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ABSTRACT 

We derive a set of new consistency conditions for the pion-pion 

scattering amplitude. These conditions hold for any s, t, u in the cube, 

0 5 s, t, u 2 P2, with the four external mass variables off -mass -shell 

and restricted such that 4:. = 0, qt = s, 432 = t, and c$ = u. Using these 

consistency conditions, we determine the coefficients of the power 

series expansion of the pion-pion amplitude up to and including second 

order terms in the variables s, t, u, and c$ . We use this expansion 

to calculate the pion-pion S-wave scattering lengths and thus check 

the consistency of Weinberg’s recent calculation of these numbers 

to one higher order. The final result is to within 10% the same as 

that obtained by Weinberg. 
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.‘i 

I. INTRODUCTION 

In a recent paper Weinberg’ has used current algebra to calculate the pion- 

pion, S-wave scattering lengths. The answer he obtained is smaller by at least 

a factor of five from what had been believed to be reasonable estimates of the 

n?~ scattering lengths from dispersion theory or comparison of peripheral models 

with eqeriment . 

Weinberg’s result does not follow from current algebra alone. The restric- 

tions given by current algebra and PCAC on the ‘sir amplitude give us information 

at unphysical points and unphysical external masses. The problem is to extrap- 

olate these results to the physical threshold. This is relatively easy in the case 

of TN scattering where there is a small number, p/M, and where one neglects 

terms of order p2/M2, etc. For ~7r scattering there is no such number. What 

Weinberg does to effect an extrapolation is to expand the amplitude in a power 

series of s, t, u, and the external mass variables, , i = 1,2,3,4, and keep 

terms only up to first order in these variables. One can then determine the 

three coefficients in the expansion from Adler’s consistency condition and a low 

energy theorem for TX scattering. Once the coefficients are known one assumes 

the expansion is still good up to threshold and calculates the scattering lengths. 

- 

Such a method of extrapolation is rather dangerous. It is known that the 

expansion used is divergent at threshold. One can get around this difficulty by 

assuming that the unitarity branch point is a weak singularity which allows us 

to use the expansion at least as an asymptotic expansion up to and maybe a little 

beyond threshold. Since Weinberg gets small scattering lengths in the end his 

argument is self-consistent, but it does not in fact prove that the scattering 

lengths are indeed small. Even if one accepts the asymptotic nature of the ex- 

pansion one does not a priori know at what order does it give a good approximation 
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” to the amplitude near threshold. There is no a priori reason for example to 
2 assume that the second order terms, s , st, u2, etc. are smaller than the first 

order terms. One would feel much more at ease with Weinberg’s results if one 

is able to calculate these higher order terms and compare them with the lower 

order ones. This becomes even more pertinent when we recall that the results 

of Ref. 1 give much smaller scattering lengths than had been expected from 

previous arguments. 

In this paper we shall derive a set of new consistency conditions on the XJT 

amplitude that hold in addition to the Adler’ consistency condition. We shall then 

use these consistency conditions to determine the coefficients of the expansion of 

the 7rr-amplitude to second order in the variables s, t, u, and q; . The remark- 

able result is that the second order terms turn out to be negligible and Weinberg’s 

results are essentially unchanged within our approximations. 

Adler has derived consistency conditions on 7iN and 7ri~ scattering which 

hold with one pion taken off-mass shell. 2 If one tries to derive a consistency 

condition for nN scattering with two pions off the mass shell then one has to 

estimate the matrix element of a scalar density between two nucleon states. 3 

This scalar density essentially arises from the equal time commutator of the 

axial vector charge with the divergence of the axial vector current. Thus as in 

Ref. 3 one does not get a new consistency condition but a relation between the 

scalar matrix element and nN scattering. 

In the case of err scattering it turns out that one can essentially eliminate 

the matrix element of the scalar density between two single pion states and get 

new and stronger consistency conditions. The main new tool that one needs to do 

this is to know the equal time commutator of the asial vector charge with the 

scalar density. There are several ways to do this all leading to the same answer 
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for our purposes. One can use directly the commutators of the axial vector 
. 

charge with the scalar densities, u., 
1 

and the pseudoscalar densities, v., given 
1 

by Gell-Mann. 4 We can then use the densities vi, i = 1,2,3, as an interpolating 

field for the pidn. It is reasonable to assume that these pseudoscalar densities 

are smooth interpolating fields like 8 A! 
CL 1 

and allow us to make extrapolations 

off the mass -shell of the order of the pion mass without introducing large errors. 

