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SUMMARY 

he aim of these notes is to give a self-contained exposition of the der- 

solution of an infinite-component wave equation. They cover some of 

s of recent work by C. Itzykson, V. Kadyshevsky, and the author [1,2,3]. 

First we sketch the derivation of a three-dimensional quasi-potential 

in momentum space involving integration over the mass-shell hyperboloid 

We show that for the relativistic Coulomb potential V(p,q) - 
(p _ q)2 

~ation can be written in an equivalent algebraic form in terms of rational 

ns of the generators of a degenerate ("metaplectic") representation of 

~. The solution of the bound-state eigenvalue problem is carried out by re- 

, the representation of SO(4,2) with respect to the irreducible representa- 

of its subgroup S0(3) @ SO(2,1) and by an extensive use of the Bargmann 

zation of the discrete series of unitary representations of S0(2,1). 
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INTRODUCTION 

This paper consists of three parts. First, I will try to persuade 

you that the equation we are going to solve has something to do with physics. We 

will consider a class of relativistic quasi-potential equations for the two-body 

problem and will single out a simple equation of this class corresponding to the 

scalar Coulomb interaction. Second, we shall show that our simple equation is 

equivalent to an infinite-component wave equation written in terms of the genera- 

tors of a unitary representation of the conformal group S0(4,2). Finally, we 

shall solve the arising eigenvalue problem by applying some known tools of the 

theory of representations of the pseudo-unitary group. 

In Section i we will have to use, without much explanation, some of the 

physicists' jargon (which is introduced in the first few chapters of any textbook 

on quantum field theory). The rest of my talk (Sections 2,3) is practically self- 

contained and does not require any special knowledge of physics. 

i. QUASI-POTENTIAL EQUATION FOR THE RELATIVISTIC 
TWO-BODY PROBLEM [i~2~3] 

i.i 01d-fashioned Perturbation Theory and Feynman-Dyson Rules 

We will be concerned in what follows with the scattering and bound-states 

problems of two relativistic particles. 

Let us have two equal-mass particles of initial (4)-momenta ql,q 2 and 

final momenta pl,p 2. Taking into account the energy-momentum conservation 

(Pl + P2 = ql + q2 )' we can express Pi 

center-of-mass momentum 

P = Pl + P2 

and the relative momenta 
i 

P = ~(Pl - P2 )' 

and qi in terms of three 4-vectors: the 

= ql + q2 ' (i.i) 

i 
q = 2(ql - q2 ) " (1.2) 

2 2 = 2 2 = m 2 we have the identities On the mass-shell, i.e., for Pl = P2 ql = q2 

1 p2 p2 1 p2 q2 m 2. 
pP = qP = 0, 7 + = 7 + = 

(We use the system of units for which c = ~ = i throughout these notes.) In the 

framework of quantum field theory, to each particle one usually makes correspond a 

local field operator. So, we associate with particles i and 2 the complex scalar 

fields ~l(x) and ~2(x), of mass m and assume that their interaction is given 

by the local Hamiltonian density 

~x) = -g(:~(x)~1(x):+:~(x)~2(x):)~(x) , (1.3) 
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where : : is the sign for the Wick "normal" product 

:~*(x)~(x): = lim [~*(x + y)~(x - y) - <01~*(x + y)~(x - y) 10>] , 
y÷0 

(I0> is the "free vacuum") and ~(x) is a hermitian field of mass ~. Then, the 

scattering amplitude can be written as a (formal) power series in the coupling con- 

stant g. There have been two different presentations of this formal expansion: 

the old-fashioned (non-covariant) perturbation theory and the modern Feynman-Dyson 

covariant technique. The second one is much more familiar nowadays. Each term of 

the series is represented in this approach as a sum of multiple integrals corre- 

sponding to the so-called Feynman diagrams (see Figure i). 

i 1 P/ 
Pl t £" ql Pl ~" < ql Pl < ql 

la ib ic 

FIGURE i 

An important property of the Feynman rules is that they involve 4-momentum conser- 

vation in each vertex of the graph (a factor g~(p + k - q) corresponding to a 

vertex with momentum q on the incoming line and momenta p and k on the out- 

going lines). This tempts the physicists to interpret individual Feynman graphs as 

multiple emission and absorption amplitudes (although, strictly speaking, only the 

sum of all graphs for a given process has a well-defined physical meaning). Such 

an interpretation, however, only makes sense for off-mass shell intermediate par- 

ticles, since, according to the Feynman rules, to an internal (say wavy) line with 

mass ~ and momentum k corresponds a factor i (integration being 
~2 _ k 2 _ i0 

carried out subsequently over all 4-dimensional internal momenta k), and this 

factor becomes infinite on the mass shell (i.e., for k 2 = ~2). 

More recently [4] a graphic picture was also given for the old-fashioned 

perturbation expansion. To describe it, we associate with any Feynman graph with 

N vertices N~ new graphs constructed in the following way. We start with the 

set of all oriented graphs with the same picture as the original one and with all 

possible enumerations of the vertices i, ..., N. Every internal line is oriented 

toward the vertex with smaller number. Further, we let a spurion (dotted) line 

enter vertex i, connect 1 with 2, 2 with 3 and so on (always oriented toward the 

vertex with larger number), and finally go out of the vertex N. For instance, to 

the second order Feynman graph of Figure la correspond the two diagrams of Figure 2. 
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P2 < 

Pl<, 

i 

E l 

<2 < I" ~-. 1 q2 2 .~ ~" ~ ~ q2 P2 < < 

z ql Pl < ~. < ql 
1 2 ~ 

E 2 

2a 2b 

FIGURE 2 

Here to the oriented wavy line with mass ~ and momentum k corresponds the "on- 

mass-shell propagator" 

11 f°r k0>01 
~t(k )~ = e(k0)~(k2 _ ~i), where e(k 0) = (1.4) 

0 for k 0 < 0 

However, the energy of the particles (represented by solid lines) is not conserved, 

the conservation law in each vertex taking into account the energies of the dotted 

lines. For instance, to vertex 1 of the diagram in Figure 2a corresponds a factor 

- $ 6(q I + k - Pl + (El - <)n) , 

where n is a 4-dimensional unit vector in the direction of the time axis. Final- 

ly, to an internal dotted line of "energy" E we make correspond the propagator 

1 1 
27 < - i0 " (1.5) 

Integration is carried out over K from -= to +~ (along with the integration 

over the internal momenta k). 

