)
⊗
(

x1

x2

)
=


x2

1
x1x2

x2x1

x2
2

→
x1h2

x1x2

x2
2

 =

(
x1

x2

)[2]

,

where ⊗ is the Kronecker matrix multiplication [101]. The elements of
the matrices Pi, i = 1...p, in general, depend on time. However, for the
stationary systems Pi are numerical matrices with constant coefficients. If
system 2.5.1 is non-stationary, the matrix elements may be arbitrary non-
linear time-dependent functions. In addition, the possibility to expand
those functions in Taylor series is not needed.
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One should find the solution of equation 2.5.1 with initial conditions
X(0) = X0 as Taylor series up to desired order k.

X(t) = R0(t) + R1(t)X0 + R2(t)X
[2]
0 + ... + Rk(t)X

[k]
0 . (2.5.3)

When the system is stationary then matrices Rj, j = 1...k depend only on
the value of integration range. All the coefficients will be constant real
numbers.

The evolution of elements of matrices Rj in time can be expressed with
the system of ODE. Solving this system of equations with one of the
well-known methods, for instance, the Runge-Kutta [59], one can get the
numerical estimate of the mapping method [17]. The state vector of such
a system will be the sequence of matrices R0(t), R1(t), ..., Rk(t), and the
initial conditions for the solution will have the form below

R0(0) = 0, R1(0) = I, R2(0) = ... = Rk(0) = 0, (2.5.4)

where I is identical matrix.
The given formulas are easily derivable if one takes into account that

any state vector at initial time is equal to itself X(0) = X0 = IX0. The
differentiation with respect to t of equation 2.5.3 leads to the possibility
of construction of a system of equations that describe the evolution of the
matrix map in time

d
dt

X =
d
dt

R0(t) +
d
dt

R1(t)X0 +
d
dt

R2(t)X
[2]
0 + ... +

d
dt

Rk(t)X
[k]
0 ,

d
dt

X = P0(t) + P1(t)X + P2(t)X[2] + ... + Pp(t)X[p] =

= P0(t) + P1(t)
(

R0(t) + R1(t)X0 + R2(t)X
[2]
0 + ... + Rk(t)X

[k]
0

)
+

+P2(t)
(

R0(t) + R1(t)X0 + R2(t)X
[2]
0 + ... + Rk(t)X

[k]
0

)[2]
+ ...

+Pp(t)
(

R0(t) + R1(t)X0 + R2(t)X
[2]
0 + ... + Rk(t)X

[k]
0

)[p]
(2.5.5)

After all the simplifications one obtains a system of ordinary differential
equations, which defines the dynamics of of matrices R0, R1, R2, ..., Rk.

d
dt

R0(t) =
p

∑
i=1

Pi(t)R
[i]
0 ,

d
dt

Rk(t) =
p

∑
i=1

Pi(t)
∂X[i]

∂(X[i]
0 )∗

, k = 1, 2, ...
(2.5.6)

Solving this system with initial condition 2.5.4 allows to find the desired
map [14].

The operations with brackets in equation 2.5.5 should be done with
accordance to Kronecker rules of additivity and commutativity with di-
mension reduction. For instance, AX[i] ⊗ BX[j] = (A ⊗ B)(X[i] ⊗ Y[j])



2.5 how mode integrates numerically 30

must be written as AX[i] ⊗ BX[j] = CX[i+j], where matrix C is built
from A ⊗ B by summation and reduction of certain elements. The al-
gorithm, which is realized in MODE, allows to present the solution
X(t) = R0(t) +R1(t)X0 +R2(t)X

[2]
0 + ...+Rk(t)X

[k]
0 in the matrix form

X =

R1
0 + (R1

1, X0) + ... + (R1
k , X[k]

0
...

Rn
0 + (Rn

1 , X0) + ... + (Rn
k , X[k]

0

 ,

where Rj
i is the j-th row of the matrix Ri and operator (·, ·) is the scalar

product of the vectors. The resulting vector can be easily raised to a
power with dimension reduction. When this operation is done the new
vector, which represents the right Kronecker power, is expanded in a
series X0, ..., X[k]

0 .

Conclusion

The main mathematical basis of MODE program was discussed in detail.
The map formalism, which uses MODE was investigated and the deriva-
tion of the method for matrix integration of systems of ordinary differential
equations was explained.
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S Y S T E M AT I C E R R O R S I N A S TO R A G E R I N G E D M
E X P E R I M E N T

The main problem, which has to be solved, of the future charged particle
electric dipole moment experiment at a storage ring is the impact of the
different kinds of systematic errors on the signal coming from the presence
of the non-vanishing EDM. In this section various sources for systematic
errors will be discussed. However, before one starts to investigate their
influence on the experimental data and limitations that they put on the
sensitivity of the particular measurement method, one should say a couple
of words about so-called spin coherence time, which plays crucial role in
any storage ring EDM experiment.

introduction to spin coherence time

The idea of the experiment is to detect a build-up of the polarization of
the deuteron beam due to the interaction of the EDM with the electric
field (or motional electric field) in the ring. The spin of a particle not
only precesses in electric and magnetic fields because of the interaction
of its magnetic dipole moment ~µ with these fields but also for the reason
that it has an electric dipole moment. Thus, the equation 2.2.12 may be
supplemented by an additional term, which describes that interaction

d~S
dt

= ~S× ~ΩMDM + ~S× ~ΩEDM,

~ΩMDM =
e

γm

(
Gγ~B− (G− 1

γ2 − 1
)
~E× ~β

c
− Gγ2

γ + 1
~β(~β · ~B)

)
,

~ΩEDM =
e
m

η

2

(~E
c
+ ~β× ~B− γ

γ + 1
~β(

~β · ~E
c

)
)

,

(3.1.1)

where η is the dimensionless parameter characterizing the EDM term.
One can introduce the magnetic dipole moment of a particle ~µ and the
electric dipole moment ~d.

~µ = 2(G + 1) · e
2m

~S,

~d = η · e
2m

~S.
(3.1.2)

31
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If the EDM is of the order of 10−29 e·cm, then η of the order of 10−15, which
is 14 orders of magnitude smaller than the G factor that for deuterons,
for example, equals to −0.143.

The definition of the spin coherence time (SCT) regarding to the exam-
ple when the "frozen spin" concept will be discussed. As a reminder, the
"frozen spin" condition is written as

(
1

γ2 − 1
− G)(

~β× ~E
c

) + G~B = 0. (3.1.3)

The condition above only works for protons, since deuterons have the neg-
ative G factor and in order to fulfill the "frozen spin" condition one should
apply a magnetic field, and the equation will have a slightly different
form. Nevertheless, all the following discourse is the analogous for both
types of particles, so the proton case will be considered.

The equation 3.1.3 makes sure that the spin vector, initially aligned
with the momentum in the horizontal plane, rotates with the same fre-
quency as the momentum, in other words, stays "frozen". The radial elec-
tric field must be applied in a storage ring. If a proton has the EDM,
the spin starts to rotate around the electric field and build a vertical
polarization. With the EDM is of the order of 10−29 e·cm one should
wait approximately 1000 seconds to see a build-up of the polarization
of 1µrad. During this time all the spins of the particles in the beam
must lie along the momentum (be coherent) because as soon as the spins
decohere and point in different directions, the EDM will force the spin
vectors to rotate either up or down around the electric field according to
the direction of the spin of a particular particle. The EDM signal is pro-
portional to ~d× ~E, thus, there will be no net EDM polarization build-up
if the spins are not alligned with each other. The time, during which the
ensemble of particles completely decohere, is called spin coherence time.
This process is presented in Figure 8.

decoherence effects in the ideal ring

The spin coherence time is the first thing one should provide for the up-
coming EDM search. One should have a look at the mechanisms, which
lead to spin decoherence. The spins of the particles in a bunch decohere
due to the fact, that the spin tune of each particle - number of spin oscil-
lations relative to the momentum per one revolution in a ring - depends
on its energy and trajectory in electromagnetic fields. Any non-reference
particle experiences effects that are connected with orbit lengthening and
additional rotations of the spin in the bending and focusing fields, which
have nonlinear orders of field decomposition.
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Figure 8: In experiments involving polarized beams in storage rings, one
usually does not worry about the coherence of spins along the
closed-orbit vector nCO. Shortly after injection, as shown in
panel a), all spin vectors are aligned (coherent). After some
time, the spin vectors get out of phase and fully populate the
cone, as shown in panel b), and this is the situation of a con-
ventional polarization experiment using a stored beam, where
the projection of spins along the closed orbit vector,~S ‖ nCO, is
the same with and without decoherence. When you deal with
a beam polarized along a direction perpendicular to the closed
orbit vector,~S ⊥ nCO, as proposed for high-sensitivity storage
ring EDM searches, the situation is very different. Shortly af-
ter injection, as shown in panel c), the particle spins may still
be coherent, but once they are fully out of phase, as shown
in panel d), the polarization component perpendicular to nCO
has vanished. Therefore, in a dedicated EDM machine, the ob-
servation time is limited by the time it takes the ensemble of
particles to decohere, the spin coherence time [48].
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Synchronous acceleration principle

For better understanding of the matter of spin decoherence one must
firstly consider the basic principle of synchrotronous acceleration. It can
be written in a form of a system of equations

dφ

dt
= −ωr f ηδ

dδ

dt
=

eVr f ωr f

2πhβ2E
sin φ,

(3.2.1)

where δ = ∆p
ps

is the relative momentum deviation from equilibrium syn-
chronous level of momentum (∆p = p− ps), φ is the phase deviation from
synchronous phase φs = 0, which corresponds to no acceleration in a
storage ring, η is the slip factor, E is the full energy, eVr f is the energy
gain per turn with Vr f voltage gap, ωr f = 2πh frev is the angular fre-
quency of RF field, h is the harmonic number, frev = 1

Trev
is the revolution

frequency. [85]
The first equation reflects the concept of synchronous acceleration: a

particle with larger energy and, therefore, shorter revolution time arrives
earlier at the acceleration region with the lagging phase of the field with
respect to φs. Thus, it gets smaller energy kick, than a particle with
the longer revolution time. So the first equation of system 3.2.1 can be
presented in the following form

∆φ

dφ
= −∆Trev

Trev
. (3.2.2)

Usually, the change of the length of the orbit is given by this formula

∆C
C

= α0 · δ,

where α0 is the momentum compaction factor, C is the orbit length. There-
fore, one can write down the equation for the relative change in the rev-
olution time through the orbit length change

∆Trev

Trev
=

∆(C/v)
C/v

=
∆C
C
− ∆v

v
=
(

α0 −
1

γ2

)
· δ, (3.2.3)

where the term in brackets is the slip factor η = (α0 − 1
γ2 ). Then 3.2.3

is transformed into

∆Trev

Trev
= η · δ. (3.2.4)

The average value of the relative revolution time change for one syn-
chrotron oscillation is zero, it follows from the solution of system 3.2.1.
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Nevertheless, if one uses higher orders in the expansion of the momentum
compaction factor and velocity,

α = α0 + α1 · δ

1
vs + ∆v

=
1
vs

[
1− ∆v

v
+

(
∆v
v

)2

− ...
]

then the equation 3.2.3 take the form of

∆Trev

Trev
=

∆C
C
− ∆v

vs
− ∆C

C
· ∆v

vs
+

(
∆v
vs

)2

=

=

(
α0 −

1
γ2

)
· δ +

(
α1 −

α0

γ2 +
1

γ4

)
· δ2.

(3.2.5)

The betatron motion also brings in an additional term
(∆L

L

)
β

into the
orbit lengthening. So the previous formula becomes

∆Trev

Trev
=

(
α0 −

1
γ2

)
· δ +

(
α1 −

α0

γ2 +
1

γ4

)
· δ2 +

(
∆L
L

)
β

. (3.2.6)

The equation for the longitudinal motion can be written as

dφ

dt
= −ωr f

[(
α0 −

1
γ2

)
· δ +

(
α1 −

α0

γ2 +
1

γ4

)
· δ2 +

(
∆L
L

)
β

]
dδ

dt
=

eVr f ωr f

2πhβ2E
sin φ.

(3.2.7)

If one assumes that φ << 1 and, therefore, cos φ ≈ 1, one can write
the equation for the momentum deviation δ

d2δ

dt2 +
eVr f ω2

r f

2πhβ2E

(
α0 −

1
γ2

)
· δ =

= −
eVr f ω2

r f

2πhβ2E
·
[(

α1 −
α0

γ2 +
1

γ4

)
· δ2 +

(
∆L
L

)
β

]
.

(3.2.8)

It follows from 3.2.6 that the average value ∆Trev/Trev 6= 0 is not zero,
and it is described by α0, α1, γ and (∆L/L)β. Thus,

∆Trev

Trev
=

(
α1 −

α0

γ2 +
1

γ4

)
· δ2 +

(
∆L
L

)
β

. (3.2.9)

Equation 6.2.2 leads to the conclusion that the orbit lengthening must
be compensated by the rise of the equilibrium momentum level in order
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to be consistent with the synchronous acceleration principle. When 6.2.2
is solved using asymptotic methods [27], one can determine the impact of
the betatron oscillation, the momentum compaction factor of the second
order α1 and the slip factor η on the variation of the equilibrium energy
level ∆δeq

∆δeq =
γ2

s
γ2

s α0 − 1

[
δ2

m
2

(
α1 −

α0

γ2
s
+

1
γ4

s

)
+

(
∆L
L

)
β

]
, (3.2.10)

where δm is the maximum momentum deviation shift.
The equilibrium momentum is different for each particle inside a bunch,

that follows from equation 3.2.10. The simulations[84] have been made
with COSY Infinity in the electrostatic ring. The equilibrium momentum
level increases for the non-reference particle, which experience betatron
oscillations, as expected (Figure 9) [85], [90]. The momentum compaction
factor of the second order is not equal to zero α1 6= 0 and the contribution
from (∆v/vs)2 are responsible for non-symmetry in the phase trajectories
in the longitudinal plane and, thus, lead to a shift of the equilibrium
momentum.

Figure 9: Phase trajectory in longitudinal plane for initial coordinates
x=0, y=0 (a) and x=3 mm, y=0 (b)[90].

Figure 10 represents the difference between two cases: the reference
particle with zero and non-zero momentum compaction factor of the sec-
ond order. When α1 6= 0, one can see the similarity in the phase space
pictures with the situation when sextupoles affect the orbit particle motion
- the phase space ellipse smoothly transforms into a triangle.

Orbit lengthening

Now, everything is prepared to start a talk about orbit lengthening di-
rectly. The first thing when orbit lengthening arises is the situation, when
one has any non-reference particle with initial offset in x, y directions,
energy deviation is equal to zero for time being.
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Figure 10: Phase trajectory in longitudinal plane for α1 = 0 and α1 6= 0
without betatron oscillation [85].

Betatron motion

One can define parameters α0, α1 and (∆L/L)β using simple geometrical
considerations. The momentum spread δ and the betatron oscillation
(∆L/L)β produce the orbit lengthening, which is illustrated in Figure
11. Firstly, one takes a look at the left side of Figure 11 where the
orbit lengthening arises only due to the betatron oscillation. If to assume
that a particle has the following coordinates (xβ, x′β) at a particular time,
then because of the larger radius ρ + xβ the orbit is longer by a factor
of (ρ + xβ)/ρ and also the orbit is longer due to the influence of x′β by
a factor of 1/ cos xβ. When the vertical motion is taken into account the
lengthening factor is 1/ cos θ, where θ =

√
x′β + y′β.

Figure 11: Orbit lengthening due to betatron oscillation (a) and momen-
tum spread (b) [85].
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As a result the orbit lengthening produced by the betatron oscillation
has the following form

(
∆L
L

)
β

=
1
L

∮ (ρ + xβ

ρ cos θ
− 1
)

ds =
1
L

∮ ( xβ

ρ
+

x′β
2 + y′β

2

2

)
ds

(3.2.11)
Since

〈
xβ

ρ
〉 = 0,

〈x′β〉 =
1
2
〈 εx

βx
〉,

〈y′β〉 =
1
2
〈

εy

βy
〉,

〈 1
βx, y

〉 =
νx,y

R
,

where εx,y are beam emittances in horizontal and vertical planes and
βx,y are the corresponding beta-functions and νx,y are the horizontal
and vertical tunes and R is the average radius, the orbit lengthening is
represented as (

∆L
L

)
β

=
π

2L

[
εxνx + εyνy

]
. (3.2.12)

Momentum deviation

Another contribution to the orbit lengthening comes from the momentum
deviation. Let us consider Figure 11b and introduce linear and angular
dispersions

D(s, δ) = D0(s) + D1(s) · δ,

D′(s, δ) = D′0(s) + D′1(s) · δ.
(3.2.13)

In an arbitrary position along ds = ρdθ one can define

dl1 =
(
ρ + D0δ + D1δ2)dθ =

(
1 +

D0

ρ
δ +

D1

ρ
δ2
)

ds,

dl2 = dl1
√

1 + (D′0δ)2 =

(
1 +

D0

ρ
δ +

D1

ρ
δ2
)
·
(

1 +
1
2
(D′0δ)2

)
ds.

(3.2.14)

To summarize:

l2 =
∮ [

1 +
D0

ρ
δ +

(
D1

ρ
+

1
2

D′0
2
)

δ2
]

ds. (3.2.15)
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Therefore, the orbit lengthening, which appears due to the momentum
spread is

∆C
C

=
l2− C

C
= α0δ + α1δ2 + ...,

α0 = 〈D0

ρ
〉,

α1 = 〈D1

ρ
〉+ 1

2
〈D′0

2〉

(3.2.16)

Subsequently, one can get in the end the total equilibrium momentum
shift because of the betatron motion and non-zero momentum compaction
factor of the second order.

