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Abstract

The PANDA experiment has a great potential to test QCD in the low momentum transfer re-
gion with unprecedented accuracy by performing very precise hadron spectroscopy. To achieve
this goal the resonance scan method will be used to determine the mass and width of variety
of hadronic states. This technique requires a precise knowledge of the luminosity. This thesis
develops the conceptual design of the detector allowing to measure the absolute luminosity
with about 3% precision.

The detector concept is based on the measurement of elastically scattered antiprotons from
the interaction region in the Coulomb-nuclear interference region. Due to the finite beam
emittance and the finite size of the interaction volume, the track of the antiproton has to be
reconstructed in the luminosity monitor, and not just one point. The detector will located
between z = +10m and z = 413 m downstream of the interaction point and will consist of
four planes of four sensors each covering the polar angular range of 2.8 < 8 < 7.5 mrad.

The performance study of this detector is one of the main topics of this thesis. These
studies were done using Monte Carlo simulations within the PandaRoot framework and the
results were compared with the measured data obtained from the tracking station beam test
performed at COSY with proton beams.

This work then addressed the question of how the performance of the luminosity monitor
effects the determination of the mass and width measurements of X (3872) state using the
full PANDA setup. The measurements were performed for three different assumed widths.
The influences of the signal to background ratio and the uncertainty on the luminosity were
investigated.

This thesis is structured as follows:

e Chapter 1 concerns the physics motivation in which an overview of the Standard Model
as well as a discussion of previous measurements and the theoretical interpretations of the
X (3872) state are given,

e Chapter 2 summarizes the general aspects of the FAIR facility, the HESR accelerator and
the PANDA experiment,

e Chapter 3 describes the conceptual design of the PANDA luminosity monitor and the
technique of resonance scan,

e Chapter 4 develops the implementation of the luminosity telescope inside the PandaRoot
framework and simulations of the luminosity measurement,

e Chapter 5 reports the results from the tracking station beam test,

e Chapter 6 treats the reconstruction strategy of the mass and the width of the X (3872)
state,

e Chapter 7 concludes the main points given in this thesis.






CHAPTER 1

Motivation

This chapter introduces the physics motivation of the present thesis. The first part describes
the basic aspect of particle physics in the context of the Standard Model. In the second part,
the current status of the experimental measurements and theoretical interpretations for the
charmonium-like X (3872) will be overviewed.

1.1 The Standard Model

In particle physics, the fundamental interaction between elementary particles, is described by
a quantum field theory based framework called the Standard Model (SM). In the SM, the
elementary particles are classified in two categories: fermions, particles of spin 1/2 and bosons
with spin 1. The fermions include quarks and leptons, and their respective antiparticles. Other
main properties of fermions are given in Table 1.1.

The theoretical description of the interaction is based on the principle of gauge symmetry:
particles interact by the exchange of gauge bosons. There are four types of fundamental
interactions but only three of them are included in the SM, namely the electromagnetic, weak
and strong interactions. A theory of gravity is not a part of the SM due to the very small
strength of the force and the spin 2 of the graviton, the mediator particle (not observed yet),
thus implies a different mathematical formulation of the interaction. In the electromagnetic
interaction, charged particles interact by exchanging photons (), which are neutral and
massless bosons. The weak interaction is mediated by 3 massive bosons W+ and Z° with
masses of about 80 and 91 GeV/c?, respectively [NT10]. These two types of interactions
are unified within the electroweak theory. In this theory, the mass difference between these
bosons and the photon implies the existence of the massive bosons with spin 0, the Higgs
bosons. It was not yet observed experimentally but is the cornerstone of the large effort at the
CERN-LHC. The lower limit of its mass is 114.4 GeV/c? with 95% confidence level [N*10].

The strong interaction, which concerns only the quarks, is associated with the exchange
of gluons, g. There are 8 gluons, all massless and electrically neutral. The theoretical
framework describing the interaction between quarks via the strong force is known as
Quantum Chromodynamics (QCD) in which an additional quantum number, the so-called
color charge, is assigned to quarks and gluons. There are 3 types of color charges, usually
labeled by red, blue and green and their corresponding anticolors. A particular aspect of QCD
is that gluons carry also color, thus can interact between themselves leading to a formation
of gluonic flux tubes connecting quarks. This self-coupling of the color of gluons increases
the color charge between interacting quarks and thus strengthens the force. It increases with
the distance separating quarks. At a large-distance scale (~ 1 fm), quark-antiquark pairs are
created which group to neutralize color forming hadrons. This phenomenological explanation
of the non-observation of free state of quarks refers to confinement. There are many ways
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Name Symbol Charge [e] Mass [MeV/c?| L B
electron e -1 0.511 1 0
electron-neutrino Ve 0 <22x10° 1 0
up u 2/3 1.7-3.3 0 1/3
down d -1/3 41-5.38 0 1/3
muon " -1 105.65 1 0
muon-neutrino vy 0 < 0.17 1 0
strange s -1/3 101 0 1/3
charm c 2/3 1.27 x 103 0 1/3
tau T -1 1.77 x 10? 1 0
tau-neutrino vy 0 < 15.5 1 0
bottom b -1/3 4.19 x 103 0 1/3
top t 2/3 172 x 103 0 1/3

Table 1.1: List of fermions and their basic properties [NT10]. The symbols L and B are the leptonic
and baryonic numbers, respectively, indicating if a fermion is either a lepton (L = 1) or quark (B = 1/3).
Fermions are classified into three families which are separated by the horizontal lines.

for nature to realize color neutral hadrons but only systems composed of a quark and an
antiquark (qq), called a meson, or 3 quarks of different colors (qqq), called a baryon, have
been clearly identified. At short-distance, the effective coupling of the interaction becomes
weaker. Therefore, quarks can be seen as free particles inside hadrons. This corresponds to
asymptotic freedom, a property of quarks where QCD can be treated using the perturbation
method. The strong coupling constant, ay, varies then as a function of the distance between
interacting quarks or the momentum transfer ¢?. This variation is illustrated in Figure 1.1. In
this figure, the blue band delimits the perturbative region from the non-perturbative region
of QCD. The description of phenomena in the non-perturbative region of QCD involves other
theoretical approaches such as lattice QCD (LQCD) and effective field theory (EFT).

The properties of some recently discovered hadronic states such as X, Y and Z states are
however hardly consistent with the quark model. Other models such as hybrid charmonium or
molecular states were proposed. This thesis is focused on the X (3872) meson. In the following
section, the measured properties and some theoretical speculation on the nature of the X (3872)
state will be overviewed.

1.2 The X(3872) state

In 2003, the Belle collaboration [CT03| reported the observation of a charmonium-like
state, the X(3872) meson, in the exclusive BY* — KT.J/yntn~ decays. The mass
of the reconstructed final state from the wtw~J/¢ final state was determined to be
3872 + 0.55(stat) £ 0.5(syst) MeV/c? and its width is less than 2.3 MeV/c? at the 90%
confidence level.
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Figure 1.1: Variation of the coupling constant of the strong interaction as a function of the distance
(red line). Points are data from [NT10]. Picture taken from [pC09b].
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Figure 1.2: Discovery of the X (3872) meson in B — Kntn~J/v decays by Belle collaboration. The
narrow small peak at about 0.775 GeV corresponds to the X (3872) resonance decaying to w+n=J /1.
Picture taken from [CT03].

Figure 1.2 shows the distribution of the 777 ~eTe™ invariant mass minus the ete™ mass
in which the X (3872) meson was discovered. Two significant peaks can be distinguished in
the plot. The larger peak at 0.589 GeV corresponds to the ¢(25) state while the smaller one
at 0.775 GeV is the X (3872) state.

The existence of the X (3872) meson state was confirmed by the CDF [AT04b] and DO
[AT04a] collaborations in 2004 in proton-antiproton collisions, and by the BaBar collaboration
in 2005 [A*05c] in B* decays to the 7+ 7~.J /1 final state.

In addition to the discovery decay mode, the X (3872) meson has been observed via many
other final states which will be quoted next. However, despite the many experimental obser-
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vations and effort spent in theoretical calculations to identify its properties, the actual nature
of the X (3872) state remains unclear. A brief summary of the experimental and theoretical
investigations will be given in the following subsections.

1.2.1 Overview of experimental results

Several measurements of the X (3872) meson mass have been performed. Different values are
obtained depending on the experimental setup and the final state to which the X (3872) is
decaying to. The most precise measurement of the X (3872) mass was performed by CDFII in
the X (3872) — J/ym T~ decay channel where the obtained value was 3871.61 £ 0.61(stat) &
0.19(syst) MeV/c? [AT09a]. The world average mass value of the X (3872), calculated from
the recent results from Belle, CDFII, BaBar and DO collaborations in the 77~ J/v¢ decay
mode is [NT10]

My = 3871.56 + 0.22 MeV/c2. (1.1)

Currently, only an upper limit for the total width of 2.3 MeV/c? at the 90% confidence level
exists [CT03]. This corresponds to the Belle detector resolution. Subsequent measurements,

with the same decay mode or with other decay modes did not improve the knowledge of the
width.

The charge conjugation parity is determined to be C' = 41 by the observed X (3872) decays
to v.J/v [AT05b] and to 70w 7~ J /% [AT05b, dAST10]. The tripion system in the latter decay
mode results from the decay of a virtual w meson with a relative branching ratio of:

B(X — vJ/v)

BX 5 nfndfd) 0.14 £ 0.05, (1.2)
B(X = ata n0J/y)  [1.0£0.4+03 [AT05b], (1.3)
B(X = ntn=J/y)  10.8+0.3 [dAST10], '

respectively. The Belle final state measurement in the X (3872) — J/¢rtn~ decay mode
suggests that the dipion system is dominated by an intermediate p° resonance [CT03]. The
analysis of the angular correlation [AT05a] and on the dipion mass spectrum [AT06] in the
same decay mode favor the JP¢ = 17+ or 2=+ assignments of the X (3872) quantum numbers.
The relation (1.3) reflects isospin violation in X (3872) decays.

Decays to y2(2S) [AT09b] and D°D7Y [GT06] were also seen for the X (3872) meson in
the B meson decays by the Belle collaboration. The measured branching ratios are

B(X — y9(29))

B(X —~J/v)
B(X — D°D7?)
B(X — ntn=J/y)

= 34+14, (1.4)

8.873%. (1.5)

The BaBar collaboration also attributed the observed enhancement near the D% D*9 thresh-
old in the B decays to the X (3872) resonance [AT08b]. The measurement in neutral and
charged channels lead to the branching ratios of

B(B° - XK"B(X — D°D*%) = (2.2241.05+0.42) x 107, (1.6)
B(BY - XK")B(X — D°D*%) = (1.67+0.36+£0.47) x 107*.
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Decay Channel Collab. Ref. Mass [MeV/c? Width [MeV/c?]
B = J/yrtn K Belle [CT03]  3872.0 £ 0.55 = 0.5 <23

pp — J/pnta— X CDF [A104b] 3871.3+0.7+04 resolution
pp — J/yntam X DO [AT04a] 3871.0 £3.1+3.0 resolution
B — J/Yrtr K BaBar [AT05¢] 38734+ 1.4 —

Bt = J/Yrntar~ Kt BaBar [AT08a]  3871.4+0.55+0.1 <3.3

BY — J/yrTn~ K2  BaBar [AT08a] 3868.7 + 1.5+ 0.4 <33

pp — J/pnta™ X CDF [A109a] 3871.61 +£0.16 £ 0.19 —

B = wJ/YK Belle [AT05b] - —

B — wJ/pK BaBar [dAS*10] - -

B —~vJ/YK Belle [AT05D] -

B =y (25)K BaBar [AT09b] — —

B — D'D'rK Belle [GT06] 3875.2 +£0.74+ 0.8 5.7+1.3
B — D*D'K BaBar [AT08a] 3875.110L + 0.4 3.0t114+0.9

Table 1.2: Overview of the experimental observations and measurements of the X (3872) meson. Here,
X refers to an unmeasured state.

in which the D*0 in the final state can decay into either D% or D°7° with a relative branching

ratio of _
B(X — DD 7Y)
B(X — DOD0~)

In these decay modes, a mass of around 3875 MeV/c? was measured. Table 1.2 gives a sum-
mary of the observed X (3872) meson decay channels and the corresponding mass and width
measurements.

= 1.37+0.56. (1.8)

1.2.2 Overview of theoretical interpretations

As it can be drawn from the previous section, the experimental results are not sufficient to
allow an identification of the X (3872) state. Several theoretical models were developed in order
to describe the structure of the X (3872) meson. An overview of some of these models is given
below.

Charmonium state

It was suggested that the X (3872) meson could be a conventional charmonium state, since
its final state contains cé. The measured X (3872) mass, as given by Table 1.2, lies between
the predicted masses of the conventional 1D and 2P charmonium states. Referring to the
JPC quantum number, the X (3872) meson can only be assigned to the 2P (or the first
radially excited state of the conventional x.; charmonium state) and the 11Dy states where
their quantum numbers are 17T and 277, respectively. The theoretical mass ranges were
estimated to be 3929 — 3990 MeV/c? for the the 23 Py state and 3765 — 3872 MeV/c? for the
11 Dy state. These states were also expected to decay with total widths of about 1.72 MeV/c?
and 0.86 MeV/c?, respectively [BGO03].

Investigations on the E1 radiative decays of the X (3872) meson, assuming it to be x.1(2P),
was investigated and described in [WW11]. A numerical result on the ratio of the branching
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Figure 1.3: Spectrum of the X states interpreted as diquark-antidiquark states. Picture taken from
[MT05].

ratios B(X — ¢ (25))/B(X — vJ/v) = 4.4 was reported. This result is in good agreement
with the BaBar measurement given above.

Hybrid charmonium state

A hybrid charmonium state is a c¢ system with valence gluons, i.e ¢ég. In this model, the
two pions in the 77~ J/1) final state are from a two gluon intermediate state, i.e. the decay
chain is X (3872) — J/vgg, gg — m"m~ with which the decay width is expected to be narrow
on the order of the existing upper limit [Li05]. The lightest hybrid charmonium states are
expected to have masses of about 4.1 to 4.2 GeV/c? [PPE10]. Calculations within the so-called
fluz tube model predict the existence of hybrid states with JP¢ quantum numbers of 17+ and
271 [GOO08].

Diquark-antidiquark state

A tetraquark model treats the X (3872) meson as a diquark-antidiquark system [MT05],
[cq][¢q] where ¢ = {u,d}. Therefore, it predicts the existence of two neutral X (3872) meson
states and their two charged partner states defined as

Xy =[eullen]  Xg = [ed][ed], (1.9)
Xt =[euled] X~ = |ed)[ca]. (1.10)

The two neutral states are both produced from B decays but then decay differently as the
X, state decays to 777~ J/¢ and the X, to D’D%% [MPRO7]. The measured masses of the
X (3872) meson via the two decay modes differ by about the expected mass difference between
these two neutral states. Also, in this model, the X; and the X, are named as the X (3872)
and the X (3876) mesons, respectively.

The full spectrum of diquark-antiquark for the X states is shown in Figure 1.3. The state
with JP¢ = 17+ is proposed for the X (3872) meson because it matches many of the observed
properties of the state especially its narrow width and its capability to decay into pJ/v¢ and
wJ /1 final states by isospin breaking. The total width of the state was estimated to be around
1.6 MeV/c? [MPRO7].
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Weakly bound DD* molecule state

An important feature of the X (3872) meson is the closeness of its mass to the D°D*"
threshold. Using PDG values for the X (3872), DY and D** masses [N*10], one obtains:

My — (Mpo + Mpwo) = 0.23 4+ 0.52 MeV/c2. (1.11)

This relation led to a natural interpretation of the X (3872) meson being a D°D*? bound state.
By analogy with the deuteron, the X (3872) meson has been interpreted as an S-wave DD
molecule in which the binding is done via light meson exchange (7, o, p and w) [L.T09, T04].
The quantum numbers of such a state are J©¢ = 1+, With this model, the relative branching
ratio B(X — D°D7%)/B(X — DYD%) is expected to be similar to the ratio 62 : 38 which
corresponds to the ratio of the branching fractions B(D*® — D%7%)/B(D** — D%) [CP04].
The total width should be dominated by the D** width [BG03] which is estimated to be
65.5 & 15.4 keV/c* [BLOT].

1.3 Summary

The nature of many hadronic states are still unclear. One of these states is the X (3872).
Its discovery instigated much theoretical speculations on this matter. An overview of some
suggested models is given above. Many others exist such as a virtual state [HT07], an exotic
glueball [Set05], or an admixture of a conventional charmonium and DD* molecule [LT08].
The common feature between the different theories is the preference of the JX¢ = 1+
quantum number assignment for the X (3872) meson. Also, even if they have significantly
different predictions on the width, their calculation are consistent with the PDG upper bound:
'y <2.3 MeV/c?

A precise measurement of the line shape of the X (3872) is crucial to shed light on its
nature. This requires an experimental setup capable to produce all hadronic states mentioned
above and equipped with a spectrometer with excellent mass and width resolution. This was
not possible with the B—factories since the eTe™ collisions are dominated by vector states
(JP¢ =177) formation. However, the pp annihilation provides direct formation of all possible
fermion-antifermion states. For such processes, the measurement resolution depends strongly
on the beam momentum resolution. As a result the antiproton beams of unprecedented quality
provided by the High-Energy Strorage Ring (HESR) together with the planned antiProton
ANnihilations at DArmsdadt (P_’ANDA) experiment at the future Facility for Antiproton and
Ton Research (FAIR) have the opportunity to provide additional decisive information on the
nature of the X (3872) state.






CHAPTER 2

Experimental Setup

The PANDA experiment is one of the pillar experiments of the FAIR facility. It is an internal
experiment in the HESR ring, a major component of FAIR. The two first parts of this chapter
are dedicated to basic information about the FAIR facility and the HESR accelerator. Then
different target types that will be used in the experiment will be described. In the last part,
an overview of the PANDA physics program is given which leads to the detector description.