In fact in some models like the quark-model (or the o-model), a,Ay is just pro- 

portional to vi. In a general quark model a A! is proportional to vi plus 
P 1 

SU(3) breaking terms. Anyway, no one ever proved that aPAy was a good inter- 

polating field. This was just verified by experience starting with the success of 

the Goldberger-Treiman formula. In the same way one can only verify whether 

vi are good interpolating fields by the results of using them as such. One can 

easily see, for example, that the Adler.consistency condition for nN scattering 

follows also from using vi as an interpolating field for one of the pions and 

aPAy for the other and the commutation relation (1). 

If one does not like to introduce a new interpolating field one can get results 

identical to ours in the following way: First, one uses the commutator of 

Ay(z,t) with 8 A! 
P .l 

to define a scalar density. One assumes this scalar density 

is a local field. To compute the commutator of the scalar density with the axial 

charge one uses the Jacobi-identity to get a result essentially identical to our 

Eq. (2’). In this way one would just have to replace Vi by aPAy wherever it 

appears in our paper and the results will be the same. 

In Section II we shall derive a new consistency condition on RYT scattering 

with two pions taken with zero external mass. We also show how one can get 

Adler’s consistency condition using our methods. These two cx,nsistency condi- 

tions are used to calculate the coefficients in the Weinberg expansion up to first 

order, to verify that our method gives the same results. 
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In Section III, starting with a reduction formula for the ‘ITT amplitude in which 

all four pions are reduced out, we derive a general consistency condition on the 

amplitude. This consistency condition does not only hold at one point in the six 

dimensional space of the off -shell 7r7r variables, but h.olds for all s, t, u in the 

domain 0 5 s, t, u 5p2, with the external masses restricted such that qf = 0, 

2 2 2 
42 = s, 93 = t, 92 = u* All four ex-ternal mass variables are taken off-mass 

shell. 

Finally, in Section IV we use this general consistency condition to evaluate 

all but one of the coefficients of the expansion of the XX amplitudes up to and 

including second order in s, t, u, and qf . We then give arguments to show 

that the one coefficient left undetermined is small. Our final result is that all 

the first order coefficients remain the same as in Ref. 1, and all the second 

order ones are within our approximations negligible. Even if we carry over 

some correction terms to our main approximation we find that they only change 

Weinberg’s value for the scattering lengths by five present. 

II. A NEW COI’BISTENCY CONDITION ON THE PION-PION AMPLITUDE 

In order to clarify our method we shall in this section derive a consistency 

condition on the rr amplitude with two pions taken with zero external mass. Our 

main point is to show how one can get a consistency condition on all three 1rr 

amplitudes tlrhich unlike the xN case does not depend on the matrix elements of 

the scalar densities. We then show how this consistency condition when coupled 

with Adler’s consistency condition will lead to Weinberg’s scattering lengths. 

Our starting point shall be the commutation relations of the axial-vector 

charge with the scalar and pseudoscalar densities given by Gell-Mann in Ref. 4, 
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Vj (~, t) 1 * = id u (a), ijk k 

1 = - i d.. v (b) ljk k ; i,j,k=O,l,..., 8; 

where 

Q; = Jd3x A; (%, t) , 

(1) 

(2) 

(3) 

and A:(x) is the usual axial vector current. In a quark model ui and vi are 

given by 

ui = ; t hit ; vi = -kt-y5hit, i=O,1,...,8. (4) 

Most of the results obtained from PCAC or current algebra follow from 

using 8 A’ The success of PCAC 
P a 

as an interpolating field for the pion. 

strongly suggests that 8 A’ 
CLQ! 

is a good interpolating field in the sense that it 

allows us to go off the mass shell by an amount of the order of the mass of the 

pion without introducing large errors. One can also use vcr, a! = 1,2,3, as 

an interpolating field for the pion. This would not make any fundamental 

difference for the results derived in this paper, but it will we think make certain 

points clearer. We would expect va! to be also a good interpolating like a,A”, 

since in models like the quark model4 8 Al-L 
P Q! 

is proportional to V~ plus SU(3) 

breaking terms. (I n one specific quark model where the symmetry breaking 

Hamiltonian is proportional to u 8’ a A’ is proportional to va! for or = 1,2,3. ) /A a 

The only problem with using vat is that we do not know its normalization to the 

one pion state. We shall see how we can get around this problem by using Eqs . 

(1) and (2) together and getting a relation in which the unknown normalization of 

the va! *s is cancelled by the unknown ~7r scalar vertex. 
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Since in this paper we shall deal only with pions , i, j , k = 1,2,3, we simplify 

Eq. (1) and Eq. (2) by first defining the scalar density o(x) as 

u(x) E& uo+J-U8. 