Remark. For those familiar with the formalism of quantum field theory we 

mention that the splitting of a Feynman graph of N vertices into NI non-covari- 

ant graphs (containing dotted lines) corresponds to the decomposition of a time- 

ordered product of N local operators H(xl) ... H(XN) into N~ ordinary products 

(with appropriate 8-functions). On the energy shell, i.e., for E l = K 2 = 0, 

the sum of the contributions of these Nf graphs coincides with the (on-mass-shell) 

contribution of the original Feynman graph. 

Example. The contribution from the two diagrams of Figure 2 is 

- )n)T(2) i 6(Pl + P2 - ql - q2 + (E2 El 
(27) 2 

( 1 . 6 )  

where 
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1 1 

<i + q~- P~ + e - i0 
Pl-ql Pl-ql 

+__11___ 1 ) 
K - i o  

~p2-q2 i p2-q2 

where ~k = /p2 + k2 . On the energy shell, for <I = K2 = 0, ql - Pl = P2 - q2 

(1.7) 

the right-hand side of Equation (1.7) reduces to the covariant Feynman rule for the 

on-shell amplitude T: 

T(2) = g2 = $2 

-- 2 - (p~ - q~)2 - i0 U2 - (Pl - ql )2 - i0 
Pl-ql 

1.2. Off-mass-shell Bethe-Salpeter Equation and Off-energy-shell 
Quasi-potential Equation for the Scattering Amplitude 

Two types of linear equations for the scattering amplitude have been con- 

sidered corresponding to the two types of expansions discussed in the previous sec- 

tion. Historically, the first one is the Bethe-Salpeter (B-S) equation which was, 

actually, first proposed by Nambu (1950) (for a complete bibliography on the B-S 

equation see the recent review article [5]). It is an off-mass-shell equation which 

originates from the Feynman-Dyson rules. In order to write it down we need the 

notions of the "complete Feynman propagator" A~(p) and of the sum of all 41 + ~2 

irreducible graphs Ip(p,q). 

The complete (sometimes also called modified) Feynman propagator A~(p) 

is defined as the sum of the contributions of all Feynman graphs to the two point 

Green's function (see Figure 3). 

- +... 

FIGURE 3 

where 

A (p) 

f 

g2 = f(x)dx 1 + j~ + 0(g4) 

m 2 _ p2 _ i0 (2~) 4 (m+p)2 (x - p2) 2(x - p2 _ i0) 

is defined by the phase-space integral 

!7 6~(p - k)6~(k)d4k = 8(p0)O(p2 - (m + ~)2)f(p2) 

i f(x) =~x [x2 - 2(m2 + ~2)x + (m2 - U2)2]I/2 

, (i. 8) 

(1.9) 

Remark. The graphs in Figure 3 correspond in general to divergent inte- 

grals (this is for instance the case with the second order term whose contribution 
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is written explicitly in (1.8)). We choose the renormalization in such a way that 

the regularized integrals vanish for p2 = m 2 together with their first derivatives. 

i 
This permits cancellation of the pole terms coming from the two 

(m 2 - p2 _ i0)2 

external lines in all graphs of Figure 3 except the first one. Hence, according to 

our definition, only the first term in the expansion (1.8) has a pole-type singu- 

larity for p2 = m 2. 

A connected diagram D of the 41 + 42 (elastic) scattering process is 

called reducible (or more specifically 41 + 42-reducible) if it can be decomposed 

into two graphs D' and D" of the Same process connected by one 41 and one 42 

lines such that D' contains both incoming lines of D (with momenta ql,q2 ) and 

D" contains both outgoing lines of D (with momenta pl,P2 ) (see Figure 4). 

42 p21  q2 

FIGURE 4 

Otherwise, if this is not possible, the diagram is called ~i + ~2 -irreducible" 

According to this definition the graph shown in Figure ib is reducible while the 

graphs of Figures la and ic are irreducible. We denote the sum of the contributions 

of all irreducible graphs by Ip(P'q)~(Pl + P2 - ql - q2 )" 

Let Tp(p,q) be the off-mass-shell 41 + 42-scattering amplitude (in 

other words let Tp(P'q)~(Pl + P2 - ql - q2 ) be the sum of all connected Feynman 

graphs of the ~i + 42-elastic scattering without radiative corrections on the ex- 

ternal lines). Then the B-S equation can be written in the form 

Tp(p,q) = Ip(p,q) - i ~ Ip(p,k)A~(½P + k)A~(½ P - k)Tp(k,q)d4k . (i.i0) 
(2~) 2 

It can be checked directly that the iterative solution of Equation (i.i0) coincides 

with the sum of all Feynman graphs for Tp. Equation (l.10) is a source of non- 

trivial approximations for Tp. Even if we restrict ourselves to the first terms of 

the expansions in g2 for A F and Tp we find that the solution of (i.i0) has g 

dependent poles as a function of p2 which never occurs in any finite order in per- 

turbation theory. These poles are interpreted as the squares of the masses of the 

two-particle bound states. They coincide with the eigenvalues of p2 for which 

It should be realized that such an interpretation is not a consequence of the 
principles of quantum field theory. We shall discuss below the advantages 
of an alternative definition of the bound-state energy eigenvalues. 
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the homogeneous equation 

- -i ~ ~(p,k) ~e(k)d4k (i. Ii) [g~(½ P + p ) A ~ ( ½ P  - p)] l~p(p) = (2~)  2 

(corresponding to (i. I0)) has a non-trivial solution satisfying certain boundary 

conditions. 

Equation (i.ii) has a number of undesirable features as compared to the 

non-relativistic Schr~dinger equation (for a concise discussion of the diseases of 

the B-S equation see the elegant paper by Wick [6]). First of all, it involves a 

fourth coordinate--the relative energy Po(ko) (or the relative time in the orig- 

inal B-S formulation), which does not have a clear physical meaning. Its presence 

makes obscure the non-relativistic limit of the B-S equation and leads to extra 

(unphysical) solutions, the energy eigenvalues (W 2 = p2) being labeled by one 

more quantum number than in the Schr~dinger equation. This point is clarified by 

the Wick-Cutkosky model [6]--the only exactly solvable example of the B-S equation 

we know. (In this example [A~(k)] -I is replaced by (AF(k))-I = m 2 - k 2 and 

g2 
Ip(p,q) is given by (minus) the scalar Coulomb potential Ip(p,q) = .) 