∆δeq =
γ2

s
γ2

s α0 − 1

[(
α1 −

α0

γ2
s
+

1
γ4

s

)
δ2

m
2

+
π

2L
(εxνx + εyνy)

]
. (3.2.17)

Spin decoherence due to orbit lengthening

Finally, it is all ready to describe spin decoherence effects through the
mechanism of orbit lengthening. The spin tune of the reference particle
is νs = Gγ. The equilibrium energy shift ∆γeq depends on the particle
parameters, thus the spin tune spread for the Nt turns is given by the
following formula

2π〈∆νs〉 = 2πG〈∆γeq〉Nt. (3.2.18)

The spread is fully described by the orbit lengthening effects. The spin
tune spread limits the spin coherence time.

The following example is considered: the SCT should be of the order
of 1000 seconds, which equals to 109 turns approximately. If the maxi-
mum allowed difference between the direction of the spin of the reference
particle and a non-reference one should not exceed 1rad, then one can
write

〈
∆γeq

γ
〉 < 1 rad

2πγGNt
= 7 · 10−11 (3.2.19)

An anticipating EDM build-up has increasing or decreasing behavior,
depending on the direction of the longitudinal spin component. If Sz is
smaller than zero, the build-up will go down. So, the above formula
prevents the EDM from averaging out to zero if fulfilled.

Using 3.2.10, the limit for the momentum spread can be defined as

〈δ2
m〉 < 〈

∆γeq

γ
〉 2

β2 ·
γ2

s (γ
2
s α0 − 1)

γ4
s α1 − γ2

s α0 + 1
(3.2.20)

At COSY one has α0 = 0.2, γs = 1.25, α1 = 2, taking zero contribu-
tion from betatron motion (εx, y ∼ 0) RMS momentum spread should
not be larger than 〈δm〉 < 8 · 10−6. Reducing the second order momen-
tum compaction factor down to α1 = 0.01, one obtains 〈δm〉 < 2 · 10−5
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For complete elimination of the momentum spread influence on the orbit
lengthening the coefficient

α1 −
α0

γ2
s
+

1
γ4

s
= 0 (3.2.21)

has to be zero.
For the emittance restrictions one writes

εrms
x,y < 〈

∆γeq

γ
〉 1

β2 ·
γ2

s α0 − 1
γ2

s
· L

πνx,y
. (3.2.22)

Therefore at COSY with 〈δm〉 << 10−5 the emittance should be εrms
x,y <

1.4mm mrad [85].

misalignments of the ring elements

In this section the effects of unwanted spin rotations due to the presence
of misalignments of the ring elements will be considered. The matter will
be discussed in general, since the more aspects of it will be examined
in detail later on for the specific methods of EDM searches such as the
radio frequency Wien filter method and the quasi-frozen spin approach.
Each of those experiments has its own individualities and they must be
studied separately.

The rotations of the dipoles play the most significant role, when one
talks about misalignments, which spoil the EDM signal.

Figure 12: A dipole rotated around the longitudinal axis.

As one can see in Figure 12, the dipole rotation leads to the formation
of a Bx component of the magnetic field. This component will rotate the
spin via the interaction with the dipole magnetic moment of a particle
and that will mimic the effective EDM rotation. Not only the spin motion
is perturbed in this scenario but the beam itself starts to experience
betatron oscillations, which lead to the orbit lengthening and further
depolarization of the bunch. The misalignments of the elements, the
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simulations of the spin behavior and the ways of fighting the systematic
errors correlated with misalignments will be studied in chapter 6 for three
measurement methods.

berry’s phase effects

Berry’s phase or geometrical phase is, actually, a phenomenon, which
comes from quantum mechanics and plays one of the major roles in neu-
tron EDM experiments [7], [50].

In application for an EDM search at a storage ring the geometrical
phase is also important and it’s correlated with the non-commutativity
of spin rotations in the ring. If one considers a set of consecutive spin
rotations around different axes, so with different angular vectors, which
forms a closed loop

∑
i

ωiti = 0, (3.4.1)

where ωi are the angular vectors and ti are the times, when the rotation
occurred, then the integrated spin rotation is not zero. This feature can
also be illustrated by the following equation

Mα
i ·M−α

i 6= E, (3.4.2)

where Mα,−α
i are the spin rotation matrices around any axis i = x, y, z

by an angle α or −α, and E is the identity matrix.
Taking into account the equations written above, one should consider a

rotation around the vertical axis and consequently around the longitudinal
field, which is non-zero in any accelerator. One can think of an element
that rotates back the spin by exactly the same angles around both axis.
The resulting rotation is

Mα
y ·M

φ
z ·M−α

y ·M
−φ
z 6= E, (3.4.3)

where M±α,±φ
y,z are the rotation matrices around the vertical and longitu-

dinal axes rotating the spin vector by ±α and ±φ. After such a rotation
the spin vector that initially was longitudinally polarized will acquire
the vertical component, which mimics the EDM signal. However, if one
inverts the matrices Mα,φ

y,z and writes the following transformation

Mα
y ·M

φ
z · (Mα

y)
−1 · (Mφ

z )
−1 = E, (3.4.4)

it will be equal to the identity matrix, and no vertical component will
be produced. Here comes the idea of clockwise and counter-clockwise
stored beams, which will be described in detail in chapter 6.

Conclusion

In this chapter the principle of spin coherence time was discussed, which
is the basic measure for the future EDM experiments. The SCT should
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be not less than one thousand seconds to successfully measure an EDM
polarization build-up.

Also the main sources of systematic errors were considered. Orbit
lengthening, which occurs because of the energy spread in a bunch and
the finite size of it, leads to depolarization. Misalignments of the ring
elements seriously affect the spin motion and produce fake EDM signal.
Finally, the geometrical phase impact on the behavior of the spin was
examined. An EDM contribution to the vertical spin component can be
mimicked by the geometrical phase, which arises when two consecutive
rotations around the vertical and the longitudinal axis are present.
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B E N C H M A R K I N G O F M O D E P R O G R A M

simulations of spin tune shifts during extraction

For the past several years the Cooler Synchrotron (COSY) in Forschungszen-
trum Jülich has been used as a facility for test runs for the upcoming
precursor experiment for the EDM search. One of the aims of those test
was to identify the optimal settings of the machine for the longest spin
coherence time.

Autumn run of 2013 was performed with approximately 109 deuterons
in the beam, they were accelerated up to 970 MeV and stored for 140
seconds inside the ring. The beam was cooled with an electron cooler
to reduce the equilibrium beam emittance, and the relative momentum
spread ∆p

p was of the order of 10−5. The beam was initially vertically
vector polarized, p+ε = 0.57± 0.01 for the up-state and p−ε = −0.49±
0.01 for the down-state, the tensor polarization was less than 0.02. The
RF cavity was on, so the beam was bunched. When the beam preparation
was over the electron cooler was turned off and the measurement was
taken for the remaining 100 seconds.

The RF solenoid was operated at the spin resonance frequency to
rotate the spin from vertical to horizontal direction. The beam was slowly
extracted onto the internal carbon target. There were three different ways
of extraction: the white noise electric field extraction and the vertical
and horizontal extractions with extraction magnets. The purpose was to
see how the spin tune is affected by an extraction method. Scattered
deuterons were detected in the scintillation detectors, consisting of rings
and bars around the beam pipe [40] and the energy deposit was measured
in the outer scintillator rings. The times of arrival of each particle with
respect to the beginning of each cycle and the COSY RF cavity frequency
were recorded in the long-range time-to-digital (TDC) converter. The
number of orbit revolutions could be, therefore, exactly assigned to each
recorded event [18] [38].

The spin tune was measured with the tremendous relative precision of
10−10 per cycle [38]. It was observed that during the extraction process the
spin tune was drifted from its initial value. The experiment showed that
the horizontal extraction affected the spin tune stronger than the other
two methods. This process was considered and simulated in MODE to
benchmark the program.

43
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The extraction of the beam was made using two horizontal steerers with
linearly increasing magnetic fields. The simulation result is presented
in Figure 13 [30]. The following picture (Figure 14) shows the actual

Figure 13: The simulation of the spin tune change during the horizontal
extraction at the COSY.

experimental results.

Figure 14: The experimental results of the spin tune change during the
horizontal extraction at COSY.

It was obesrved experimentally that during the extraction the absolute
spin tune change was approximately δνs = 2.53 · 10−7. As one can see
in the picture, the spin tune changes slightly slower in the simulation
(δνs = 2.25 · 10−7), which testifies for the fact that not all of the existent
fields were properly described or taken into account. One can see that
MODE correctly describes the orbital and spin motion. The program was
also benchmarked with the different experimental set-up.
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simulation of spin tune shifts in the presence of two steer-
ers

In September 2014 the series of test runs was performed. Besides the
SCT studies there were runs for the investigation of systematic errors in
the ring.

The idea was to study the effects on the beam parameters, caused by
the misalignments in the ring, using the steerers which excite an orbit.
It was proposed to use different steerer sets: a horizontal and a vertical
steerer placed either in the straight section or in the arc of the COSY.
They were turned on separately and also in pairs - two horizontal ones,
for example, which were located in the opposite straight sections. The
steerers then kick the beam in the vertical or in the horizontal direction
imitating a presence of the imperfection field. The corresponding spin
tune shift was measured afterwards. The experimental scheme is depicted
in Figure 15.

Figure 15: The scheme of the experimental set-up for 2014 September
run at the COSY.

The measurement started after the beam preparation, as usual. The
beam was slowly extracted, as was explained in the previous section, the
white noise electric field extraction was chosen because the smallest spin
tune drift was observed only in this case. The spin tune drift during the
white noise extraction is shown in Figure 16 [38].

Not only because of the smallest spin tune drift the white noise extrac-
tion method was used but due to the fact that this approach allows to kick
the particle from the beam randomly, from random "layers" of the bunch.
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Figure 16: Drift of the spin tune during eigth consecutive cycles with
alternating initial vector polarization p+ε (black) and p−ε (gray)
[38]

.

This makes possible to work with the whole size of the beam and, there-
fore, detect the true value of the spin tune, which is averaged over the
emittance size. In other words, this technique doesn’t extract the beam
"cut by cut" - of course the spin coherence time, in this case, is large and
infinitely long for the infinitely thin "slice". White noise extraction moves
the measured spin tune value closer to the real one.

Figure 15 represents the timing of the experiment. When the extraction
started the spin tune was measured for first 20 seconds without any
additional steerer fields. Then the stereer was turned on and the spin
tune tune shift was observed, after 40 seconds time the steerer was again
off and the spin tune was measured again. This procedure was done in
order to exclude any changes of the spin tune due to the factors apart
from steerer’s influence. Figure ?? shows the spin tune shift due to the
steerer impact. It is clearly visible that the spin tune is affected by the
steerers.

The impact of the steerers on the spin tune was primarily determined
by the orbit lengthening and the location of the steerer in the ring. The
following pictures shows the spin tune change as a function of the steerer
strength (see Figure 18, 19).

The simulations were made with MODE. The original lattice of COSY
ring was fully modeled in the program. All elements were randomly
shifted along x, y and z directions and rotated around radial, vertical
and longitudinal axes. The steerer kick was simulated with the imple-
mentation of a special element, which was written specifically for this
purpose. Five different random seeds were selected for each simulation
dedicated to the particular steerer that was used.

Figures 18, 19 show the experimental points measured during the ex-
periment and the simulation results for different random seeds. The mea-
sured spin tune shifts linearly depend on the steerer strength despite of
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Figure 17: The experimentally measured spin tune shift induced by the
steerer

Figure 18: The experimental spin tune shifts for different horizontal
steerer strengths and the simulations with different random
seeds of misalignment errors.



4.2 simulation of spin tune shifts in the presence of two steerers 48

Figure 19: The experimental spin tune shifts for different vertical steerer
strengths and the simulations with different random seeds of
misalignment errors.

the location of the steerer for both planes. However, theory predicts that
the spin tune shift should be sensitive to the position of the steerer.

A steerer kicks the beam, for instance, in horizontal plane. Particles’ x
coordinates change in accordance with Hill’s differential equations. The
square root of the beta function determines a particle x coordinate in the
straight section, where the dispersion is zero, and a larger linear contri-
bution from the dispersion function mainly determines that coordinate in
the arc. The spin tune change is proportional to the orbit lengthening
and, therefore, to the change in particles’ coordinates. That is why, one
should expect quadratic dependence of the spin tune shift if a steerer
located in the straight sections and a linear dependence for the steerers
in the arcs. In the vertical plane COSY ring has no dispersion at all. So
quadratic behavior of the spin tune change is expected.

The experimental points for each steerer setting form a straight line,
since the range of the steerer strength is not broad enough to see the
quadratic behavior. The range was set at its maximum, when the field
was increased further the beam was lost.

The blue curves in the plots from the simulation results strongly depend
on the random seed of the misalignments, which was chosen. Quadratic
behavior of the simulated spin tune change for the case of the horizontal
steerer placed in the straight section was in agreement with the theoret-
ical predictions. Nevertheless, it couldn’t fully describe the data. The
linear spin tune change for the horizontal steerer in the arc was in the
best accordance with the measured data points. Both simulations for the
vertical steerer case demonstrated the linear dependence on the steerer
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kick, since the range of the steerer strength was too close to zero, so one
couldn’t see the parabolic shapes of the curves. The simulations didn’t
fully coincide with the data, however, the change of the spin tune had at
least the same magnitude.

In conclusion, one can say that the steerer kicks affect the spin-orbital
motion and cause shifts of the spin tune. The spin tune change strongly
depends on the particular misalignment set, which is present in the ma-
chine. Simulations cannot fully describe the data, since the model of the
whole accelerator should be improved. For example, cooling process was
not taken into account, the solenoid fields, either. Nevertheless, MODE
results have the same order of magnitude as the experimental ones and
for some cases they are in well agreement with the experiment. This
is the indication that the program works correctly, can be used in the
following studies and its results are correct.



5

T H E M E T H O D S F O R E D M M E A S U R E M E N T AT A
S TO R A G E R I N G

introduction

In this chapter three methods for an EDM measurement will be discussed.
The main idea and the experimental principle will be explained for each
of the approaches. All methods will be considered for the ideal machine
with one single reference particle, since this way is easy and sufficient
to demonstrate the possible way of EDM determination. Previously de-
scribed systematic errors will be studied in detail in the next chapter for
each method, together with the procedures for their compensation.

the frozen spin method

Introduction

To search for a proton EDM using a ring with purely electrostatic ele-
ments, the concept of the frozen spin method has been proposed [95]. This
method is based on two facts: in the equation of spin precession, the mag-
netic field dependence is entirely eliminated, and at the “magic” energy,
the spin precession frequency coincides with the precession frequency of
the particle momentum. In case of deuterons one has to use electric and
magnetic fields simultaneously, as will be explained later, keeping the
frozen spin direction along the momentum as in the pure electrostatic
ring.

The frozen spin [95] is based on the fact that at a certain so-called
“magic” energy, a particle spin begins to rotate with the frequency of
the momentum and always lies along the momentum. Under this condi-

50
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tion, the signal growth of presumably existing electric dipole moment is
maximized. This is clearly evident from the T-BMT equations

d~S
dt

= ~S× ( ~ωG + ~ωEDM)

~ωG = − e
m

[
G~B +

(
1

γ2 − 1
− G

)~β× ~E
c

]
~ωEDM =

eη

m

[
~β× ~B +

~E
c

]
~µ = 2(G + 1)

e
2m

~S

~d = η
e

2m
~S,

(5.2.1)

where G is the anomalous magnetic moment, which contributes to the
dipole magnetic moment ~µ, ~ωG is the spin precession frequency due to
the magnetic dipole moment (MDM precession) relative to the momentum,
~ωEDM is the spin precession frequency due to the electric dipole moment
(EDM precession) and and η is the dimensionless coefficient defined,
which is used to describe the EDM.

It is reasonable to implement the frozen spin method in a purely elec-
trostatic machine with electric deflectors keeping a beam on orbit. The
advantages of purely electrostatic machines are especially evident at the
“magic” energy, where

G− 1
γ2

mag − 1
= 0, (5.2.2)

and the spin is oriented in the longitudinal direction. It rotates in the
horizontal plane with the same frequency as the momentum, which is
ωG = 0 [95].

However, this method cannot be used for deuterons, which have neg-
ative anomalous magnetic moment G = −0.143 [80]. That follows from
condition 5.2.2. Therefore, the only possible method in this case is a
storage ring with both electric and magnetic fields [86], [87]. The frozen
spin condition, in this case, will be written as(

1
γ2 − 1

− G
)~β× ~E

c
+ G~B = 0. (5.2.3)

It was proposed to store a longitudinally polarized deuteron beam of
1 GeV/c total momentum in an electro-magnetic storage ring of 0.5 T.
Spin precession frequency due to the interaction of magnetic dipole mo-
ment with electro-magnetic fields of the ring should be zero. This can be
done by applying a radial electric field of magnitude

Er =
GBcβγ2

1− Gβ2γ2 ≈ GBcβγ2 (5.2.4)

to cancel the G · ~B contribution to ωG in 5.2.1.