2.1 The FAIR project

FAIR is an upcoming international accelerator facility in Darmstadt. The schematic overview
of FAIR is shown in Figure 2.1. It is an upgrade of the existing GSI accelerators. A broad
field of physics will be addressed at this new facility, namely nuclear structure physics, physics
with antiprotons, nuclear matter physics, plasma physics and atomic physics [FAI]. The FAIR
facility consists of eight ring accelerators, two linear accelerators and various experimental
halls.

2.2 The HESR antiproton beam

The HESR is the accelerator and storage ring component of the FAIR facility dedicated for
high-energy antiproton beams. The ring has a circumference of 574 m with two arcs of 155m
length each and two straight sections of 132m each. One straight section will mainly be
occupied by the electron cooler system. The other will be intended for the beam injection, and
will host the RF cavities and the PANDA experiment. The schematic layout of the HESR ring
is shown in Figure 2.2.

In the start version, a pre-cooled beam of 10% antiprotons coming from CR will be injected
into HESR at 3.8 GeV/c momentum. They will be accumulated in HESR until reaching 101°
antiprotons. The beam will be accelerated or decelerated to the desired momentum within a
range from 1.5 to 15 GeV/c. The combination of electron and stochastic cooling will be used
to ensure a high-quality of the beam the desired luminosity [Maill|. In the full version, the
HESR will operate in two different modes: high resolution and high luminosity modes. The
specifications of each of these modes are given in Table 2.1.
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Peak Luminosity of 2 x 103'em=2s71 for 1019 p
Target density of 4 x 10 atoms/cm?
Momentum resolution dp/p < 4 x 1075
Momentum range 1.5 to 8.9 GeV/c

High resolution

Peak Luminosity of 2 x 1032em =251 for 10! p
Target density of 4 x 10'® atoms/cm?
Momentum resolution dp/p ~ x10~4
Momentum range 1.5 to 15 GeV/c

High luminosity

Table 2.1: Operation modes of HESR.

2.3 Target

As seen in Table 2.1, the design luminosity requires a target thickness of about 4 x 10! hydrogen
atoms per em? for the 101° — 10! stored antiprotons in the HESR ring. For the pp collisions
two different types of hydrogen target are foreseen: a cluster-jet and a pellet target. Only
the pellet target currently provides sufficient target thickness since the current upper limit of
the density for the cluster target is 2 x 10'5 atoms/cm? [TT11]. Furthermore, they exhibit
different properties concerning their effect on the beam quality: cluster jet targets provide a
homogeneous and adjustable target density without any time structure and thus without time
structure in the luminosity, pellet targets suffer from a non-uniform time distribution which
results in considerable variations of the instantaneous luminosity. Therefore the only advantage
of the pellet target is the potentially higher average luminosity.

For the hypernuclear studies, a target system consisting of a primary and secondary sta-
tionary target is required. And for the pA interaction studies, a wire or a foil target will be
employed [pC09al.

2.4 The PANDA experiment

2.4.1 Overview of the physics program

Antiproton-proton collisions allow the PANDA experiment to access various topics in hadron
physics. The list of the accessible states within the beam momentum range between 1.5 and
15 GeV/c is shown in Figure 2.3. This list reflects the rich physics program of PANDA which
can be divided into several subtopics. Improved knowledge of these states provide a better
understanding of the strong interaction and of the hadron structure. The availability of a high
antiproton beam quality with a high luminosity endows PANDA the ability to perform very
precise measurements at high statistics of these states. Therefore, it has great potential to test
with an unprecedented accuracy the theory of the strong interaction. An overview of the main
subtopics is given below [pC09al:

e QCD bound states: the key measurements concern charmonium and open-charm states.
At full luminosity several thousand c states per day can be detected at PANDA. By means
of an adequate experimental method (c¢f. next chapter) accuracies of the order of 100 keV'
can be achieved for mass and width measurements. PANDA will also search for QCD
exotic states in the charmonium mass region. From LQCD calculations, exotic charmonia
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Figure 2.3: Hadron physics accessible for PANDA within the HESR beam momentum range of 1.5
to 15 GeV/c. Picture taken from [pCO05].

are expected to exist in the 3 — 5GeV/c? mass region and the lightest exotic glueball is
predicted to have a mass of 4.3 GeV/c?.

e Non-perturbative QCD dynamics: the creation mechanism of quark-antiquark pairs
measurement and their arrangement to hadrons will be studied through the pp — Y'Y reac-
tion, where Y is an hyperon. PANDA allows measurements of the cross section production
of such stranged and charmed baryon for momenta above 2 GeV/c where essentially no data
points exist.

e Hadron in nuclear medium: the mass shift of hadron as consequence of chiral dynamics
and partial restoration of chiral symmetry in nuclear medium will be measured. In PANDA,
extended studies into the charm and strange sectors due to the high-intensity of the HESR
antiproton beam up to 15 GeV/c by using antiproton-nucleus reactions is planned.

e Hypernuclear physics: although single and double A—hypernulei were discovered many
decades ago, only 6 AA—hypernuclei are identified up to now. PANDA will use a secondary
target to capture hyperons produced by pp annihilation resulting to excited hypernuclei.
The measurements will be performed via the deexcitation of the hypernuclei and the pionic
decays to normal nuclei. Thanks to the high beam intensity, copious production of such
process at PANDA is expected.

e Nucleon structure: it will be investigated by measuring the cross sections of some elec-
tromagnetic processes such as pp — yete™, pp — v, or pp — v using the Generalized
Distribution Amplitude (GDA) or Transition Distribution Amplitude (TDA) approaches. In
addition, PANDA will perform the measurement of the cross section of pp — e*e™ process
at large momentum transfer Q? > 20 GeV?/c? and with larger statistics. This will allow
to separately measure the electric |Gg| and magnetic |G| time-like electromagnetic form
factor of the proton.
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Figure 2.4: Picture of the PANDA spectrometer. Picture taken from [PAN].

2.4.2 Detector description

In order to cover the rich physics program mentioned above, the PANDA detector must be
optimized to exploit as much the high quality and intensity of the HESR antiproton beam
as possible. As a consequence, the detector must have a 4w acceptance, high resolution for
tracking, particle identification and energy, good vertex reconstruction, high rate capabilities
and a versatile readout and event selection.

The PANDA detector will consist of two magnet spectrometers: the target spectrometer
and the forward spectrometer. A schematic picture of the PANDA detector is shown in Figure
2.4.

Target spectrometer

The target spectrometer is based on superconducting solenoid magnet which provides an
homogeneous magnetic field of 27". The subdetectors inside the solenoid magnet are arranged
in a shell-like structure surrounding the interaction region cover a total polar angular range
from 6 = 22° to 140°. An additional forward endcap extends the angular coverage down to 5°
in the vertical and 10° in the horizontal plane.

The innermost detector will be the MicroVertex Detector (MVD) surrounding the inter-
action region. It consists of 4 barrels and 6 disks in the forward direction of silicon sensors.
It will be surrounded by the central tracker which consists of a barrel of Straw Tube Tacker
(STT) and three layers of Gas Electron Multiplier (GEM) for particles emitted at angles be-
low 22°. The next layer will be the particle identification devices including the Time-Of-Flight
(TOF) and the Detector of Internally Reflected Cherenkov light (DIRC). Then the last layer of
subdetector inside the solenoid magnet is the ElectroMagnetic Calorimeters (EMC) composed
by a barrel, backward and forward endcaps and will surround the above detectors. Outside of
the solenoid there will be an instrumented flux return to measure muons.
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Forward spectrometer

The forward spectrometer will detect particles emitted below 5° and 10° in vertical and
horizontal direction, respectively. It has a dipole magnet of 27'm bending power at 15 GeV/c
beam momentum.

The tracking will be performed by 3 pairs of STT stations placed in front, inside and
behind the dipole magnet. The particle identification device will use a TOF system and a
Ring Imaging Cherenkov Counter (RICH) which will be placed behind the tracking station.
This will be followed by the forward shashlick calorimeter and MUQO detectors.

Further details on the PANDA detector can be found elsewhere [PAN, pC09a].

Luminosity monitor

The most downstream part from the interaction region of the PANDA detector system will
be the luminosity monitor (LuMo) at about z = +10m. It was conceived to determine the
absolute luminosity up to a precision of 3% which is required by PANDA to perform a high
accuracy on the mass and width measurements.

Since the conceptual design of this detector is one of the topics of this thesis, a detailed
description of the LuMo will be presented in the next two chapters.



CHAPTER 3

Conceptual Design of the PANDA
Luminosity Monitor

This chapter focuses on the method which is used to measure the luminosity for the PANDA
experiment. As described in detail in the subsequent sections, the measurement will be done
by exploiting the pp elastic scattering process. The introduction of the chapter motivates the
need to measure the absolute luminosity for PANDA, followed by the reason why pp elastic
scattering has been chosen as the reference channel. Then a description of the channel of
interest will be treated. Finally, the different constraints on the detector apparatus on which
its design is based will be shown in the last part of the chapter.

3.1 Motivation of a precise luminosity measurement

3.1.1 Concept of luminosity

The number of interesting particles dN measured by a detector produced by the interaction of a
particle beam with a target (or two colliding particle beams) within the time dt is proportional
to the probability of producing the particle in a single interaction. Since the cross section
o encodes the probability for such a reaction to occur, ignoring the detector acceptance and
efficiency, the proportionality constant £, called luminosity, defines the rate with which the
particles are produced. The relation between these quantities can be then written as:

dN
Iy 1
7 Lo (3.1)

Thus, a precise measurement of the cross section requires a correct normalization of the reaction
rate and thus an absolute determination of the luminosity. Furthermore, the determination
of many physics parameters (e.g. mass and width) which are generally extracted from the
cross section line shape, relies on the accuracy with which the luminosity is measured. This is
explicitly demonstrated by the so-called resonance scan method which is described in the next
subsection.

3.1.2 Resonance scan technique

With the resonance scan method, the nominal beam energy is stepped through the center-
of-mass energy region where the resonance is expected to occur. The number of events N is
measured for each considered beam energy. The measured number of events during a beam
time At = t1 — o is connected to the resonance cross section oggg as follows:

t1

N(V5) = ¢ / Ldt [onre + (orms © B)(V5)] | (3.2)

to
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Vs

Figure 3.1: Sketch of the resonance scan technique. At each nominal center-of-mass energy, the
beam energy distribution and the measured rate are represented by the colored curve and the point,
respectively. The dashed gray curve shows the profile of the rate distribution within the energy range
of the scan. The solid black curve corresponds to the line shape fit to the cross section distribution
obtained by the deconvolution of the two first curves.

where ¢ is the detector efficiency, L is the instantaneous luminosity, opx g is the background
cross section and B is the function that describes the beam energy distribution at a given /s
nominal center-of-mass energy. The resonance cross section is then obtained by the deconvolu-
tion of the beam profiles and the measured rate. A fit to the cross section distribution allows
the resonance parameters to be extracted. A schematic illustration of the method is shown in
Figure 3.1.

The resonance scan technique is widely used in charmonium spectroscopy. Among the
first applications of this method was the J/1 mass measurement formed in pp annihilation
at the experiment R704 at the CERN Intersecting Storage Ring [BT87]. Then, the method
was extensively used by the experiment E760/E835 at the Fermilab Antiproton Accumulator.
For example, the cross section distribution as a function of the center-of-mass energy of the
Xc0(13Py) charmonium reconstructed from the pp — xco — vJ/10 — y(ete™) reaction by
the E835 collaboration is shown in Figure 3.2. The obtained distribution was fit with a non-
relativistic Breit-Wigner function allowing the mass and the width of the state as well as the
combined branching ratios B(xo — pp) x B(xco — vJ/v¥) x B(J/¢¥ — ete™) to be determined
[BT02].

The main advantage of this technique is that one can essentially eliminate all systematic
errors due to the detector resolution. The measurement precision depends strongly on
the knowledge of the beam energy distribution and resolution at each individual nominal
center-of-mass energy used.

Due to the unprecedented quality of the antiproton beam that HESR will provide, PANDA
can perform a very precise spectroscopy of hadronic systems in the charmonium mass range
using the resonance scan method. Indeed, one can expect a very high accuracy on the mea-
surement of some very narrow states, especially the new charmonium-like X, Y, Z states (with
predicted widths ~ 30 — 100 keV'), or the D, meson (currently the upper limits to the width
are ~ 4 MeV'). A precision of about 3% on the measurement of the absolute luminosity is re-
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Figure 3.2: Cross section distribution of the x.o(13FPy) charmonium formed in pp annihilation mea-
sured by the E835 experiment at Fermilab. The mass and width obtained by a fit (solid line curve) to
the distribution are 3415.4 + 0.4 + 0.2 MeV and 9.8 + 1.0 + 0.1 MeV. Figure taken from [BT02].

quired by the PANDA experiment to achieve these goals. In the next section the measurement
method to reach this precision is presented.

3.2 Methods to measure the absolute luminosity

The determination of the absolute luminosity can be perform by one of the following two
methods:

1. using the optical theorem. This method consists of measuring the total (inelastic and elastic)
pp annihilation rate, Riy. The luminosity is given by:

o Rior _ (Rinet + Rel). (3.3)

Otot Otot

According to this relation, the determination of the luminosity requires the knowledge of the
total cross section. It can be calculated by exploiting the optical theorem. The basic ex-
pression of the optical theorem is given by (3.16). A consequence of the formula is expressed

as:
167 (dRa/dt)i—o

g g
fot (2 +1) Riot

(3.4)
with
_ R(fult > 0))
T S(E—0)
where f,, is the forward hadronic amplitude of the pp elastic scattering. Thereby, it connects

the forward elastic scattering amplitude, extrapolated to small 4-momentum transfer ¢ to
the total cross section.

(3.5)

2. comparison to a process with a well known cross section. Here, the known process will serve
as the cross section normalization for other processes as follows:

R R
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The first method based on the optical theorem has several sources of significant uncer-
tainties. The p parameter is poorly known in the PANDA beam momentum range. Thus,
a simultaneous measurement of o,y and p will result in a large uncertainties. Further
uncertainty enters by extrapolating the differential elastic rate dRg;/dt from the measured
region at finite 4-momentum transfer down to t = 0. As a result, the second method has been
chosen.

The cross section for most hadronic processes that will be measured in the PANDA ex-
periment are not known with sufficient precision to serve as the reference channel for the
normalization. An exception is the elastic pp scattering process. The main characteristic of
this process is that it is dominated by Coulomb scattering at very low momentum transfer.
Since the electromagnetic amplitude can be calculated precisely, Coulomb elastic scattering
allows both the luminosity and total cross section to be determined without measuring the
total inelastic rate.

The PANDA LuMo thus aims to determine the rate of the elastic pp scattering at the
smallest possible values of momentum transfer values. Based on the physics of this reference
process, a detector concept has been developed which is presented in the following section.

3.3 Basic concept of the PANDA luminosity monitor

The design of the LuMo is optimized to measure the pp elastic scattering interaction. Thus,
the properties of this process will be presented in the first part of this section.

In order to describe the properties of the elastic pp scattering, expressions for the differential
cross section are derived. Using this information, the basic concept of the luminosity telescope
will then be given.

3.3.1 Elastic pp scattering process cross section

A sketch of the elastic pp scattering process is shown in Figure 3.3. In the laboratory frame,
an incident antiproton of four-momentum p; = (FEp,p1) hits a target proton at rest py =
(E2,p2) = (m,0). After the collision, the antiproton is scattered by a polar angle § with a
four-momentum p3 = (E3, ps), and the proton is scattered by an angle o (with respect to the
plane normal to the beam direction) with 4-momentum ps = (Ey, p4). The angle 6o denotes
the antiproton scattering angle in the center-of-mass reference frame (see Figure 3.3).

The Mandelstam variable ¢ is defined as:

t=(ps—p2)’ = (p3—p1)* (3.7)
Using the angles 8cps and «, t can be expressed as the following:

t = —2k*(1 —cosfcn) , (3.8)
4m? sin? o

t = ————, 3.9

62 —sin?a (3.9)

where k is the momentum in the center-of-mass frame, m is the (anti)proton mass and =

|p1|/(E1 +m) is the velocity of the center-of-mass. The angles 6cps and 6 are related to each

other by [DF03|:
sin 0oy

tan ¥ = v(cosbcnr + 1)

(3.10)
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Figure 3.3: Description of the pp elastic scattering in the laboratory reference frame.
1
in which v = (1 — %) 2.

In scattering theory, the differential elastic cross section do;/d) is determined by the
forward elastic scattering amplitude f defined in center-of-mass frame by the relation [Sch07,
BP02]:

W | Ber)P (3.11)
The differential cross section can be expressed in terms of the 4-momentum transfer ¢ by using
the relation (3.8) as:

dgel . @ dael
dt dt dQ
T
= S lor. (3.12)

Moreover, the forward elastic pp scattering amplitude can be expressed as the sum of the
Coulomb and hadronic (nuclear) interactions amplitudes, fo and f,, [A196]:

Ft) = fet)e + falt) (3.13)

where ¢ is the relative phase between the nuclear and Coulomb amplitudes. The forward
Coulomb amplitude is given by [Sch07, BP02]

20 kG2
- (ho)BiY
where ae, is the electromagnetic fine structure constant and G(t) = (1 + A)~2, with A =
0'_—?‘1 GeV?, is the proton dipole form factor [A196].