_(p - q)2 

If g2 belongs to a certain interval it has been shown that some extra energy 

eigenvalues do in fact appear (for more details see Reference [3]). In the lowest 

order approximation with respect to the coupling constant g (which has only been 

considered in practice) the operator on the left-hand side of (i.ii) is a fourth- 

order polynomial in p (i.e., a fourth-order differential operator in coordinate 

space). This is another source of extra solutions of the B-S equation. No prob- 

abilistic interpretation is possible for the wave-function #, since it is not 

normalizable. 

The three-dimensional "quasi-potential" approach to the two-particle bound 

state problem, based on the off-energy shell old-fashioned perturbation theory (see 

[7,1]), seems free of all these difficulties of the B-S equation and our further 

discussion will be based on it. 

First of all, we choose the unit vector n, of the time axis (which 

appeared in the formula of the old-fashioned perturbation theory) along the center 

of mass momentum P. In this frame, taking into account the conservation law 

Pl + P2 - Kin = ql + q2 - K2n ' (1.12) 

(see (1.6)) and the mass-shell condition 

we can write 

2 2 2 2 = m 2 
Pl = P2 = ql = q2 ( 1 . 1 3 )  

= 0 p0 0 = q0 . 
= -e2 ~' ~I = -~2 = ~' Pl = P~ = ' q~ = q2 ' 

Ip01 = E~ = m/~+ ~2 ' P0 - i/2 <I = q0 - 1/2 <2 z E . (1.14) 

Further, we introduce the notion of an irreducible graph in the Kadyshevsky diagram 
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technique. We call a graph D, corresponding to the old-fashioned perturbation ex- 

pansion of the ~l~2-elastic scattering amplitude, irreducible if it cannot be split 

into two solid-line connected diagrams D 1 and D 2 in the way shown on Figure 5. 

PIG ~ / ~  j ql 

FIGURE 5. Reducible Graph 

We denote the sum of all irreducible graphs (which do not contain radiative correc- 

tions on external lines) by 

-VE(P'q)6(Pl + P2 - Kin - ql - q2 + K2n) " 

Finally we define the total Green's function 

2EkGE(k0)~(K 1 - K2)6(k - k r) , 

as the sum of all solid line disconnected self-energy diagrams of the (~l~2)-scatter- 

ing amplitude with the following property: the line 41 with (incoming) momentum 

k = (k0,k) (and with all possible radiative corrections) may be connected with the 

line 42 with (incoming) momentum 

terms in the expansion of GE(k 0) 

l {  1 
2EkG(2)(k0) = 4-~ k 0 - E - i0 

+ (~)2 ~ f(x 2 + m 2 - k 2) 

x0(k0) 

(k0,- ~) only by a dotted line. The first two 

(with respect to g2) are given by 

(l.15) 

(x + o i  2k0 - 2E)(k~ + x) + xk~ k 2 dx} 

(x 2 - k2)2[(~--Xu--z + k0 - E - i0) 2 - 
0 

where x0(k0) = [(m ÷ ~)2 + k2]i/2 = (2m~ + ~2 + k~)i/2 and f is defined by 

(1.9). The solid-line connected off-energy-shell scattering amplitude TE(p,q) 

(without radiative corrections on the external lines) satisfies the "quasi-potential" 

equation 

rE(p,q) + VE(p,q) + ~ VE(P,k)GE(k0)TE(k,q)6:(k)dbk = 0 . (1.16) 

In order to obtain the corresponding homogeneous equation we assume that 

there exists an r-fold degenerate (r ~ i) bound state of mass 2B < 2m in the 

~l~2-system. Furthermore, in analogy with the Bethe-Salpeter equation we postulate 

that the scattering amplitude TE(p,q) has a simple pole for E = B. In the neigh- 

borhood of this pole we put 

i ~ ~Ba(P)~Ba (q) 
GE(P0)TE(P'q)GE(q0) = ~ B E iO a= I - - (1.17) 

+ regular terms for E---> B , 

where ~Ba(P) will be interpreted as the wave function of the bound state of mass 

2B and other quantum numbers specified by a. Inserting (1.17) in Equation (1.16) 
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and comparing the residues for the pole E = B, we obtain 

r 

[¢Ba(P ) + GB(P0 )~ VB(P,k)¢Ba(k)6 (k)d4kl~Ba(q) = 0 . 
a=l 

into account that ~Ba(q) are linearly independent we find the following Taking 

homogeneous equation for each of the wave functions CB(p): 

[GB(P0)]-ICB(p ) + ~ VB(P,k)¢B(k)6~(k)d4k = 0 . (1.18) 

The normalization condition for CB may be also obtained from Equation (1.16) by 

first applying to both sides the integral operator 

, ,) ( ' + , 
(KF)(p) = ~ TE(P, p )GE(P0 F p )6m( p )d4p ' 

and then inserting (1.17) and comparing the residues for 

JT~Ba(kl){ - ~B [~-~ (GB(kI0)-I2EkI@(~I - ~2 ) 

¢Bb(k2)6~(kl)6~(k2)d4kld4k2 = ~ab " 

Equation (1.18) does not have the defects of the Bethe-Salpeter equation discussed 

above. In particular, it has a straightforward (and transparent) non-relativistic 

limit. 

E = B. The result is [8]: 

+ VB (hl '~2) ] 1 
(1.19) 

1.3. A Simple Model: The Scalar Coulomb Problem 

In the lowest order in 

P0 (E - P0)¢E(P) = ~ ~ V(2)(p,k)¢E(k)~m+(k) d4k , 

where according to (i.7), 

V~2)(p,q) = 

g the bound-state Equation (1.18) has the form 

(1.20) 

$2 
+ io) ' (1.21) 

~p_q(2E - PO - qo - ~p-q 

~k = /~2 + k2 

The "potential" (1.21) is quite complicated so that Equation (1.20) does not allow 

an exact solution even in the limit of zero-mass exchange (~ = 0). In what follows 

we shall study the model equation in which V~ 2)- is replaced by the relativistic 

scalar Coulomb potential 
g2 

V(p,q) = (1.22) 
(p _ q) 2 

and the integration is carried over the two-sheeted hyperboloid k 2 = m 2 (0(k 0) 

being replaced by c(k0) = 8(k 0) - @(-k 0) in the right-hand side of Equation (1.19)). 