5.2 the frozen spin method 52

One should also fulfill the usual equilibrium condition, which keeps the
beam on orbit. It is simply the equality of Lorentz force to the centrifugal
force

e[−~E + cβ× ~B] =
γmV2

R
, (5.2.5)

where R is the ring radius and V is the particle velocity. Inserting
equation 5.2.4 into 5.2.5 one gets

ecBy
1

γ2−1 + |G|
=

γmV2

R
. (5.2.6)

Completing all the calculation, the radius of the ring is

R =
|G|

(|G| − 1)

[
mc2

eE

]
γ3β2. (5.2.7)

One clearly sees that the radius depends on anomalous magnetic mo-
ment of a particle (deuteron in our case), mass, energy and the strength
of electric field. The kinetic energy of deuterons is 270 MeV, the electric
field is 120 kV/cm and a deuteron mass is 3.34 · 10−27 kg. That yeilds a
radius of the ring, which is equal to ≈ 9.21 m. The length of the ring, in-
cluding space for beam-position monitors, sextupoles, drift sections that
are long enough to install the required beam diagnostic equipment, is
145.84 m. The ring and the beta functions with the dispersion are shown
in Figures 20 and 21 below.

Figure 20: The lattice for the frozen spin experimental method for
deuteron beam with 270 MeV kinetic energy.

The E+B elements used in the lattice design are called BNL elements
because it was initially proposed to create such a device at BNL [8]. The
element is composed of a simple electric cylindrical deflector and a dipole
magnet.
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Figure 21: The beta functions and the dispersion for the frozen spin
method.

Figure 22: The polarization build-up in the vertical plane for the frozen
spin measuring method. The EDM was ∼ 10−29 e · cm.
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The simulation for a single reference particle was performed. The EDM
value was chosen to be ∼ 10−29 e·cm. One sees the EDM build-up of
approximately 3.5 · 10−15 per turn.

the quasi-frozen spin method

Introduction

The quasi-frozen spin (QFS) method [87] introduces a new idea, in which
the spin oscillates around the momentum direction within the half value
of the advanced spin phase in magnetic arcs, each time returning back
in electrostatic arcs. Due to the low value of the anomalous magnetic
moment of deuteron, an effective contribution to the expected EDM effect
is reduced only by a few percent compared with the frozen spin method.

The concept of quasi-frozen spin

The only requirement of the frozen spin condition is to maximize the EDM
signal growth. However, if the spin oscillates in the horizontal plane with
respect to the frozen spin direction with amplitude Φs, the EDM growth
decreases proportionally to the factor J0(Φs) ≈ 1− Φ2

s
4 .

Taking into account that the anomalous magnetic moment for deuteron
G = −0.143 has a small value and assuming that the spin oscillates
around the momentum direction within the half value of the advanced
spin phase πGγ/2n, each time returning back by special optics with n-
periodicity. Due to the low value of the anomalous magnetic moment of
deuteron, the effective contribution to the expected EDM effect is reduced
only by a few percent.

This allows one to proceed to the concept of quasi-frozen spin, where
the spin is not frozen with respect to the momentum vector, but contin-
ually oscillates around some average fixed direction coinciding with the
momentum direction. After all, one has to answer the question how to
implement a variable MDM spin precession in the storage ring and to
provide a sufficient EDM signal rise.

Now, the spin equation in an electric deflector and in a bending magnet
will be considered separately. From the T-BMT equation in the labora-
tory coordinate system, it follows that MDM spin precession in the radial
driving electrical field is

ωE
G = − e

m

[(
G +

1
1 + γ

)~β× ~E
c

]
. (5.3.1)

At the same time, the frequency of particle momentum precession in
the laboratory coordinate system inside E field is

ΩE
p =

e
mc

~E× ~β

γβ2 . (5.3.2)
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Subtracting 5.3.2 from 5.3.1 and normalizing the difference by 5.3.2, it
is possible to obtain the spin tune in the electric deflector relative to the
momentum

νE
s =

[
1

γ2 − 1
− G

]
γβ2. (5.3.3)

Performing the same actions for the magnetic field, in the bend magnet,
the frequency of MDM spin precession in the laboratory frame is

ωB
G = − e

mc

(
G +

1
γ

)
cB, (5.3.4)

and the frequency of momentum precession in real space inside B field is

ΩB
p =

e
mc

Bc
γ

. (5.3.5)

Similarly, the spin tune in a magnetic field relative to the momentum
is

νB
s = γG. (5.3.6)

One can define the ration of 5.3.3 and 5.3.6. Figure 23 shows that ratio

K =
νE

s
νB

s
, (5.3.7)

between the spin tune in electric and magnetic fields relative to a particle
momentum versus energy.

Figure 23: The ratio νE
s /νB

s vs beam energy.

Thus, one can see that there is an energy region, where the MDM
spin oscillation in the electric field is several times faster than in the
magnetic field. Due to this fact, the idea of the quasi-frozen structure
can be implemented on the basis of two types of arcs: magnetostatic and
electrostatic with negative curvature.
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The lattice is created by two parts: two magnetic arcs with bend mag-
nets, rotating the particle by an angle ΦB = (π + 2α) per arc and
providing the MDM spin rotation in the horizontal plane relative to the
momentum by an angle ΦB

s = νB
s ΦB, and two electrostatic arcs with elec-

tric deflectors with negative curvature, rotating the beam by an angle
ΦE = −2α per arc and providing the MDM spin rotation in the hori-
zontal plane relative to the momentum in opposite direction by an angle
ΦE

s = νE
s ΦE. To realize the quasi-frozen spin concept, it is necessary to

fulfil that condition and ensure ΦE
s = −ΦB

s . Since in the electrostatic
deflector the spin is rotated with the frequency, which is by the factor
of K = νE

s /νB
s faster than in magnetostatic structure, we have the basic

relation for two different arcs

νB
s · (π + 2α) = νE

s · 2α

α =
0.5 · π

νE
s /νB

s − 1
.

(5.3.8)

Following the principles of this idea, it is obvious that the electrostatic
and magnetostatic parts have an arbitrary geometry with the single con-
dition:

∑
i

ΦE
i νE

s = ∑
j
−ΦB

j νB
s , (5.3.9)

where ΦE
i , ΦB

j are the momentum angle rotations in i-th electrostatic
and j-th magnetostatic element of structure respectively. The sequence
of magnetic and electrostatic elements in the ring is also arbitrary and
determined by the beam dynamics. So, turn by turn, the MDM spin
rotation in magnetostatic part is compensated by MDM spin rotation in
electrostatic part.

Obviously, this oscillation should lead to the EDM signal reduction.
However, due to the small amplitudes of ΦE

s and ΦB
s , the growth of the

EDM signal is reduced in comparison to the fixed spin direction case by
the factor

J0(ΦE,B
s ) ≈ 1− (ΦE,B

s )2

4
, (5.3.10)

which is ∼ 0.98 in the case for 270 MeV.
Figure 24 shows an example of the ring for the deuteron energy of

270 MeV based on the QFS concept. This energy was chosen, since the
cross-section for deuteron elastic scattering, which is used in polarimetry,
has the appropriate value.

The quasi-frozen spin condition must be fulfilled. The lattice was
calculated with bending magnets of 1.5 T and electric deflectors with
120 kV/cm E−field. This yields the ring length of 166 m and two bend-
ing radii for electric and magnetic elements of the ring respectively:
RE ≈ 42.1 m and RB ≈ 2.3 m. Cylindrical deflectors were used in the
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lattice design. This feature leads to the some aspects of the spin mo-
tion, which will be discussed later. The beta functions together with the
dispersion are pictured in Figure 25. The lattice is shown in Figure 24.

In addition, there is another lowering factor directly affecting the EDM
signal, and it is common for both the frozen and quasi-“frozen” spin con-
cepts. As one can see from the T-BMT equation, the EDM signal in
electrostatic and magnetostatic parts of the ring will grow with different
signs, partially compensating itself. One can estimate this lowering factor
as well. Since the EDM signal is proportional to the Lorentz force

dSEDM
E,B ∼ eη

mc
(
cβzBy − Ex

)
· dt, (5.3.11)

it is obviously proportional to the path length LE, LB and inversely propor-
tional to the radii of curvature RE, RB in electrostatic and magnetostatic
parts, that is, to the angle of beam rotation ΦE and ΦB in the correspond-
ing structure

dSEDM
E ∼ LE

RE = ΦE

dSEDM
B ∼ LB

RB = ΦB
(5.3.12)

Figure 24: The lattice for the quasi-frozen spin method.

As a result, it is true that the ratio between the values of the EDM
signal is determined by the ratio of the rotation angles in two structures,
which, in turn, is determined by K

dSEDM
B

dSEDM
E

=
ΦB

ΦE =
νE

s
νB

s
≈ 7÷ 5. (5.3.13)

Thus, the second lowering factor is about 0.85 ÷ 0.80, which is not a
substantial reduction of the EDM signal.
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Figure 25: Dispersion and beta functions for the quasi-frozen spin lattice.

To make sure that this is true, a numerical simulation of 3D spin-
orbital motion, using MODE program, was performed. Figure 26 shows
the variation of the horizontal component of spin Sx along the ring. One
sees that the deviation of the spin in the horizontal plane is periodic and
that it remains at the same level ∼ ±0.3. Due to oscillation, which is
assumed in the quasi-frozen spin method, the EDM signal decreases by
1%. Besides, in each magnet, the EDM signal grows by 2.14 · 10−16,
and in each deflector it decreases by 3.2 · 10−17. The simulation was
performed for an EDM of ∼ 10−29 e·cm

Figure 26: Variation of Sx spin component during the beam storage.

As a result, the total EDM signal grows by −3.5 · 10−15 per turn, and
in order to get the total EDM signal to be ∼ 10−6 , one has to keep the
beam in the ring for the duration of Nturn ∼ 109 turns or ∼ 1000 s (see
Figure 27).

The quasi-frozen spin method for deuteron is based on the following
fundamental principles. Firstly, in a certain region of energy, the MDM
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Figure 27: The polarization build-up in the vertical plane for the quasi-
frozen spin method due to the presence of non-vanishing EDM
of the order of 10−15 e·cm.

spin precession relative to the momentum in the electric field is faster by
factor 6− 7 than in the magnetic field. Secondly, in the same region of
energy, the EDM spin precession is faster by the same factor 6− 7 in
the magnetic field than in the electric field. Therefore, in case of different
signs of curvatures in the magnetic and electrostatic field, the MDM spin
rotation relative to the momentum can be compensated and one should
observe the EDM signal.

radio frequency wien filter method

Introduction

Two previous methods need a new ring to be built. The JEDI collaboration
proposed to perform a precursor experiment with the existing COSY ring
at the Forschungszentrum in Jülich [63]. For this purpose the RF Wien
filter method was created by our collaboration and it is well suited for
the initial test of the future experimental approach. With this method,
one can analyze the impact of systematic errors, investigate the ways for
their correction at the real machine, not only on paper or in simulations,
and, finally, perform the first experiment on a charged particle EDM
determination. The deuteron beam with the momentum of 970 MeV/c is
planned to be used for the precursor.

The measurement principle of RF Wien filter method

COSY ring is a pure magnetic ring with electric field equals to zero.
In such a machine, an EDM interacts with the motional electric field,
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according to the T-BMT equation in the presence of a vertical magnetic
field

d~S
dt

= ~S× ( ~ωMDM + ~ωEDM)

~ωMDM = − e
m

G~B

~ωEDM =
eη

m
~β× ~B

~µ = 2(G + 1)
e

2m
~S

~d = η
e

2m
~S.

(5.4.1)

This interaction tilts the spin closed orbit

~nco = n1~ex + n2~ey + n3~ez. (5.4.2)

This vector indicates the direction, around which the spin rotates.
Using 5.4.1, one can write the following formula for the spin precession

frequency, when the spin closed orbit is tilted due to the EDM interaction
with the motional electric field.

~Ω = − e
m

{
G~B + η~β× ~B

}
=

= ΩR
Gγ

cos ξ
cos ξ~ey + sin ξ~ex.

(5.4.3)

The spin tune will be modified

νs =
Gγ

cos ξ
, tan ξ = η. (5.4.4)

It was proposed to use a Wien filter with a strong radial electric field
in this case. The Lorentz force inside such a device equals to zero in the
particle rest frame, and therefore it has no influence on the EDM.

~E + ~β× ~B = 0. (5.4.5)

However, the interaction of the magnetic dipole moment (MDM) with the
combined motional and direct magnetic fields leads to an additional kick
in the spin precession. This MDM kick, together with the interaction of
the EDM with the motional electric field in COSY ring, yields the spin
rotation around the radial axis and produces a build-up of a vertical or
horizontal polarization, depending on the initial spin orientation, which
increases linearly with time. In the absence of the RF Wien filter the
same EDM interaction in the ring results in the small oscillating signal,
which doesn’t grow with time.

The RF Wien filter has a radial electric Ex and a vertical magnetic By

field. It must be operated on a harmonic K of the spin motion,

fWF = |K + Gγ| frev, (5.4.6)
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where fWF is the frequency of the harmonically excited RF Wien filter
and frev is the beam revolution frequency. That device should not excite
any betatron oscillations in the machine, so the alignment of it and other
elements in COSY plays a crucial role in the experiment [31].

RF Wien filter commisioning

The JEDI collaboration has made the first operating RF Wien filter and
successfully installed it at COSY. The RF-B part of the Wien filter con-
sists of a 560 mm long coil made out of 6 mm copper tubes with 8 wind-
ings around a titanium coated, ceramic section of the vacuum chamber
(see Figure 28) [72]. Ferrites are used to flatten the field distribution
in the transverse plane and increase the maximum flux in the central
beam plane up to 0.59 mT at the maximum current amplitude of Î = 10A
(see Figure 28a). The resulting integrated field along the beam axis is∫

B̂xdl = 0.33 Tmm. The total inductance of the system is L = 30 µH.
The electric part of the RF Wien filter consists of two stainless steel

electrodes (AISI 316L), mounted inside the vacuum chamber and made
out of 50 µm thin foil. Due to the large penetration depth of δ ≈ 450 µm
in this material, the overall damping of the external magnetic field is
negligible. The electrodes are spanned over glass rods held by a frame
inside the flanges of the ceramic vacuum chamber (see Figure 30). The
edges are bent with a radius of 3 mm, providing high voltage proofing
inside the UHV of COSY up to ≈ 50 kV (see Figure 29b). For deuterons
at 970 MeV/c (Lorentz β = 0.459) compensation occurs at an impedance
of

Z =
Ex

Hy
= −

Ey

Hx
= Z0βz = 173 Ω. (5.4.7)

At an electrode distance of 54 mm, the required potential on each
electrode for the field compensation is ±3936 V, leading to a maximum
vertical electric field amplitude of Êy = 75.840 kV/m (see Figure 31a).

The RF Wien filter is operated at the first few harmonics of the spin
tune (γG + K) frev. Within the momentum range at COSY, this involves
frequencies of 100 kHz to 2000 kHz. The RF power is supplied by two
separate frequency-generator and amplifier pairs. Adjustable capacitors
(see Figure 30) together with the coil in case of the RF-B dipole and
a 180◦ phase splitter between the electrodes in the case of the RF-E
dipole form two parallel resonance circuits. This provides the possibility
of tuning the system to the required range of resonance frequencies while
simultaneously matching the circuits’ impedances to 50 Ω [72].

RF Wien filter and an EDM build-up

COSY ring (see Figure 32) was modeled in MODE program. It has the
length of approximately 183 m and the bending radius for the dipoles
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(a) Magnetic field distribution [72].
(b) The RF coil with ferrites in the

laboratory[72].

Figure 28: The RF-B dipole.

(a) Magnetic field distribution [72]. (b) The RF coil with ferrites in the lab-
oratory [72].

Figure 29: The RF-B dipole.

Figure 30: The components of the RF Wien filter [72].
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(a) Magnetic field distribution [72].
(b) The RF coil with ferrites in the lab-

oratory [72].

Figure 31: The RF-B dipole.

in the arcs equals to 7 m. As was mentioned above, there were no
magnet misalignments, the frequency of the Wien filter was perfectly
matched with the resonance spin frequency, the Wien filter itself was
ideally placed in the ring and no field errors occurred.

Figure 32: The lattice of COSY ring.

The electric field of the Wien filter was set to 10 kV/cm. The magnetic
field was calculated by formula 5.4.5. Longitudinally polarized deuteron
with the momentum of 970 MeV/c located right on the closed orbit was
tracked through the ring 104 times. The build-up of a vertical polarization
was observed, as expected. The EDM was set to be equal to ≈ 10−21 e ·
cm. The polarization in the vertical plane was calculated by the following
formula

Sy =
√

S2
x + S2

z . (5.4.8)

Figure 33 represents that build-up. One observes not a thin line but
rather a band because this rise of the polarization is modulated by the
Wien filter. So if one zooms in, the oscillations will be clearly visible.
The width of the band, i.e. the amplitude of the polarization oscillations,
is directly proportional to the EDM value. The smaller the EDM, the
thinner the line. The rate of the EDM signal growth is ≈ 10−7 per turn
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Figure 33: The polarization build-up due to EDM interaction with the
motional electric field in the whole ring with Wien filter
on. η = 10−6, which corresponds to EDM is equal to
2.63 · 10−21 e · cm.

and it also scales linearly with the EDM value or the Wien filter field
strength.

conclusions

Three approaches for possible EDM measurement were discussed in this
chapter. Two of them, the frozen spin and the quasi-frozen spin methods,
are dedicated to the "final" experiment and the RF Wien filter method is
for the precursor run. The lattice designs were shown and the techni-
cal parameters for each ring were listed. The simulation results, which
demonstrated the the build-up of the anticipated EDM signal for a refer-
ence particle, were studied. All methods have a potential for a charged
particle EDM determination at a storage ring.
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systematic errors for the frozen and the quasi-frozen spin
methods

Introduction

The systematic errors, which play a crucial role in the future search for
an EDM of a charged particle at a storage ring, will be discussed further.
Since the frozen spin and the quasi-frozen spin methods are similar, it is
reasonable to combine them and describe in a single section. The ways for
error compensation are also identical for both methods, although one gets
different results when maximizing the spin coherence time, for example.
This main difference will be examined in this section, too.