The forward hadronic amplitude is parametrized in the vicinity of small momentum transfer
as following |[BP02]:

fo(t) = (he)? (3.14)

b
Fat) = fu(t = 0) - e 2N (3.15)
where b is the nuclear slope parameter. At t — 0, the optical theorem connects the total cross
section oy with the imaginary part of the forward hadronic amplitude as:

4
ot = %%fn(t —~0). (3.16)



20 Chapter 3. Conceptual Design of the PANDA Luminosity Monitor

Writing f,(t — 0) as:

fat—=0) = Rf(t = 0) +13fp(t — 0)
= Sfult = 0)(p+1). (3.17)

with p defined in Equation (3.5), one can obtain the following expression for fi,:

fu(t) = JZ;k (p+ z)e_%‘tl(hc)_l. (3.18)

The factors hc have been introduced in Equations (3.14) and (3.18) in order to express the
scattering amplitude in units of length.
The relative phase  between the nuclear and Coulomb amplitudes reads [AT96]

blel
2

5 = Qem [’yE —In ( + 4A) + 4AIn(4A) + 2A (3.19)

where vg = 0.577 is the Euler constant.

Finally, one obtains the expression of the differential elastic pp cross section which can
be written as a sum of three terms: a pure Coulomb term (doc/dt), a pure hadronic term
(doy/dt) and the Coulomb-hadronic interference term (doin:/dt):

doe @ % doint

pu— .2
dt dt dt dt ’ (3:20)
where:

doc T 47 (he)?a?,,G*

o = @lfc(t)l2 = (5)%2 ; (3.21)
dop, _ m o (14 )0ty —b|t|
doin 27 . Trot Olem G2 b

i = RO = —= (et 93, (3.:23)

One can note from the above formula that the differential cross section depends on three a
priori unknown parameters: gy, p and b.

A graphical representation of the differential cross section and the three components as
a function of the 4-momentum transfer for an incident antiproton momentum of 6 GeV/c is
shown in the left part of Figure 3.4. For these graphs, the values of the three parameters oy,
p and b were set to 59.30 mb [NT10], —0.02 and 12.6 GeV =2 [AT96], respectively. In this
plot, one can distinguish the t—regions where the pp elastic scattering process is essentially
dominated by the Coulomb interaction (—t < 6 x 1074 GeV?) and by the nuclear interaction
(—t > 1072 GeV?). The interference term only effects the differential cross section at small ¢
values. This is explicitly shown by the right side plot in Figure 3.4 where &, the ratio of the
differential cross section without the interference term to the total cross section, rises above 1.

It reaches its maximum contribution at the value of |t| = |t|;n¢ where dg—tc ~ %" and is roughly
given by:
ST
|t|ine ~ M (he)?, (3.24)
Otot

At this beam energy, this corresponds to [t];; ~ 1.2 x 1073 GeV?2.
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Figure 3.4: pp elastic differential scattering cross section (left) and k—1 = (doipn:/dt)/(doe;/dt) (right)
variations as a function of the [t| for an antiproton beam momentum of 6 GeV/e, oo = 59.30 mb
[N*10], p = —0.02 and b = 12.6 GeV 2 [A+96].

3.3.2 Detector concept
3.3.2.1 Physics constraints

Since Quantum Electrodynamic (QED) can calculate the Coulomb amplitude with very high
precision, the measurement of the pp elastic rate down to the Coulomb dominated region
allows an absolute normalization of the physics cross section. As mentioned above, for an
antiproton beam of 6 GeV/c momentum, this corresponds to —t < 6 x 10~* GeV? which
requires measuring the recoil proton in the region of o < 7mrad or the scattered antiproton
in the forward direction with 8 < 2mrad.

For the PANDA detector, it is not possible to measure the recoil proton at such small
momentum transfers due to the 2T esla solenoid field and energy loss in the material of the
beam pipe, the MVD and the central tracker. On the other hand, it appears feasible to
measure the forward outgoing antiproton. Nevertheless, the region § < 2mrad can not be
measured in PANDA due the finite dimensions of the target and beam pipe. Instead, larger
angles must be used.

In practice, it is sufficient to measure the pp elastic scattering in the Coulomb-nuclear
interference region to determine the absolute luminosity. Such measurements have been per-
formed at e.g. the UA4 [AT94b| and the E760/E835 [T195] experiments. These experiments
measured either the scattered particle with momentum nearly equal to the beam (UA4), or
the recoil of the target in the laboratory frame (E760). For a 6 GeV/c antiproton beam, the
interference region corresponds to an antiproton scattered at 6;,; ~ 5.5 mrad.

The absolute value of the 4-momentum transfer and the corresponding antiproton scattering
angle in the laboratory frame, for which the Coulomb and the nuclear processes have equal
contributions to the pp elastic scattering are shown by Figure 3.5 for a wide range of antiproton
beam momentum. In these plots, points correspond to the beam momenta in which the total
cross section oy, were measured and tabulated in [NT10]. The available values of the slope
parameter b in the literature show it to be nearly constant in the given beam momentum range
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Figure 3.5: Distributions of the 4-momentum transfer (left) and the scattering angle for ¢ ~ %

(right). The blue dashed line on the left plot is a first order polynomial fit to the distribution.

Momentum range [GeV/c]  p

Dbeam < 2 0.15
2 < Dhoam < 4 0.05
4 < Pream <7 -0.02
7 < Doeam < 11 -0.12
Dbeam = 11 0.0

Table 3.1: Value of the p parameter used in Figure 3.5.

[AT96, J*75, D167, AT74, Ft65a, FT65b, BY75, JT77, K768, F*63, BT69|. The plot showing
this variation is presented in Figure 4.37. For this calculation, a mean value of b of 12.64 GeV ~2
was used. The p parameter has only been measured at very few beam momenta [N*10]. Based
upon those data, the value of p has been assumed over the relevant beam momentum range
and the values used are given in Table 3.1.

A first order polynomial fit to the 4-momentum transfer distribution of the Coulomb-nuclear
interference range shows that the slope is roughly constant (O(107° GeV)) at approximately
|t| ~ 1.2 x 1073 GeV? for the whole beam momentum range relevant for PANDA. The corre-
sponding antiproton scattering angles vary from 25 mrad to 3 mrad at the lowest and highest

beam momenta, respectively.

3.3.2.2 Constraints imposed by HESR

In the Coulomb-nuclear interference region, the measurement of the antiproton can be per-
formed in PANDA by locating the detector as far downstream from the interaction region as
possible. The acceptance of the HESR restricts the lower limit of the polar angle coverage to be
3mrad. The PANDA detector will occupy the region to 10.0 m downstream of the interaction
point. The HESR dipole needed to redirect the antiproton beam out of the PANDA chicane
back into the direction of the HESR straight stretch is located at z = 4+13.0m downstream
of the target. Thus, the available space to measure the scattered antiprotons will be in the
region between z = +10.0m and z = +13.0m). At this distance, the minimum radial dis-
tance between the luminosity monitor and the beam axis is about 3cm. At z = +10.0m the
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inner beam pipe diameter is about 160 mm. This constrains the upper limit of the detector
acceptance to be 8 mrad.

3.3.2.3 Geometry of the luminosity monitor

The task of the PANDA LuMo is to measure the angle of the scattered antiprotons (and thus
t). This can be done by reconstructing their trajectories. However, due to the finite size of the
target and the non-vanishing beam emittance, the position of the primary vertex is not known
with high precision. As a consequence, the trajectory and not just a point must be measured.
This is done by using several detector layers. In this case, the luminosity telescope will consist
of a sequence of four sensor planes. Four planes are required for sufficient redundancy and
background suppression.

The sensors will consist of double-sided silicon microstrip detectors. They will be placed
inside a vacuum chamber to minimize scattering of the antiprotons before traversing the four
planes. Furthermore, they will be electrically isolated from the beam to avoid impedance
jumps that would quickly destroy the beam quality. Therefore a foil will be used to separate
the LuMo vacuum from the beam vacuum. The first layer will not be located at exactly
z = +10m. This will result a decrease of the detector acceptance which will not be exactly
the expected 6§ = 3 to 8 mrad. An example of a detector geometry is shown in Figure 3.6
where the first layer is located at z = 10.5m which set the lower angular limit to about 2.8 mrad.

Up to now, two shapes of sensors have been proposed namely rectangular and trapezoidal.
The rectangular shape allows perpendicular strip directions with which the best hit resolution
can be achieved. The readout has to be done at two different sides of the rectangle. In contrast,
the trapezoidal shape presents the advantage of having the frontend electronic only on one side
by placing strips along the direction of the nonparallel sides.

Two different detector concept are under discussion in PANDA four sensors per plane or
eight sensors per plane. In the four sensors case, sensors will be arranged radially to the beam
axis. This geometry allows systematic error to be strongly suppressed. These effects include
finite misalignment of the nominal beam axis and the actual beam direction at the interaction
point, and effects arising in the horizontal plane due to the dipole magnet of the forward
spectrometer. The eight sensors case will use the trapezoidal sensors shapes and arranged in
order to cover the full azimuthal range.

A schematic view of the detector apparatus using rectangular sensors arranged radially
relative to the beam axis is shown by Figure 3.6. The three type of sensors with their
respective dimensions are pictured in Figures 3.7 to 3.9.

The study of the trapezoidal sensors is not in the scope of this thesis. The following chapter
will be devoted to study of the performance of the LuMo consisting of four tracking stations
of four rectangular double-sided silicon detector presented in Figure 3.6.



24 Chapter 3. Conceptual Design of the PANDA Luminosity Monitor

Figure 3.6: Schematic view of the LuMo with rectangular sensors. The distance between adjacent
planes is 20 cm. The vacuum chamber consists of 1c¢m thick aluminum. The device has a radius of

about 30 ¢m of radius and a length of about 70 em.
E ® § S

Figure 3.7: Four rectangular sensors arranged radially with respect to the beam axis.
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Figure 3.8: Four trapezoidal sensors arranged radially with respect to the beam axis.
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Figure 3.9: Eight trapezoidal sensors arranged to complete a disk.






CHAPTER 4
Performance Study of the Luminosity
Monitor

In this chapter, Monte Carlo performance studies of the LuMo will be presented. As mentioned
in the previous chapter, only the rectangular double-sided silicon microstrip sensors sketched
in Figure 3.6 will be considered here.

The studies aim to characterize the telescope in terms of pp elastic scattering event recon-
struction efficiency and resolution. The efficiency refers to the performance of the detector
to reconstruct to track of the scattered antiproton. The detector resolution is estimated in
terms of the spatial resolution of each individual sensor and the angular resolution after the
track reconstruction. Therefore, a full simulation chain including Monte Carlo simulation,
digitization, and hit and track reconstruction has been developed.

The first parts of this chapter introduce the structure of the so-called PandaRoot simulation
framework on which the detector implementation is based, followed by an overview of the
available event generators within this framework. The next section gives a detailed description
of the LuMo inside the framework and the study of its resolution and its efficiency. This
will be illustrated by a simplified simulation in which the effect of external parameters such
as the magnetic fields and the beam emittance was excluded. These effects were taken into
account in the subsequent section. The description of this simulation is given in Section 4.5.
Following this, a study of the rate of the inelastic reactions that would be misinterpreted and
reconstructed as elastic scattering events will be discussed. This chapter concludes with a
summary.

4.1 The PandaRoot framework

PandaRoot is an extension of the FairRoot framework [FRO| which is based on ROOT
system [ROO]. FairRoot provides an interface to the ROOT Virtual Monte Carlo (VMC)
engine [VMC]. This feature allows users to switch between different transport models
without changing the code structure [H03, H08]. The two transport models used in the
FairRoot framework are GEANT3 and GEANT4. FairRoot also provides generic classes
for a track propagation based on GEANE [I791], an IO Manager based on the ROOT
TFolder and TTree classes, an interface parameter to a database and the event display
based on EVE [EVE|. Many different tasks invoked during the simulation or analysis as
well as the input setups, e.g. event generators and magnetic fields are implemented in FairRoot.

Specific digitization and reconstruction algorithms were implemented for each individual
subdetector in PandaRoot. Different types of event generators are needed for the simulation
studies. An overview of the available event generators is given in the next section. For the
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Figure 4.1: Diagram illustrating the structures and connections between ROOT, FairRoot and Pan-
daRoot. Picture adapted from [pC09a].

physics analysis, the PandaRoot software comes with the Rho package [RHO] and additional
tools for vertex and kinematic fitting [JR10].

Figure 4.1 illustrates how the FairRoot and PandaRoot frameworks are connected together
with ROOT.

One important feature of PandaRoot is that it can be compiled on many different Linux
flavors and MAC OS systems and compilers, and thus, can easily be employed in a GRID
environment.

4.2 Event generators
The following generators have been integrated into the PandaRoot framework:

e Box generator: single particle generator which generates particles according to uniform
distribution within defined ranges of momentum and solid angle. This generator is usually
used to study detector efficiency and resolution and test the algorithms.

e EvtGen generator: originally designed to study the physics processes relevant to the B-
meson decays in the B-factories, provides the ability to handle complex sequential decay
events and generate resonances [Lan01].

e Dual Parton Model generator (DPM): it treats pp interactions by parametrizing its
cross sections using the synthesis of the Regge theory, the 1/Ny expansion of QCD and the
parton model [GU05, UG02]. It is especially dedicated to generate the pp elastic and inelastic
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scattering and thus can be used as a background event generator for studies of particular
channel.

e Ultra-relativistic Quantum Molecular Dynamic generator (UrQMD): it models the
pA annihilation processes using a microscopic transport theory based on interaction between
all hadrons and their resonances at low and intermediate energies (1/s < 5 GeV') and on color
string formation and their subsequent fragmentation into hadrons at higher energies [GP03].

4.3 Implementation of the telescope in Monte Carlo simulations

This section describes the implementation of the different tasks required for the full simulation
chain used for LuMo performance studies. The main features of each task are:

e simulation: description of the detector geometry, definition of the physics processes of in-
terest, generation of primary particles, tracking and hit processing, and computation of the
particle-matter interactions,

e digitization: modeling of the charge collection process by the detector, the electronics be-
havior and the output data flow of the subdetector,

e hit reconstruction: clusterization and reconstruction of the hit position and the deposited
energy,

e track reconstruction: track finder and track fitter.

The global coordinate system is a right handed system with the origin at the beam-target
interaction point. The x—axis is horizontal pointing towards the center of the HESR, the
y—axis is vertical and the z—axis is parallel to the beam direction. This system is shown in
Figure 4.2. The output of each task is illustrated in this section with a full simulation using
the box event generator. Each event consists of an antiproton emitted from the origin, with a
polar angle 6 between 1 and 10 mrad to cover the detector acceptance, an uniform distribution
in cos § and full azimuthal angular coverage. Unless otherwise stated, the simulation has been
performed for an antiproton momentum of 6.2 GeV/c.

4.3.1 Simulation: from track propagation to hit processing

The implementation of the detector starts by defining the media used and the geometrical
properties. A medium is defined by its name and its physical properties such as the number
of component, the atomic (or molecular) weight, the mass density and so on. An ASCII file is
provided in which the properties of some materials are listed and in which new materials can
be defined.

The geometry of the detector is determined by the assembly of several volumes. A volume
is built by defining the shape and the dimensions of each individual component, as well as the
material filling it. Basically, there are the mother and the daughter volumes. The positions of
the daughter volumes are given by their respective transformation (translation and rotation)
matrix with respect to the mother volume. Each volume is flagged as an active or passive
volume. Parameters related to the geometry of each individual sensor were given in the
previous chapter. For this study since the dipole field is off, the position of the mother volume
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Figure 4.2: FairRoot event display [ATU09| illustrating an event corresponding to an antiproton
track hitting all four planes. The blue-gray volume represents the aluminum cover and the rectangular
dark-blue volumes the silicon sensors. The green line shows the antiproton track and the resulting hits
are given by the red points.

was set at x = 0, y = 0, z = 10.80m (i.e. the first plane is located at z = 10.50m) and each
plane is perpendicular to the beam axis.

The tracking is performed by the GEANE package which is implemented in the ROOT
VMC [FT08]. The LuMo is located outside of the magnetic field, thus the tracks are straight
lines. This is shown in Figure 4.2.

As discussed in the previous chapter, all four planes are needed for sufficient redundancy
in order to suppress background. This study focuses only on events in which all four planes
have been hit. An illustration of a single event that meets this condition is also shown in
Figure 4.2. One can note that the track is nearly normal to the detector plane. As a result,
the path length through the detector material is only slightly larger than the sensor thickness.

Figure 4.3 shows two-dimensional distributions of the Monte Carlo hit position at each
station. The uniformity of the hit distribution reflects the uniform distribution of the generated
particles. The hit occupancies on the z— and y—coordinates have the same width for all planes
but shift slightly to higher values from one plane to another. This is a consequence of the
requirement that a track must hit all four planes. With this condition, the angular coverage
of the telescope is obtained. The corresponding # polar angle distribution is shown in Figure
4.4. From this distribution the polar angular range of LuMo is between 2.8 and 7.5 mrad.

The hit position is defined as the mean of the segment (path) defined by the entry position
of a track into the sensitive volume of the detector and the exit position where the particle
leaves the volume. These positions are computed by GEANT by taking into account multiple
Coulomb scattering within the material. Multiple Coulomb scattering deflects the track direc-
tion by an angle 6y which follows a Gaussian distribution with a standard deviation og, given
by [NT10]:

_ 13.6MeV

Bep zy/x/Xo [1+ 0.0381n(z/X))] (4.1)

g0,
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Figure 4.3: Two-dimensional hit distributions from tracks that hit all four stations. The numbers in
the upper left indicate the plane along the beam direction.
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Figure 4.4: Angular distribution of events accepted by the LuMo.

where p, B¢, and z are the momentum, velocity, and charge number of the incident particle,
respectively, and x/ X is the thickness of the scattering medium in radiation lengths. For
the current study, o, is about 0.1 mrad. This corresponds to a Gaussian dispersion of 20 pm
width of the x— and y—coordinates of hits position between adjacent planes. This is shown
in Figure 4.5 where the distributions of the difference AZ between the impact position of the
projection of the Monte Carlo track and the hit position at each plane are plotted. In the first
plane, the distribution is a §—function. The effect of the multiple scattering is seen in the three
last planes where each histogram follows a Gaussian distribution with standard deviation oy,
at the i** plane which can be parametrized by:

i—1
ol = (G-d-og,)?, (4.2)
J

Il
o

in which d = 20 em is the distance between two adjacent planes.