Then instead of Eq. (1) and Eq. (2) we have 

(5) 

[Q$(t). &,t)] = 4 6ap vP(g,t), ol,p = 1,2,3 (2’) 

These last two commutation relations are the only ones we shall use in this 

paper. We should perhaps remind the reader that Eqs. (1’) and (2’) are also true 

in the o-model if one identifies vol with the unrenormalized pion field and (r 

with the unrenormalized u field. We stress here that our final results will not 

depend on the (T field or its matrix elements. 

As we mentioned in the introduction one can avoid using the va! Is and use 

apA”, in their place in the following way, First, one defines a new (T ’ from the 

commutation relation, 
t Q:(t), a,& W)] - i dap u w,q, and assumes that 

this (T’ is a local field. To calculate the commutator 
[ 
Q:(t), ~7 (x, t) 1 one now 

uses the Jacobi identity and the known commutator [Q;(t), Q;(t)] to get a result 

similar to Eq. (2 ), 
[ 
Q:(t) , d(x,t)] = -i 13~~ a,Ai(x,t).5 

We define the normalization constant, aT , of the va! field as 

< 0 v,(O) ‘i’p(s) ’ = * - I I 
1 

(2=) J2clo a7r %!p 

In our reduction formulae we shall make both the replacements 

a,/$@) - c#2$,(x) 9 
MNgA 

', = G 
nNN 

(6) 

(7) . . 

-7- 



vol W - aT 9,(x) (8) 

If we identify var with apAL as in Ref. 3, then in that case ax = c,mi . In 

that case Eq. (1 ) and Eq. (2 ) will remain unchanged with (T replaced by some 

(T’. Since we are only interested in the relative normalizations of vcll and u 

we shall not worry about cases where a, is zero and deal with a* as if it were 

finite. This will not affect our final answers. 

Our first step is to relate a, to the un7r vertex by the usual Fubini-Furlan 

trick. 6 We write 

From LSZ we can express f (T as 

f”(q2, k2; (q-k12) Qp - 
CT P2 

(27r)3’2 Jq (10) 

= i (CL2 -k2) 
f d4x eik*x ~0 T (apAL, u(O)) 

I 
r&q) > 

This is an identity as k2 - p2 and the usual PCAC tells us that f U is a slowly 

varying function as k2 varies from k2 = p2 to k2 = 0. Integrating Eq. (10) by 

parts we get the identity 

6 a@ fU(q2, k2; (q-k)2) cal.L2 
P*) 3/2 Jig- (11) 

-i& 2 
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In the limit as k 
CL 

- 0 the first term on the right is zero. The second term 

using Eq. (2 ) gives as k 
P 

- 0 and q re*mains on shell, 

fQ12> 0; p2) = - a9/cr (12) 

where the first two variables in f o always refer to the external masses of the 

pions in the n?17r vertex and the third variable is the momentum transfer variable. 

The constant ar was defined in Eq. (6) and C~ is the pion decay form factor 

which if one uses the Goldberger-Treiman formula is C~ = MNgA/GnNN. Both 

a7r and f” are in general unknown but the relation Eq. (12) will help us eliminate 

them from our final answers as seen below. (If one chooses vQ! E aPAL then 

in that specific case f cr = - rni . ) 

To get our consistency condition we define the off-mass-shell invariant n7r 

amplitude by . 

= b2 -.qz )(p2 - q; )$““x ewiqlox < ~~(44) IT(aP*$x)vy(0))l rp(q2) > 

Here qi = 942 = p2 and will not be varied in this section. As qi - p2 and 

2 2 
4y--+ 9 M as defined in Eq. (13) is guaranteed by the LSZ formalism to give 

the correct 7i7r amplitude, assuming we have chosen a a A’ and v that are 
PQ Y 

relatively local. (We have factored out the energy momentum conserving 6 

function and q3 = ql -I- q2 - q,. ) 
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Integrating the right hand side of En,. (13) by parts, we get 

i M(qqG, q3%q2P, qlQ) %P2iL?r = i slpol 2 
m3 m - rl$ lP2 - s,2) 

- (j-i2 - q$ b2 - qz)pxe 
-iq l x 

’ < “(j@lLQ 

, y+q2) > 6(x0) 0 

We now let both q1 - 0 and q3 - 0. The first term will be zero and the second 

term will after using Eq. (2 ) and Eq. (9) give us, 

lim 
41- 0 

lim M (~6, q3y; q,pI qIo) clil*2ap = 
93 -0 

- p4 f QJ2, /J2; 0) 6,y “PS l 

(15) 