Let us make a few remarks about the place of this model in the study of 

the relativistic two-body problem. 

Originally, back in 1963, Logunov and Tavkhelidze [9] have postulated the 

following three dimensional quasi-potential equation 
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(_k,1) 

T E (~,~) + V E (~,~) + ~  V E -  (~,k)_ TEk d3~2E k = 0 (1.23) 
q q q E~ - (Eq + i0) 2 

(we have changed the sign convention for V adopted in Reference [9] in order to 

be consistent with the non-relativistic limit for the potential). This equation 

differs from our Equation (1.16) both in the Green's function and in the potential 

(the second order off-shell amplitude and potential being defined by 

T~21(~,~ ) = _V~21(~,~) = $(21 (1.241 
q q we + (£ _ ~)2 

in [9]). However, the perturbative solutions of both Equations (1.16) and (1.23) 

coincide on the energy shell provided that we put the exact expressions for G E 

and V E (i.e., the sum of all irreducible graphs in our case), reproducing in both 

cases the on-mass-shell Feynman rules. The non-uniqueness of the quasi-potential 

equation originates in the non-uniqueness of the off-energy-shell extrapolation of 

the scattering amplitude. There exists in fact an infinite family of three dimen- 

sional equations of the type 

T + V + VGT = 0 (1.25) 

which give the same on-shell amplitude and which ensure the elastic unitarity con- 

dition 

T - T* = T(G - G*)T* (1.26) 

for Hermitian potentials V. It is easy to see that our model equation with Green's 

_(0) [8~Ek(k 0 - E - i0)] -I and potential (1.22) can be obtained in sec- function GE = 

ond order from an equation of this family (it is sufficient to check that on the 

energy shell, i.e., for P0 = q0 = Ep = E, the "relativistic Coulomb potential" 

(1.22) coincides with (1.21) and (1.24) for ~ = 0, and that the Green's functions 

of Equations (1.17) and (1.23) have the same discontinuity G E - G~). At the same 

time (1.22) provides a natural generalization of the non-relativistic Coulomb poten- 

tial. The main approximation to the real electromagnetic interaction of two charged 

particles consists in the replacement of the vector potential (which gives rise to 

an angular momentum dependence of the energy eigenvalues) with a scalar potential 

(this is known to lead to an error of the order of 10-4). Another model equation of 

the same class (with E k replaced by E in G~ 0)) is considered in [i]. 

2. ALGEBRAIZATION OF THE RELATIVISTIC COULOMB PROBLEM 

2.1. Introductory Remarks 

We shall deal from now on with EquaTions (1.20), (1.22). Noting that the 

coupling constant g has the dimension of mass and that m is the only mass in 

the Coulomb problem we introduce dimensionless variables by 

g2 2 1 1 1 
m2 = ~ ~, ~ p ÷ p, ~ k + k, ~ E ÷ E . (2.1) 
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In these variables our quasi-potential equation assumes the form 

~E (k) 
E(k0)~(k2 - l)d4k . (2.2) 

P0(E - p0)~E(P) (2~)2 (p - k)2 

We are looking for the eigenvalues of E, for which Equation (2.2) has a 

non-trivial solution. Our first step to the solution of this problem will be its 

"algebraization". We will show that the free-particle energy operator P0 and the 

integral operator on the right-hand side of Equation (2.2) can be expressed as sim- 

ple rational functions of the generators of certain unitary representation of the 

conformal group SO(4,2). A similar algebraization has been carried out for the 

Bethe-Salpeter equation (in terms of the generators of SO(5,2)) in Reference [i0]. 

Before going into the technical details we would like to make a comment about the 

meaning of this step. 

The advantage of the algebraic form of an equation is in its independence 

of the realization of the algebra under consideration. The representation of a 

given Lie algebra is specified by a set of identities in its enveloping algebra. It 

may have many different (though unitarily equivalent) realizations. The choice of 

the most appropriate realization for the given equation is suggested by the symmetry 

of the problem which is most easily seen in its algebraic, i.e., realization-inde- 

pendent formulation. A famous example of an algebraic presentation of a physical 

theory is the Dirac formulation of non-relativistic quantum mechanics which is given 

in terms of the generators p and q of the Heisenberg algebra. Some special 

problems of high symmetry such as the harmonic oscillator can be solved directly in 

the invariant formulation. For many others the algebraic picture, being the most 

flexible one, suggests a convenient choice of coordinates. 

We will start with a brief description of the conformal group and of the 

peculiar degenerate unitary representation we are going to use. 

2.2. A Remarkable Representation of the Conformal Group 

The conformal group S0(4,2) can be defined as the set of pseudo-orthog- 

onal transformation in six dimensions which preserves a non-degenerate real sym- 

metric quadratic form, xgx, with signature (2,4). For an appropriate choice of the 

basis we can write 

AB = x 2 - x 2 - x 2 - x 2 - x 2 + x 2 (2.3) 
xgx = xAg x B 0 I 2 3 5 6 

(in order to be consistent with traditional notation in physics (where often 

x 4 = ix 0 is used) we omit the index 4 in labeling x A and gAB). We will be in- 

terested actually in the restricted conformal group which consists of the connected 

component of the identity element of SO(4,2) and is denoted by SO0(4,2 ). 

The Lie algebra of SO0(4,2) is generated by the infinitesimal rotations 

iPAB (in the AB plane). They form an antisymmetric tensor (FAB = -FBA) with 15 

independent components satisfying the commutation relations 



266 

where Ya 

[FAB,PCD] = i(gADFBC + gBCFAD - gACPBD - gBDFAC ) (2.4) 

The lowest faithful representation of this Lie algebra is 4-dimensional and is given 

by the set of Dirac y-matrices: 

i i 
ra6 ÷ Ya6 = ~ Ya' Pab ÷ Yab = ~ [Ya'Yb ]' a, b = 0, I, 2, 3, 5 (2.5) 

satisfy the identity 

{ya,Yb } E YaYb + YbYa = 2gab • 6 (2.6) 

The y's are in fact the generators of the defining representation of the pseudo 

unitary group SU(2,2) which is a two-fold covering group of S00(4,2). In other 

words there exists a hermitian matrix 

values such that 

By~ 

We will also use the notation P for 
a 

B with two positive and two negative eigen- 

*B • (2.7) = yp 

Fa6. 
Now we are going to describe the particular irreducible unitary represen- 

tation R 0 of S00(4,2) which we will use for the algebraization of Equation (2.2% 