Charged particles passing through the silicon sensors interact primarily by ionizing the
atoms. This causes the incident particle to lose energy, which is computed by the transport
model [GEA93, AT03]. The energy loss distribution for 300 um thick silicon is shown in
Figure 4.6. In the left part of the figure, the distribution is fit with a Landau function, which
approximately describes the energy loss distribution in a thin layer |Bic88|. In the right part,
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Figure 4.5: Distributions of z—coordinate of the vector hit residual between the projection of the
Monte Carlo track and the Monte Carlo hit position at every detector plane denoted by the number at
the top left. The blues lines are Gaussian fits to the corresponding distribution.

a Landau convoluted by Gaussian function is used to fit the energy loss distribution. The
convolution with a Gaussian takes into account the effect of distant collisions of the incident
particle with the atomic electrons in the inner shells [Ran84].

The Landau function is expressed as [H"84a]:

e, 8) = 22 (4.9
The parameter £ is defined as:
£ = (2n22et /m 2 B2)NaZxpA, (4.4)

where N4 is the Avogadro number, m,. and e are the electron mass and charge, respectively, z
is the charge of the incident particle, Z, A and p are the atomic number, atomic number and
mass density of the material, and x is the distance traversed. The & parameter is connected
to the FWHM of the Landau distribution by FWHM= 4.02 - ¢ [H*84b|. The function ¢ is an
universal function of the dimensionless variable A which is defined as:

[A = (Ap = €Ao)]
§

here the parameter A, is the most probable energy loss and A\g ~ —0.223 is the value for which
¢ is maximum. For a thickness of 300 um, z = 68.9mgcm ™2 and the minimum ionization for
the silicon (dE/dx)mim = 1.664 MeV g~tem?, A, ~ 79 keV [NT10].

A= (4.5)
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Figure 4.6: Energy loss distribution (black line) of 6.2 GeV/c antiprotons in 300 um thickness of
silicon fitted with a Landau distribution (left) and with a Landau convoluted with a Gaussian (right).

The Landau convoluted with a Gaussian is:

1 oo
ooV 2T J_co

where o¢ is the r.m.s of the Gaussian distribution. If assuming the distant collisions to be
dominated by the interaction of the innermost shell (K-shell), then o = ox = 5.75 £ 0.5 keV
for this simulation setup [H'84b].

One can note from Figure 4.6 that the Landau convoluted with Gaussian fits better the
energy loss distribution where x?/ndf ~ 1 (Landau fit results in x?/ndf ~ 14.1). In addition,
the most probable energy loss obtained from the second is comparable to the theoretical pre-
diction while the value obtained from the first fit is slightly bigger. Furthermore, the Landau
width (o = €) is bigger for the first fit. Within the error bars, the Gaussian width obtained
with the second fit is in good agreement with the value mentioned above.

fla,A) = frla, A @ e" (A=A /208 g A" (4.6)

4.3.2 Digitization process

Ionization in the silicon volume generates electron-hole pairs, and the number of pairs created
is proportional to the energy loss of the particle. Due to an applied electric field, the electrons
and holes drift in opposite directions and are collected in the electrodes before they recombine.
The purpose of the digitization is to model the charge collection and charge sharing between
strips. The digitization depends on the drift and the diffusion of the charge carriers, as well
as the strip pitch, the electronic noise and the charge threshold.

The drift is the average motion of the charge due to the electric field E. Thus, the charge
carrier (electron or hole) drift velocity ¥y, is proportional to the electric field and is expressed
as:

Tgr = £pE (4.7)

where p is the mobility of the charge carrier and the sign is given by the sign of the charge
carrier. During their drift, the electrons and the holes do not follow the field line direction, but
undergo random motion by multiple collisions. The transverse displacement of charge carrier
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from the field line follows a Gaussian distribution:

dN 1 2
—_— = e aDtdx 4.8
N Var Dt (4.8)
where t is the drift time and D is called the diffusion coefficient which is defined by the Einstein
relation:

T
D=t (4.9)

e

in which kp is the Boltzmann constant, 1" is the temperature and e is the electron charge.
Since the mobility and the drift time are inversely proportional, the standard deviation
Odiff = V2Dt depends only on the temperature and the electric field magnitude but not on
the type of the particle. For a 300 um thick silicon sensor, a typical value of o4;¢ for the
electron is about 5 to 10 um [Bel83, Pei93].

The drift and diffusion processes need to consider each individual electron and hole. Thus,
its implementation is based on dividing the full path length of the track inside the sensor into
small segments (O(1 um)). Each segment corresponds to the same amount of charge carriers
(388 eV ~ 107 electrons). Electrons and holes in every charge packet are then smeared over a
surface parallel of the detector plane, according to the same Gaussian distribution located at
the center of the segment and with width o4;r¢. As a consequence, the Gaussian distribution
is evaluated on the collection plane which is composed of contiguous strips.

The contribution of one charge packet to the total charge collected by the " strip is given
by the cumulative function ¢; defined as:

1 xi+p/2 — g 2
Gi(ps, oaify) = \/ﬂ/ exp <_(x,u)> dx (4.10)

i—p/2 203# f
P it VT Y (el U 0 | IOREY
2 Odif fﬁ odif f\/§
where x; and p are the center position and the pitch of the strip, respectively, and us is the
center of the segment.

Figure 4.7 sketches the drift and diffusion of charges (electrons in this case) inside the
detector volume. It also shows the strip charge collection. The process is the same for the
holes. This figure is a good illustration of those events where the track hits all four planes
i.e. the Monte Carlo track is nearly normal to the detector surface. In this case, the entry
and exit positions are within the range of x; — p/2 to x; + p/2, and thus the charge generated

should be collected only by the central ¢ strip. However, the charge diffusion will cause some
of the charge to be collected on the adjacent strips.

In addition to the charge diffusion process, the effect of the electronic readout associated
with each strip is taken into account. Noise has been generated for each individual strip
according to a Gaussian function of width o0, and was added to the actual amount
of charge at each strip. This leads to a non-zero charge in the strips which were not
hit. Hence, a charge threshold is introduced to suppress fake signals. The charge thresh-
old has been set at the same level for each individual strip for every sensor and equal to 30,,0;se-
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Figure 4.7: Strip charge collection and sharing processes taking diffusion into account. The solid black
and empty arrows on the right indicate the drift directions of the electrons and the holes, respectively.
The colored arrows on the electrons indicate their directions of motion which are due to the combination
of the drift and the diffusion processes. Their profiles at the collection plane are represented by the
Gauss curves at the bottom of the figure.

electron drift
hole drift

Tip 1 Tir2

Parameter Value
Pitch 50 um
Odiff 8 um
Onoise 3000 eV

Threshold 9000 eV
Stereo angle 90°

Table 4.1: Digitization parameters for the silicon strip sensor.

For this simulation, the front strip direction is parallel to the length and the back strip
direction is parallel to the width of the rectangular sensor. In total there are 400 and 1000
strips on the front side and back side, respectively. The strips cross with a 90° stereoangle,
thus the overlap in the xy—plane form 50 um x 50 um virtual pizels.

A summary of the parameters values for the digitization for the current study is given in
Table 4.1.

Taking into account these parameters, the distribution of the charge deposited per strip in
the front and back side of a sensor are plotted in Figure 4.8. Profile histograms are drawn on
the top of each two-dimensional distribution in order to determine the position of the mean
charge collected by each strip on both sides. The values obtained are 71.28 4+ 0.44 kel and
71.76+0.27 keV for the front and back sides strips, respectively. These two values are consistent
with each other within the error bars.
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Figure 4.8: Distribution of the charge deposited per strip on the front side (left plot) and the back
side (right plot) of the silicon strip sensors. The black marks are profile histograms indicating the mean
value and the uncertainty of the means. The mean values of the charge deposited in each strip, @, on
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Figure 4.9: Cluster size distributions on the front (left) and back (right) sides of the silicon strip
sensors for the two cases: without the charge diffusion (dashed line) and with o4;rf = 8 pm charge
diffusion (solid line).

4.3.3 Hit reconstruction
4.3.3.1 Clusterization

Neighboring strips on the same side of the sensor that were fired by a single particle are grouped
together to form a cluster. The number of the strips involved is called the cluster size.
Histograms showing the distributions of the cluster size in the front and back sides are
plotted in Figure 4.9. As discussed previously, drift and diffusion of the charge carriers has
important effects on the cluster size. To investigate this, two histograms are presented for
each side of the sensor, corresponding to the digitization process with and without the charge
diffusion, respectively. As expected, the ratio of events with cluster size larger than one shows
a significant increase when charge diffusion is considered. In the front side, as in the back
side, the ratio increases by about 44% with o4,y = 8 wm. One can note the slightly higher
fraction of cluster size equal to 2 on the back side for the case of digitization without the charge
diffusion. This is due to the larger inclination angle (2.8 — 7.5 mrad) in that direction.



4.3. Implementation of the telescope in Monte Carlo simulations 37

% "1 %2/ naf 278.929/ 246
84 000~ Ap 78.4753+ 0.0403
o [ o 5.00162+ 0.02970
L S 7.07598 + 0.05250
3000- Area 164676 + 410.7
2000~ 7
1000~ .
O——d L T y

0 100 200 300

Energy Loss [keV]

Figure 4.10: Distribution of the reconstructed energy loss fit with a Landau convoluted with a
Gaussian function.

The deposited charge is determined by the sum of the charges collected by each individual
strip involved in the reconstructed cluster. The distribution of the reconstructed energy loss is
shown in Figure 4.10. The distribution is fit with a Landau convoluted with a Gaussian. The
obtained values for the most probable energy loss and the Landau width are consistent with
the Monte Carlo true values. The width of the Gaussian crgco is larger than op;c obtained
in the Monte Carlo simulation. This is due to the contribution of the electronic noise. In fact,
the width of the Gaussian noise can be determined by:

2 2 2
ORECO — OMC + Onoise * (412)

With this equation, one reconstructs g,ise = 3.37 & 0.071 keV, in reasonable agreement with
the input value of 3 keV given in Table 4.1.

4.3.3.2 Position reconstruction in 1-dimension

The first step of the hit position reconstruction is the determination of the mean cluster
position. Here two cases are considered:

o (luster size equal to 1, in this case the center of the strip is taken to be the cluster position.

e (luster size more than 1. When the charge is collected by more than 1 strip, there will be a
non-linear but monotonic relationship between the position where the charge was deposited
and the ratio of the collected charge on the strips.

The strips of the cluster can be divided into two groups: left and right. They are defined in
ascending order of the strip index. This means that for cluster size equal to 2, the left strip
has the lower index. For wider clusters, the groups are defined from the boundary of the
two strips with the largest collected charge. This is illustrated in the left picture of Figure
4.11.

If the amount of charge collected by the right and the left strips are Qg and @, respectively,
the ratio of charge collected by the right cluster strips is given by the n—function which is
defined as:

Qg
T Qr+Qr (4.13)
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Figure 4.11: Charge sharing illustration. (left) illustrates how the left and the right groups of strips
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the cluster are defined. (right) shows the distribution of the 7 function, defined in Equation (4.13).
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Figure 4.12: Variation of 7 as a function of the Monte Carlo hit position (points). The hit position is
expressed in units of the pitch. The blue line represents the function in Equation (4.14) which defines
the reconstructed position of the multi strip clusters.

The distribution of 1 has two symmetric peaks with one peak well below n = 0.5 correspond-
ing to the larger fraction of charge being collected by the left strips and another peak at
well above 1 = 0.5 corresponding to the larger fraction in the right strips. The distribution
of the n—function is shown by the right plot in Figure 4.11 for the parameter values listed
in Table 4.1. The peak positions are determined by the ratio of the threshold to the most
probable value of the energy loss. For this simulation the ratio is about 11.4%. In the figure
the peaks are located at about n = 0.12 and n = 0.88.

The mean cluster position is determined by exploiting the distribution of the variable n. The
dependence of n on the Monte Carlo track impact position z is shown in Figure 4.12.

The variation 7n(z) is best described by the cumulative function since the charge sharing was
seeded by the Gaussian distribution i.e. :

1+erf <W>] : (4.14)

This function is plotted as a solid line is Figure 4.12. As observed in this figure, the curve
representing Equation (4.14) agrees with the current distribution for n values between 0.12

n(x) = %
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Figure 4.13: Correlation between charges on the front and back sides of the sensor. The solid line
represents the line of perfect correlation.

and 0.88 (the peaks location in right plot of Figure 4.11) very well. Within this interval,
clusters have exactly a size of 2. The points near the edges (~ +pitch/2) are poorly described
by the function since they typically correspond to clusters with size > 2.

As a consequence, the inverse of this function has been used to determine the mean position

Treco =\ 205, -erf (20— 1). (4.15)

Although the x,¢., formula precisely reconstructs the position, as will be confirmed by Figure
4.14, the result depends strongly on the determination of oy ;.

Treco Of the cluster which is:

4.3.3.3 Position reconstruction in 2-dimension

The two dimensional hit position is obtained by combining the total charge deposited in the
cluster and its average position from both sides of the sensor.

The first step is to match clusters in both sensor sides with similar charges in order to
suppress false hits (“ghost hits”). This step is in particular necessary for events with high track
multiplicity. The charge matching was implemented by selecting on the charge difference.
The correlation between the charges deposited on the front and back sides of the sensor can be
verified by the scatter plot shown in the left part of Figure 4.13. The distribution is comparable
to the perfect correlation represented by the black straight line in the same figure.

The distribution of the difference of the cluster charge on both side is shown in the right
part of the same figure. It follows a Gaussian distribution. The mean value of 0 corroborates
the perfect correlation. The dispersion of about o = 6 keV is due to the effects of the noise
and the charge diffusion. In this study, only clusters with charge difference within 3o of the
distribution were considered.

Next, the information of the hit position on both sides is combined to find the intersection
which is taken to be the position of the track in the sensor. For the current study, the z— and
y—coordinates for the up and down sensors are given by the cluster positions at the back and
front sides, respectively, and inversely for the left and right sensors.
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4.3.3.4 Hit resolution

The bivector hit residual AZ = (Ax, Ay) is defined as the difference between the Monte Carlo
and the reconstructed hit positions. Similar distributions are obtained Az and Ay since the
virtual pixels are square and their sides are parallel to the two directions. The x—coordinate
of the residual for cluster size 1, 2 and > 2 are plotted in Figure 4.14. Here, the Monte Carlo
hit position is taken as the mean of the entry and exit positions.
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Figure 4.14: Distributions of the x—coordinate of the hit residual corresponding to clusters size 1
(left), 2 (middle) and > 2 (right).

The residual distribution corresponding to the single strip cluster is almost uniform in the
center, as expected, for a homogeneous illumination of the sensor. The distribution drops near
the edge of the sensor because charge diffusion always converts single hit clusters into two hit
clusters. This explains why the full width is (p —204;¢f) with p is the strip pitch. The expected
resolution o; for the single hit clusters is given by the following formula, taking charge diffusion
into account:

) 1 +(p/2—0aifys) ) )
o] =——"- / xédr ~ (14 pm)*, (4.16)
P =204iff J=(p/2=0uirs)

where z is the distance to the center of the strip.

The distributions are narrower for the case of multi strip clusters. This is the consequence
of the application of the 1 based position reconstruction algorithm. As mentioned earlier, the
algorithm results in a good spatial resolution for hits that fire two strips. The corresponding
distribution is a Gaussian of oo = 0.7 wm width. The residual distribution corresponding
to the cluster size > 2 is wider and a Gaussian fit to the distribution gives a resolution of
o3 = 1.76 um.

The spatial resolution of the detector is obtained by the weighted average of the three
different type of clusters:

3
> Wio;
oa="—. (4.17)
> wi
=1
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In this equation, the number of entries of the distributions were taken as the weights and the
obtained resolution is oA ~ 8 um.

4.3.4 Track reconstruction
4.3.4.1 Track finding

The track finding process consists of identifying all hits in the different planes that were created
by the same track.

Within the LuMo region, the tracks are straight lines since there is no magnetic field.
However, the tracks do not point to the origin in the global reference system due to the
presence of the dipole magnetic field between the interaction point and the LuMo. Thus,
the reconstructed hits were transformed so that the detector axis is collinear to the z—axis.
If o is the bending angle of the dipole magnet located at (x = 0, y = 0, 2 = Zzgipole), the
transformation is:

x cosaa 0 sina x
z —sina 0 cosa 2" — (Zum — Zdipole)

where (2,4, 2') is the coordinates of the hit in the LuMo reference system and 2z, is the
z—position of the detector. Numerical calculation of parameters related to the effect of the
dipole magnetic field are given in detail in Section 4.4.1.

After making this transformation the tracks are on a line in the global reference system.
The position of a point (z,y, z) on a line is parametrized as

r = xo9+a,t
y = Yot+ayt (4.19)
z = zg+a,t

where ¢ is a parameter, the point (xg,yo, 20) is the initial position of the line and ¥(as, ay, a)
is the direction vector of the line. The orientation of the line can equivalently be described
with the polar # and the azimuthal ¢ angles which are defined by:

0 = atan <vxy‘> (4.20)

Gy

Qg

¢ = atan (ag’) (4.21)

Here, ¥y(as,ay) is the transverse component of . As a consequence, a representation of a
line will be a point in the 8¢—plane.

Based on these properties, two different algorithms for track finding have been developed
and implemented. The first method is performed in the Cartesian coordinate system (x,y, z)
by projection of the straight line in every sensor plane, while the second uses a Hough trans-
formation of the hit positions.

The hit positions after reconstruction are stored in an array. Track finding is only performed
if there are hits at each individual plane. In particular if there are no hits on the outer planes
then the event is skipped. Descriptions of both algorithms are given below:
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Figure 4.15: Distributions of the x—coordinate of the residual Xhit — Xproj for the cases of single
strip clusters (left) and multi strip clusters (right) reconstructed in the intermediate planes. The red
lines define the cut applied on the searching area.