Let us assume that f u is a slowly varying function of the external pion masses 

as q2 varies between zero and p2 and the same for the transfer variable, and 

write 

(16) 

We shall justify this approximation in detail at the end of the next section. As 

far as varying the external mass variables are concerned this is just the usual 

PCAC assumption. Varying the third variable, i.e. - the one in the u channel, 

could be more dangerous and we shall study it in detail later. 
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With Eq. (16) we can use Eq. (12) to eliminate fa and an from Eq. (15) and 

get 

2 
lim lim 

91 -0 q3-+o 
M (q46, q3Y; q2P, qla) = $ l dory 6~6 

7r 

We recall the iso-spin decomposition of M into the three amplitudes A, B, and 

C given by 

M (q4& q3Y; q,k qlo) = * “op 6y6 + B 6,Y 8/js + ’ &j ‘py (18) 

where 

A =A s,t,u; q; , etc., (19) 

and 

(20) 

4 

s+t+u= 2.l q; \ 

i=l 

In terms of A, B. and C our consistency condition in Eq. (17) becomes 

A s=p2, ( 
2 2 t = 0, u =p2; q; = 0, q; =/J , q3 = 0, qi ,p2 

B ( p2, 0, p2; 0, p2, 0, P”) = P2/CZ (21) 

c p2, 0, p2; 0, p2, 0, p2 = 0 . 

The Adler-Weisberger sum rule for 7rr scattering also has two external pion 

momenta taken to zero. However, it essentially gives a consistency condition 

on the derivative of the add ri~7i amplitude at v = 0. 
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One could easily repeat our calculation to get Adler’s consistency condition2 

for the ~7r amplitude with ql- 0 and q2, q3, s, all on the mass shell. We 

shall not do this here since the Adler consistency condition will be a special 

case of the general consistency condition to be derived in the next section. Adler’s 

consistency condition gives 

* b2, p2, cr2; 0, p2, p2, /t2) = B = C = 0 (22) 

To go from Eq. (21) and Eq. (22) to a statement about physical quantities 

such as scattering lengths one has to go through extrapolations which at first 

sight would seem quite dangerous. Weinberg’s method of extrapolation consisted 

of expanding A, B. and C in powers of s, t, u, and q: and keeping terms only 

up to first order in these variables. Crossing symmetry and Bose statistics 

require the off-mass-shell amplitude to have an expansion of the form 

A = a + b(t+u) + es -I- O(s2, st, . . . , q;q;, . ..) 

B = a + b(s+u) -I- et + . . D , 
(23) 

C = a + b(s+t) + cu + . . . , 

The main point here is that in Eq. (23) there could be no first order t&rms in the 

q: variables . 

In this approximation one can use Eq. (21) and Eq. (22) to determine a, b, 

and c. From Eq. (21) we get two equations 

a+~2b+~2c=0 , 

a + $2b.= ,LL~/c~ , 
(24) 
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and from Adler’s consistency condition , Eq. (22), we have 

a + 2p 

The solution of Eq, (24) and (25) is 

(25) 

a = p2/cf ; b = 0 ; c = -l/c: ; (26) 

where c r = MN$/GnNN- This is the same as the result obtained by Weinberg, 1 

where in his notation cX = Fa2. If one uses Eq, (23) to give the amplitude at 

threshold one gets the scattering lengths given in Ref. 1. 

However, there are several troubles with the expansion in Eq. (23). First, 

it is known to be divergent at threshold. Weinberg gets around this difficulty by 

assuming that the unitarity branch point is a weak singularity which allows him 

to use Eq. (23) at least as an asymptot.ic expansion up to and somewhat beyond 
. 

threshold. Since he gets small scattering lengths in the end this shows that his 

argument is self-consistent, but does not prove that the scattering lengths are 

indeed small. 

The strong consistency condition which we shall obtain in the next section 

will enable us to calculate the coefficients of the power series expansion up to 

second order in s, t, u, and qf2 . The remarkable result is that all the second 

order coefficients are not only small but also negligible within our approximation. 

III. A GENERAL COK%STENCY CONDITION ON THE PION PION AMPLITUDE 

In this section we shall extend our method to get a general consistency con- 

dition on the TX amplitude which gives restrictions not only at one point in the 

six dimensional space of the TX scattering off-shell variables, but in a three 

dimensional region. 
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We write for the off-shell X-X amplitude the following reduction formula 
3 .i 

. 

- i (2n)4 6(ql + q2 - 93 - qq) M ts,s, 937 

J 
d4x,. . . d4x4 exp (-iqI 0 x1 - iq2 . x2+iq3*x3+iq4*x4) 

(XI) 3(x2) 5(x3) v&x4) o ’ l 

(27) 

Again in the limit where all qf - p2 , M as defined above gives the exact 7rr 

amplitude. 