The general impact of systematic errors on the spin-orbital motion has
already been described in chapter 3. However, the detailed discussion
will be made in this section. The comparison of two methods will be made
and for both of them the advantages and disadvantages will be listed.

Spin coherence time for the frozen and the quasi-frozen spin methods

Spin coherence time prolongation with a radio frequency cavity

Radio frequency (RF) cavities are usually used for acceleration, bunch-
ing or deceleration of the beam. However, an RF cavity increases spin
coherence time, moreover it is impossible to have the SCT close to 1000
seconds. One can take a closer look at one of the methods, for instance,
at the quasi-frozen spin. Using this example, the impact of an RF cavity
on the SCT will be discussed.

First of all, one should write the quasi-frozen spin condition for the
laboratory coordinate system in the following form

γGΦB =

(
1
γ
(1− G) + γG

)
ΦE, (6.1.1)

65
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where ΦB,E are the angles of the momentum rotation in the magnetic/electric
part of the ring. For the spin tunes in both parts one gets:

νE =

(
1
γ
(1− G) + γG

)
ΦE

νB = γGΦB

(6.1.2)

This condition is fulfilled only for the reference particle. One should
consider a particle with energy deviation from the reference one. A series
expansion can be done in the vicinity of γ0 for this purpose

γGΦB = γ0GΦB + GΦB∆γ(
1
γ
(1− G) + Gγ

)
ΦE =

[
1

γ0
(1− G) + γ0G

]
ΦE + ∆γGΦE−

− 1
γ2

0
(1− G)∆γΦE +

1
γ3

0
(1− G)ΦE

∆γ2

2
.

(6.1.3)

The total angle of the spin rotation of a non-reference particle per one
revolution in the ring will be equal to

Φs
B −Φs

E = γ0GΦB + GΦB∆γ−
[

1
γ0

(1− G) + γ0G
]

ΦE − ∆γGΦE+

+
1

γ2
0
(1− G)∆γΦE −

1
γ3

0
(1− G)ΦE

∆γ2

2
=

= ∆γG(ΦB −ΦE) +
1

γ2
0
(1− G)δγΦE −

1
γ3

0
(1− G)

∆γ2

2
ΦE.

(6.1.4)

The above equation shows that the quasi-frozen spin condition is violated
for a non-reference particle. The Sx component of the spin vector will
differ from zero. Leaving only the linear terms in 6.1.4, one can write a
system of equations

γ0GΦB =

[
1

γ0
(1− G) + γ0G

]
ΦE

∆Φs
B,E = Φs

B −Φs
E = ∆γG(ΦB −ΦE) + ∆γ

1
γ2

0
(1− G)ΦE.

(6.1.5)

The first equation of 6.1.5 is the quasi-frozen spin condition - equality
of the spin precession in magnetic and electric parts of the ring. The
second one defines the difference between the angles of spin rotations
in two parts of the ring for a non-reference particle. Actually, one can
consider this difference as a difference between spin rotations of the
reference and a non-reference particles. The first condition is mandatory,
so inserting it in the second one, one gets

∆Φs
B,E = 2∆γ

1
γ2

0
(1− G)ΦE. (6.1.6)
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RF cavity makes it possible to get rid of the difference in the spin
precession. For example, for deuteron beam with G factor of −0.143,
ΦE = 0.68, a typical ∆γ = 10−4 and deuteron energy of 270 MeV [85]

2∆γ
1

γ0

2
(1− G)ΦE ≈ 2 · 10−4 1

1.142 0.86 · 0.68 ≈ 10−4. (6.1.7)

The formula above shows that for 104 turns the angle between the spins
of the reference and a non-reference particle will be around 1 rad. The
voltage and the frequency of a RF cavity should be tuned in such a way
that a particle would experience the number of synchrotron oscillations
that would average out ∆γ effects. In other words, the longitudinal tune
νz, which is the number of longitudinal oscillations per turn, must be
larger than the spin tune νs by several orders of magnitude.

νz =
1
βs

√
eUhη

2πEs
� νs = γG · ∆γ

γ
, (6.1.8)

where e is the elementary charge, U is the voltage between the electrodes,
h is the harmonic number, η is the slip factor and Es and βs are the energy
and relative velocity of the reference particle.

That is, if per one turn ∆Φs
B,E ≈ 10−4, then the number of oscillations

per revolution should be around 10−2− 10−1 to smear out this difference
effectively.

Let us have a look how it’s done by a RF cavity. Figure 34 demonstrates
the voltage value of a RF cavity depending on time. Φs = 0 is the working

Figure 34: Value of RF voltage in time.

phase of a RF cavity, which was used in the simulations, Us = 0 is the
corresponding voltage and U0 is the maximum voltage at the electrodes.
The energy kick obtained by a particle passing through a region where
the cavity was installed can be written as [65]

∆E = eU0 sin Φs, (6.1.9)

where e is the elementary charge. The phase is chosen in the way that
the reference particle would get a zero energy kick, particles with larger
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energy would be decelerated and ones with smaller energy would be
accelerated in the electric field of the cavity. As was mentioned earlier,
the particles will experience synchrotron oscillations around the reference
energy value. All those particles will be trapped in a separatrix - a
longitudinal phase-space region, which defines a longitudinal size of the
particle bunch. The separatrix for the simulations for the frozen spin
method is pictured below (Figure 35).

Figure 35: Separatrix for the frozen spin method.

The picture represents different particles with various initial energy
offsets. X-axis is the difference between the revolution time of the ref-
erence particle and all the others. A single line shows a phase-space
trajectory of a particle with some value of ∆p

p 6= 0. The voltage U0 was
set to be equal to 200 kV, RF frequency was 50 MHz. The separatrix
size, in this case, is around 5 · 10−3 with respect to ∆p

p . This means that
all the particles with the momentum deviation larger than 5 · 10−3 are
lost from the bunch, which is illustrated in the picture by the lines on
both sides of the separatrix. Those particles don’t oscillate around the
equilibrium energy level. With the described parameters of the RF cavity
a particle experience one synchrotron oscillation per 21 turn. That is
shown in Figure 36.

Each line segment represents one turn, so the circle closes after 21
turns. This number is high enough to average out ∆γ

γ effects of the first
order. One should examine how the decoherence is affected by an RF
cavity.

The simulation was made where the initial particles have different en-
ergy or momentum offsets ∆p

p in the range [−4 · 10−3 ÷ 4 · 10−3]. The
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Figure 36: Number of turns needed for one complete synchrotron oscilla-
tion.

particles’ initial spin was pointing in the direction of motion, ~S = (0, 0, 1).
Then the Sx component of the spin vector of each particle was plotted
after 100 and 104 turns. This is pictured in Figure 40. For better under-
standing of Figure 40, one has a look at Figure 37 and Figure 38.

Figure 37: ∆p
p for a particle with initial momentum offset of 4 · 10−3 when

the RF cavity was turned on and off.

Figure 37 demonstrates the evolution of the non-reference particle’s
energy in time. Obviously, when the RF is turned off, the energy stays
the same and it oscillates, when the RF is on. So what is going on with
the spin in those two cases?

The horizontal spin component arose due to the energy deviation be-
tween the reference particle and the tracked particle, and thus due to
the difference between the angles of spin rotation. In other words, the
quasi-frozen spin condition 6.1.1 was broken. The spin began to rotate
in the horizontal plane, meaning that the Sx started to oscillate from 1
to −1. All that happened, when the RF cavity was turned off. Opposite
to that case, one sees the blue curve in this figure, which demonstrates
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Figure 38: Oscillation of the Sx component of the particle with the initial
∆p
p = 4 · 10−3 with respect to the turn number.

the behavior of the horizontal spin projection in time with the RF on. As
it was predicted above, the RF cavity averages out the energy difference
between the particles, and therefore the difference in their spin tunes. If
one zooms into the picture, the oscillating pattern of the Sx component
will be revealed (Figure 39).

Figure 39: Oscillation of the Sx component of the particle with the initial
∆p
p = 4 · 10−3 with respect to the turn number (zoom).

The small oscillation of the Sx is present, since there is the energy
oscillation due to the RF field of the cavity. Nevertheless, one observes
a slight slope in Figure 38 for the case with the switched on RF cavity.
The slope is there because of the higher orders in the equation 6.1.4,
which cannot be fought with only the RF cavity.

After the consideration of the single particle situation, Figure 40 should
be inspected again. It has been shown that Sx of a non-reference parti-
cle oscillates from 1 to −1 in time. Depending on the initial momentum
deviation from the reference particle, the horizontal components of the
spin vectors of all particles in the bunch will oscillate with different fre-
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Figure 40: Left: horizontal spin component Sx for particles with different
initial momentum offsets after 104 turns for RF on/off cases.
Right: horizontal spin component Sx for particles with dif-
ferent initial momentum offsets after 100 turns for RF on/off
cases.

quencies (Figure 41). For example, if one tracks two particles, as it was

Figure 41: Oscillations of the Sx component for two particles with initial
momentum offsets of 4 · 10−3(red) and 0.2 · 10−3(blue).

done in Figure 41, the x projections of the spin vectors after, say, 104

turns will be different. This is the reason why the Sx components in the
left part of Figure 40 have this random oscillating form. One obtains
a broad variation of horizontal spin components for a bunch of particles
after some number of turns if an RF cavity is switched off. This is the
signal of complete depolarization. The right part of the picture 40 gives
a more clear hint on the problem. Simply saying, one can notice that
the spins of the particles with larger energy (or momentum) rotate faster
than the spin of the reference particle. So their Sx components start to
grow with time and after 100 turns they form almost a straight line with
respect to their initial momentum deviation. Similarly, the spins of the
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"slower" particles cannot perform the full rotation per one ring revolution,
and therefore their Sx components become smaller than zero, which is the
desirable value that corresponds to the Sx of the reference particle.

Alternatively to this case, the blue lines illustrate the behavior of Sx

when the RF cavity was turned on. The RF smears out the energy dif-
ference, thus the spin tune difference, and all the particles in the bunch
have roughly the same Sx component after 104 turns. However, the blue
curve has a parabolic shape.

Figure 42: Sx spin components of the particles in the bunch with initial
∆p
p offsets after 104 turns with the RF cavity turned on.

This plot looks like a parabola because the energy change is quadrati-
cally proportional to the initial ∆p

p , according to the equation 3.2.17. RF
field cannot fully compensate this effect, and one needs to use sextupole
correction.

One can define the condition for the depolarization occurrence in the
following way:

Sre f
x − S

max ∆p
p

x ≤ 1, (6.1.10)

where Sre f
x is the horizontal spin projection of the reference particle and

S
max ∆p

p
x is the horizontal spin projection of the particle with the largest

∆p
p . In the picture above this difference is around 5 · 10−2 at 104-th turn.

This difference grows linearly and at 109-th turn (this number of turns, as
was mentioned above, is needed to measure an EDM signal) will surely
exceed 1. So one needs to use, firstly, sextupole correction to decrease
the slope of the parabola and, secondly, beam cooling to reduce the ∆p

p

maximum value down to ∆p
p ≈ 10−5. The sextupole correction of the spin

coherence time will be discussed in the next subsection.
Orbit lengthening, and therefore the energy deviation, depends on the

momentum spread (3.2.16) in the areas with non-zero values of a disper-
sion function. Use of a RF cavity can also slightly decrease the deco-
herence effect in the horizontal plane. Having a look at Figure 43 one
concludes that the improvement of the decoherence in the x-plane by the
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Figure 43: Sx spin components of the particles in the bunch with initial
x offsets after 104 turns with the RF cavity turned on and off.

RF cavity is almost negligible, thus the sextupole correction plays the
major role in this case.

To summarize, implementation of a radio frequency cavity is a necessary
condition for the upcoming EDM experiment. An RF averages out energy
difference between the particles in the bunch, which, in turn, directly acts
on their spin precession frequencies. For the quasi-frozen and the frozen
spin methods an optimal value of an RF voltage is around 200 KV and
the frequency should be 50 MHz. These parameters decrease the deco-
herence due to ∆p

p effects. With the appropriate beam cooling, reducing
the longitudinal beam size down to ∼ 10−5, switched on RF cavity makes
possible to reach the spin coherence time of around 1000 seconds.

Sextupole correction of spin coherence time

The spin tune spread, which leads to the decrease of the spin coherence
time, was explained in chapter 3. The formula 3.2.18 was written for N
number of turns

2π〈∆νs〉 = 2πG〈∆γeq〉Nt. (6.1.11)

The equation above shows that the spin decoherence is described through
the equilibrium energy (energy averaged over one turn) spread. This en-
ergy spread can be rewritten as a equilibrium momentum spread accord-
ing to formula 3.2.10

∆δeq =
γ2

s
γ2

s α0 − 1

[
δ2

m
2

(
α1 −

α0

γ2
s
+

1
γ4

s

)
+

(
∆L
L

)
β

]
, (6.1.12)

where the terms included in the equation reflects the nature of the energy
deviation, which is present due to the orbit lengthening and the momen-
tum spread in a bunch of particles. The contribution from the first term in
formula 6.1.12 is easy to deal with, unlike the second term. One has to
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use a sextupole family that, however, introduces a change of momentum
compaction factor [88]

∆α1,sext = −
SsextD3

0
L

, (6.1.13)

where Ssext =
1

2Bρ
∂2By

∂x2 is the sextupole strength and D0 is the coefficient
in equation 3.2.13 for angular dispersion. It’s possible to correct the
second order momentum compaction factor up to the desired value, using
the equation below

α1 + ∆α1,sext =
α0

γ2
s
− 1

γ4
s

. (6.1.14)

So, one has to cope with the second term of 6.1.12. Equation 3.2.12(
∆L
L

)
β

=
π

2L

[
εxνx + εyνy

]
(6.1.15)

demonstrates the orbit lengthening in the abscence of multipoles corre-
sponding to the linear betatron oscillations.

See Appendix A for full derivation of the sextupole compensation. Only
the final result presented will be presented here.

One can write the conditions for the orbit lengthening compensation
by sextupoles [88].

− εx

2L ∑
i

SilsiDxiβxi =
π

2L
εxνx

εy

2L ∑
i

SilsiDxiβyi =
π

2L
εyνy

−δ2

L ∑
i

SilsiD3
xi = α1δ2.

(6.1.16)

To summarize, the equilibrium energy shift caused by the orbit length-
ening and the momentum spread in a bunch can be compensated if the
contribution from momentum compaction factor of the second order α1 is
suppressed and the orbit lengthening is corrected with sextupoles. For
this correction, one has to use three sextupole families placed in the sec-
tions of maximum/minimum values of βx,y functions and the dispersion
function D0.

Simulations for the improvement of spin coherence time with sextupole
correction

In this subsection the simulations that was made for the correction of the
spin coherence time with sextupoles will be discussed. Two lattices - for
the frozen and the quasi-frozen spin methods - are very similar, though
they have their distinctions.
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Sextupoles SFP SDP1 SDP2 SFN SDN1 SDN2
Field gradient, T/m2 −45.57 46.5 21.7 28.54 −3, 41 −0.85

Table 2: Sextupole settings for the quasi-frozen spin lattice.

Firstly, the quasi-frozen spin lattice will be considered. Six sextupole
families were set in the ring. The sextupoles were placed in the places
with maximum and minimum values of beta-functions βx,y and disper-
sion function D. The number of families is larger than three, since the
lattice has a peculiar design with negative dispersion sections. Figure
44 demonstrates the location of each sextupole from a different family,
although not all the sextupoles are pictured. The total number of the sex-
tupoles was equal to 26. The sextupole settings that were used for the
correction of the SCT are shown in Table 2. The sextupoles were focusing
and defocusing, which were placed in the positive or negative dispersion
sections. For example, SFP means that the sextupole is focusing and is
located in the positive dispersion region - Sextupole, Focusing, Positive.
These values of field gradients were the optimal ones for the longest spin
coherence time.

Figure 44: Beta- and dispersion functions for the lattice of the quasi-
frozen spin method with the location of the sextupoles from
six different families.

Figure 45 illustrates the Sx component that is interested for us without
any sextupole correction after 104 revolutions in the ring. The parabola
in y-plane has smaller slope because there is no dispersion in the vertical
plane. Then the sextupoles were turned on and the optimal values were
found for both planes. Figure 46 pictures the Sx components of the
particles in the bunch after 104 turns. Three curves are for various settings
of the sextupole fields. The difference between the reference particle’s
horizontal spin projection and the particle with the initial x offset of 5 mm
is of the order of 5 · 10−4 for various sextupole settings. If one calculates
the SCT from this results, it will be equal to ∼ 150 seconds, assuming
that the Sx component grows linearly with time. One observes clearly
non-parabolic dependence, which is predicted by the formula 3.2.17. This
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Figure 45: Sx spin components of the particles in the bunch with initial
x and y offsets after 104 turns without sextupole correction.

Figure 46: Sx spin components of the particles in the bunch with initial
x offsets after 104 turns with three various sextupole settings.
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feature will be discussed in the next subsection and it’s correlated with
the form of the electric potential between the electrodes.