Line projection method

The first step of this method consists of combining the reconstructed hits of the first and last
planes. Then straight lines are constructed between these pairs. The two dimensional position
(Tproj, Yproj) corresponding to the intersection of each line with the other sensor planes located

at z is calculated by:
Ty — X1

xpmj = T + 7(2’ — Zl)
“4 2l (4.22)
_ Ysa — Y1 )
Yproj = Y1 + s — (z - Zl)

here the subscripts indicate the index of the sensor plane. Finally, hits in the central planes
are searched for within a window centered at that position. This is done by applying cuts
on the distributions of the x— and y—components of the vector residual Xhit — Xproj. The
distributions are similar for the z— and y—directions.

In a given direction, the residual distributions are different depending on the type of the
clusters reconstructed in the intermediate planes. As shown in Figure 4.15, the x—residual
distribution corresponding to multi strip clusters is roughly a smooth Gaussian while the
distribution for single strip clusters presents spikes on the Gaussian peak. These spikes are
due to the discretization introduced by the hit position reconstruction algorithm corresponding
to cluster size 1 acting on both the first and last planes. Nevertheless, the two distributions
have similar width.

In this study, the same cut was applied for both components, which corresponds to the
window delimited by the two vertical red lines at 20 where o is the r.m.s. of the distribution.



4.3. Implementation of the telescope in Monte Carlo simulations 43

~
k]
E 40
[l
©
30
20
10

RIGHT
| AR R T T e Car

ol b b e by
0.003 0.004 0.005 0.006 0.007
0 [rad]

7”\HH\HH\HHHH\H
0.003 0.004 0.005 0.006 0.007 0
0 [rad]

Figure 4.16: The hit representation in the Hough Space before (left) and after (right) the rotation
about the z—axis by ¢ = 7/4.

Hough transformation

This method exploits the 6 and ¢ angles properties of a straight line emitted from the
origin. It features the common two dimensional line Hough transformation, but in this case,
the Hough space is referred as the 8¢—plane.

The angles 6 and ¢ are calculated for each hit with respect the origin of the global coordinate
system. The angles at the i plane, i = {1,2,3,4} are thus given by:

0; = arctan <7‘Z>’ (4.23)

2
Yi
¢i = arctan <> , (4.24)
Zi
where
r2=a oyl (4.25)

Due to multiple scattering the 6;’s and ¢;’s of the hits for a given track do not have exactly
the same values. Instead they are very close to each other, except when the ¢ angle is near
the interval bounds (¢ = £m).

The points from tracks with |¢| ~ 7 could be separated by about 27, thereby making it
difficult to reconstruct the track. To avoid this, the points are temporarily rotated by an angle
of /4 about the z—axis before the azimuthal angles are calculated. This operation is sufficient
and effective since the LuMo covers a discrete azimuthal angle range which does not contains
¢ = m/4. Now, instead of having five discrete regions of finite acceptance, there are four in the
Hough space, each one corresponds to a particular row of sensor (up, left, down or right). This
modification is illustrated by Figure 4.16, in which the f¢—space is plotted for a large number
of events with the actual representation of the LuMo hits on the left and the modified ones on
the right. The discontinuity in the vicinity of 7 has been removed.

The next step of the process is to search for hits at about the same position in the Hough
space. Similar to the first method the search is performed by applying a cut on the coordinate
system by taking into account the multiple scattering which causes the tracks to deviate by an
angle #y. One denotes U2 and 734 the direction vectors of the segments formed by the hits on
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the two first planes and on the two last planes, respectively. The angle formed by these vectors
with the direction vector ¥4 of the segment formed by the hits on the outer planes follows
a Gaussian distribution with oyg,, defined in Equation (4.1), as a mean. This distribution is
shown by Figure 4.17. In this study, the accepted hits on the center planes corresponds to

Entries 82218

2 I Mean  0.1081

Zs000; AMS _0.07319
6000F H
4000} }A‘IHIL
2000 | |
i i

=0 02 04 06 08 1

6, [mrad]

Figure 4.17: Distributions of the angle between v14 and v2, and 914 and v34. The cut applied for the
hit finding is indicated by the red line.

0y < 6y + 20 where 0y and o are the mean and the r.m.s. of the distribution, respectively.
The final step consists of rotating the hits about the z—axis back to their initial positions.

Track finder efficiency

The collection of hits found forms a track candidate. A good track candidate is defined as
a collection that contains at least one hit per sensor plane.

The efficiency of the track finder algorithm for the LuMo is defined as the ratio between
the number of the good tracks candidates to the number of generated tracks that hit all four

detector plane:
# Good Track Candidate

# Good MCTrack (4.26)

ef ficiency =

This efficiency is shown in Figure 4.18 for the beam momentum range of the PANDA exper-
iment and for the two different methods. Both methods have similar efficiency of above 99%
over all beam momenta.

The Hough transformation is almost twice as fast. However, the method based on 8 and ¢
angles is less effective for the detectors that cover the full ¢ range as indicated on Figure 3.9
because of the significant probability to reconstruct hits near ¢ = 7 radians.

4.3.4.2 Track fitting

After the reconstructed hits have been selected to form a track candidate, their positions are
fit to a straight line hypothesis. The parameters to describe the straight line are in Equation
(4.19): the components of the initial position, the direction vector, and the parameter t.

The number of parameters is reduced by scaling the direction vector by i for non-zero a,

ie. :
Qg Ay
(a:caayaaz) ? <77 > )
Gy Gy
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Figure 4.18: Track finder efficiency as a function of the beam momentum for the two methods.

and by eliminating ¢ from the third component of the parametric equation. Therefore, the line
parametric equation can be rewritten as:

{x = w9+ az(z — 20) (4.27)
y = Yo+ ay(z—20) '

zp is the position of a reference plane, thus it is fixed. As a result there are only four
parameters to be determined, namely a, ay, o and yo.

By design there will be four track points for each good track candidates. The fit procedure
adopted is the generalized least-squared method in which the parameters are estimated by
minimizing the y?—function:

4
X* =) 6vte;, (4.28)
1

.
[l

J
where

e 0; is a bivector residual, defined as the difference between the intersection of the reconstructed
track with the j*" sensor plane and the reconstructed hit positions:

= () =z, )
5y Yimp — Yreco
Timp and Yimp are calculated from Equation (4.27) where z corresponds to the z—position
of the plane;

e V is the 8 x 8 covariance matrix: its individual elements V,,,, is the covariance between the
residuals at the n** and the m!" planes given by :

Voam = PnmOnOm (430>

where pp, is the correlation coefficient and o’s are the residual errors.
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Hit errors and correlation coefficients

Since the z— and y—coordinates are independent, they can be separated in the y? formula

as
4

4

X2 =) 0LV e+ Y 0NV (4.31)
j=1 J=1

As a consequence the covariance matrices V,, are 4 x 4 matrices, and are identical for both

coordinates. Therefore, the errors and the correlation coefficients need to be determined with

respect to only one coordinate.

These values are determined by Monte Carlo simulations. In the first step, the line defined
by the hit positions in the two first planes is calculated. The line is projected through the two
last planes. The impact position of the line in plane ¢ is the point Xproj,i = (Zproj.i> Yproj,i)-
The residual A; in this plane is defined as:

A, — < Ay > _ ( Tproji — Trecoyi ) _ (4.32)
Ayﬂ' Yproj,i — Yreco,i

The hit error at this plane is given by the standard deviation of the residual distribution:

N A N2
Yo (Air —Ay)
0 = Ogi = Oyi = k=l N 1) : (4.33)
_ 1 N
where NV is the number of tracks used and A; = N dTA.
k=1

The hit correlation coefficient between two planes is:

N _ _
k;l(ﬁz',k —8i)(Ajk — Ay)
(N — 1)0‘iO’j

pij = (4.34)

The errors and correlation coefficients values obtained for the current simulation setup are:

o = (816 x107% 8.16 x 1074, 2.24 x 1073, 5.02 x 107*) cm), (4.35)
10 0 0
01 0 0

P = 100 1 06 (4.36)
00 06 1

The distributions used to determine these values are shown in Figure 4.19 and Figure 4.20.

The upper distributions in Figure 4.19 correspond to the residuals of the two first planes.
As expected they are similar to the distribution in Figure 4.14 and thus the hit resolution has
been taken for the error values. The two last values in Equation (4.35) were determined by
the Gaussian fits on the lower two histograms of Figure 4.19.

The fact that the residuals on the two first planes are equal is a direct consequence of
the reconstruction technique. Since there is no external reference, the track is assumed to go
exactly through the hits in the first two planes. This is the reason why the non-diagonal values
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Figure 4.19: Distribution of the residuals A;, defined in Equation (4.32) for each plane. The errors
o; are obtained from Gaussian fits.

of the correlation coefficient matrix in Equation (4.36) are all zero except for pza4(= pa3). This
coefficient is not zero and is positive because small angle scattering in the first two planes
leads to a displacement in the same direction in subsequent planes. The corresponding plot in
Figure 4.20 explicitly shows this.

Minimization process and fit constraints

The LuMo aims to reconstruct the track without an external reference by using only the
four measured hit points. The first plane is taken as the reference plane. This means that
zp is the z—position of the first plane and the fit values of the parameters o and yo will be
constrained by the measured x and y—coordinates of the hit position on this plane.

The fitting process was performed using the ROOT TMinuit class where the y%—function
was minimized via the MIGRAD algorithm and the parameter errors were estimated by the
MINOS method [ROO, Jam98]. The distribution of the x? of the fitted tracks is shown in
Figure 4.21.

The correctness of the values and error parameters can be judged by the pull distributions.
The pull formula, for a given constrained parameter p which has peqs as initial value and py;
as final value, with 0,,cqs and oy as their respective errors, is given by [DLO02]

Pull — _Pmeas — Prit (4.37)

2 _ ~2
Jmeas Ufit



48 Chapter 4. Performance Study of the Luminosity Monitor

so0d A VS A . 2.002F
1 1 s 0.02-
0.00F 0.001F k
) | 3
oF / of: b oF
0.00F 0.001F )
p = J -0.02F IS -0.02+
2.00%F 11 2.002F - e T
\ \ ) ! A R S ) ) ) ) A \ i R A
-0.002 -0.001 0 0.007 0.002 0.002 0.001 0 0.007 0.002 0.002 -0.007 0 0.007 0.002 0.002 -0.001 0 0.007 0.002

o AZ Vs AZ 0.02F AZ VS A3 0.02F A ‘VS A_4
0.001F : ‘
oF oft $ o J
0.001F oo . |
p12 =0 soodk p22 =1| oot ) S -0.02 o ‘
5002 0007 00007 0,002 G008 5001 00,007 0,002 5002 0007 00007 0,002
0.02- A3 VS A3 0.02+ A3 VS A4
o - o

p = 0 p = 0 002 . p = 1 -0.02+

0.02 0 0.02 0.02 0 0.02

0.02- A4 VS A4 /

14 p24 34

Figure 4.20: Scatter plots of the residuals A;’s on the four planes allowing the correlation coefficients
pi;j to be determined. Since the matrix is symmetric, only the diagonal and the upper part is plotted.
The corresponding values are printed on the lower part.



4.3. Implementation of the telescope in Monte Carlo simulations 49

qu)nts
S
S

T \Q\ T
-

1500t ’ i
1000t

500f &k
0 2 4 6 8 10
x?/ndf

Figure 4.21: Distribution of x?/ndf of the reconstructed tracks.

» T ¥2/ndf 95.5747 /75 » T x?/ndf 70.3726/ 75
< Ly € L
=1 aX Pu" Cst 838.598+ 7.454 S ay PUII Cst 831.417 + 7.403
o + o +
(&) K -0.0118203+ 0.0067116 O, W -0.00651941+ 0.00677361
100 100

o 0.94549+ 0.00507 L s 0.954709+ 0.005150

Jo N TN
/N )\

-4 -2 0 2 th -4 -2 0 2 1:, I
a, Pull a, Pu
2 2
2 ! T 2/ 72.8929/71 2 T P " ¥2 /naf 60.0174/69
=1 X Pu I I Cst 815.723+ 7.094 5 ’yo u Cst 821.817+ 7.136
o o L
01 00 0 W -0.00193637 + 0.00693244 01 00 W 0.00320519+ 0.00687739
s 0.977186+ 0.004963 L c 0.97041+ 0.00490

4N LN
SN\

4202 4202y by

Figure 4.22: Fit parameters pull distributions. The solid line on top of each distribution is a Gaussian
fit.

For an unconstrained parameter this reduces to

Pull = Pmeas ZPfit (4.38)
O fit

In the current case Equation (4.37) was applied for the parameters xy and yg where oyes =
0.8 um, and Equation (4.38) was used for the parameters a, and a,. If the fit is able to
correctly determine the track parameters and their errors, the pull distributions will be normal
distributions. Any source of systematic error or wrong adaptation of a constraint leads to a

shift of the mean and/or change of the standard deviation of the distribution away from 1.
Figure 4.22 shows the pull distributions of the four track parameters after the fit. Gaussian
fits have been applied for all distributions. From this figure, it can be seen that all distributions
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Figure 4.23: Angular residual distribution corresponding to the beam momentum of 6.2 GeV/c. The
curve is a Gaussian fit applied on the distribution with its standard deviation corresponding to the
angular resolution.

are centered around 0 and have standard deviation of about 1. This indicates that the fit
procedure is working correctly.

4.3.5 Angular resolution

The performance of the LuMo can be summarized in terms of the angular resolution. This
indicates how well the detector and track reconstruction have performed, given that all physics
processes related to the detector have been correctly taken into account.

The LuMo is interested in the polar angle 0 of the scattered antiproton which is sufficient
to calculate the 4-momentum transfer . The angular resolution is defined as the standard
deviation of the distribution of the residual A#:

AD = Oprie — Oreco - (4.39)

In the above expression, the angle 0y, is the polar angle of the Monte Carlo generated track.
It describes the physics of the process at the generator level. For the current case, it is defined
with respect to the antiproton beam direction. The angle 0,., is the angle obtained after the
track reconstruction. It is measured with respect to the global z—axis and calculated from the
fitted a, and a, parameters values according to Equation (4.20). For the determination of the
angular resolution, only the reconstructed tracks having y?/ndf < 5 were used.

The distribution of Af is shown in Figure 4.23 for ppeqgm = 6.2 GeV/c. This distribution
follows a Gaussian with the angular resolution oag = 0.11 mrad.

_ The variation of the angular resolution as a function of the beam momentum for the
PANDA experiment is presented in Figure 4.24. As expected, the resolution is worse at lower
beam momenta where the influence of multiple scattering is stronger. This leads to bigger hit
errors on the two last planes and thus a relatively strong correlation between them. Table
4.2 gives the values of these parameters, namely o3, o4 and ps4, for several simulated beam
momenta. The remaining parameters are the same for all beam momentum values. This fact
also explains the L-variation of the angular resolution which is a consequence of Equation
(4.1). The resolution improves from 0.47 mrad at 1.5 GeV/c to 0.05 mrad, at 15 GeV/c.
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Parameter

Dbeam |GEV/c] 03 [em] o4 [em]  paa

1.5 0.0098 0.0221 0.66
2.5 0.0052  0.0119 0.64
3.7 0.0035 0.0079 0.63
4.5 0.0029  0.0064 0.61
6.2 0.0022  0.0051 0.60
7.5 0.0018  0.0038 0.58
9.0 0.0016  0.0032 0.56
10.5 0.0014  0.0028 0.52
12.0 0.0013  0.0025 0.49
13.5 0.0012  0.0023 0.48
15.0 0.0011  0.0020 0.44

Table 4.2: Hit errors on the third and forth planes and the correlation coefficients between them for
different beam momenta.
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Figure 4.24: Variation of the angular resolution in the PANDA beam momentum range.

The angular resolution of the luminosity monitor allows to estimate the measurement pre-
cision of the scattered antiproton from the pp elastic scattering process. However, in addition
to multiple scattering in the detector, there will also be several external factors limiting the
precision. For a more realistic case, the influence of external parameters such as the magnetic
fields and the beam emittance at the interaction point must be included. These effects will be
the topic of the next section.
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4.4 Study of the effect of the external parameters

4.4.1 Effect of the magnetic fields

The magnetic elements in the PANDA detector include the superconducting solenoid which
surrounds the interaction region and the dipole magnet of the forward spectrometer.

4.4.1.1 Effect of the dipole magnetic field
Dipole field and luminosity monitor position

The dipole field deflects the beam particles and the elastically scattered antiprotons from
the interaction region. Therefore, a mismatch of the detector position to the bending power
of the field will reduce the detector efficiency.

The integral of the field along the beam axis is chosen so that the bending angle of the
beam is the same for all momenta. Its value will be ramped up from 0.2 to 27T'm as the beam
momentum increases from 1.5 to 15 GeV/c [pC09b].

Five dipole field maps are implemented in PandaRoot corresponding to ppeqm = 1.5, 4.06,
8.9, 11.91 and 15GeV/c. For intermediate beam momenta the map corresponding to the
closest momentum value is used. The distribution of the field strength along the z—axis at
the lowest and highest PANDA beam momentum is shown in Figure 4.25. This figure shows
a slight change in the shape of the distribution. Moreover, for intermediate beam momenta,
the bending power of the dipole field is not constant [pC09b]. As a results, the position of
the luminosity telescope will effect the acceptance differently for the various beam momentum
settings.
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Figure 4.25: Dipole field distribution along the z—axis for 1.5 GeV/c (solid black line and left scale)
and 15 GeV/c (dashed blue line and right scale) beam momenta. Plot taken from [pC09b].