This representation has been used for many years by physicists but has been usually 

omitted in the mathematical classification of the unitary representations of the 

pseudo unitary (or of the pseudo orthogonal) group (see, however, References [11,12] 

where the place of the "ladder" representations of SU(2,2) is indicated). The 

representation ~0 is characterized by the following properties: (i) it remains 

irreducible when restricted to any of the five-dimensional rotation subgroups 

S00(3,2) and SO0(4,1) of S00(4,2) as well as to its Poincar6 subgroup; 

(ii) when restricted to the subgroup SO(4) the representation R 0 splits into the 

direct sum of tensor representations nOl(n,n) each (n,n) appearing with multi- 

plicity one; (iii) the n2-dimensional subspace ~(n,n) (in which acts the repre- 

sentation (n,n) of S0(4) is an eigen subspace for the generator P0 (= P06) of 

the subgroup S0(2) which commutes with S0(4): fn E~(n,n) = P0fn = nf . 
n 

We will describe here a particular realization of the representation R 0 

on the space ~ of functions ¢(p) defined on the double sheeted hyperboleid 

VI = {p: p2 = i} 

(¢,¢) ~_~1 f j, ¢(p)¢(q) ~(p2 - 1)6(q2 _ 1)d4pd4q < ~ (2.8) 
~4 _(p - q)2 

(el. [13]). 

First of all we introduce homogeneous coordinates on VI: 

n v 

= - 

PP ~u5' q~ - ~5 (2.9) 

We recall that the group S0(4) is locally isomorphic to the direct product 
SU(2) ~ SU(2). Accordingly, each (unitary, irreducible) representation of 
S0(4) can be characterized by two integers (k,l) equal to the dimensions 
of the corresponding representations of the two groups SU(2). 
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and consider ~(p) as a restriction to the manifold {u = ([p0],p 6 (p0)),p 6 V I} 

of a homogeneous function F(u) of degree of homogeneity-2 defined on the light- 
+ 

cone CI, 4 

F(%u) = %-2F(u) for ~ > O, u 6 C + (2.10) 1,4 

Cl, 4+ = {u: u 0 = [~] = /u 21 q- u22 + u23 + u2}5 " (2.11) 

Taking into account that 

_(p _ q) 2 = 2 uv (uv -= u0v 0 - ~v) 
u5v 5 

we find that the scalar product (2.8) assumes the form 

(F,F)_ 2 = 1 ~ F(u) 1 F(v) 6(u0 _ l) 6(v0 _ l)~(u2)~(v2)d5ud5v 
27 4 uv 

(2.12) 
_ u O u 

[for %(p) = F(IPol,] ~ S(po)) or F(u) = Us2~(u5 , ~5 )] 

The restriction of the representation R 0 on the S00(4,1) subgroup of 

SO0(4,2) is defined as a set of argument transformation 

S00(4,1) 9 A -> [U(A)F](u) = F(A-Iu) . (2.13) 

That is the Majorana representation of the complementary series of unitary repre- 

sentations of SO0(4,1), i.e., the only representation of the complementary series 

which can be extended to a representation of S00(4,2). To see this we first re- 

mark that the representation (2.13) in the space ~-2 with scalar product (2.12) 

is equivalent to the representation given by the same formula (2.13) in the space 

~-I of homogeneous functions of degree of homogeneity -i, equipped with scalar 

product 

(F,G) I = -i ~ F(u) i G(v) 6(u 0 - l)~(v 0 - l)d(u2)~(v2)d5udSv . (2.14) 
- 27 4 (uv) 2 

We mention that the integral in (2.14) is in general divergent because of the 

singularity for u = v. It has to be defined by analytic continuation with respect 

to N of the hermitian form (F,G) N (in which _ i (uv)-2 in the integrand is 
2~ 4 

replaced by 2N+!F(rN) (uv) -3-N) (cf. [14]). The scalar product defined 
3 ~7/2F(- N - ~) 

through this analytic continuation is positive-definite if and only if N(N + 3) < 0. 

N ,u0) NN = N 
The normalization is chosen in such a way that (u 0 i (F = u O is the only 

S0(4) invariant vector in ~ (up to a factor)). The intertwining operator T 

which maps $~-i onto ~C_2 and its inverse are given by 

(TF)(u) = -i ~ F(v)6(v0 _ i)6(v2 ) d5____~v , 
2z 2 (uv) 2 

(2.15) 
(T-IF)(v) = i ~ F(u) 8(u0 _ i)6(u2 ) d5u 

2~ 2 uv 

The action of the five additional generators F 
a 

of S00(4,2) in the space ~-2 is defined by 

(a = 0,1,2,3,5) of the Lie algebra 
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v 
(FaF)(u) = [T(UaF)](u ) = -i ~ a F(v)~(v 0 - l)6(v2)dSv . (2.16) 

2~ 2 (uv) 2 

It can be verified by a straightforward computation that these operators satisfy 

(together with the generators Fab of S00(4,1)) the commutation relations (2.4). 

In particular, 

i-" --- for a,b = 1,2,3,5 1(Ua ~ Ub ~Ua (2.17) 
i[Fa,F b ] Fab 

(-iu 0 -~ for a = 0, b = 1,2,3,5 . 

It is easily seen also that the operators (2.16) are hermitian with respect to the 

scalar product (2.12). Some further property of the representation ~0 are given 

in the Appendix. (In particular, we show that T 0 defined so far as a representa- 

tion of the Lie algebra of S00(4,2) can be in fact integrated to a representation 

of the group; the global form of the representation coincides with the familiar 

realization of the conformal group in space-time which leaves invariant the 

22 
D'Alembert equation Of(x) = ( - ~2)f(x) = 0.) 

2.3. Algebraic Form of Equation (2.2) 

form 

In the space 3{ of functions ~(p) the operators F (2.16) assume the a 

(r ~)(p) = 2 ~ q~ 
- 72 [(p _ q)212 $(q) s(q0)6(q0 - l)d4q (2.18) 

(rS~)(p) = _ 2__ ~ i ~(q)c(q0)6(q0 - l)d4q . (2.19) 
~2 [(p _ q)212 

Comparing (2.18) with (2.19) we see that 

(p~)(p) = (i__ F ~)(p) . (2.20) 
F 5 

Taking into account that for any analytic function F of F 5 we have 

F(Fs)(F ~ -+ r~5) = (r -+ F~s)F(F s _+ i) (2.21) 

and using Equations (C.9), (C.10) (see Appendix C) we can verify that for % = 0 

the operators 
i 

P~ = ~5 F (2.22) 

satisfy the identities [P~'Pv! = 0, p~p~ = i. 