If we integrate Eq. (27) by parts we get the identity 

i (W4 will + 92 - 43 - q4) M <cf& q3x q,P, qlQI) a; CR2 

. d4x4 S(X~ - x4 exp(-iq1 l x1 - iq2. x2; iq3; x3 + iq4 * x4) 

(xl), vp(x2) 1 0 ’ 

- 

- permutations of the last term over the v’s. 

In the limit q1 - 0 the first term in Eq. (23) vanishes. The other three 

terms, after using the equal time commutation relation, Eq. (l’), will give us 

three terms proportional to the u7rr vertex. 
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We obtain I 

-i lim 
91--c 0 

M tq4b c13y ; qf, qp) ai cT 

(29) 

+ iN2 --qt) aif” (4& g3, 2* (42 - 43j2) %!sspy ' 

where to 0btai.n Eq. (29) we have used the identity 

a: f” (q2, k2; (q-k)2 
) 

6,1p 
(30) 

= _ (~1~ _ k2) w2 _ q2)fi4xd4y e-iqoxe+ik*Y 
< o/T(o(O)vc,(x)~~(~))I 0 ’ l 

, 

This follows from applying the reduction formula directly to Eq. (9). ‘7 

In the limit as $ - 0 we have the following relations between the six 

variables of TT’~T scattering, 

9.2 = 43 + (4.J ; (31) 

and hence when 8= 0, 1- 

t ZZ (42 - ZZ 

u = (42 - s,)2 = $ 0 

- 15 - 
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Thus Eq. (20) becomes 

lim 
91-t 0 

M (q.& q3Y ; Ci2P, qlQ) = - 

us U’ 
- ” (p2- t)q-J $y6py 

7r 71 
(33) 

We now use Eq. (12) to eliminate aX from Eq. (33) and get a relation between 

the off-shell ~71 amplitudes and the urr vertex. In terms of the amplitudes 

A, B, and C we now have 

A (s,t,u; q; = 0, 9; = s, 9; = t, q; = u) = f OS2 - s) 
f O(t,u;s) 

C lr f c(jJ2, OP2) ’ 

B (s,t,u; q; = 0, q; = s, q;=t, qi=u)= (34) 

c (s$ ,u; 4; = 0, q;=s. q;=t, G=u)= -L- e2-u) fU(s, t;u) 

c2 f”(p2,0 iP2) 
l 

lr 

The functions f u are by definition symmetric in the first two variables, i. e. - 

the external pion masses, so Eq. (34) is manifestly crossing symmetric. What 

we have succeeded in doing so far is to show that when b” 1 - 0, then if one sets 

the other three external mass variables equal to s, t, u respectively, one gets 

a relation between the off-shell amplitude and a ratio of the u7r7r vertex at two 

different points. Thus the problem reduces to a study of how fast f u varies in 

all three of its variables. 
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We shall restrict ourselves to the domain 0 5 s, t,u 5 p2 and show that 

in this region 

f”W; s, 2, 1 ; 0 < s t u <bL2 
fU(p2,0;$) - ’ ’ - l 

(35) 

The fact that f “(x,y;z) is slowly varying in the first two variables is actually 

part of the PCAC assumption (or the assumption that v is a smooth interpolating 

field) as long as x and y do not vary much from their on mass-shell value, 

x =y =p2. This can be justified by pion pole dominance arguments similar to 

those used by Weisberger. 
8 For example if we let g” be given by 

g”(1-12, k2; (s-W2) 
6 

PI 3$&-=i e J- ik*x d4x < 0 /T (dO)OJx)) / ~/+s) > , 

q2 =p2. (36) 

Then as, a function of k2, for fixed (q-k)2, go has a pole at k2 = p2 and the 

residue of that pole is just f”ib2, p2; s), where s z (q-k)2. The PCAC assump- 

tion tells us thatfor 0 < k2 < p2, and s fixed and small, the pion pole term 

dominates over contributions from other singularities in the k2 plane. We get 

g”b2,k2; s) = f”oJ2 ,lJ2; q 
k2-p2 ’ 

0zk2(p2 . 

But comparing Eq. (36) with Eq. (10) we get 

tP2 -x) aP2, x; s) = fQ.L2,x;s) , 

and hence 

fUlP2, x; s) 2. f”cu2, /J2; s); 0 5 x 5 p2. 

(37) 

(38) 
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. . 

Extrapolation in the other pion mass variable can be handled in the same way. 