The position of the LuMo will be determined by the average angular deflection of the beam
trajectory. The dipole magnetic field requires a shift in the x—direction and a rotation about
the y—axis in order to arrange the detector plane perpendicular to the beam direction. The
angular deflection « is

D
a=— ~40mrad, (4.40)
p
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Figure 4.26: Distribution of the ratio between the angular acceptances when the dipole field is on
and off (left) and variation of the ratio of the acceptance as function of the beam momentum (right).

where D = 2.475m is the dipole length along the z—axis, p is the radius of curvature:

_ p[GeV/c] x Dim)|
0.3B[T'm]

~ 61.87m, (4.41)

with B =2Tm for p = 15GeV/c.

Based on this value of the angular deflection, the x—position of the center of the LuMo
volume (mother volume at z = +1079.52c¢m) is © = 4+24.08 cm. At this position, the angle
between the detector axis and the z—axis is «.

Detector acceptance

In order to estimate the acceptance of the LuMo when the dipole filed is on, simulations have
been performed at the five beam momenta for which field maps are calculated in PandaRoot.
The angular acceptance distribution obtained from these simulations were compared to the
situation where the dipole field is off. The ratio between the acceptances in the two cases as a
function of the polar angle is shown in the left plot of Figure 4.26 for ppeqm = 4.06 GeV/c. This
distribution reflects the identical angular distribution for both situations. Similar distributions
are obtained for all five beam momenta. In addition, the polar angle coverage is conserved i.e.
in both cases the measured tracks have 2.8 < 6 < 7.5 mrad.

The variation of the acceptance ratio as a function of the beam momentum is plotted in
the right part of Figure 4.26. The ratio is nearly constant and equal to 1 for every beam
momentum. A large fluctuation of the ratio of the entries can be used to quickly identify a
mislocation of the luminosity monitor when the dipole field is present.

In conclusion, these results demonstrate that the position of the luminosity monitor when
the dipole magnetic field is on is correctly assigned. The center of the detector volume is
located at (24.08, 0,1079.52) cm. The angle between the detector axis and the global z—axis
is a = 40mrad. At this position, the same rate of particles will pass through the detector as
when the dipole field is off, and the LuMo is located at (0,0,1080)cm.
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Figure 4.27: Transverse representation of the particle trajectory.

Angular resolution determination

The determination of the angular resolution was discussed above. However, when the
dipole field is turned on then 6,.., is no longer a good measure of the produced 0y.,.. Instead
the track must be followed back to the interaction point. This is done with the GEANE
package which is fully integrated into PandaRoot.

GEANE was conceived to perform track following. Basically, it predicts the average tra-
jectory of a particle when it passes through dense materials and/or a magnetic field region
by calculating the transport matrix and the propagated errors covariance matrix of the track
parameters [[T91, FT07].

Technically, for a single track, as input for GEANE, one needs to define the initial and
the final planes from and to which the track will be propagated, respectively, the position and
the momentum of the track at the initial plane with their respective errors, and of course the
type of particle to be propagated. Here, the direction of the track momentum is given by the
reconstruction and the magnitude is similar to the beam momentum. The momentum gives
the direction of the propagation of the particle (antiproton) from the initial plane (in this
case the first detector plane) back to the xy—plane of the primary vertex (z = 0). The initial
position is the reconstructed hit at the first plane and its error on the z— and y—coordinates
was set to the hit resolution.

These settings allow the particle trajectory representation to be defined. Here, the trans-
verse representation was used in which the trajectory is represented by five parameters [IT91]:

1/p, A &, y1, 21 (4.42)

Here A and ¢ are the dip and the azimuthal angles, respectively, 4, and z,| are the coordinates
of the track trajectory in the frame where x| gives the track direction and g, is parallel to the
xy— plane, and 1/p gives the trajectory curvature where p is the particle momentum. This
representation is illustrated by Figure 4.27.
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Figure 4.28: Pull distributions of the trajectory parameters in the transverse representation. The
solid curves on top of the A, ¢, y, and z, parameter distributions are Gaussian fits. The mean position
and the standard deviation are close to the expected values for all distributions.

The pull distributions of all five variables are shown in Figure 4.28. A Gaussian fit is
applied on each individual distribution apart from the 1/p parameter. Every fit is similar to
a normal distribution, which can be interpreted as a correct computation of parameters and
their respective errors. The d—function of the 1/p parameter is due to the absence of any
material in the propagation region. The magnitude of the momentum will only change if the
particle passes through material [FT07].

Results on vertex and angular resolutions

At the interaction region, the results from GEANE are compared with the true Monte Carlo
information. The distribution of the position of the GEANE track on the plane at z = 0 around
the generated vertex (r =y = z = 0) follows a Gaussian distribution. The vertex resolution
is given by the standard deviation of this distribution. Similarly, the angular resolution is the
standard deviation of the residual (Ogeane — Orue) distribution.

The variations of these resolutions as a function of the beam momentum are shown in Figure
4.29. The two graphs show similar behavior. The poor resolution of the vertex distribution for
small beam momenta is connected to the poor angular resolution of the reconstructed tracks
within the LuMo.

The right frame of Figure 4.29 compares the angular resolution with and without the dipole
field. There is a negligible difference between the two graphs. This implies that the propagation
of the particle through the magnetic field by GEANE works well.
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Figure 4.29: Position (left) and angular (right) resolution of the vertex in the presence of the dipole
magnetic field as a function of the beam momentum. The angular resolution is in addition plotted
without magnetic field the (blue square marker).

4.4.1.2 Effect of the solenoid magnetic field

Investigations on the influence of the solenoid field show that this distorts the direction of the
scattered antiproton measured by the luminosity monitor [X*10]. This effect is illustrated by
Figure 4.30. The histograms in this figure correspond to two-dimensional hit distributions of
simulated antiprotons in the first plane. The antiprotons were emitted from z =y = 2 = 0
and at a fixed angle of & = 5mrad uniformly distributed in azimuthal ¢ angle between —7
and +7 for six different beam momenta. Instead of having regular circle shapes, elliptical
shapes of the impact positions are obtained. The distributions in Figure 4.30 show that the
lower beam momenta are more sensitive on the effect of the solenoid field. At higher beam
momentum (Ppeam > 9 GeV/c), the effect of the field is negligible.

The distortion of the trajectories of the scattered antiproton is due to the geometry of the
solenoid. The rectangular opening of the solenoid yoke introduces a quadrupole component
to the field. This can be seen through the plot in Figure 4.31 in which the variation of
the magnitude of the transverse component By = (Bz, By) of the magnetic field for the full
¢—range is shown close to the exit door of the solenoid yoke.

This unavoidably leads to a deterioration of the angular resolution and the detector accep-
tance. A correction of the shift was performed using GEANE. The results are shown in Figure
4.32 where it is compared to the ideal situation (without any magnetic field). The correction is
effective for ppeqm > 3 GeV/c. Similar values of the angular resolutions with the ideal situation
case are obtained. However at ppeqm = 1.5 GeV/c the angular resolution worsens significantly
from oy = 0.5 to 0.8 mrad.

4.4.2 Effects of the finite beam emittance

Up to now, the ideal situation has been considered, in which the beam-target interaction occurs
at exactly z = y = z = 0 and the incident particle direction is exactly collinear to the z—axis.
A correct description of the experiment must consider the non-vanishing beam emittance and
the finite size of the target flux. This can be done by eventwise assigning a random shift of
the primary vertex and a non-zero incident angle of the beam particle onto the target.
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Figure 4.30: Two dimensional distributions of the antiproton hits at the luminosity monitor for
different beam momenta for antiprotons emitted with 6 = 5mrad showing the distortion of the tracks
causes by the solenoid field. Figure taken from [X*10].
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Figure 4.31: Variation of the transverse solenoid field By = /B2 + B2 as a function of the azimuthal
¢ angle at z = +230¢m and with R = /a2 + y? = 1.15 ¢m, corresponding to § = 5mrad.

4.4.2.1 Simulation of the vertex and angular smearing

To match the expected conditions at PANDA, vertex and angular smearing algorithms have

been developed according to the expected properties of the HESR antiproton beam and the
target at the interaction region.
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Figure 4.32: Angular resolution corresponding to the ideal situation (solid line) and GEANE correc-
tion (dotted line). Figure taken from [XT10].

Beam-target system parameters at the interaction region

The overlap between the beam and the target flux will be optimized to achieve the desired
luminosity. Here the conditions for the hydrogen pellet target are considered. The important
parameters are the pellet radius r,, the pellet stream radius R, and the average vertical
separation between the pellets d. These parameters were chosen to satisfy the high luminosity
requirement by PANDA. For this study their values are taken from [RT07, ZieO6] and are
tabulated in Table 4.3.

The HESR beam is assumed to have a Gaussian transverse profile with r.m.s. width o, =
oy = 044 at the target. The average luminosity is proportional to the effective target thickness,
Peff, given by the overlap of the beam with the target stream [RT07]:

+R 2
peft(oz) = <R> / 2V R? — 22 - exp <—$) dx, (4.43)

V2ro, J-r 202
where 4 s
27T
<R>=3_PR 4.44
TR2d ( )

is the average pellet density in the y—direction with R = 4.3 x 10?2 atoms/ecm?. A graph

showing the variation of p.s; as a function of o, is drawn in Figure 4.33 for the target size
given in Table 4.3. According to this graph, the transverse beam r.m.s. should be kept less
than 0.08 ¢m in order to achieve an average luminosity of about 80% of the maximum possible.

The angular divergence of the beam ¢, is connected to the transverse beam spread o, by
the beam transverse emittance € with the following relation:

€ =20, 204. (4.45)
At the interaction region, the transverse emittance of the antiproton HESR beam will be

1mm - mrad [LT06]. Thus, for o, = 0.08 cm there will be o, = 0.3 mrad.

All the parameters mentioned above are summarized in Table 4.3 and are used in the
following.
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Figure 4.33: Effective target thickness as a function of the transverse beam profile.

Parameter name Symbol Value
Pellet radius (mm) p 0.015
Pellet flux radius (mm) R 1.5
Average vertical distance between pellet (mm) d 4
Transverse beam r.m.s. (mm) Oy 0.8
Beam angular divergence (mrad) Oa 0.3

Table 4.3: Beam and target parameters used for the vertex and angular smearing.

Implementation of the vertex and angular smearings

The vertex and angular smearing processes imply performing a geometrical transformation
of the 3-momentum vector of the generated primary particles at the beam-target interaction
position. The coordinate shifts of the vertex are limited by the overlap area between the beam
and the target. Since o, < R, the x and y—shifts will be determined by the HESR beam
distribution, and the z—shift by the horizontal pellet flux dimension R.

At the interaction point, calculations show that the electron-cooled antiprotons distribution
are rather uniform than Gaussian [RT07]. Therefore, the vertex translations in the z and
y—coordinates were randomly generated by uniform distributions centered at 0 with width
equal to 2 X 0, = 1.6 mm. On the other hand, a random normal translation was applied for
the z—coordinate with width o, = R.

The consideration of the non-zero beam angular divergence implies changes on the direction
of the generated particles. These changes must be in accordance with the orientation of the
incident beam particle. The angular smearing corresponds to the incident particle having a
polar angle da. This angle is generated randomly with a Gaussian distribution centered at 0
and of o, width. Therefore, a correct description of the angular smearing consists of rotating
the incident particle about the x—axis by an angle d« followed by a rotation about the z—axis
by an angle d¢, generated uniformly between —m and +7. A picture sketching this scenario is
shown in Figure 4.34 for the case with two generated particles.

The implementation of the angular smearing in the event generator includes, for the 3-
momentum vector of each individual generated particle, the rotation by an angle —§¢ about
the z—axis followed by the rotation by angle —da about the xz—axis. This has as consequence
a change of the polar angle from its initial value for every single particle. The amplitude of
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Figure 4.34: Sketch illustrating the vertex and angular smearing. Before the smearing acts, the
incoming beam, indicated by the blue dashed arrow has a direction collinear to the z—axis and the
outgoing particles are emitted from x = y = z = 0. The introduction of the vertex and angular smearing
results in a shift by dp = \/(67)2 + (0y)2 + (62) of the vertex and a change on the direction of each
generated particle according to the angular smearing parameters da and d¢. The figure corresponds
to the case of two primary particles in which the relative angle © between their respective directions
is conserved by the operation.

the variation of the polar angle after the angular smearing depends on the initial polar angle
and the final azimuthal angle.

In more explicit way, like the situation illustrated by Figure 4.34, one can consider the case
where a particle initially generated with a direction lying in the xz—plane (p, = 0). The total
rotation matrix expressing the angular smearing reads:

C¢ —8¢ 0
R.. = | cas¢ CaCy —5a (4.46)
Sa8¢ 8a0¢ Co

where ¢y = cos(—0¢), 54 = sin(—d¢), ¢, = cos(—da) and s, = sin(—da). Here, the angle
d¢ corresponds to the final azimuthal angle after smearing. With the current assumption, the
final polar angle 6 after the operation is given by

cosff = sinb;5,54 + cos b;cq , (4.47)

with the angle 6; is the initial polar angle at which the particle is emitted.

For a small beam angular divergence of the order of 0.3 mrad, the relative variation of the
polar angle due to the angular smearing as functions of 6; and ¢y is shown in Figure 4.35.
Due to the smallness of da, the variation shows a strong dependence on ¢ rather than on 6;.
The influence of the polar angle appears mainly in the boundary values, i.e. at 6; = 0 and
m, for ¢y = —m, 0 and +7 where the relative variation of the polar angle is at its minimum.
Nevertheless, the variation can be neglected compared to the global variation in the full ¢y
range. As expected, it reaches its maximum at ¢y = — 4 /2 where the difference between the
initial and final polar angles is on the order of the input angle .
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Figure 4.35: Relative variation of the polar angle of a generated particle as functions of

@
the initial 6; polar angle and the final ¢(= d¢) azimuthal angle. This histogram corresponds to an
incident beam particle of da polar angle taken to be equal to the angular divergence o, = 0.3 mrad.
The mean value of the relative variation of the polar angle is about 0.64.

4.4.2.2 Consequence on the angular resolution

Unlike the idealistic situation, the introduction of the angular smearing has a consequence that
the incoming antiprotons hit the the proton target at a non-zero polar angle. In other words,
the angular divergence is involved in the angle 0.

Taking into account the expected properties of the HESR antiproton beam described previ-
ously, the angular resolution variation of the LuMo for the PANDA beam momentum is plotted
on the left side of Figure 4.36. For reference, the variation corresponding to the idealistic sit-
uation is also represented in the same graph. On the right side of the same figure, the relative
contribution of the beam emittance on the angular resolution is plotted. One can conclude
from the figure that the beam emittance leads to the deterioration of the angular resolution
by about 75% at higher beam momenta and just by 15% for the lowest beam momentum.

Nevertheless, the resolution is always worse at lower beam momentum with a lower limit
of about 0.2 mrad at higher beam momenta. This corresponds to the best angular resolution
of the LuMo. This value is comparable to the mean of the relative variation of the polar angle
introduced by the angular smearing process which is given by Figure 4.35. Indeed, referring to
this histogram, one obtains the mean relative variation of the 8 angle for an angular divergence
of 0, = 0.3mrad to be 0.64 x o, >~ 0.2mrad.
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Figure 4.36: Variation of the LuMo angular resolution (left) corresponding to the non-zero beam
emittance (green curve) compared with zero beam emittance (red curve) and the relative contribution
of the beam emittance to the resolution (right) in the PANDA beam momentum range.

4.5 Estimation of the precision to measure the luminosity

In this section a simulation of the luminosity measurement will be presented. The study
was Monte Carlo based and was performed by taking into account the full simulation chain
developed throughout this chapter.

The pp elastic scattering events were generated using the DPM generator [GUO05]. The
differential and total cross sections parametrization within this generator will be presented in
the next subsection. Also, the simulation setup considered that the antiproton beam has a
finite emittance corresponding to the expected HESR antiproton beam properties previously
described and that the dipole magnet is switched on. For the same reasons discussed in Section
4.4.1, this study focused on the beam momenta 1.5, 4.06. 8.9, 11.91 and 15 GeV/ec.

4.5.1 Generation of pp elastic scattering events

Within the DPM generator a function has been implemented to express the variation of the
differential cross section do;/dt for pp elastic scattering events with the 4-momentum transfer
t, given by the relations Equations (3.20) to (3.23). These relations define the probability
density function used by the event generator. Since the function diverges in the Coulomb
region, t ~ 0 must be omitted. This is done by setting a lower limit on the polar angle of the
elastically scattered antiproton.

This lower angular bound has to be optimized by taking into account the dominant pro-
cess within the geometrical acceptance of the LuMo for the different beam momenta under
consideration. A relatively small lower angular limit will decrease the rate of hadronic events
compared to Coulomb events. This helps for lower beam energies in which, referred to the
right plot of Figure 3.5, the process is dominated by the Coulomb scattering within the ac-
ceptance of the LuMo. However, a small bound is not required for the higher beam momenta
where the hadronic process is most relevant. Thus, the lower angular limit was set differently
for each individual beam momentum in order to get an appropriate lower bound t,,;, on the
4-momentum transfer. The values of the lower angular bound 6,,;, and its corresponding ¢,,;,
for the simulated beam momenta are given in Table 4.4.
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Pveam [GGV/C] emm [O] *tﬂ%’n [GGVQ]

1.5 0.20 5-1076
4.06 0.21 2.107°
8.9 0.29 1-107*
11.91 0.25 1-1074
15 0.22 1-107*

Table 4.4: Angular lower limit and the corresponding 4-momentum transfer used in the DPM generator
for the simulated beam momenta.

The values of the the differential cross section parameters p, b and oo, which depend on the
beam momentum, are calculated in the event generator using the following parametrizations:

1 As
_ As 448
R (448)
Ay 1 A2 < 11 ) Az ]
b = 22 Ay =+ — 4.49
A(1— Ag)? + As [Tl T, o\t ) Tan (4.49)

Otot — (1 — AQ)\/ 167T(hc)2A1 . (4.50)

The quantities Ay, A, Az, T1 and T3 in the above relations parametrize the differential pp
elastic cross section to match the existing experimental data in the PANDA beam momentum
range. For a given beam momentum ppeqm, these quantities read:

A; = 115.0 + 650.0 - ¢ Poeam /408 (4.51)
Ay = 0.0687 4 0.307 - e Peeam/2:367 (4.52)
Az = 0.8372 4 39.53 - ¢ Peeam/0765 (4.53)
T, = 0.0899, (4.54)
Ty = —2.979+ 3.353 . ¢ Pheam/483:4 (4.55)

Comparisons of the differential cross section parameters used by the event generator with
the existing data compiled by the Particle Data Group [N*10] are shown in Figure 4.37 for
the relevant PANDA beam momenta.