On the other hand, one can check directly (or by using (2.15)) that 

(!_ I 1 
F5 ~)(p) ~ ~(q) s(q0)6(q2 - l)d4q • (2.23) 

2~2 (p _ q) 2 

Inserting (2.22) and (2.23) in the quasi-potential Equation (2.2) we find the fol- 

lowing algebraic equation for the relativistic Coulomb problem 
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F~l [F0(E - -~51 F0 ) + ~]#E(p ) = 0 . (2.24) 

Before going to the solution of Equation (2.24) we will make the follow- 

ing general comments. 

(i) The prescription (2.22) for the algebraization of the (free) 4-mo- 

mentum does not depend on the interaction under consideration. 

(2) The simple algebraization of the potential based on Equation (2.23) 

is peculiar to the case of zero mass exchange. The relativistic Yukawa potential 

$2 
V(p,q) = (2.25) 

(p _ q)2 _ ~2 

leads already to considerable complications (see Section 111.2 of Reference [2]). 

The reason is that the kernel in the scalar product (2.8) in 3£ is closely related 

tO the relativistic Coulomb potential. If on the other hand we adapt the scalar 

product in our representation space to the potential (2.25) for ~ > 0, the sim- 

plicity of the free Hamiltonian will be lost. 

(3) We can use Equations (2.18-20) and (2.23) to solve the inverse prob- 

lem: given adhoc an infinite-component wave equation in the representation space 

3£ of ~0 (see References [13,15,16]) to reconstruct an equivalent integral equa- 

tion in momentum space. 

3. SOLUTION OF THE COULOMB EIGENVALUE PROBLEM 

3.1. Group Theoretical Treatment of the Algebraic Equation 

In order to get rid of the inverse powers of F 5 in Equation (2.24) we 

multiply it from the left by rsr~ir s and put 

~E "= F0fE " (3.1) 

This leads to the following equation for fE: 

[(r 0 - ErS)r 0 - ~ r5]f E = 0 . (3.2) 

First of all we observe that the operators F0, F 5 and F05 generate 

the Lie algebra of S0(2,1): 

[r0,r05] = ir 5, [rs,r 0] = ir05, [r05,r s] = -iF 0 . (3.3) 

Equation (C.12) of Appendix C shows that for the representation R 0 the Casimir 

operator of S0(2,1) is equal to the Casimir of S__0_0(3). Hence, for fixed angular 

momentum £ 

r~ - F~ - F~5 = L2 = £(~ + l) . (3.4) 

Since Equation (3.2) is obviously S0(3) invariant, we will require that fE is 

an eigenvector of L2, say fE£" 
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Equation (3.4) and the positivity of F 0 imply that we have to deal with 

one of the discrete series of unitary representations of SO(2,1) described by 

Bargmann[17] (see also [14] Chapter 7). Each irreducible representation R~ £) of 

this series can be realized as a group of coordinate transformations (with a suit- 

able multiplier) in the space ~l of analytic functions on the unit disk 

D I : {z 6 ~ ,  Izl < 1 }  . (3.5) 

is considered as a Hilbert space with scalar product 

21 + 1 
(g,f)£ ~ ~DI(I - zz--)2£ g--~f(z)d2z . (3.6) 

The generators of the representation RI1) are first order differential operators 

with respect to z: 
d 1 d 

r 0 : z7~+ l+ i, r s : (l+ l)z +~ (z 2 + l) 7~z 

(3.7) 
1 d 

r05 : i[(/ + 1)z + ~ (z 2 - i) ~z ] . 

It is easily seen that the operators (3.7) satisfy the co~utation relations (3.3) 

and the identity (3.4). 

Inserting (3.7) in (3.2) we get the following second order (linear) dif- 

ferential equation for fEl(Z): 

{zQ d2 ~ d 
+ [(/ + 2 + ~)Q + (l + l)Q'z + Lm ~ z] 

dz 2 

where 

+ (l+ i)[(£ + I)Q' +7 z]}f : 0 

E 
Q =-~ (z 2 + i) - z, Q' : Ez - i J 

(3.8) 

3.2. Calculation of the Enersy Eisenvalues 

The eigenvalues of E have to be determined from the condition that 

fE£ be regular in the unit disk. The possible singular points of any solution of 

(3.8) are z = 0, z = ~ and 

= ! + ! A - E 2 . (3.9) z = z± E - E 

Among these four points only two z = 0 and z = z_ belong to D I. They are both 

"weak singularities" of the differential Equation (3.8) and there are regular solu- 

tions f0 and f in the neighborhood of any of them. In order to ensure that 

these two solutions are analytic continuation of one another, it is necessary to 

assume that the branch points at z = z+ and z = z are of the same type (so 

that one could consider a single-valued solution of (3.8) regular in the cut z-plane 

with a cut between z+ and ~ which does not cross the unit disk). 
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wi th 

tion 

For z ÷ z+ the asymptotic form of (3.8) is 

d 2 d 
+ B ~ + C]f+ : 0 

[A(z - z+) dz 2 

a 
A = /i - E 2 z+, B = z+[/l - E 2 (£ + i) + ~]. For z ÷ z+ 

~+ 
f+ of (3.10) behaves like (z - z+) where 

B 
% : l - X : - I  - 

2E~I - E "2 

For z ÷ ~ Equation (3.8) is equivalent to 

d 2 a d 
[Z 2 + (3£ + 4 +-i-~)z ~z + 2(£ + i)(£ + 1 + T~)]f = 0 . 

dz 2 

The relevant solution of (3.12) is f = z with 

,J = - £  - 1 - a ( 3 . 1 3 )  
oo 2 E  " 

The branch points at z = z+ and are of the same type if and only if 

~ - v+ is an integer. So, we put 

Thus, the eigenvalues 

z = oo 

or 

( 3 . 1 o )  

the singular solu- 

( 3 . 1 1 )  

( 3 . 1 2 )  

a i - i )  - i : n - l . ( 3 . 1 4 )  

- %=~f (/I_E 2 

E of E are determined from the equation 
n 

= ~ ~ - E 2 (3.15) 
2n (En +~n ) n 

9 

E 3 +--~ E 2 - (I - -~-~-)E n - -~ : 0 
n n n 4n2 n 

o 

Only one of the three real roots of (3.16) satisfies (3.15). 