To a good approximation we can therefore write 

fU(x,y; s) = fU&2,/A2;s), 0 ( x, y 5 /A2 . (39) 

The behavior of f u in the third variable, the one corresponding to the square of 

the (T four momentum, could in principle be much more dangerous. Indeed one 

would argue that a strong rr S-wave, I = 0, interaction could give the vertex 

f Q2, p2 ; s) a large derivative in s at s = 0. Fortunately, dispersion theory 

gives us a fairly reliable way of estimatin, 0 the effect of rescattering on a vertex. 

The Omnes formula for f u would give us 

where 6”, is the S-wave, I = 0, 7171 phase shift. The slope of f acu2,p2; s) at 

s = 0 could be large either because of a large scattering length or because of a 

low mass resonance in the B = 0, I = 0, channel. Let us first estimate the effect 

of a scattering length on the slope. Starting with f- 

vf- 

* cot 6: = l/a#, we 

s4/l2 
use the expression 61(s) r ao,u 7 in Eq. (40) and obtain for the deriva- 

tive of f O, 

1 dfu 2 2 

f Q2,P2, 0) 
’ ds l.P ,I-1 ; s) 

” a$l fJiii ds’ Y 5 
- 7 

s=o 
fi s,2 - Q-4 ’ 

4P2 

Thus the ratio in ‘Eq. (35) is approximately given by 

f”ct,i; s) u I= 
f Q2, O;/J2) 

f?jA2,/J2; s) z 1 + ao 2 

f”@2,P2;~2) 
cp- (w2) ; 0 _ <szp l (42) 
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I 

We note that the form we have used for Sz in Eq. (41) does not vanish as 
. 

s --, CO as it would have if we had included an effective range. This makes our 

correction term in Eq. (42) larger than it actually is. Nevertheless, we easily 

see that even if a0 is as large as ,U -I, the correction term in Eq. (42) is at 

most 1/6~ = 0.05, as . s varies in the interval 0 5 s ( p2. In the next section 

we shall keep the second term on the ri&t in Eq. (42) in our calculation of the 

scattering lengths and show that it only changes Weinberg’s result by a few 

percent. Even including these corrections our final result for a0 will still be 

a 
0 

2 0.20 /.A For the region 0 Fs,t,u ( p2 one can thus safely neglect the 

second term in Eq. (42). 

If there exists an actual (T -resonance, in the Q = 0, I = 0 channel, then the 

correction to Eq. (35) will be of the form 

?--lk.dA 02 2 . 
z fUtp2, P2, 1+ (s -p2) 0 

0) 
( 

2 
% 1 ;ozs,t,u (/A2 LI (43) 
mU 

There seems to be no evidence for a narrow (I’ < 100 MeV) u particle with mass 

lower than 600 MeV.’ Thus we can also neglect the correction term in Eq. 

(43). The only possibility left is for a very broad 7r”i~ resonance in the region 

below 600 MeV. But the effect of such a broad resonance (I’> 200 MeV) on the 

slope of f uat s = 0 will be very similar to that of a large scattering length 

which we have already shown does not affect our results appreciably. 

The consistency condition in Eq. (34) can now be written as 

A (s,t,u; q; = 0, q;=s, q;=t, qi=u) = - s); 0 zs,t,u 2 p2 ; 

B (s,t,u; qf = 0, q;=s, q;=t, $=u) z -L o.L2 -t) , 

Cit 
(44) 

c (s,t,u; 9; = 0, q;=s, q;=t, q;=u) z 



r. 

As we have mentioned earlier these consistency conditions are much stronger 

than the usual ones which hold only for one point; these hold for any s, t, u that 

lie in the cube 0 < s, t, u 5 p2, if the masses are restricted as in (44). 

IV. THE POWER SERIES EXPANSION OF THE PION PION AMPLITUDE 

We use the consistency condition (44) to calculate the ~7r amplitude up to 

second order in the variables s, t, u and qfO 

We expand A, B, and C in a power series of the variables s, t, u, qp, 

where u = c q; -s- t. To second order in these variables, crossing 

symmetry and Bose statistics require the expansion to take the form 

2 2 2 2 
A@, t, u; qls q2> q3, q4) 

ZZ a + b(t+u) + cs + d(t+u)2 + etu + fs2 -t g(t+u) s + h c qf qf; 

i#j 
i>j 

(45) 

and B and C are obtained by exchanging s and t in (45) or s and u respectively. 