The assumption that the beam is cooled down and its horizontal size
is shrinked down to 1 mm has been made. One can zoom into Figure 46
and Figure 47 will be obtained. The SCT in this case is of the order of

Figure 47: Sx spin components of the particles in the bunch with initial
x offsets after 104 turns with three various sextupole settings.

1500 seconds, which is enough to measure an EDM.
Now, one can investigate the motion of the spin, when one has an

offset in the vertical plane. Figures 48 and 49 shows the horizontal spin
components of a bunch of particles, which has a vertical size of 5 mm.

Figure 48: Sx spin components of the particles in the bunch with initial
y offsets after 104 turns with three various sextupole settings.

The SCT for the y plane and for the beam size of 1 mm is around 15000
seconds. In this plane the parabolic dependence on the coordinate y is
present.

The dependence of the Sx component on ∆p
p was discussed earlier. For

both concepts, the frozen and the quasi-frozen, it is the same. The change
of Sx is modulated by the RF and from turn to turn the curve is slightly
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Figure 49: Sx spin components of the particles in the bunch with initial
y offsets after 104 turns with three various sextupole settings.

different, which is plotted in Figure 50. One needs to cool the beam down

Figure 50: Sx spin components of the particles in the bunch with initial
∆p
p offsets after various number of turns in the range between

ten and twenty thousand.

to 10−5 approximately to get the SCT of the order of 1000 seconds. The
curves have parabolic feature, which are modulated by the RF voltage.
That is why, one sees some "wiggles" on the graph.

The same calculations for the frozen spin method are presented below.
This approach requires only two sextupole families, the energy deviation
is corrected by an RF cavity and beam cooling. The table with the field
gradients for both families is given below (Table 3).

The similar simulations were performed and the results for y and x
planes are shown in the following figures (Figure 52 and Figure 54). The
sextupoles were tuned in a way that for 1 mm radial or vertical beam
sizes the SCT was of the order of 1000 seconds.The longitudinal plane
looks exactly like in the quasi-frozen spin approach. And as for the quasi-
frozen spin method, zooming into Figure 52 one sees the horizontal spin
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Figure 51: Beta- and dispersion functions for the lattice of the frozen spin
method with the location of the sextupoles from two different
families.

Sextupoles SDP SFP
Field gradients, T/m2 23.50 −39.25

Table 3: Sextupole settings for the frozen spin lattice.

Figure 52: Sx spin components of the particles in the bunch with initial
x offsets after 104 turns with three various sextupole settings.
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dependence for the bunch of 1 mm horizontal size. The same is for the y

Figure 53: Sx spin components of the particles in the bunch with initial
x offsets after 104 turns with three various sextupole settings.

plane:

Figure 54: Sx spin components of the particles in the bunch with initial
y offsets after 104 turns with three various sextupole settings.

Concluding, these two methods for an EDM measurement look very
similar and the results, which were obtained for the prolongation of the
spin coherence time, are close to each other. If one assumes that the
difference between the horizontal spin components of the reference parti-
cle and a particle on the edge of the bunch grows linearly in time, then
these two approaches are almost identical. For both of them the SCT
value is enough and exceeds 1000 seconds for the beam size of 1 mm
and ∆p

p ≈ 10−5.

Stabilization of the average horizontal spin component in the quasi-frozen
spin method

In the previous subsection the assumption that the difference between
the horizontal spin components of the reference particle and a particle
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Figure 55: Sx spin components of the particles in the bunch with initial
y offsets after 104 turns with three various sextupole settings.

on the edge of the bunch grows linearly was made. When one starts
to investigate this further, it turns out to be that this assumption is not
completely true.

One can define root mean square value of the Sx components for a
bunch of particles.

σSx =

√√√√ 1
N

N

∑
i=1

(Si
x − 〈Sx〉)2, (6.1.17)

where N is the number of particles in the bunch. The simulation was made
with 101 particle with initial radial offsets in the range of [−1, 1]mm. The
sextupoles were turned on and set to the optimal value, which corresponds
to the longest spin coherence time. The particles were tracked for 100000
turns and the σSx of the Sx was calculated after each hundred of turns.
Figure 56 illustrates the dependence of the root mean square of the
horizontal component of the spins for all particles in a bunch.

One sees that the RMS value doesn’t grow linearly as the number
of turns increases. It stabilizes after some number of turns and stays
almost constant. In fact, the behavior of that the RMS value is not simple
and is very sensitive to sextupoles settings or changes in the RF voltage,
for instance. The beam size also plays a crucial role in the process of
the stabilization. Next picture shows the RMS Sx for the quasi-frozen
approach when the sextupoles were completely turned off.

Another graph was obtained with COSY-infinity program by Eremey
Valetov for comparison and benchmarking the results of MODE simula-
tions [86]. His simulation results are shown in Figure 58. He used dif-
ferent values of sextupoles and different RF voltages. The particles were
tracked for 400000 revolutions, so N = 20 in the picture corresponds to
400000-th turn.

From the results obtained in two programs, one can prove that the
RMS value depends on the RF voltage and sextupole settings. However,
emittance or size of the beam strongly affect stabilization, as well. The
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Figure 56: σSx of Sx components for the particles with initial x offsets in
the range of [−5; 5]mm. Sextupole values corresponded to
the longest spin coherence time.

Figure 57: Root mean square of Sx components for the particles with
initial x offsets in the range of [−5; 5]mm. Sextupoles were
turned off.
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Figure 58: Root mean square of Sx components for the particles with
initial x offsets in the range of [−5; 5]mm. Sextupole field
gradients and RF voltage were varied. Simulation was per-
formed in COSY-infinity program [86].

emittance restrictions were considered in the chapter 3. The limit for
the emittance for COSY ring was set to εrms

x,y < 1.4mm mrad (3.2.22).
The smaller the emittance, the better the stabilization of the root mean
square value. Figure 59 was obtained for the frozen spin method for
different radial beam sizes. For this case the sextupoles were turned off.
One clearly sees that as soon as the beam size is getting smaller, the
stabilization becomes better. So, again, the cooling is essential in the
performance of the future EDM experiment.

Nevertheless, the RMS is growing. Indeed, the increase is slower than
predicted linear growth but it is present in the plot. One can define the
function f , which can be written as

f = (Sx − Sx,re f )RMS = a + b · N, (6.1.18)

where a is the difference between the Sx components of the reference
and any other particle in a bunch, b is the slope of the RMS value of
the Sx for the bunch, N is the number of turns. So, here the strong
assumption that the RMS will be rising linearly is made. The MODE
and COSY-infinity simulations were made and the optimal parameters b
were found to have the spin coherence time longer than 1000 seconds.
To achieve the SCT of that long the function f must be of the order of
10−9. Below are the pictures of two tables with the calculated a and b
values for different RF voltages and RF frequencies. The sextupoles were
also tuned to get the maximum SCT value. All three initial spreads were
considered: ∆p

p , x and y. The absolute value for all three offsets was set
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Figure 59: Root mean square of Sx components for the particles with
different initial x ranges. Sextupoles were turned off.

to be equal to 5 · 10−3 (in meters, in case of radial and vertical offsets,
and in relative units for energy spread). The program was calibrating the

Figure 60: Parameters of function f for different voltages and frequencies
of the RF cavity for the frozen spin lattice. Sextupoles were
automatically tuned to find the best spin coherence time.

sextupole values automatically, using gradient descent method [66]. This
results from COSY-infinity simulations made by E.Valetov confirmed that
high values of the SCT can be achieved even for relatively large beam
sizes. Confirming one more time the statement above, the spread in ∆p

p

should be smaller than 5 · 10−3 yet, since, as one reads from Figure ??
(other tables are presented in Appendix C), the parameter b is of the order
of 10−7 ÷ 10−8, which is not enough.

Finally, the two methods for an EDM search regarding the spin coher-
ence time studies look promising. For both cases, the long spin coherence
time can be obtained. A radio frequency cavity and sextupoles give the
opportunity to fight the decoherence effects, which are present in any
machine for finite sizes of a beam.
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One should return back to the plots of Sx spin components, when the
initial particles’ coordinates were distributed along the horizontal axis.
The sextupoles were turned on and tuned to the values, corresponding
to the longest spin coherence time for the quasi-frozen and the frozen
spin approaches (see Figures 46 and 52). One sees that the parabolic
nature of the curves are lost. The graphs look like zigzags or wavy
parabolas. That imposes some limitations on the spin coherence time. In
the vertical plane everything is smooth (Figures 48, 54). The presence of
the oscillating RF field, which modulates the spin motion, is responsible
for the presence of those zigzags. However, is this is the only reason?

The answer to this question is uncertain. So one has to find out,
whether the RF modulation is the only source of the non-parabolic be-
havior of the horizontal spin component. As a matter of fact, the electric
field is needed in both methods. The obvious step would be the inves-
tigation of the aspects connected with the presence of the electric field.
The specific features of this field are important and they affect the spin
motion, by adding non-linearities in it. The next two subsections will
shed light on that issue.

Kinetic energy change in the electric field potential

Electric cylindrical deflectors are used in both methods for beam steering.
The particle dynamics in an electric field differs from one in a magnetic
field. One should consider the effects, which take place when a particle
flies through a cylindrical deflector.

A particle moves in a magnetic field with the constant absolute value
of its velocity, which can be seen directly from Newton-Lorentz equation:
the force acting on a particle is always perpendicular to the velocity vector.
In an electrostatic field, a particle travels with acceleration according to
the total energy conservation law. The total particle’s energy must be
the same before entering and after leaving a region with an electric field
[69], [70]. Figure 61 shows that particular situation.

There were previously defined equations of a spin-orbital dynamics in
chapter 2. They describe a particle motion according with the energy
conservation law, 2.3.14

W ′ = −qu′(x, y, s) = q(Exx′ + Eyy′ + Es), (6.1.19)

where W is the kinetic particle energy, q is the elementary charge and
Ex,y,s are the electric field components.

One should look at the situation, when a particle enters an electric
field from a region with zero electric potential u(x, y, z) ≡ 0 an leaves
the field also to the region with no electric potential. The particle velocity
in this case must be the same before and after the area with the electric
field, with accordance to 2.3.14. One should examine the time moment,
when the particle flies in the electric field with the potential u(x, y, z)
(see Figure 61). As soon as the particle is caught in the electric field, it
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Figure 61: Change of kinetic energy of a particle moving through an elec-
tric deflector.

should accelerate (decelerate) accordingly to the gained (lost) potential
energy

W1 = W0 − qu(x, y, z). (6.1.20)

This instantaneous jump in particle’s kinetic energy corresponds to the
perpendicular fringe field. In reality, a particle moves through the all the
potential lines from u0 = 0 to u(x, y, z), smoothly changing its potential
energy.

This fringe field affects the kinetic energy of the particle. One can do
Taylor expansion of the potential u(x, y, 0) = u0 + u1x + u2y + u11x2 +

u12xy + ... and write the following matrix equation



x
y
t

px

py

W


=



0
0
0
0
0

qu0


+



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
u1 u2 0 0 0 1





x0

y0

t0

px,0

py,0

W0


+ ... (6.1.21)

MODE takes into account those energy kicks at the entrance and at
the end of an electric element. The detailed study was performed to check
the influence of the energy kicks on the spin behavior. The simulation
tool has an option of turning on and off described energy kicks, although
turning them off corresponds to an unphysical situation. The simulations
were made without the kicks to investigate their impact on the spin motion.
All tracking results in this subsection were calculated for the frozen spin
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method, since they are equivalent to the quasi-frozen approach. One can
examine one of the results pictured in Figure 62. The sextupoles were
set to the same values as for the black curve in Figure 52.

Figure 62: Blue: Sx spin components of the particles in the bunch with
initial x offsets after 104 turns without energy kicks. Red: Sx

spin components of the particles in the bunch with initial x
offsets after 104 turns with energy kicks.

The parabola for the no-kicks case became steeper, as a result, the spin
coherence time went down. This happened due to the violation of the full
energy conservation law. The sextupole settings that have been optimal
before, became wrong because the energy of the reference particle is not
conserved from revolution to revolution. The sextupole compensation is
not longer correct with the previous values of the field gradients. This is
the reason for decreasing of the SCT.

Figure 63: Blue: Sx spin components of the particles in the bunch with
initial x offsets after 104 turns without energy kicks with
ramped up SFP (see Table 3) sextupoles by 50%. Red: Sx

spin components of the particles in the bunch with initial x
offsets after 104 turns with energy kicks.
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Nevertheless, the wiggles on the graph remained unchanged. This is
not obvious from the plot in Figure 62, since the parabola is too steep to
see that. That is why the sextupoles were adjusted to bring the parabola
closer to zero (Figure 63). Regarding the y plane, turning off the energy
kicks in the program affected the Sx component in the similar manner. A
parabola has changed its steepness. This can be seen in Figure 64.

Figure 64: Blue: Sx spin components of the particles in the bunch with
initial y offsets after 104 turns without energy kicks. Red: Sx

spin components of the particles in the bunch with initial y
offsets after 104 turns with energy kicks.

This means that energy kicks at both sides of the electric deflector
do not contribute to the additional non-linearities of the spin motion or
their contribution is negligibly small. One should further investigate the
nature of electric field to find out the reason for non-parabolic shapes of
the plots for Sx. The closer look at the form of the electric potential was
taken. It will be discussed next.

The features of spin-orbital dynamics in the cylindrical deflector

As was shown in the previous subsection, the energy kicks at the ends of
an electric deflector do not change the spin motion. However, the form of
the electric potential itself sets significant limits on the spin coherence
time. Let us investigate a cylindrical deflector, which is pictured in Figure
65

In accordance with Gauss’s law [53] an electric potential between the
internal electrode with the radius R1 and the external electrode with the
radius R2 can be written as

φ(r) = −U0 +
2U0

ln R2
R1

· ln r
R1

(6.1.22)



6.1 systematic errors for the frozen and the quasi-frozen spin methods 89

Figure 65: A cylindrical deflector in 3D and in horizontal plane.

where U0 is the voltage at the electrodes, Req is the equilibrium radius of
the reference particle trajectory inside the deflector. In the area between
the electrodes the electric field has the form

ER =
2U0

ln R2
R1

· 1
r

. (6.1.23)

One can write the equation of motion with the corresponding Lagrangian
in such a field (see Appendix B) and get the following result [89]

r′′ =
1
r
− em

M2 ·
2U0

ln R2
R1

r, (6.1.24)

where M = mvθ Req is the angular momentum, which is conserved, and
vθ = rθ̇ is the angular velocity. For the ideal case, when the reference
particle moves along the trajectory with the constant radius Req, it is
clear that r′′ = 0 and therefore

R2
eq = M2 ·

ln R2
R1

2emU0
. (6.1.25)

Now, the equation of motion has a simple form

r′′ − 1
r
+

1
R2

eq
r = 0. (6.1.26)

One applies the transformation to the Cartesian coordinate system,
where Ex = ER, Ey = 0 and r = Req + x. Taking into account the fact
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that x
Req
→ 0 and substituting it in the 6.1.26, one gets the system of

equations [91]

x′′ +
2

R2
eq

x− 1
R3

eq
x2 = 0

y′′ = 0.
(6.1.27)

The orbital motion in the ideal case has no coupling between the hori-
zontal and the vertical planes. It is clearly visible that the potential has
the quadrupole and pseudosextupole components.

MODE allows a user to create an element with electric or magnetic
fields of arbitrary configuration. The frozen spin lattice was chosen for a
starting point with its E + B elements (BNL elements). The electric field
inside a BNL element was determined through the field potential and the
strength. The shape of the electrodes of a BNL element is cylindrical.So
the potential is given by the formula 6.1.22. Further Taylor expansion in
the vicinity of zero was made for the potential up to the fifth order.

φ(r) = −U0 +
2U0

ln R2
R1

· ln
Req + x

R1
=

= −U0 +
2U0

ln R2
R1

· ln
(

Req

R1
+

x
R1

)
=

= −U0 +
2U0

ln R2
R1

·
[

ln

(
Req

R1

)
+ ln

(
1 +

x
Req

)]
=

= −U0 +
2U0

ln R2
R1

·
[

ln

(
Req

R1

)
+

x
Req
− x2

2R2
eq
+ ... +

x5

5R5
eq

]
(6.1.28)

This equation can be written in the following form in MODE.

u(x) = −u5 · x5 + u4 · x4 − u3 · x3 + u2 · x2 − u1 · x− u0

u(y) = 0,
(6.1.29)

where the coefficients ui for i = 0÷ 5 are:

u5 = 3.34 · 102

u4 = 3.84 · 103

u3 = 4.72 · 104

u2 = 6.52 · 105

u1 = 1.20 · 107

u0 = 4.07 · 102.

(6.1.30)

If one differentiate this potential with respect to x at the point where
x = 0, the result will be equal to 120 kV/cm, which is precisely the field
strength for a BNL element.
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After defining the potential everything is ready for the simulation per-
formance. The simulations were made with all the terms in the potential
and with only the dipole term, setting the coefficients from u5 to u2 inclu-
sively to zero and leaving only u0 unchanged. The sextupole strengths
remained untouched and were set to the optimal value of the SCT. The
results are plotted below for both planes, the horizontal and the vertical.

Figure 66: Blue: Sx spin components of the particles in the bunch with
initial x offsets after 104 turns without higher orders in the
potential. Red: Sx spin components of the particles in the
bunch with initial x offsets after 104 turns with higher orders
in the potential.

As seen from Figures 68 and 67 the higher orders in the electric field
potential do play role in the spin motion. In fact, they has an effect on the
parabola steepness and also for the horizontal spread case, they shrink
the aperture of the beam.