The top plots of Figure 4.37 show a comparison of the p parameter. A discrepancy is
observed between the DPM parametrization and the data. The parametrization used by the
event generator agrees with the measured data for only a couple of points with absolute errors
less than 0.05. Moreover, at low momenta the variations of the data and the parametrization
go in opposite directions and at ppeqm, = 1.5 GeV/c a maximum absolute error of 0.3 is reached.
One can note from these plots that there are very few measured values of this parameter for
the considered beam momenta range, thus it is difficult to achieve the correct parametrization.

The middle plots of Figure 4.37 are related to the nuclear slope parameter b. Within the
error bars, the value of the parameter from the event generator agrees with the existing data.
For most points, the relative errors are less than 5%, its maximum value is about 14% at
Poeam = 7 GeV/c and for the beam momenta used in the current study, the relative errors are
about 4%. However, even though more points have been measured for this parameter than for
p, there are still several beam momentum intervals relevant for PANDA with no data points.

The comparison of the total cross section oy, is shown by the bottom plots of Figure 4.37.
There are many data points at low beam momenta (ppeqn, < 3 GeV/c) where its variation is
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Figure 4.37: Comparison of the values of the parameters p (top), b (middle) and oot (bottom)
computed by the DPM generator (red curves) with the world data in [NT10]. (left) shows the data
and DPM parametrization as a function of the beam momentum. (right) shows the absolute errors for
p and the relative errors for b and o;,; between the two distributions. In case many data points with
similar beam momentum exist, their means were used.

stronger than that of the parametrization which is roughly constant. In this range of mo-
mentum, the relative error of oy, increases from nearly 0 to 20%. A strong disagreement
is also observed in the intermediate energies where the relative errors are about 12%. For
DPoeam > 7 GeV /e, the two results seem consistent with each other. Nevertheless, the relative
differences are about 4% and there is a lack of measured data at high beam momenta.

As a conclusion for this comparison, the parametrizations used by the DPM generator

show slight differences compared to the world measured data for the beam momenta relevant
for PANDA. The reason for this discrepancy may be because the quantities A1, Ao, Az, T}
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Parameter Beam momentum [GeV/(]
1.5 4.06 8.9 11.91 15
p -0.138 -0.061 -0.072 -0.080 -0.085

b[GeV?] 13.442 12253 11.729 11.656 11.619
owtlmb]  80.818 73.066 56.123 50.374 47.217

Table 4.5: Differential pp elastic cross section parameters used by the DPM generator for different
beam momenta.
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Figure 4.38: Distribution of the antiprotons generated elastically by the DPM generator as a function
of the 4-momentum transfer ¢ for the five simulated beam momenta. The dashed blue lines are fits to
the distributions using the function defined in Equation (4.56). The fitted values of the luminosity are
expressed in units of 103t em 2571,

and T have only been determined for specific beam momenta and for a wider range of the
momentum transfer up to |[t| ~ 2GeV? [GT08|. For this study, the values of the p, b and
oot Parameters calculated by the DPM generator were used as start values which are listed in
Table 4.5 for the five different beam momenta studied.

Based on the values in Table 4.5, the pp elastic scattering spectra at the event generator
level are obtained from the distribution of the scattered antiproton as a function of the 4-
momentum transfer. These distributions are shown in Figure 4.38 for the five simulated beam
momenta.

The distributions have been fit with the function dN/dt given by:

dN dog
TR ST

x AT, (4.56)
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Figure 4.39: Ratio of the integrated hadronic cross section to the total cross section.

where do.;/dt is the differential pp elastic cross section which contains the three parameters
described in the text, £ = [ Ldr is the integrated luminosity and A7 the experimental running
time. This latter is calculated using the hadronic process in which the corresponding cross
section has a finite value i.e.:

Ar = —thad (4.57)

L ohad
Here 044 is the hadronic elastic cross section integrated over the range of the 4-momentum
transfer in which events are generated. The ratio of the integrated hadronic cross section to the
total cross section calculated within the DPM generator is compared with the ratio obtained
from the experimental measurements in [N*T10] in Figure 4.39. A good agreement is noted for
the two sets of measurements. The hadronic cross section contributes about 30 — 35% of the
total cross section at lower momentum to 20% at higher beam momentum in the considered
beam momentum range.
The rate of hadronic events njqq is obtained by:

Ohad
)
Ohad T Tcoul

Nhad = Nevent * (458)
where 0.4 is the integrated Coulomb cross section and neyent is number of generated events.
For each individual beam momentum setup, the simulation was performed with neyen: = 107
events and assuming the luminosity £ = 103'em™2s~!. The values of AT, 0oy and opeq for
the five simulated beam momenta are listed in Table 4.6.

In summary, the fit function contains five parameters namely p, b, oo, A7 and L. The
AT parameter is the time during which the measurement is performed and thus is known a
priori. Therefore, it behaves like a constant parameter in the fit function. In the case of Figure
4.38, the remaining fit parameters were kept fixed apart from the luminosity £. One can note
the perfect fit to the distributions by the function in which the x?/ndf < 1.3, the relative
differences AL/L < 0.8% and precisions are better than 1073, Throughout this study, the

luminosity parameter is expressed in units of 103tem=2s71.
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Figure 4.40: Variation of the acceptance of the LuMo as function of the beam momentum.

Doeam |GeV/e] 1.5 4.06 89  11.91 15

Oeoul [mb] 7255 1346 262 260 2.6l
Ohad [mb] 2623  21.61 1353  11.02  9.74
AT [s] 10.12 2851  61.91  73.38  80.91
Net 461611 166991 123051 155366 205726
Rate |/s] 45613 5776 1987 2117 2542

Table 4.6: Values of the integrated cross section of the Coulomb and hadronic processes, 0.y and
Ohad, Tespectively, the experimental running time A7, the number of detected tracks ng.; and the
antiproton rate in the LuMo for 107 elastic events generated at a luminosity of 103'em=2s~! with the
DPM event generator.

4.5.2 Detector acceptance

The acceptance of the LuMo is defined as the fraction of the simulated tracks within the
geometric coverage of the detector i.e. the fraction of the generated tracks that hit all four
detector planes for a given simulation setup. It allows to determine the rate of the antiprotons
elastically scattered in the detector.

The acceptance acc and the rate are then calculated as:

Ndet
= 4.
acc m— (4.59)
Ndet
te = 4.
Rate Ar (4.60)

where nge; is the number of tracks detected by the LuMo. The plot showing the variation of
the acceptance as function of the beam momentum for this simulation is drawn in Figure 4.40.
The acceptance drops between the two lowest simulated beam momenta because the Coulomb
region goes to the smaller angles at ppeam = 4.06 GeV/c. It rises for higher beam momenta
because with the same value of ¢,,;, set for these beam momenta, the LuMo t—range increases
with the beam momentum. The expected rate and the number of detected tracks corresponding
to the simulation setups described above are given in Table 4.6 for the five considered beam
energies. In this table the integrated cross sections of the Coulomb process oy, are related to
the 0,,;, values given in Table 4.4.
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For this study, it is essential to have the distribution of the acceptance as a function of the
4-momentum momentum which will be used as normalization factor for the fit procedure. It
is obtained by dividing the t—spectrum of the pp elastic scattering for the simulated tracks
within the detector acceptance by the spectrum of all propagated tracks from the interaction
region. This latter is different from the true spectrum generated by at the event generator level
because it includes the effect of the beam smearing. Such distributions are shown in Figure
4.41. Here, to show the difference, the same fit settings applied on the distributions in Figure
4.38 were used and result in larger x?/ndf values.
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Figure 4.41: Spectra of the pp elastic scattering determined from the output of the simulation for
the five simulated beam momenta. The dashed blue lines are fits to the distributions with the same
settings as the fit on the distributions of Figure 4.38. The fitted values of the luminosity are expressed
in units of 103'em =251,

The distributions of the scattered antiprotons in the t{—ranges covered geometrically by
the LuMo for the five simulated energies are shown in the left group of plots of Figure
4.42. The t—range coverage of the detector are different from one beam momentum setup
to another. Referring to Figure 3.5 where the Coulomb-nuclear interference corresponds to
—t ~ 1073 GeV?, the luminosity monitor is in the Coulomb dominance region for the lowest
beam momentum (ppeqa, = 1.5 GeV/c), in the interference region for the intermediate beam
momenta (Ppeqm = 4.06 and 8.9 GeV/¢) and mostly in the nuclear region for the higher beam
momenta (Ppeam > 11.91GeV/c).

The t—acceptance spectra of the LuMo for the five beam momenta are shown by the
histograms in the right part of Figure 4.42. One can observe the similarity of the behavior
between all distributions in which the acceptance decreases at high values of |t|. This is because
at larger radial distance from the beam axis, the azimuthal angular coverage of the detector
decreases.
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Figure 4.42: Spectra of the pp elastic scattering in the LuMo (left) and acceptance of the detector
(right) for the five simulated beam momenta.
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Figure 4.43: Distribution of the quotient @Q; for ppeam = 4.06 GeV/c (left). The red line is a Gaussian
fit to the distribution. The variation of the 4-momentum transfer resolution as a function of the beam
momentum (right).

4.5.3 Reconstruction of the pp elastic scattering spectrum
4.5.3.1 Momentum transfer resolution

The value of the reconstructed 4-momentum transfer t,e., is deduced from the polar angle 6
of the reconstructed track by means of the relations Equation (3.8) and Equation (3.10). To
determine the 4-momentum transfer resolution, one needs to define the quotient Q); given by:

Q, = Hrue (4.61)
treco
where tie is the 4-momentum transfer calculated at the event generator level. The distribution
of Q¢ is nearly a Gaussian centered at 1 and with standard deviation of o¢, as it is shown in
the left picture of Figure 4.43. Its standard deviation defines the resolution of the LuMo in
terms of 4-momentum transfer ¢.
The variation of the resolution for the simulated beam momenta is plotted in the right part
of Figure 4.43. As expected, the resolution worsens from 0.083 at ppeam = 15 GeV/c to 0.244
at Ppeam = 1.5 GeV/c.

4.5.3.2 Determination of the luminosity

The luminosity is determined from the reconstructed spectrum of the pp elastic scattering by
the LuMo by fitting this latter with the function defined above. In order to fit the reconstructed
spectrum properly, it has to be corrected by dividing it with the acceptance spectrum (right
plots of Figure 4.42). This has only been performed for bins in the t—acceptance spectrum
above 15% to reduce error at the edges of the distributions. The distributions of the measured
antiproton as a function of the reconstructed 4-momentum transfer are shown by the left plots
of Figure 4.44. The spectra resulting from the operation are shown by the right plots of Figure
4.44.

In the case of the right plots of Figure 4.44, the fits to the corrected spectra were performed
with only one parameter allowed to vary freely, the luminosity. The other parameters (p, b
and oyo) were kept fixed. Thus, the obtained precision on the luminosity can be interpreted
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Figure 4.44: Reconstructed t—spectrum (left) and the corrected t—spectrum (right) with the LuMo.

The corrected spectrum is fit with the function defined in Equation (4.56) (dashed red line) in which

only the luminosity parameter is released. The luminosity is expressed in units of 103'em=2s71.
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as the effect of the intrinsic detector resolution and the beam emittance. As a consequence,
the relative errors on the luminosity increases at lower beam momentum. Its biggest value is
about AL/L = 4.5% at the lowest beam momentum and the most precise value, achieved at the
highest beam momentum corresponds to AL/L = 1.3%. In addition, for ppeqm > 8.9 GeV/e,
the relative errors on the luminosity are similar and AL/L < 2.0%.

4.5.4 Systematic uncertainties on the luminosity measurement

Apart from the detector resolution, the effect of different factors judged to be the main sources
of systematic uncertainties connected with the measurement method previously described was
investigated. These factors include the poor knowledge of the differential cross section pa-
rameters p, b and o, and the pp inelastic background contamination on the elastic process
spectrum.

The estimation of the systematic errors on the luminosity performed as functions of these
factors is given later on this section. Before this, the study of the correlation of the luminosity
with the cross section parameters and the determination of the rate of the pp inelastic process
are presented in the subsequent subsections.

4.5.4.1 Study of the correlation between the luminosity and the cross section
parameters

The study performed previously assumes that the parameters connected with the differential
cross section (p, b and o) are absolutely known and the error on the measurement of the
luminosity is uniquely the result of the detector resolution. However, these parameters are
not known with arbitrary precision. Instead, very few measurements in the beam momentum
range relevant for PANDA exist, thus they must be determined.

One method consists of a determination of the luminosity simultaneously with the three
parameters p, b and oy, by means of the fit to the (corrected) reconstructed spectrum in
the LuMo. This method requires the consideration of any existing correlation between these
four fit parameters. The correlation can be determined by releasing all parameters during the
fit procedure. The correlation coefficients between parameters obtained from the fit on the
reconstructed spectrum within the t—range relevant for a given beam momentum of the LuMo
are given in Table 4.7. This table exhibits the strong correlations between each individual
parameter for all considered beam momenta.

By focusing only on the luminosity, one can note the following aspects. The luminosity is
highly correlated with the p parameter within the five different fit ranges, with the correlation
coefficient pg, > 0.91. In particular, the correlation between these two parameters is stronger
at Ppeam = 8.9 GeV/c where pg, = 0.99. This is due to the fact that at this beam momentum
the detector acceptance contains the Coulomb-nuclear interference region where the effect of
the p parameter on the shape of the differential cross section variation is the most relevant.
As one moves away from this region, p., decreases. That is why p., has a minimum of 0.91
at Ppeam = 15 GeV/c.

The nuclear slope parameter b and the total cross section oy, are rather more sensitive
to the nuclear region i.e. they influence the differential cross section for relative higher values
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Pbeam = 1.5 GeV/c

Pbeam = 4.06 GeV/c

L p b Otot L p b Otot
L 1.00 0.94 -0.21 -0.69 L 1.00 0.94 0.50 -0.64
p - 1.00 0.98 0.14 P - 1.00 -0.72 0.88
b - - 1.00 0.95 b - - 1.00 0.94
Otot - - - 1.00 Otot - - - 1.00
Pbeam = 8.9GeV/c Pbeam = 11.91 GeV/c
L 14 b Otot L 14 b Otot
L 1.00 0.99 0.80 -0.95 L 1.00 094 0.84 -0.98
p - 1.00 -0.68 0.87 P - 1.00 -0.62 0.85
b - - 1.00 0.94 b - - 1.00 0.93
Otot - - - 1.00 Otot - - - 1.00
Pbeam = 15 GeV/c

L P b Otot

L 1.00 091 091 -1.00

p - 1.00 -0.67 0.88

b - - 1.00 0.93

Otot - - - 1.00

Table 4.7: Correlation matrices between the four parameters obtained from fits on the reconstructed
spectra in the LuMo for the five simulated beam momenta.

of the 4-momentum transfer. This fact explains the increase in correlation between these
parameters and the luminosity as long as the detector t—range approaches the nuclear region.
The correlation coefficient pp;, between the luminosity and the slope parameter rises from

pry = —0.21 at the lowest beam momentum to pgp = 0.91 at the highest beam momentum.
Similarly, the luminosity and the total cross section correlation coefficient pr, is minimum and
proe = —0.69 at lower t—values. At ppeam = 15 GeV/e, it reaches its maximum of pp, = —1.

This is due to the fact that at this beam momentum, the pp elastic scattering is mostly
dominated by the nuclear process where the differential cross section is proportional to o.

4.5.4.2 Rate of pp inelastic background

The estimation of the pp inelastic rate which constitutes the main background of the luminosity
measurement was investigated. A full simulation was performed in which the pp inelastic events
were generated using the DPM generator. Within the model, the pp annihilation final state is
determined by the parametrization of the cross sections of various processes leading to string
formation [GU05, UGO02]. The cross section of the different processes are given in Table 4.8.

The main goal here is to determine the ratio of the inelastic events to the elastic events
in the LuMo. At each of the five beam momenta used previously nj,e = 2 - 10° pp inelastic
events were generated. The corresponding distributions with 6 from 0 to 10 mrad are shown
in Figure 4.45. Each distribution is compared with the corresponding pp elastic scattering
spectrum. The number of the simulated elastic events n.; was deduced using the following
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Doeam [GeV /(] 1.5 4.06 8.9 11.91 15
Otot [m] 80.818 73.066 56.123  50.374  47.217
Ohad,el [mb] 26.23 21.61 13.53 11.02 9.74
Tinel [Mb] 54.59 51.39 4259  39.35  37.48
Nel 3.62-105 1.36-10 7.6-10° 7-10° 6.6-10°

Table 4.8: Total cross section, hadronic elastic cross section, inelastic cross sections for the simulated
beam momenta and the number of generated elastic events corresponding to 2 - 10° inelastic events.

Dbeam [GeV/(] 1.5 406 89 1191 15

Rate for By, #0 19 51 122 175 321
Rate for By, =0 67 267 852 1546 2244

Table 4.9: Rates of pp inelastic events in the LuMo for the different simulated beam momenta for the
two cases of dipole field By, is switched on and off.

equation:

o + o
el = Thinel - ( had,el coul,el) 7 (462)

Oinel

and its value is given in Table 4.8 for all considered beam momenta.

Two different simulation were performed: one has the dipole field switched off and another
with dipole field on. The consideration of the these two setups allows to investigate the role of
the dipole field in the background suppression. For both configurations the HESR antiproton
beam properties were taken into account.