= __ . 
an expansion in an - 2n " 

/i - E 2 = a _ ~2 + 3 a3 _ 3an4 + ... 
n n n 2 n 

i a2 + a3 17 ~4 + . 
En = 1 - ~ n n ---8 n "" 

In order to find the range* of the quantum number n 

series expansion of the solution of Equation (3.8): 

f(z) = ~ f z ~ 
~=0 

( 3 . 1 6 )  

It can be written as 

(3.17) 

we look at the power 

(3.18) 

In view of (3.8) the coefficients f satisfy the following recurrence relation 

- + [(~ - i)(~ + 3£ + 2 + 6) (v + i)(~ + £ + 2 + 6)f + 1 2(~ + £ + l)2chlf 

a (3.19) 
+ 2(£ + i)(£ + 1 + B)]f _ 1 = 0, ~ = 0, i, 2 ..... B = ~ • 

The radius of convergence of the power series (3.18) is determined by the behavior 

of the coefficients f for large :~. Dividing the left-hand side of (3.19) by 

* This problem was not touched in Reference [2]. 
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1 
+ i and neglecting the terms of order -- we obtain the following asymptotic 

form for the recurrence relation 

2 (~ + 21 + l)f + (~ + 31 + B)f~ 1 = 0. (3.20) (~ + £ + 2 + ~)f~+l - E 

It corresponds to a first order differential equation which can be obtained by mul- 

tiplying by z ~ and summing over v. The result is 

E E 
zQf' + {(2£ + I)Q + ~ [£(z 2 - i) + B(z 2 + l)]}f = ~ (£ + 1 + ~) . (3.21) 

(We have used the initial conditions f-i = 0, f0 = f(0) = i.) The solution of 

(3.21) regular (and normalized to i) for z = 0 is 

£ + i + ~ Cz _ z . /I-E 

f(z) = zl + i + B [(z - z+)(z - z_)] 0 k~ - z_/ 

(3.22) 
[(~ - z+)(~ - z_)]/-Id~ . 

We can d e f i n e  f ( z )  as  a n a l y t i c  s i n g l e  v a l u e d  f u n c t i o n  i n  t h e  c u t  z - p l a n e  w i t h  a 

c u t  a l o n g  t h e  r e a l  s emi  a x i s  z ~ z+ p r o v i d e d  t h a t  

B + n ,  n = i ,  2,  . . .  ( 3 . 2 3 )  
/I - E 2 

in accordance with (3.15) (B is defined in (3.19)). It is regular for z = z 

only if n ~ ~. For 1 = 0 we actually have to require n m i; it is easily veri- 

fied that for E = 0, Equation (3.8) has no solution regular for z = 0. (This 

shows that contrary to the Wick-Cutkosky model [6] there is no limit of "maximal 

binding" in our quasi-potential equation.) The present argument cannot exclude 

however the values n = 1 for 1 ~ i. We observe that (3.22) gives the exact so- 

lution of Equation (3.8) for the s waves (1 = O) but not for 1 ~ i (however, 

it has for all l the correct behavior (z - z+) ~+ as z ÷ z+). We expect that 

the exact range of the quantum number n is always n ~ I + i, which would give 

the familiar S0(4) degeneracy of the energy levels of the non-relativistic 

hydrogen atom (as well as of the Wick-Cutkosky model). We mention that the second 

order term in Equation (3.17) reproduces precisely the Balmer formula for the non- 

relativistic Coulomb energy levels as it should be in any consistent relativistic 

generalization of the Coulomb problem. 
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APPENDIX A 

DIFFERENT REALIZATIONS AND PROPERTIES OF THE EXCEPTIONAL 
REPRESENTATION R 0 OF S00(4,2) 

A. The Set of Conformal Transformations in Space-time as a 
Global Realization of R 0 

Consider the space X of negative frequency solutions 

f (x) i e-iX$6+(~) d4 (2~)3/2 'ff ~(~) , ~0+(~) = 0(~0)~(~2 ) 

of the D'Alembert equation 

of(x) - - f(x) = 0 

with scalar product 

(A.1) 

(A. 2) 

(f,g) = i ~(~(x) ~$(x) ~(x) ) 
~x 0 ~x 0 g(x) d3x 

x0=t 

= ~ 7(Og(O~+COd4~ . 

(A. 3) 

The representation of the conformal group acting in X which leaves Equation (A.2) 

and the scalar product (A. 3) invariant is generated by the following transforma- 

tions: 

(i) 

(ii) 

• / 

Polncare transformations 

[U(a,A)f](x) = f(A-l(x - a)) 

Dilations 

(U(%)f)(x) = %-if(%-ix) 

(iii) Inversion 

(A. 4) 

(A. 5) 

[U(R)f](x) = i___ f(-x) . (A.6) 
x 2 x 2 

x 
= - -~P does not actually belong to the connected component The inversion (Rx)p x 2 

of the identity of the conformal group, but the set of non-linear transformations 

belongs to 

x - x2b 
[R{b,l}Rx]~ = P ~ d(b,x) = 1 - 2bx + b2x 2 (A.7) 

d(b,x) ' 

S00(4,2) and generates the so-called special conformal transformations 

1 Ix - x2bp~ 
[U(R{-b,Z}R)f] (x) = d(--ffT~,x ) f~- dTb~7 "] " (A. 8) 

The (hermitian) infinitesimal operators of the subgroups (A.4), (A.5), and (A. 8) 

are given by 
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P = i~ , M = i(x 3 v - x ~ ), (~ z ~-) 
~x ~ ' (A.9) 

, = + 2xpx 3 v - x2~ ) . D = -i(l + xp~ ~) K i(2x 

These operators are related to the generators Fab and F a used in Section 2.2 by 

M ~ F, P ~ F + F D< =~ FS, K ~ F - Fp5 ( A . 1 0 )  

This well-known representation of the conformal group (related to the O-spin O-mass 

particles) is equivalent to the representation R 0 defined in Section 2.2. The 

intertwining operator V which maps $C onto X can be written down explicitly: 

~-)(p + - l)¢(~)d4p (A. II) = ~ f D x) e(p0)6(p2 ~ +(p) ~ f(x) 

where 

D~-)(x) = i f e-iX~6~(g)d4~ -i i (A.12) 
(2~)3 (2~)2 (x 0 _ i0)2 _ ~2 

is the Lorentz invariant negative frequency solution of Equation (A. 2). (The dis- 

tribution D~-)(x) appears in quantum field theory as the two-point function of a 

zero mass field.) The realization of the representation R 0 in X displays its 

irreducibility with respect to the Poincar~ subgroup of the conformal group. 