A particle flying through a deflector or a BNL element with electric
field interacts with pseudosextupole field, which was produced by the
corresponding terms in the potential. This means that an electric deflector
acts like a sextupole in the horizontal plane, too. This is the reason why
with the previously optimal sextupole settings the longest spin coherence
time decreases, when the higher orders are turned off. Indeed, a deflector
has no longer a sextupole component and the sextupole correction in the
whole ring is changed now.

Figure 68 demonstrates that the particles with initial offsets larger
than ≈ 3.5 mm are lost during the tracking. MODE has produced no
output for them and, therefore, no horizontal components of the spin were
calculated. It was expected, since as long as some terms of the potential
are set to zero, this u(r) is less accurately describes the field in the
deflector. The computational error increases as the distance from zero
or from the design orbit grows. That is why at relatively large distances
from zero, already at 3.5 mm the field is no longer correct. The orbit
motion of the particle is significantly perturbed and the particles are lost.
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Figure 67: Blue: Sx spin components of the particles in the bunch with
initial y offsets after 104 turns without higher orders in the
potential. Red: Sx spin components of the particles in the
bunch with initial y offsets after 104 turns with higher orders
in the potential.

It is not visible in the case with the vertical beam spread because the
potential is zero there. However, the change in the spin motion is there,
since the sextupoles are turned on and the transverse x− y coupling is
present.

Turning off the higher orders in the potential didn’t solve the problem
of the non-parabolic behavior of the parabolas. The bents are still there.
If one enlarges the center zone of Figure 68, they will be visible. The
blue curve begins to wiggle for |x| > 1 mm. The same thing occurs for
the red curve approximately in the region of 2.5÷ 3 mm. Taking into
account that the size of the beam is smaller in the case, when the higher
orders are off, one concludes that these two curves have nearly the same
magnitude of those bents. Nevertheless, according to the theory, the
nontrivial nature of an electric potential should have an effect on the spin
motion due to the presence of the octupole, the decapole components in
the potential and so on. One can expand the potential up to 10-th order,
for example, and observes them. The contribution from them is small, but
for the high spin coherence times, which needed very precise sextupole
tuning, those orders can be important.

So, the main contribution to the non-parabolic shape of the Sx depen-
dencies on the horizontal spread comes from the RF modulation of the
spin motion.

Misalignments of elements

Misalignments of elements inside a ring, as it was said in chapter 3, may
significantly spoil the measurement. The most dangerous effect, which
comes from a rotated magnet, for instance, is that the MDM precession
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Figure 68: Blue: Sx spin components of the particles in the bunch with
initial x offsets after 104 turns without higher orders in the
potential. Red: Sx spin components of the particles in the
bunch with initial x offsets after 104 turns with higher orders
in the potential.

of the spin vector drives the polarization to the vertical plane exactly as
the EDM does. Therefore, one cannot distinguish two rotations - MDM
and EDM. Is there a way to solve this complicated issue? The answer is
positive and the solution is simple. One should store to beams in the ring,
one rotating clockwise and another with the counter-clockwise rotation.

Clockwise and counter-clockwise approach

This method of cancellation of the unwanted rotations of the spin due to
the presence of misalignments was proposed by BNL [95]. One should
consider a ring with a dipole, which is rotated either around the radial
or the longitudinal axis (see Figure 69).

Figure 69: A dipole rotated around either X- or Z-axis.
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One can write the T-BMT equation in CGS units for each projection
of the spin precession

|

dSx

dt
= ΩySz −ΩzSy

dSy

dt
= ΩzSx −ΩxSz

dSz

dt
= ΩxSy −ΩySx

.

(6.1.31)

Since the transverse velocity is three orders less than the longitudinal
one (βx,y << βz), the above angular frequencies of the spin rotation are
represented in the following form [91]

Ωx = − e
mc

[
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)
βzEy +
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2
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(6.1.32)

Firstly, the case when a dipole is rotated around X-axis will be dis-
cussed. The orbit motion is changed by the presence of Bx component of
the rotated dipole. The reference particle will find a new trajectory and
will no longer have all zero components in the state vector

X1 =



x
y
t

px

py

W


=



xinit
yinit
tinit

px,init
py,init
Winit


=M



xinit
yinit
tinit

px,init
py,init
Winit


(6.1.33)

where M is the transfer map for the new ring with the rotated dipole,
and xinit, yinit, tinit, px,init, py,init, Winit are new initial coordinates of the
reference particle. The reference particle transforms into itself after one
turn around the ring. The simple but sufficient algorithm was realized in
MODE program to find that new reference particle. A particle with all
zero coordinates were tracked for 104 turns. Since the Bx component of
the dipole bends the particle trajectory in the vertical direction, producing
y and py components in the state vector, one finds an ellipse if one
takes a look at the (y, py) phase space (see Figure 70. The longitudinal
motion is perturbed, as well, because the path length is different and the
equilibrium energy level is shifted, although the ∆p

p is of the level of 10−9,
which is negligibly small. Figure 71 shows the longitudinal phase space
for the new ring.
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Figure 70: Vertical phase space ellipse corresponding to the presence of
a Bx component of the rotated dipole in the ring.

Figure 71: Longitudinal phase space ellipse corresponding to the pres-
ence of a Bx component of the rotated dipole in the ring.
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Finally, the horizontal phase space (x, px) is changed, too. There are
no kicks of the beam in the radial direction, however, the presence of
non-vanishing dispersion function leads to the change in the horizontal
motion. One can write a simple solution of Hill’s differential equation for
x-coordinate with the dispersion coefficient.

x = Dx
δp
p

, (6.1.34)

where Dx is the dispersion in the horizontal plane. The (x, px) phase
space is plotted in Figure 72.

Figure 72: Horizontal phase space ellipse corresponding to the presence
of a Bx component of the rotated dipole in the ring.

After the tracking, the mean values for all the components of the state
vector were calculated and the new vector X = (< x >,< y >,< t >

,< px >,< py >,< W >) was tracked again for 104 turns in the ring.
This loop was repeated for approximately 15 times to get the precision of
10−15 in determination of all the reference particle’s coordinates, which
is the maximum precision available.

One should store the second beam in the counter-clockwise direction
(CCW). The counter-clockwise motion is a tricky aspect of the modelling
of spin-orbital dynamics, but it can be realized in MODE quite simply.
One should multiply the existing map for the ring by the matrix C

C =



1 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 1


(6.1.35)
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from both ends. Then the CCW map will be represented as

MCCW = CMCWC−1, (6.1.36)

where MCW is the map for clockwise direction.
The orbital motion will be different for two cases. One can see (Figure

73) the difference in vertical phase space ellipses for CW and CCW par-
ticle movement in the ring. This difference indicates that for the initial
CCW particle coordinates the coordinates of the reference particle, which
were obtained above, should be chosen but with the different sign in y
and py components of the state vector. If one makes such a choice, then
the counter-clockwise particle will have exactly the same trajectory as
the clockwise one but will be bended in the opposite direction, either up
or down, depending on the sign of the Bx component of the rotated dipole.
Other phase space ellipses for longitudinal and horizontal planes remain
unchanged.

Figure 73: Vertical phase space ellipces for clockwise and counter-
clockwise stored beams in the presence of a Bx component
of the rotated dipole in the ring.

One can measure this separation of trajectories and find the value for a
Bx component. However, there is no need for that, since the EDM signal
can be measured directly via this technique.

As soon as the new reference particles are found for CW and CCW
directions, one can consider the spin motion of those particle. If the
ring is ideal, except for one dipole, apart from usual spin precession in
the horizontal plane, which is equal to the momentum precession, one
will have a slow rotation of the spin in the vertical direction due to the
MDM interaction with the Bx component of the rotated dipole. The EDM
signal is also there and rotates the spin in the same direction. The T-
BMT equation for the vertical spin component for both directions of the
particle motion is written as

dSy

dt

CW,CCW

= ΩCW,CCW
z SCW,CCW

x −ΩCW,CCW
x SCW,CCW

z (6.1.37)
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Since there are no longitudinal fields involved, ΩCW,CCW
z for both CW

and CCW directions are zero and

dSy

dt

CW,CCW

= −ΩCW,CCW
x SCW,CCW

z . (6.1.38)

Defining clockwise and counter-clockwise directions with indices CW =

α, CCW = β will shorten the formulas. Then the angular spin precession
frequencies in the horizontal plane without any vertical electric field are

Ωα
x = − e

mc

[
GBx −

η

2
Ex +

η

2
βα

z By

]
Ωβ

x = − e
mc

[
GBx −

η

2
Ex +

η

2
β

β
z By

] (6.1.39)

The fields are written in the laboratory coordinate system and they
don’t change the direction, when the direction of particle motion is changed.
So, the sign in the velocity will be different β

β
z = −βα

z , and also the spin
direction will be opposite. The CW particle is tracked with initial Sα

z = 1
spin aligned with the momentum and pointing in the direction of flight.
The same is true for the CCW particle - Sβ

z = −1. Taking into account
all the statements written above, the sum of two spin precessions is read
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(6.1.40)

Equation 6.1.40 proves the interesting fact. When the beams with
opposite velocities are stored in the ring the MDM precession terms
arising due to the interaction with the radial field of a rotated dipole
cancel each other, and the term, which is left, is a doubled EDM signal.
However, this is true only for the reference particles. In other words,
equation 6.1.40 works for the situation when a particle makes a turn
around a ring, and it is tracked backwards with the opposite spin direction
from the exact point, where it finished the first turn, but with the opposite
signs in y and py state vector components.

Simulation of CW and CCW approach for the frozen spin method for the
reference particles

The frozen spin method was taken into consideration, at first. In the
presence of the radial fields, as it was mentioned above, the reference
trajectory is no longer coincides with the designed closed orbit that im-
plies that the reference particle has all zero components of the state
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vector. Since the new closed orbit and the reference particle,too, are dif-
ferent, the Sx spin projection doesn’t stay zero all the time because the
frozen spin condition 5.2.3 is no longer fulfilled. And if one has the non-
vanishing Sx component it will produce the vertical polarization build-up
in case, when the longitudinal fields are present, that means in real life
it will be always the case.(

1
γ2 − 1

− G
)~β× ~E

c
+ G~B 6= 0. (6.1.41)

Indeed, the energy of the new reference particle is changed and with the
calculated B and E fields inside the E+B elements the particle spin is
no longer parallel to the momentum. This leads to the growth of the Sx

projection, which is demonstrated in Figure 74

Figure 74: The growth of the Sx component in the presence of the rotated
around the longitudinal axis BNL elements.

However, in reality one can tune the B-field and find the situation,
when the value of Sx component stays zero all the time. Another possi-
bility is to change the γ-factor of the reference particle. The formula for
the frozen spin condition,(

1
γ2 − 1

− G
)~β× ~E

c
+ G~B = 0, (6.1.42)

allows both options to be realized. The simulations was made for various
particle energies and the reference particle’s Sx spin component were
monitored. Figure 75 illustrates the dependence of the Sx spin component
on the particle energy in time. Different lines represent various initial
energies of the particle. Taking a look at this figure, one can conclude that
there exists a particular energy, at which the horizontal spin projection
stays constantly equal to zero in time.

For the case, when the BNL elements are rotated around the longi-
tudinal axis, leading to the increase of Sx spin projection, the following
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Figure 75: Sx spin component for different particle energies with respect
to the number of turns. Each line represents a particlural
initial energy in the range ∆p

p ∈ [−10−4; 10−4] with the steps
of 3.92 · 10−6.

technique was used in the simulations. For the simplicity of calculation
and analysis, the Sx was rotated backwards each turn manually, meaning
mathematically. The kick of the Sx was calculated after each revolution
in the ring and subtracted in the tracking process. Nevertheless, the
situation without this subtraction was also considered and checked. It
will be discussed further, when the bunch of particles is investigated and
when the rotations of the elements are made around the radial axis (in
this case Sx subtraction is no longer possible at all).

Two reference particles were tracked in opposite directions, all the
E+B elements were rotated randomly, according to Gauss distribution
with the mean value µ = 0 and the standard deviation σ = 10−4rad.
Initially the EDM was turned off completely in the simulation and the
polarization build-up corresponding to the MDM interaction with the ra-
dial magnetic fields of the rotated elements was calculated for both cases.
The sum of two MDM signals was exactly equal to zero. Afterwards, the
EDM term was turned on, it was set to 10−21 e · cm, which corresponds
to η = 10−7. The predicted behavior of the Sy component was observed
and the EDM signal was extracted from summation of two polarization
build-ups in the presence of non-vanishing EDM. The extracted EDM
value coincided with the initially set value. The result is shown in Figure
76. The simulation proved the theoretical considerations and showed that
for the two reference particles stored in the opposite direction one can
get a pure EDM signal with the MDM rotation cancellation.

However, the clockwise-counter-clockwise method will not work on its
own for the following reason why. One should examine Figure 77. As
long as the Bx components of the rotated dipoles or BNL elements are
present the Sy component grows. The angular frequency of the MDM
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Figure 76: The build-up of the vertical polarization. In red: the polariza-
tion build-up due to the MDM interaction with Bx component
of the rotated BNL elements, when the EDM was turned off
for CW direction. In blue: the polarization build-up due to
the MDM interaction with Bx component of the rotated BNL
elements, when the EDM was turned off for CCW direction.
In black, solid line:the polarization build-up due to the MDM
and the EDM interaction with Bx component of the rotated
BNL elements, when the EDM was 10−21 e · cm. In black,
dashed line:the polarization build-up due to the MDM and
the EDM interaction with Bx component of the rotated BNL
elements, when the EDM was 10−21 e · cm.
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Figure 77: A dipole rotated around the longitudinal axis and the scheme
of the spin rotation generated by a Bx component of the mag-
netic field.

rotation linearly depends on the radial component of B-field and is much
more bigger than the EDM rotation.

ΩBx =
e

mγ
· γGBx >> ΩEDM, (6.1.43)

where ΩBx is the angular spin frequency due to the interaction of the
magnetic dipole moment with the integral Bx component of the field of
the rotated BNL elements, and ΩEDM is the frequency corresponded to
the EDM presence. In this situation, the vertical spin component begins
to rotate around the radial magnetic field. Sy increases, reaches the
value of nearly 1, decreases until −1 and the process repeats. Thus, Sy

oscillates with some frequency in time. One has a look at two solutions
of the T-BMT equation (6.1.44) for the longitudinally polarized beam.

Sx(t) =
Ωy sin(

√
Ω2

x + Ω2
y · t)√

Ω2
x + Ω2

y

Sy(t) = −
Ωx sin(

√
Ω2

x + Ω2
y · t)√

Ω2
x + Ω2

y

,

(6.1.44)

where Ωx,y are angular frequencies of spin rotation around x and y axes.

Ωx = ΩEDM + ΩBx

Ωy = 0.
(6.1.45)
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The angular frequency Ωy is equal to zero only for the reference particle,
it is not true for the bunch of particles and it will be discussed in the next
subsection. Also, one should remember that the rotation is considered
relative to the momentum. In the lab frame Ωy equals to the momentum
precession frequency.

Therefore, one can write down the formula for Sy oscillations in the
absence of Ωy.

Sy(t) ≈ − sin(ΩBx + ΩEDM) · t. (6.1.46)

The simulation result is plotted in Figure 78. Half of the oscillation period

Figure 78: Oscillation of Sy spin projection of the reference particle due
to the interaction of the spin vector with Bx component of the
field of the rotated BNL elements in.

takes approximately 80 thousand turns when the elements are rotated by
〈α〉 = 10−4 rad. This is unacceptable for the future EDM experiment,
since when Sy reaches its maximum value and begins to decrease, the
spin vector at this moment is pointing in the direction opposite to the mo-
mentum. Hence, the EDM build-up of the vertical polarization is finished
and the EDM starts to rotate the spin downwards. In other words, the
EDM build-up oscillates around zero together with Sy component of the
spin vector and cannot be observed. There are two possible solutions and
outcomes in this case. They will be discussed later in the next subsection,
since the consideration of a whole bunch of particles is needed.

Rotation of the elements around the radial axis will be investigated
below, since there is no point of doing it for the reference particle. In-
deed, if the reference particle is tracked in the ring, where inclined BNL
elements produces Bz component of the field, the spin of the reference
particle will not be affected, since it lays along z axis pointing in the di-
rection of the momentum. Nevertheless, the orbit is changed when such
a rotation takes place and the spin will be no longer frozen. As was
mentioned before, the tuning of the B-field and energy of the reference
particle will help to find the situation, when the spin remains parallel to
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the momentum all the time. Thus, there is no need to examine this case.
However, when a bunch of particles is involved the longitudinal field (Bz)
dramatically changes the whole spin behavior and represents the main
threat for the experiment.

CW and CCW simulations for a bunch of particles for the frozen spin
method

In order to draw conclusions and set the a systematic limit for the upcom-
ing EDM experiment one needs to examine a bunch of particles. This will
be done for the frozen spin method, since the results are nearly identical
for the quasi-frozen spin approach.

A bunch of particles was distributed along the radial axis. Firstly, the
situation when the BNL elements are rotated along the longitudinal axis
(Figure 77) will be discussed. Number of simulations were performed, so
one particular case, when the EDM was equal to 10−21 e · cm (η = 10−7),
will be examined. The average rotation angle was also set to 10−4 rad.
Four simulations were made: clockwise stored beam with EDM= 0, coun-
terclockwise stored beam with no EDM and the same simulations but with
turned on EDM. The result is shown in Figure 79.