No terms linear in the q: variables appear. Also terms of the form $ s, qf t, . 

etc., can after using crossing and Bose symmetry be reduced to forms already 

in (45). Before applying (44), we note that there is one remark we can make in 

general about the coefficients a, b, c, D. 0, g, h. There is no a-priori reason 

to assume that any of the second order coefficients are small except for 11. For 

if. h is not small then the amplitude will vary strongly with the external pion 
- 

masses a situation which is in contradiction to the PCAC philosophy. For 

example, if this were the case and h was large then the Adler-Weisberger sum 

rule for ~7r scattering would be practically useless even if we were someday 

able to measure the ‘~i’i~ total cross sections exactly. 
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Let us use (44) to determine the coefficients a, b, c, . . . , h. We restrict 

2 
ourselves to the domain 0 5 s, t, u I ,u D 6:omparing (45) with q: = 0, qi = s, 

qi = t, qi = u, with (44) we get 

a -I- b(t+u) -t- cs f d(t&)2 -I- etu -t fs 2 + g(t+u) s + h( st+tu+su) 

l (IA2 - s); ZZ- 

C2 
OS s, t, us p2. 

3-r 

This gives us 

2 2 
a=p /CT , 

b=q , 

c=.A- , 
Cf 

d=f=O; and h=-e=-g 0 

(46) 

Pb 

Note that a, b, and c still have the same value obtained by expanding only up to 

first order. Only one constant is left undetermined in the second order terms; 

and that one is h which as we mentioned earlier we expect to be small. 

In order to estimate the scattering lengths ao, and a2 we need to assume 

that the expansion in (45) is at least numerically good up to s = +2. In 

extending s -+ * 2 we shall keep track of the correction terms in (42) in order 

to make sure that they do not make important contributions. 

If we keep the correction terms from (42) in the consistency condition (44), 

‘then instead of (47) we obtain for the coefficients 

a = 



ad” c=-l l-I_ 
c2 ( ) 3n ’ 

7r 
(48) 

and d=O; e=g=-h . 

We have mentioned earlier that h must be small compared to the dominant 

lower order terms. This indeed has to be so if we are to be consistent with the 

approximation used in (3 7) and (3 S) . For example, let us consider in detail the 

7r” 7r04 r” r” amplitude, F , given by 

F=A+B+C 

(49) 
2 

3A 
I=O+ 2 I=2 

SA 0 

Let us fix our attention on the symmetry point s = u, and t = 0. Then by using 

the arguments of reference 8 and considering dispersion relations in the external 

mass variables qf and qt and assuming dominance by the double pion pole we 

get 

F(s=u, t=O; 0, p2, 0, ,ti2)r F(s=u, t=O; p2, p2, p2, p2) . 

A similar result was written down for the even nN amplitude in Ref. 3. The 

argument is very similar to that used in (36) - (39) above and one can refer to 

Ref. 8 for details, What we have done here is to keep t = 0 fixed, and s = u, 

(V = 0, fixed) and extrapolate two external mass variables, qf and qi , from 
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I 

p2 to zero. On the ot,her hand we can cnmpute both sides of (50) from our 

expansion (45). For F, using the coefficients in (47), we have 

2 2 2 
F(s,t, u; qf, q2> q3’ q4) =3a+ 4p2c - Sh(st + tu -!- su) 

(51) 

-I- 3h c 
i>j 
i#j 

where always u = c 2 q. - s - 1 
t. We now use (51) to calculate the difference 

i 

F(s=u, t=O; p2, p2, p2, p2) - F(s=u, t==O; 0, p2, 0, /AZ) G 6hp4. (52) 

Thus to the extent that (50) is a good extrapolation we conclude that 6M4 must 

be small when compared to the dominant term in (51) which is (3a + 4u2c) = -,‘/cf, 

Here 

LL 
c2 _, 7r 

P2CZNN 
2 2 

MN gA 

. 

At the end of this section we shall write down a sum rule for h and discuss its 

magnitude further, however it is clear that to be consistent with our approximations 

on f “earlier we must neglect h. We can now compute the scattering lengths. 

The S-wave scattering lengths are related to our expansion coefficients by 

a r 
0 

- & [5a + 12$2c -c- 48fp4 + 30b4] , 

(53) 
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We have kept both the terms proportional to f and h in (53). Following our 

estimate of 6b4 when compared with p2/cz , we see that 301~~ is also negligible 

when compared with (5a + 12~~ c) z -7 G . Even if Sk4 was as large as 20% 
C7r 

of p2/cE keeping the term 301~~~ in (53) will only change Weinberg’s result by 

13% and raise the scattering length at most to ao” 0.23 1-1-l. 