B. R 0 As One of the Metaplectic Representations of SU(2,2) 

The metaplectic series of unitary representations of SU(2,2) can be con- 

structed in infinitesimal form starting with the 4-dimensional representation (2.5) 

of the Lie algebra. To do this, we introduce the 4-component operator valued 

spinor ~0 satisfying the canonical commutation relations 

N ~ ~,B = 1,2,3,4, ~ = ~p*6 ; (B.I) 

here 6 is the hermitian matrix satisfying (2.7) and normalized by the require- 

ments det 6 = i, By0 is positive definite. It is easy to verify that the set of 

operators 

PAB = ~AB~ (B. 2) 

obeys the commutation relations (2.4) since (B.I) implies that 

[FA~'FcD] = ~[~'A~'~'CD ]~ " (B. 3) 

The metaplectie series of the so-called ladder representations of SU(2,2) corre- 

sponds to the (star) representation of the canonical commutation relations (B.I) in 

the Fock space F defined in the following way. There exists a unit vector I0) 

in F (defined up to a phase factor) for which 

(70 + 1)qo[0) = ~(Y0 - 1) 10) : O, (F0 [0)  : [ 0 ) )  . ( B . 4 )  

The vector [O) so defined is SU(2) x SU(2) invariant. 

In order to label the irreducible representations of the metaplectic 

series, it is convenient to extend the representation defined by (B.2) to a 
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representation of U(2,2) by introducing a 16th generator, 

i,~ 
c = ~ ~. (B.5) 

C belongs to the center of the enveloping algebra of the Lie algebra 17(2,2) and 

hence, should be a multiple of the identity in each irreducible subspace of F. It 

is easy to verify that the spectrum of C in F is given by 

C = I - i, % = 0, _+ i, ±i, ... (B.6) 

It can be proved that for fixed C (or %) the ladder representation Rk acting 

in the corresponding invariant subspace F% of F is already irreducible. All 

elements of the center of the enveloping algebra of the metaplectic series are 

functions of %. In particular, the second order Casimir operator C 2 of SU(2,2) 

is given by 
1 

c 2 = ~ tAB tAB = 3(% 2 - i) . (B.7) 

It has been shown explicitly in Reference [18] that the metaplectic represen- 

tations R X so defined are equivalent to the representation of the conformal group 

in space-time, corresponding to zero-mass particles of helicity %. In particular, 

for % = 0, we recover the representation R 0 described in Section 2.2 and Appen- 

dix A. 

The ladder representations R X are closely related to the two metaplectic 

representations of the real symplectic group Sp(4,R) in 8-dimension described in 

References [19,20]. Namely, if R (0) is the single-valued and R (I) the double- 

valued representation of Sp(4,R) acting in the same Fock space F, then 

%=0,±i,±2 .... (B.8) 

R (I) = ~ • R% 
+i 3 

%= _~,_+~ .... 

More about the different realizations of the ladder representations and their equiv- 

alence is said in Appendix to Reference [2]. The term metaplectic and the first 

mathematical description of the metaplectic representations of Sp(n,R) is due to 

Weil [21]. (See also Mackey [22].) The description of the metaplectic representa- 

tions of U(2,2) in terms of creation and annihilation operators was first given 

by Kurs, unoglu [23]. 

C. Quadratic Identities in the Enveloping Algebra of the Metaplectic Representa~ons 

We shall collect in this section a set of quadratic identities which hold 

in the enveloping algebra of the metaplectic representation of U(2,2). They can 

be derived by using (B.I), (B.2), and the identity 

~ a B ~ ~ 2~°TB B (Ya)B (Y)6 = 6Bd6 + (C.l) a=0,1 2,3,5 oB T~ ' 

where e is the completely ant±symmetric unit tensor in 4-dimension 
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(s 1234 = i) and B is defined (up to an irrelevant sign) by 

-I = t , = -B, (B-b = ~ ~ BYabB - Yab' (a,b = 0,1,2,3,5) tB B~ i e~TB (C.2) 

(the superscript t to the left of a matrix stands for transposition). 

Each of the metaplectic representations R X remains irreducible when re- 

stricted to any of the 5-dimensional rotation subalgebras of S0(4,2). Hence, 

their second order Casimir operators are functions of X only. A direct calcula- 

tion gives 

i F F ab = 2(% 2 - i) 1 F p~ + F F ~ 
ab = ~ F  P 

(repeated upper and lower indices have to be summed over the range 

p,v = 0,1,2,3). Comparing (C.3) with (B.7), we find 

2 _ i . (C.4) r r ~ = r s r S ~  = x 2 + 
F 5 

We also have 

(with 

(C.3) 

a,b = 0,1,2,3,5; 

K~ and M ; see (A. 10))., This gives 

P P~ = K K p = 0, P L = PO X . 
P 

Equation (C. 6) implies 
= _ • F~T . 

P~K~ - P Kp 2(F 5 1)Fpv - XSp~OT (C.9) 

The scalar product of P and K is a function of X and ?5: 

KP = (PK)* = 2[X 2 + (F 5 + i) 21 . (C.10) 

F 0 and 

From (C.4) and (C.II), it follows that 

= - 

sor identities hold: 

{r 5,Y v} - {Y ,F 5} = 2FsF - Xs TF a T  

{FCA,FCB} = (X 2 - I)~(A,B = 0,1,2,3,5,6) . 

As mentioned before, each of the representations R X 

ducible when restricted to the Poincar~ subgroup generated by 

(C. 6) 

(C.7) 

remains also irre- 

P and M (or p p~ 

(C. 8) 

The Casimir operators of the SO(4) subalgebra are expressed in terms of 

X: 
3 

j=l ~ (L23 + r~ 5) = r2° * X2 - I, L rsll = Xr 0 . (C.II) 

(C.12) 

i F Fg v = _L 2 _ _N 2 = %2 _ i - D 2, __LN = -%F 5 (C.5) 

Fij = aijkLk, Foj = Nj, i,j,k = 1,2,3). More generally, the following ten- 
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