Figure 79: Sy spin component after 104 turns for a bunch of particles
distributed along the radial axis. In red: the polarization
build-up due to the MDM interaction with Bx component of
the rotated BNL elements, when the EDM was turned off
for CW direction. In blue: the polarization build-up due to
the MDM interaction with Bx component of the rotated BNL
elements, when the EDM was turned off for CCW direction.
In black, solid line:the polarization build-up due to the MDM
and the EDM interaction with Bx component of the rotated
BNL elements, when the EDM was 10−21e · cm. In black,
dashed line:the polarization build-up due to the MDM and
the EDM interaction with Bx component of the rotated BNL
elements, when the EDM was 10−21e · cm.
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Those lines are parabolas with opposite curvatures. One can zoom into
the picture and convince oneself (see Figure 80 The are identical but

Figure 80: Sy spin components for clockwise and counter-clockwise track-
ing.

reversed. Therefore, when one subtracts one from another the only thing
that is left is pure EDM signal corresponding to the equation 6.1.40. The
EDM was calculated from the tracking results and it coincided ideally
with the value, which was set in MODE.

When a bunch of particles is considered, the decoherence in the hori-
zontal plane is always present. Then the angular frequency of the spin
rotation around the vertical axis won’t be zero. In fact, it will have the
form

Ωy = 〈δΩdecoh〉, (6.1.47)

where 〈δΩdecoh〉 is the average value of the vertical angular frequency,
for which the decoherence is responsible. This frequency is the average
value for all particles in a bunch and it changes in time. That is why
notation δ is used. To understand this issue clearer one should take a
look on the simulation results shown in Figure 81. The plot illustrates the
difference between the Sx component of the reference particle and the Sx

component of the particle tracked with the largest initial x offset, which
was equal to 1 mm, from the x coordinate of the newly found reference
trajectory for the ring with misalignments. So this value, basically, shows
the range of the horizontal spin projections inside a bunch of particles or
the curvature of the parabola, which can be plotted for the Sx component
similarly as it was done for the Sy component in Figure 80.

Explanation of this phenomenon is given below. The presence of the
Bx field in the ring causes the spin to rotate around the radial axis. In
the same time, the decoherence takes place in the horizontal plane. The
particles’ spins are not aligned anymore, that is they have different Sx

components. They form some kind of a "fan", which becomes wider in time.
This "fan" rotates around the radial axis and finally it points upwards.
It happens after 40000 turns approximately if one throws a glances at
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Figure 81: The oscillation of the difference between the Sx spin compo-
nent of the reference particle and the Sx spin component of
the particle with the largest initial offset in x direction in the
presence of Bx.

the picture above. The "fan" continues its rotation around the radial axis,
however it becomes more narrow, its width decreases. This happens due
to the fact that the spins, which build this "fan", point in the opposite
direction. Then the process repeats.

Alternatively, one can think of it as of the oscillation of the curvature
of the parabola, which represents the spin decoherence in the horizontal
plane. Initially the parabola is a straight line because all the spins are
aligned, later it obtains its parabolic shape and becomes more steeper
with time and at some point it reaches its maximum curvature. It happens
exactly at the time, when the Sy spin component hits its peak value.
Afterwards, the parabola begins to shrink again, forms a straight line and
starts to bend in the other direction. Both explanations are schematically
illustrated in Figure 82 and Figure 83.

Taking into account the above explanation and the equation 6.1.44, one
can write the expression for the average horizontal component of the spin
vector.

〈Sx(t)〉 =
〈δΩdecoh〉

ΩBx

sin ΩBx t, (6.1.48)

Now, everything is ready to discuss the issue of the spin rotation
around the radial axis, which results in cancellation of the EDM build-
up. As was mentioned before, this spin rotation kills the EDM signal and
there are two possible ways to solve it.

The first possibility is straightforward. One has to install all the el-
ements in the ring with the maximum available precision. When the
elements were rotated by an average angle of 10−4 rad the rate of the
spin precession in the vertical plane was equal to dSy

dt ∼ 10−5 rad per
revolution. The Sy spin component should not exceed 1 rad for 109 turns
because this time is needed to observe an EDM signal if one assumes
that the EDM is of the order of 10−29 e·cm. This condition requires the
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Figure 82: Osclillation of the width of the "fan" of particles’ spins due to
the presence of a Bx.

Figure 83: Oscillation of the curvature of the parabola, which represents
the spin decoherence in the horizontal plane.
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installation accuracy of the order of 10−9 rad, which is close to impos-
sible. When the alignment is done, as accurate as possible, one has to
apply CW and CCW method, described above. The field must be reversed
to store the beam in the opposite direction. This is where the bunch of
particles comes in handy. One would calibrate the magnetic field by the
beam energy measured via spin tune observation in the horizontal plane,
which will be equal to Ωy. Then the two signals from CW and CCW runs
must be subtracted to obtain an EDM signal. Current test runs at COSY
demonstrated the relative accuracy of spin tune determination of 10−10

per 100 seconds [38]. However, the absolute accuracy is of the order of
10−4 − 10−5 depending on the measurement time.

Assuming that all the elements were aligned with the 10−9 rad pre-
cision, the magnetic field was calibrated via spin tune measurement
with 10−5 accuracy, the EDM limit in this case will only be equal to
10−24 ÷ 10−25 e·cm. One gets this value because the field measurement
accuracy plays the final role in the evaluation. Since the B-field can be
reversed only with that precision, there will be no chance of distinguish-
ing between the EDM signal or fake MDM rotations that will arise due to
non-equality of the magnetic fields for clockwise and counter-clockwise
settings. In order to measure the EDM at the level of 10−29 e·cm, one
has to measure the spin tune with the precision of at least 10−10 for 1000
seconds.

The second option is the frequency measurement instead of the po-
larization build-up [92]. Again, the elements must be installed with the
maximum precision. However, the small modification for the ring elements
must be made. Weak trim dipoles should be placed after each BNL ele-
ment or in one place in the ring - this makes no difference. The scheme
of such a trim dipole is shown in Figure 84.

The setting of a trim dipole can be realized as it’s pictured above. One
can use a small number of windings to create a radial magnetic field.
The direction of the field shouldn’t be strictly parallel to the x axis, it is
not needed for the compensation of a Bx component of a BNL element.
Figure 84 also illustrates the compensation principle. If a BNL element
or a regular dipole for the quasi-frozen spin lattice is rotated around the
longitudinal axis, yielding the Bx field component, this small radial field
can be compensated by simply varying the amplitude of the magnetic field
of the trim dipole. How it helps to measure the EDM will be explained
further.

The solutions of the T-BMT equations, as it was written earlier, are

Sx(t) =
Ωy sin(

√
Ω2

x + Ω2
y · t)√

Ω2
x + Ω2

y

Sy(t) = −
Ωx sin(

√
Ω2

x + Ω2
y · t)√

Ω2
x + Ω2

y

,

(6.1.49)
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Figure 84: A scheme of a trim dipole installation and the resulting B-field
compensation.

With a realistic installation accuracy of all elements of 10 µm, one can
get the angular spin frequency of the order of ΩBx ≈ 10 rad/s, which is
much larger than Ωy for the frozen or quasi-frozen spin concepts. Then
the following is true

Ωx = ΩBx + ΩEDM � Ωy, (6.1.50)

where Ωy = 〈Ωdecoh〉, as in the previous notation.
For the sake of understanding, one should write one more time the

simplified solutions of the T-BMT equation. The ratio between those two
frequencies can easily be obtained of the order of Ωy

Ωx
� 10−5. Therefore,

the square root in the solution of the T-BMT equation can be written as√
Ω2

x + Ω2
y = Ωx

(
1 +

1
2

(Ωy

Ωx

)2
+ ...

)
, (6.1.51)

and will be smaller than 10−10. Once again, one obtains the solutions in
the simple form

Sx(t) =
Ωy

ΩBx

sin ΩBx t

Sy(t) = − sin (ΩBx + ΩEDM)t.
(6.1.52)

This means that Sx(t) ∼
Ωy

ΩBx
oscillates with the amplitude, which is

close to zero, and Sy(t) oscillates with the total frequency ΩBx + ΩEDM.
One can measure the difference in the oscillation of the vertical spin

component for the clockwise and counter-clockwise case. In other words,
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one determines the frequency of the spin rotation for both cases, which
consists only of the EDM precession and MDM rotations around the ra-
dial magnetic fields. All other components will be negligible and will have
only infinitely small quadratic contributions to the measured frequency.
The resulted signal will be equal to 2 ΩEDM. Indeed,

ΩCW
x = ΩBx + ΩEDM

ΩCCW
x = −ΩBx + ΩEDM

ΩEDM =
1
2

(
ΩCW

x + ΩCCW
x

)
.

(6.1.53)

The simulation for this approach was made. Figure 85 demonstrates
different spin tune for CW and CCW launched beams. The difference
between the two is the desired EDM signal, when the magnetic fields
are reversed ideally.

Figure 85: Spin tune difference between clockwise and counter-clockwise
beams in the presence of the EDM of the order of 10−21 e · cm.

In reality, the field reversal is far from ideal, and one has to take this
into account. Now, why ones needs those correction trim dipoles? They
are used for the calibration of the particle energy, when the fields are
reversed. The calibration procedure is performed in a horizontal plane
in order to measure the oscillation frequency of the spin with respect
to the energy. To keep the spin rotation only in the horizontal plane,
one uses the transverse trim dipoles with a horizontal magnetic field
which compensates oscillation of the spin in the vertical plane due to
the Bx component. The full compensation is not needed, one has to just
minimize the vertical oscillations in order to fulfill the following condition
Ωx
Ωy
� 10−5. One can vary the magnetic field of the trim dipoles, which

will lead to the violation of the frozen spin condition. The sextupoles will
no longer be able to compensate the decoherence effects and the spin
precession frequency can be written in this case as

Ωy =
(

2π · ∆γ

γ

)
/10−6, (6.1.54)
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with accordance to 3.2.18. Thus, for ∆γ
γ ≈ 10−4, which is a usual value,

one obtains Ωy ≈ 103 rad/s. If Ωx is suppressed down to 10−3 rad/s
with the trim coils, one gets Ωx

Ωy
≈ 10−6. In this case, the square root in

the T-BMT solution is√
Ω2

x + Ω2
y = Ωy

(
1 +

1
2

(Ωx

Ωy

)2
+ ...

)
(6.1.55)

with the accuracy of 10−12. Therefore, the solutions can be simplified as

Sx(t) = sin Ωyt

Sy(t) =
Ωx

Ωy
∼ 10−6.

(6.1.56)

As a result, one can determine Sx(t) with the spin tune measurement
technique, when the spin precesses in the horizontal plane. The EDM
precession and ΩBx contributes only in quadratically to Sx and this im-
pact is negligible. Varying the field of the trim dipoles, one finds the
point for clockwise and counter-clockwise circulation of the beam, where
the spin tune is the same. If the spin tune for CW and CCW direction is
the same, the reference particles for both bunches have exactly the same
energy. This corresponds to the situation, when the amplitudes of the
magnetic fields of the main dipoles before and after the reversal proce-
dure are equal to each other. The precision of the spin tune measurement
determines the precision of the field reversal. As was mentioned earlier
the absolute spin tune precision is 10−5 for 1000 seconds measurement
interval. Therefore, one can calibrate the fields with this precision.

Taking into account the calibration procedure, one concludes that the
absolute values of ΩCW

Bx
and ΩCCW

Bx
will be equal with the precision of

10−5. The EDM precession frequency for the EDM of 10−25 e · cm is
10−5 rad/s. So adding two frequencies from CW and CCW measurements,
one can only be sensitive to the EDM of the order 10−24 − 10−25 e · cm.

This result fully coincides with the result described for the first mea-
surement option, however this technique is more realistic and achievable
nowadays, since the installation accuracy of the elements is realistic and
realizable in present accelerators.

The more important and difficult problem is the rotation of the elements
around the transversal axis. In this case, the Bz component of the mag-
netic field is present and the depolarization of the beam in the horizontal
plane inevitably leads to the build-up of the vertical Sy component, which
mimics the EDM signal. In chapter 3, this was briefly discussed in the
section about geometric phases. Indeed, the rotation of the Sx component
of the spin vector around the longitudinal magnetic field results in the
creation of the fake EDM build-up. This is pictured in Figure 86



6.1 systematic errors for the frozen and the quasi-frozen spin methods 112

Figure 86: A dipole rotated around the transversal axis and the scheme
of the spin rotation generated by the decoherence and Bz

component of the magnetic field.

The solution of the T-BMT equation for this case is the following

Sx(t) =
Ωy sin(

√
Ω2

z + Ω2
y · t)√

Ω2
z + Ω2

y

Sy(t) =
ΩyΩz

Ω2
z + Ω2

y
[1− cos(

√
Ω2

z + Ω2
y · t)],

(6.1.57)

where Ωz is the angular frequency of the spin rotation around the longi-
tudinal axis due to the presence of the finite Bz component of an inclined
magnet.

Ωz = ΩBz (6.1.58)

Ωy, as usual, equals to 〈δΩdecoh〉. Then, the two cases are possible:
ΩBz � 〈δΩdecoh〉 or ΩBz � 〈δΩdecoh〉. The solutions of the T-BMT
equation are

〈Sx(t)〉 = sin(〈δΩdecoh〉 · t)

〈Sy(t)〉 =
ΩBz

〈δΩdecoh〉
[1− cos(〈δΩdecoh〉 · t)],

(6.1.59)

when ΩBz � 〈δΩdecoh〉 and

〈Sx(t)〉 =
〈δΩdecoh〉

ΩBz

sin(ΩBz · t)

〈Sy(t)〉 =
ΩBz

〈δΩdecoh〉
[1− cos(ΩBz · t)],

(6.1.60)
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when ΩBz � 〈δΩdecoh〉.
The simulation for a bunch of particles were made in MODE. The spin

motion was investigated. The results are plotted below.

Figure 87: The oscillation of the difference between the Sy spin compo-
nent of the reference particle and the Sy spin component of
the particle with the largest initial offset in x direction in the
presence of Bz.

Similarly to the situation when a Bx component is present, the existence
of the longitudinal magnetic field leads to the oscillation of the curvature
of the parabola for the Sx and Sy spin projections. This means that the
width of the spin "fan" in the horizontal plane oscillates in time, as it
was described earlier. This "fan" also rotates around z axis, building the
oscillating "fan" in the vertical plane. So the vertical spin component
oscillates as number of turns increases, which is shown in the equations
6.1.59 and 6.1.60. The EDM signal oscillates, too, resulting in the total
averaging of the EDM build-up to zero. So, when there are inclined
magnets or, basically, any elements, with finite size of the beam, with
finite value of spin coherence time the EDM signal can’t be observed
due to the transformation of the decoherence in the horizontal plane to
the oscillating vertical polarization, which totally smears out the EDM
interaction.

The only solution to this problem is analogous to the case for the
longitudinally rotated magnets. One should install solenoids at both
ends of an element. The scheme is pictured below in Figure 89.

The solenoids must be tuned similarly, as was explained above for Bx

compensation. The goal is to achieve the ΩBz value close to 10−9 rad/turn.
This seems to be the only way to correct the geometrical phase con-

tribution to the experiment. Afterwards, the clockwise-counter-clockwise
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Figure 88: The oscillation of the difference between the Sx spin compo-
nent of the reference particle and the Sx spin component of
the particle with the largest initial offset in x direction in the
presence of Bz.

Figure 89: A scheme of solenoids installation and the resulting B-field
compensation.
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approach should be used in the difference in two angular spin frequen-
cies will give the EDM signal, analogously to the situation with Bx. The
fields for CW and CCW direction should be calibrated by the spin tune
measurement, as well. Therefore, taking the accuracy of spin tune mea-
surements of 10−10 the final EDM signal systematic limit can be set to
10−24 ÷ 10−25 e·cm.

Conclusion

Consideration of the main systematic errors for the quasi-frozen and the
frozen spin methods demonstrated that for the existing accuracy of the
spin tune determination the precision, with which one can measure an
EDM at a storage ring, using clockwise and counter-clockwise stored
beams, is of the order of 10−24 ÷ 10−25 e·cm.

systematic errors consideration for the precursor edm ex-
periment at cosy

Introduction

The main systematic effects arising in the RF Wien filter method, which
is going to be used for the EDM experiment at COSY, will be considered
in this section. COSY ring was chosen as a starting point for the future
search for an electric dipole moment of a charged particle. As it was said
in the previous chapter, the RF Wien filter was installed in the storage
ring. Number of simulations were done to set the experimental limit for
the existing ring, i.e. with the level of misalignments and the phase stabil-
ity that are present at COSY. Clockwise and counter-clockwise technique
is not applicable in this case, since there is no availability to store the
beam in CCW direction at this machine. A simulation for the maximiza-
tion of the spin coherence time hasn’t been performed for RF Wien filter
method, but the experimental data was gathered during the test runs at
COSY. The spin coherence time has been achieved of around 1000 s [48].
For this purpose, the sextupole correction together with the beam cooling
were used. The measured spin coherence time is shown in Figure 90.

Two spin states with vertical polarization in the up or down direction
are displayed in the picture. The extraction time, when the measurement
of the spin polarization was done, was set to approximately one hundred
seconds. The function

F(t) = A · exp(
−(t− 15)

t
) (6.2.1)

was used to fit the data points and calculate the SCT for both states. The
coefficient p1 indicates the value for the spin coherence time. The SCTs
are different for two states because the initial polarization was different.

Taking into account that the SCT is sufficient for the detection of an
EDM signal, the simulations have been made for a single particle.
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Figure 90: Spin coherence time for two spin states (up and down) at the
test run at COSY.