We thus have, s’etting h = 0 

a E 
0 - &j [5a + w2 c -t- 48fp4] . V-W 

Substituting the values (48) for a, c, and f we get an equation for a0 which we 

can solve and obtain 

a g 
0 

1 oL 
;iE c2 ( ) 7r 

: -1 

l- 2?i!P2 
192r2c2 7r 

. 

The numerator of this last expression is exactly Weinberg’s result. The quantity 

(29p2/192a2cz) is about 0.04. Therefore keeping the correction terms in (48) 

will only change the result by 4%. We get 

a g 0.2/A -1 
l 

0 (55) 

This means that the ratio in (42) is indeed close to unity and the quantity _ 

aa/Ga is of the order of 1%. The coefficients are therefore given by (47) to a 

good approximation. 
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In a similar way the corrections terms do not affect a2 in any appreciable 
. 

way and one still gets 

2’ -1 
a2 m (56) 

In closing we shall write a dispersion relation for the forward nor0 -+ n”7ro 

amplitude F and show how it can be used to give a sum rule for h. It is more 

convenient to use the laboratory energy v instead of s as a variable, where 

S = 2/J2*2vl* a (57) 

For t = 0 the expansion for F(v) for physical masses, keeping h, is 

F(v) - 3h (4~~ -s) s 

2 
Z’ 0 I-I -!- 12hfJ2 (v2+ $ , pj’p . 

c2 7r 

This expansion is good, even convergent, for 1 I v < ~1 0 We note that at the points 

v = t i p/$%, F(v) is through (58) given by-p”/cz and not dependent on h. 

We can therefore write a twice subtracted dispersion relation for F(v) and if 

we choose the subtraction points to be v = * i p/& , the subtractions will 

not depend on h. We get 

ImF(v’) v’ dv’ o 
12+ jJ2/2)(v’2-v2) 

(59) 

P iv 
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The expansion (58) is certainly good at v = 0, and it gives 

F(0) 2 - p2/c; -I- 6 b4 . 

We see that 6h,u4 is just the difference between F(v = 0) and F(v = ip/&). 

Our assumption is that this is small compared to the value of F at either of 

these two points. Comparing (60) with (59) we get a sum rule for h 

2 a3 
S~,U~ = $-- 

J 
Im F(v’) 

v 1 (vT2+ /J2/2) 
dv’ e 

I-1 

(60) 

(61) 

We recall that F is the physical forward fully symmetric amplitude and only 

I = 0 or I = 2 contribute to ImF. 

The first thing we learn from (61) is that h is negative; ImF in our 

normalization is negative. The contribution of resonances like the f” to h 

through (61) will certainly be negligible for our purposes, so will that of any 

high mass, i.e. > 500 MeV, resonance. If a low energy narrow resonance 

exists say in the Q = 0, I = 0 channel it could change our result appreciably but 

it is hard to see how it can increase the scattering length up to more than 

o = 0.3/L -1 a at worst. Such a resonance would make the Weisberger extrapolation 

quite bad for ~7r scattering, and it has of course not been established experimentaliy.’ 

Many of the theoretical arguments for its existence like the analyses of Kli4 decay lo 

and -r-decay 11’ have lately been rendered unnecessary. The only remaining 

question is the saturation of the Adler-Weisberger T’iT-sum rule. 12 That sum rule 

has one less power of v in the denominator than in (61) and it could easily be 

saturated with, in addition to known resonances, an 1 = 0, I = 0 resonance of 

mass > 600 MeV. It does not necessarily force us to predict a low lying resonance. 
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There is one contribution to (61) which might be dangerous and whose effect 

we can approximately check. Namely, the contribution from ImF(v ‘) near 

threshold that are related to the P = 0, I = 0 scattering length. This will give 

a contribution proportional to at from the low energy part in (61) and that 

when substituted in (53) will change the functional form of our resulting 

equation for a oD To make sure that this will not appreciably change our results 

we divide the integration range in (61) into two parts a 5 v 5 6~, and 

~,u_<v<co. In the first interval we approximate ImF by the contribution from 

I! = 0, I = 0 channel and use 6:” J- 
s-4 s a# and get 

co 

Sk4 “= _ 2az p2 + p2/n 
J 

ImF (v’) dv’ . 

6~ 
v ’ (v I2 -!- #u2/2) 

(62) 

If we ignore the second term in (62) and assume it to be a fraction of ,u2/ct z 8Tr/9, 

we obtain on substituting (62) into (53) 

a 
0 

- 10 at p2 . 
I 

This last equation has two roots for ao. One will,to within 20/o,give us back the 

(63) 

same answer as before, a0 g 0.w The other root is ridiculously large, 
-1 

a 
0 

= lop , and clearly unphysical. The latter root will also give a very large 

value for a 2’ 
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