Misalignments of the Wien filter

The ideal storage ring was discussed in the previous chapter and the lin-
ear build-up of the vertical polarization corresponding to the interaction
of an EDM with the motional electric field inside the ring was demon-
strated. Firstly, one should consider the case when the RF Wien filter
is not ideally set. The situation with the slightly rotated device will be
investigated. The Wien filter field strength was set to E = 1 MV/m,
B-field was equal to 0.73 T and the length was chosen of 1 m.

The rotation of the RF Wien filter around the longitudinal axis yields a
horizontal component of the magnetic field Bx, which, in turn, causes the
vertical betatron oscillations of the beam. The spin receives an additional
kick due to the MDM interaction with Bx according to Thomas-BMT
equation. This kick works in the same way as an EDM interaction with
the motional electric field in the ring (see Figure 91). It is clearly visible
that the rotation of the device leads to the same amount of the polarization
build-up, which could be produced by the EDM of the order of 10−19 e · cm.
The build-up of the polarization per turn scales linearly with the value
of the angle of the RF Wien filter rotation, as well as the false EDM
signal, which this rotation generates. The spin experiences fast (g-2)
precession, which are modulated by the RF Wien filter. That is why one
sees two broad bands in Figure 91, and not a single line. The width
of the bands is proportional to the value of the EDM. In the following
simulation η that is equal to 10−4 will be used, which corresponds to
the EDM of 2.6 · 10−19 e · cm. The Wien filter was rotated by a random
angle drawn from the normal distribution with the mean µ = 0 and the
standard deviation σ = 10−4. This is the typical precision of placement
for a device at COSY.

The MDM rotation that mimics the EDM signal is directly proportional
to the angle of the RF Wien filter rotation. If one sets the device more
accurately, the rate of the MDM rotation drops. With this field strength
of the Wien filter the EDM polarization build-up per turn is of the order of
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Figure 91: The polarization build-up in vertical plane. The initial spin
direction of the deuteron is longitudinal. In red: the MDM
interaction with the field of the longitudinally rotated Wien
filter in the absence of the EDM. The rotation angle is
10−4 rad. In blue: the EDM interaction with the motional
electric field, when the Wien filter is perfectly aligned. The
EDM of 2.6 · 10−19 e · cm was assumed.

Figure 92: The polarization build-up per turn for different angles of the
RF Wien filter rotation. In red: the EDM build-up per turn
for the ideal ring. In blue: the MDM build-up per turn. The
EDM of 2.6 · 10−19 e · cm was assumed.
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Sy = 10−7 and the MDM one is of the same order of magnitude. Figure
92 demonstrates the linear dependence of the MDM build-up per turn
on the order of the RF Wien filter rotation angle.

Misalignments of the ring elements

The next step one should take, is to consider the effect of the non-
vanishing misalignments of the magnets in the machine. The presence
of the misalignments tilts the initially vertical direction of the spin closed
orbit. This induces a similar false build-up of the polarization, which was
described above. The present misalignments at COSY are of the order
of 0.1 mm (or mrad for rotations). They were randomly distributed in
the MODE program. The typical random seed coincides with the result,
which is shown in Figure 93. There was no orbit correction made during
the simulation.

Figure 93: The polarization build-up in vertical plane. The initial spin
direction of the deuteron is longitudinal. In red: The polariza-
tion build-up due to the MDM interaction with imperfection
fields of the misaligned magnets with RF Wien filter on. In
blue: the EDM interaction with the motional electric field in
the absence of imperfections. The EDM was 2.6 · 10−19 e · cm.

Frequency mismatch

As it was mentioned above, the RF Wien filter must be operated exactly
at the spin resonance. What happens, if there is a mismatch between the
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operating and the resonance frequencies? One can denote this mismatch
by

∆ =
fWF

fres
, (6.2.2)

where fWF and fres are the operating Wien filter and the spin resonance
frequencies respectively. An EDM of 10−21 e · cm was used in the simu-
lation. Four different mismatches were considered with the largest one of
10−4 and the smallest one of 10−7. Here η parameter was set two orders
of magnitude lower and was equal to 10−6. The resulting polarization
build-ups are plotted in Figure 94.

Figure 94: The polarization build-ups due to the EDM interaction with
the motional electric field for different values of the mismatch
between the spin resonance and the operating Wien filter
frequencies. a) ∆ = 10−7 b) ∆ = 10−6, c) ∆ = 10−5, d)
∆ = 10−4. An EDM was equal to 2.6 · 10−21 e · cm.

One can see that the polarization does not grow linearly anymore,
when two frequencies do not match, but indeed oscillates. The reso-
nance condition must be fulfilled with the great precision. In the case,
when ∆ = 10−7 the slope of the polarization build-up coincides with the
theoretically calculated value. This indicates that one should set the fre-
quency of the RF Wien filter with the precision of 10−7 for the EDM of
10−21 e · cm. However, that constraint also scales linearly with the value
of the EDM, and for the EDM of the order of 10−20 e · cm one can afford
to have a mismatch at the level of 10−6.
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Conclusion

One of the possible ways to measure an EDM at the precursor experi-
ment at COSY was considered. The representation of the RF Wien filter
was realized in MODE program. The systematic effects, which limit the
potential sensitivity, were studied.

The impact of the rotations of the Wien filter was investigated. Firstly,
the EDM-like signal was generated by the MDM interaction with the
rotated vertical magnetic field of the Wien filter. Secondly, the situation
with the pure EDM build-up for the untitled device was considered. It
was shown that the rotations of the RF Wien filter around the longitudinal
axis yields the same build-up of the vertical polarization as caused by
the EDM interaction with the motional electric field in COSY ring.

The spin motion was examined when the misalignments and rotations of
the magnets of COSY took place. Two types of tracking were performed for
that reason, one with the EDM and a perfect orbit and another without
one for the distorted case. The build-ups of polarization were plotted
against the turn number for both situations and later compared in order
to get the systematic limit on the current COSY configuration.

The mismatch between the operating frequency of the RF Wien filter
and the spin resonance frequency was considered. Four particular sit-
uations with different relative frequency mismatches were tested in the
simulation. The resulting polarization build-ups were compared. The de-
viation from linear behavior, which prevents the possibility of polarization
measurements, was demonstrated. It was presented that one must pay
significant attention to the fulfillment of the resonance condition.

In summary, all three simulation results indicate the same systematic
limit, for the present situation at COSY, of the order of 10−19 e · cm. This
is a starting point for the precursor experiment that is planned to be
conducted in the next 2 years. Based on this, one should think of an in-
stallation of a modern orbit correction system and on a way to control and
keep the frequency of the RF Wien filter with the maximum achievable
precision. Further simulation work will be done towards the implementa-
tion of an orbit correction algorithm in MODE program. Field errors of
the Wien filter must be considered and the effect caused by them should
be calculated.
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C O N C L U S I O N S A N D O U T LO O K

The interest for electric dipole moment (EDM) experiments is highly mo-
tivated by the problem of matter-antimatter asymmetry in our Universe.
New sources of CP violation are needed to explain that phenomenon
properly. An EDM of an elementary particle is a perfect candidate for
this role because the existence of an EDM requires CP-violation. In par-
ticular, new experiments for the EDM of a charged hadron are proposed.

The upcoming experiment requires a new storage ring to be built. Since
an EDM could be as small as 10−29 e · cm, a fantastic precision should
be achieved. The main obstacle on the way is systematic errors, which
set the final limitation on the accuracy that can be accomplished. The
systematic errors for three measurement principles were investigated in
this work.

To study the impact of the systematic errors on the final experimen-
tal sensitivity, a large number of simulations were made. The newly
developed program MODE was the primary simulation tool. The basic
working principle of MODE was explained. The models of the future
experiments for the frozen and the quasi-frozen spin methods were de-
signed and realized in MODE environment. Special ring elements with
incorporated magnetic and electric fields were created and used in the
simulations. The time depended element, the radio frequency Wien filter,
was programmed, too, for the consideration of the precursor experiment.

MODE was benchmarked via the comparison with the existing exper-
imental data, which was taken during the test runs at the Cooler Syn-
chrotron (COSY). The ring structure for the precursor experiment at COSY
was written. The model of COSY storage ring was precisely tested. The
spin-orbital dynamics is correctly described in the program. Further-
more, the comparison of the simulation results between COSY-infinity
and MODE codes was made, and the obtained outcomes were similar.

After the program testing and its benchmarking the main systematic
studies were done. Two approaches - the frozen and the quasi-frozen
spin methods - are close in realization and they share the same system-
atics. The precursor experiment, where a radio frequency Wien filter is
implemented, has at least one more source of systematic errors, which
corresponds to the accuracy and the stability of the RF Wien filter fre-
quency.

121
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The first reason of the potential errors is the spin decoherence, which
takes place at any storage ring when a bunch of polarized particles is
used. The finite size of the bunch in all three directions: radial, vertical
and longitudinal causes the particles’ spins to decohere (depolarize) while
the bunch is stored.

The second main source of the arising errors is the misalignment of the
elements inside the ring. Each accelerator has a finite precision of the
magnet installation. Any rotations of the main dipoles or combined E/B
elements inevitably lead to the build-up of the fake signal, which mimics
the EDM contribution.

For the Wien filter approach, the frequency mismatch between the
Wien filter device and the frequency of the spin rotation is harmful. The
EDM polarization build-up is impossible if the ratio between those two
frequencies is not maintained equal to one.

The ways of the correction for the main systematic errors were de-
scribed. The spin decoherence effects should be fought by implementation
of an radio frequency cavity with high voltage and frequency to compen-
sate the ∆p

p part leading to the depolarization. The terms connected to
the beam sizes in radial and vertical directions must be compensated by
sextupole fields.

The misalignments of the main dipoles or the E/B elements can only be
corrected if one stores the beams in opposite directions. So subtraction
of the signals from clockwise and counter-clockwise runs will allow to
disentangle an EDM contribution from systematic effects.

The sensitivity for the future potential experiments with either the
frozen or the quasi-frozen spin were calculated. The EDM limit, which
one can currently set on those methods, is 10−24÷ 10−25 e · cm. For the
present situation at COSY, the accuracy of the precursor experiment is
expected to be of the order of 10−19e · cm.

The future improvement of the spin tune determination technique will
increase the potential sensitivity of the EDM experiments. The steps
must be made exactly in this direction. The alignment process must be
advanced, too. Further studies of additional systematic errors, which has
fewer impact on the final precision, should be made.
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8
A P P E N D I X

appendix a

One can consider the case when quadrupole but sextupole fields are
present in the ring, Hill’s differential equations [100] for the orbital motion
will be

x′′ +
K(s)
1 + δ

x +
1
2

S(s)
1 + δ

(x2 − y2) =
1

ρ(s)
δ

1 + δ

y′′ − K(s)
1 + δ

y− S(s)
1 + δ

xy = 0,
(8.1.1)

where x′′ = dx

ds2 , y′′ = dy

ds2 , K(s) = e
p

∂By(s)
∂x and S(s) = e

p
∂B2

y(s)
∂x are the

quadrupole and the sextupole components in the ring correspondingly.
Since one has to avoid hitting the third order resonance [62], the average
value for S can be used S̄ = 1

2πR ∑i Sili. The new variables can be
introduced via Courant-Snyder formalism [33]

ηx =
x√
βx

ηy =
y√
βy

βx,yν0x,y dφ = ds,

(8.1.2)

where βx,y are the horizontal and the vertical β-functions and ν0x,y are
the corresponding betatron tunes.

The new variable φ is periodic with 2π around circumference of the ring
C = 2πR̄. When δ << 1 is assumed, the following system of equations
can be defined

η′′x + ν2
0x
(1− δ)ηx = −1

2
Sν2

0x
(1− δ)β3/2

x (βxη2
x − βyη2

y)+

+ν2
0x
(1− δ)β3/2

x
δ

ρ

η′′y + ν2
0y
(1− δ)ηy = Sν2

0y
(1− δ)β3/2

y β1/2
x ηxβ1/2

y ηy

(8.1.3)
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For the simplicity, introduction of new coordinates dθx,y = ωx,ydφ that
will be used in equation 8.1.3 with the coefficients is needed

ω̄2
0x

= ν2
0x
(1− δ)

ω̄2
0y
= ν2

0y
(1− δ)

A =
1
2

ω̄2
0x

Sβ3/2
x

B = ω̄2
0y

Sβ3/2
y

Cδ =
ω̄2

0x

ρ
β3/2

x .

(8.1.4)

The equation 8.1.3 can be written as

ω2
xη′′x + ω̄2

0x
ηx = −A(βxη2

x − βyη2
y) + Cδδ

ω2
yη′′y + ω̄2

0y
ηy = Bβ1/2

x β1/2
y ηxηy

(8.1.5)

The sextupole term brings small contribution to the solution, so it can
be considered as a tiny perturbation of motion. The solution can be found
with the help of Landau method [60]

ηx,y = η0x + η1x + η2x + ...

ωx,y = ω0x + ω1x + ω2x + ...
(8.1.6)

When this approach is completed, it’s possible to get the following formu-
las for η and ω for zero order

η0x =
√

εx cos θx +
Cδ · δ
ω̄2

0x

ω0x = ω̄0x η0y =
√

εy cos θyω0y = ω̄0y

(8.1.7)

and for the first order

η1x = −
A

ω̄2
0x

(
βxεx

2
−

βyεy

2

)
− Aβx

ω̄2
0x

(
Cδδ

ω̄2
0x

)2

+

+
A

ω̄2
0x

(
βxεx

6
cos 2θx +

βyεy

2(1− 4ω̄2
0y

/ω̄2
0x

) cos 2θy

)
η1y =

B
ω̄2

0y

√
εxβx

√
εyβy

(
cos (θy − θx)

2[1− (ω̄0y − ω̄0x)
2/ω̄2

0y
]
+

+
cos (θy + θx)

2[1− (ω̄0y + ω̄0x)
2/ω̄2

0y
]

)
.

(8.1.8)
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Inserting 8.1.7 into x = β1/2
x (η0x + η1x) and 8.1.8 into y = β1/2

y (η0y +

η1y), one obtains

x =
β2

x
ρ

δ− 1
L ∑

i
Siβ

2
xi

(
βxεx

2
−

βyεy

2

)
− δ2 1

L ∑
i

Siβ
6
xi

ρ2 +

+
1
L ∑

i
Siβ

2
xi

(
βxεx

6
cos 2θx +

βyεy

2(1− 4ω̄2
0y

/ω̄2
0x
)

cos 2θy

)
+
√

εxβx cos θx

y =
√

εxβx

√
εyβy

1
L ∑

i
Siβ

2
yi

(
cos (θy − θx)

1− (ω̄0y − ω̄0x)
2/ω̄2

0y

+

+
cos (θy + θx)

1− (ω̄0y + ω̄0x)
2/ω̄2

0y

)
+
√

εyβy cos θy

x′ = − 1
L ∑

i
Siβ

2
xi

(
εx

3
sin 2θx +

εy

1− 4ω̄2
0y

/ω̄2
0x

sin 2θy

)
−
√

εx

βx
sin θx

y′ = − 1
L ∑

i
Siβ

2
yi

√
εx

βx

√
εy

βy

(
(βx − βy) sin (θy − θx)

1− (ω̄0y − ω̄0x)
2/ω̄2

0y

+

+
(βx + βy) sin (θy + θx)

1− (ω̄0y + ω̄0x)
2/ω̄2

0y

)
−
√

εy

βy
sin θy.

(8.1.9)

For the tune shifts one gets

ω1x =
δ

4π

∫ 2π

0
βxSDxdθ = δ

1
4πC ∑

i
SilsiDxiβxi

ω1y = −
δ

4π

∫ 2π

0
βySDxdθ = δ

1
4πC ∑

i
SilsiDxiβyi.

(8.1.10)

One should substitute 8.1.9 with Dx ≈ β2
x/ρ in the expression for the

orbit lengthening, which is(
∆L
L

)
β

=
1
L

∮ (
ρ

x
+

x′2 + y′2

2

)
dS. (8.1.11)

The formula 8.1.11 has two terms: one of them is(
∆L
L

)
x
ρ

=
1
L

∮ x
ρ

ds =
δ

L

∫ Dx

ρ
ds− εx

2L ∑
i

SilsiDxiβxi+

+
εy

2L ∑
i

SilsiDxiβyi −
δ2

L ∑
i

SilsiD3
xi

(8.1.12)

and the second one, when βx = βy and ω̄0x = ω̄0y , is(
∆L
L

)
x′,y′

=
1
L

∮ x′2 + y′2

2
ds =

5
4

(
εx

1
L ∑i Siβ

2
xi

3

)
+

εx

4βx
+

εy

4βy
.

(8.1.13)
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There are quadrupole and sextupole components in the second term. The
sextupole contribution to the orbit lengthening is several orders of magni-
tude smaller than the one from the quadrupoles, which gives the following
result (

∆L
L

)
x′,y′

=
π

2L

(
εxνx + εyνy

)
. (8.1.14)

appendix b

Lagrangian in the cylindrical coordinate system is [91]

L =
m
2
(ṙ2 + r2θ̇2 + ẏ2) +

2eU0

R2 − R1
R2R1 ·

1√
r2 + y2

− eU0

R2 − R1
(R2 + R1).

(8.2.1)

appendix c

Figure 95: Parameters of function f for different voltages and frequencies
of the RF cavity for the quasi-frozen spin lattice. Sextupoles
were automatically tuned to find the best spin coherence time.
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Figure 96: Parameters of function f for different voltages and frequencies
of the RF cavity for the quasi-frozen spin lattice. Sextupoles
were automatically tuned to find the best spin coherence time.
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