In order to estimate the rate of the inelastic background in the luminosity monitor, the
reconstructed tracks are pointed back onto the interaction region (the zy—plane at z = 0)
using GEANE. In this case, the tracks are assigned the same momenta as the beam. The rates
of inelastic events in the detector obtained with the two simulation setups are given in Table
4.9. The existence of the dipole field reduces the rate of the background by a factor of about
3.5 at lower beam momenta to about 8 at higher beam momenta. But at ppeq,, = 1.5 GeV/e,
the relative ratio of the inelastic background events in the LuMo compared to the elastic events
for both simulation setups is less than 1% as shown in Figure 4.46. The ratio of about 17% in
case where the dipole is off at ppegm = 15 GeV/c is reduced to less than 3% when the field is
on.

Furthermore, the distributions of the reconstructed vertices from inelastic events at the
interaction region are compared with those of the elastic events. In Figure 4.47, the distri-
butions of the x—positions of the projected reconstructed tracks onto the plane z = 0 for
all five simulated beam momenta for elastic and inelastic events are shown. Here, only the
simulation corresponding to dipole field on was considered since this matches the reality of
the experiment. These histograms show a central Gaussian distributions corresponding to the
elastic events and long inelastic tails. This demonstrates the high discriminator power of the
dipole field. In this case, for each individual distribution, a cut of 3 - ¢ was applied to reduce
the amount of inelastic background where o is the vertex resolution corresponding to the pp
elastic scattering events which is also given in the figure.
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X [ —a— Dipole Field OFF ]

ZB - —¥— Dipole Field ON A
15

\q_) L / 1

R=E 1

Z I / ]

10f / |

o ]

[ /‘//*/4’/4 1

0"%4"6 8 10 1214 16

P GeV/c]

beam

Figure 4.46: Ratio of the number of pp inelastic background to the number of elastic scattering events
in the LuMo.



76 Chapter 4. Performance Study of the Luminosity Monitor

p. =15GeVic p. =4.06 GeV/c p =89 GeVic
0 gw‘pe‘a,\n“‘\_“‘ P | (%) g‘w“b?é(m”www”w”g (%] H\Hbeam‘w”“”‘_ﬂ“g
€ 429x10"cm £ | 6=171x10" cm ] € 6 =104x 10" cm]
3 f 1 3 f 1 3 1
0103§ E <')103; E O E
102% E E
10;* * 3
0 T TR ﬂﬂ
£ H: L ‘:
42 ferm] 2 e

L L L P B
0 4 0 2 4 0 4
X [cm] X X
p, =11.91 GeVrc p. =15GeV/c
o ——Peam T o  leam 5
€ f 6=831x10“cm 3 e f 6 =7.95%x 107 cn¥
2 I ] 2 I ]
O10% E O10% 3
- 102? -
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4.5.4.3 Results of the study of the systematic errors

Firstly, the impact of the systematic uncertainties on the different differential cross section
parameters on the precision of the luminosity measurement in the relevant t—range for the
LuMo was investigated. The influences of the p, b and o4 were taken separately as the
luminosity (and its relative error) was measured for an uncertainty assigned to each individual
parameter. For the p parameter, the study was performed by adding 0.05 to true value
which represents the average absolute fluctuation of the measured value in the PANDA beam
momentum range (see Figure 4.37). For the other parameters, a relative uncertainty of 1%
was considered.

Then, a systematic study of the influence of inelastic events was performed. For each
simulated beam momentum, the distribution of the 4-momentum transfer ¢ is reconstructed
at the LuMo for both elastic and inelastic events. Their respective t—spectra are shown
separately in Figure 4.48 for different beam momenta. For a particular beam momentum, in
the t—range of the antiproton scattered elastically in the luminosity monitor, there are very
few entries corresponding to inelastic events.

For each individual study, the relative error on the luminosity was calculated with respect
to the results with zero systematic error on each individual cross section parameter with pure
pp elastic events obtained in Figure 4.44. The results for different settings are summarized in
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Figure 4.48: Reconstructed t—spectrum at the LuMo for the pp inelastic (blue area) and elastic
(vellow area) events.

Table 4.10. The total systematic error was calculated by the square root of the sum of the
squared errors from each individual measurement.

In most of the cases, the total systematic uncertainty on the luminosity is mainly dominated
by the uncertainty due to the intrinsic detector resolution and the beam emittance. As results,
as expected the systematic uncertainty is the largest for ppeqm = 1.5 GeV/e.

The second most important parameter is the parameter o;,. Its contribution on the un-
certainty increases with the beam momentum, similar to the correlation coefficient p,,. As a
consequence, for ppeqm > 11.91 GeV/c it becomes the dominating source of uncertainty on the
measurement.

The change on the p parameter has also a significant consequence on the luminosity mea-
surement. Its effect are quite similar for all simulated beam momenta. It is slightly stronger
at Ppeam = 8.9 GeV/c. This corroborates the observation that the correlation between this
parameter with the luminosity is maximum (pz, = 0.99) at this beam momentum and almost
the same for the other beam momenta.

The modification performed on the b parameter did not have a significant effect on the
deduced luminosity. A rough calculation indicates that a relative error of about 1% on the
luminosity is obtained by an uncertainty of 60% on this parameter at ppeq, = 15 GeV/c at
which the correlation between these two parameters is the strongest (pzp = 0.91).

As seen in Figure 4.48, the rate of the inelastic events in the relevant t—range for the LuMo
is very small, so that its effect is negligible on the luminosity measurement.
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Beam momentum |[GeV/¢|

1.5 4.06 8.9 11.91 15

Detector resolution & beam emittance
Ap = Ab = Agtot =0

£ [103 em 2571 0.9547  1.0205 1.0172 1.0146 1.0133
AL/L %] 4.53 2.05 1.72 1.46 1.33
p— p+0.05
L [103em=2571) 0.9605 1.0276 1.0242 1.0221  1.0201
AL/L %) 0.61 0.69 077 074 067
Ab/b = 1%
£ (103 em=2571) 09547 1.0205 10172 1.0146 1.0133
AL/L %) <107* <107* <107* <107% <1074

Aot /oot = 1%

L (103 em =257 0.9549  1.0223  1.0311  1.0325  1.0326
AL/L %) 0.02 0.27 1.37 1.76 1.90

Inelastic background

L [103em—2s71] 0.9547  1.0205 1.0172 1.0146 1.0133
AL/L %) <107 <107* <107* <107* <107
Total systematic error [%)] 4.57 2.18 2.27 2.40 241

Table 4.10: Results on the study of the systematic errors connected with the measurement of the
luminosity.
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Figure 4.49: Distribution of the measured values of the luminosity corresponding to N = 200 data
sets of 4 - 10° generated pp elastic events.
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Figure 4.50: Total uncertainty on the luminosity measurement for different number of generated
events.

4.5.5 Statistical errors on the measurement

The statistical error was investigated by measuring the luminosity for N = 200 data sets of
pp elastic scattering events. The fit used to determine the luminosity takes the true values of
the cross section parameters. This was only done for ppegm = 8.9 GeV/c. The distribution of
the measured luminosity from the simulations corresponding to 4-10° generated events, which
takes about 25 seconds, at £ = 103" em 257!, to collect , per data set is shown in Figure
4.49. The measured luminosity values are distributed according to a Gaussian. The statistical
uncertainty is given by the standard deviation of the fit to the distribution. In the current
case, it is about 0.98%.

The same study was performed for different number of generated events. The results are
shown in Figure 4.50. In this graph, the total uncertainty osym includes both systematic and
statistic uncertainties and was calculated as:

O-.gum = O-ztat + Ugyst . (463)
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4.6 Summary and discussion

The implementation of the LuMo consisting of four tracking stations of four rectangular
double-sided silicon strip detectors in the PandaRoot framework has been described here
in detail. It allows the performance of the LuMo detector for pp elastic scattering event to
be estimated in order to determine the precision with which the absolute luminosity can be
measured. A full simulation chain has been performed in order to determine the resolution
of the detector in terms of the polar angle 6 for the PANDA beam momentum range. At
Poeamn = 1.5 GeV/c, the angular resolution is about 0.5mrad. A higher resolution of better
than 0.1 mrad was achieved for ppeqm, > 6 GeV/e. This corresponds to the ideal situation
without the influence of external parameters, e.g. magnetic fields, beam emittance. In this
case, the parameters that mostly influence the performance are the small angle scattering
and the charge smearing width. The first parameter reflects the multiple scattering that the
track undergoes when it traverses the detector planes. That calculation is performed by the
transport engine. The charge smearing width characterizes the drift of charge carriers inside
the detector volume and was implemented in the digitization process. The introduction of
this process allows to determine the actual number of strips fired. Due to this mechanism,
the probability to register charge in a more than one strip increases from 0.04 to 0.4. A
consequence of that is an improvement of the hit resolution: for a single strip fired which
corresponds to a hit resolution of about 14 ym and multi strip cluster with a resolution of
about 0.7 um, an average spatial resolution of 8 um is obtained.

The consideration of the magnetic fields and the beam emittance deteriorates the angular
resolution of the LuMo. For the case of the magnetic fields, a correction on the track direction
using the GEANE package leads to a negligible effect especially for beam momentum above
3GeV/c. However, a strong effect is obtained when including the beam emittance in the
simulation. The angular resolution is limited by the angular divergence of the beam. For the
expected HESR antiproton beam properties, the best resolution achieved at the highest beam
momentum is about 0.2 mrad. At the lowest beam momentum the angular resolution worsens
to about 0.5 mrad.

To improve the angular resolution for the lower beam momenta, one must reduce the
effect of the multiple scattering in the first plane. Such optimization can be achieved by
using a thinner sensor for this plane. Small angle scattering of about 0.1 mrad is obtained for
Pbeam = 1.5 GeV/c for a 50 um thick silicon sensor.

The simulation of the luminosity measurement was developed using the DPM event gen-
erator. The method consists essentially of the fit the reconstructed spectrum corrected by the
acceptance of the pp elastic scattering in the LuMo. Three different studies were performed to
estimate the total uncertainty on the measurement. In the first study, it was assumed that all
three cross section parameters (p, b and oy,¢) have zero systematic uncertainties. In addition,
simulated events were purely elastic processes. This allows to evaluate the uncertainty on the
luminosity caused by the detector resolution, the magnetic fields and the beam emittance. In
this case, an absolute precision between 1.33% and 4.53% was achieved corresponding to the
highest and lowest beam momenta, respectively.

The second study was the determination the systematic errors connected with the measure-
ment method. This consists of the estimation of the contribution of the systematic uncertainty
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Figure 4.51: Proposed location of the day one experiment in the HESR. Picture taken from [X*11].

on each individual cross section parameter. The relative contribution of a given parameter
depends on its correlation strength with the luminosity within the relevant t—range of a given
beam momentum. However, unlike the parameters p and oy, which affect strongly the lumi-
nosity measurement, this latter has very low sensitivity to the parameter b. The systematic
errors due to the pp inelastic background events have also been investigated. Due to the very
low rate of such events in the relevant t—range for the LuMo, its effect appears to be negligible
on the luminosity determination.

The statistical error was determined for different generated number of events. An error of
about 1% was obtained for 4 x 105 generated pp elastic scattering events. This corresponds
to about 25 seconds of measurement for a luminosity of £ = 103lem =251,

The detector resolution is usually the most dominant source of uncertainty and is less than
2%. The statistical error can easily be less than 1%. Thus the expected precision on the
luminosity measurement depends upon the precise determination of the parameters p, o4, and
b. The method of simultaneous determination of the three parameters with the luminosity will
unavoidably deteriorate the precision due to the strong correlations between them. Instead,
the HESR Day-One Experiment proposes an independent measurement of each of the cross
section parameters. An overview of this proposal is presented in the next section.

4.7 Outlook: The HESR Day One Experiment

This experiment aims at a precise measurement of the pp differential cross section parameters,
p, b and oy, in the beam momenta relevant for PANDA during its initial running phase.
This is required since a good knowledge of these parameters is mandatory for the absolute
determination of the luminosity, and also since there are very few measured data of these
parameters in the PANDA beam momentum range. The proposed location of the experiment
in the HESR accelerator is shown by Figure 4.51.

The measurement will reconstruct the pp elastic scattering spectrum for a large t—range
from —t = 8x 1074 GeV? to —t = 0.1 GeV? [XT11]. Within this range the correlation between
the p, b and oy,: parameters can be significantly reduced. This can be achieved by measuring
the recoil proton target within the energy range of 0.4 to 60 MeV .
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Figure 4.52: Layout of the recoil proton detector.

The measurement of the recoil proton will be performed by an array solid state detectors
placed nearly perpendicular to the beam direction which has an effective area of 24 cm x 5¢ecm
as shown Figure 4.52. To suppress background, a coincidence measurement with the forward
scattered antiproton may be required. An a consequence, the detector is sketched in Figure
4.53 and consists of two arms, one to measure the recoil target and one to measure the forward
scattered antiproton.

The measurement will be performed in two steps. First, the slope parameter b will be
determined at large t—values, 0.05 < —t < 1 GeV?2, to reduce the influence of the other param-
eters. In this range, the pp elastic scattering is a pure nuclear process where the differential
cross section can be parametrized as [AT94a:

% = oop - ebtet’ (4.64)

where opp is called the optical point determined by the extrapolation of the elastic nuclear

cross section to —t = 0 i.e.:
do,
= — . 4.65
oor= ()., (55

Then, the p and oy, parameters will be measured at very small 4-momentum transfer using
the optical point. The method used will be the so-called luminosity independent method. In
this case, t will be calculated from the kinetic energy 7), of the recoils proton target as:

—t=2m,T, (4.66)

In order to measure the kinetic energy, the recoil arm detector will be relatively thick to stop
the recoil proton.
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Figure 4.53: Sketch of the detector setup for the day one experiment. Picture taken from [X*11].






CHAPTER 5
Proton Beam Test of a Silicon Strip
Tracking Station

In February 2010, a prototype of the silicon strip tracking system has been setup at COSY
and tested with a proton beam. With the strong participation of the PANDA group from
HISKP Bonn, who designed and build the apparatus, this beam test allowed investigations
of the PANDA MVD, the LuMo and their respective frontend electronics. Therefore,
the goal was a full characterization of the silicon strip sensors and readout electronics
and a benchmarking of the simulations results with real data. For the LuMo study more
emphasis was put on the latter aspect of the beam test. In particular, it allows the imple-
mented reconstruction method for the LuMo presented in the previous chapter to be validated.

This chapter reports on the beam test analysis results. The offline analysis has been carried
out with the LuMo simulation software in PandaRoot. A brief overview of the experimental
and detector setups will be given in the first section. The second section will focus on de-
scribing the data structure and the offline analysis results. In particular, the cluster behavior
as functions of the beam momentum and the angle of incidence will be discussed, and also a
method to calibrate geometry misalignment will be presented. Finally, this information will
be summarized.

5.1 Experimental setup

The tracking station was tested with proton beams of 2.95GeV/c and 0.893GeV/c de-
livered by the COSY accelerator at Jiilich at a rate of about 4 - 103/s. It consisted of
four modules of silicon strip sensors and two pairs of scintillating hodoscopes as the trig-
ger system. The four modules included two double-sided and two pairs of single-sided modules.

The four sensor modules were arranged sequentially along the beam direction and between
the pairs of the scintillators. Initially, without a dedicated alignment procedure, the detector
system, sensor modules and trigger system, were placed manually normal to the beam direction.

The whole system was supported by a 2m long frame with a height adjusted to the beam
pipe level. It has been specially designed to easily perform shifts of each individual sensor
module along the three Cartesian directions. One frame could rotate in order to vary the
incident angle of the beam to the sensor module. Two pairs of scintillators were used as
an event trigger and were placed at the edges of the frame and were kept fixed during the
experiment. A picture of the experimental setup is displayed in Figure 5.1.
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Figure 5.1: Photograph of the silicon strip tracking system setup during the beam test at COSY. In
this picture the numbers 1, 2, 3 and 4 indicate the beam pipe, the four sensor modules, the downstream
pair of scintillator and the support frame, respectively.

5.1.1 Detector setup

Each individual scintillating hodoscope was 2cm wide and 20cm long. The individual
scintillators were rotated by about 90 relative to each other to generate a square overlap
region.

All six silicon strip sensors have the dimension of 2 ¢m x 2 cm x 300 um with 50 um pitch.
Each module was put in a lighttight aluminum box, where the connection with the frontend
electronics is done. The front and the back of the sensitive area of the module was covered by
a thin aluminum foil (~ 20 um thickness) to completely isolate the module from the outside
environment. The gap between the two single sided sensors was about 4 mm with a stereo angle
of 90 degrees. Figure 5.2 shows a sketch of the system including the global coordinate system
(z,y,2). The beam direction is parallel to the z—axis, and z = 0 corresponds to the end of
the beam pipe. The front and back strips are parallel to the global z— and y—axis, respectively.

Two different detector configurations were adopted during the beam test as shown in Figure
5.2. In the first configuration, the incident proton beam was normal to the sensor surfaces.
With this setup, data for the two beam momenta were collected in order to analyze the detector
response as a function of the beam momentum.

The second scenario moved module 4 to the second position and rotated it about the global
y—axis by an angle w between 0 and 45 degrees. These measurements were only performed for
DPoeam = 2.95 GeV/c. In this case, the detector performance as a function of the rotation angle
was investigated. The z—positions of the modules for the two setups are given in Table 5.1.

5.1.2 Frontend and readout electronics

A module readout was performed using APV25-S1 [Jon01] frontend chips with 128-channels
each. Each active sensor side was read out by three chips. This one-side sensor readout system
was mounted in a L-shaped board. This shape has been designed to allow a common readout
for a double-sided sensor. On the same board, a high voltage sensor supply connector and
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z—position (mm)

Module Number Setup 1 Setup 2
1 110 165
2 807 1750
3 1390 1872
4 1832 1150

Table 5.1: Positions of the modules with respect to the end of the beam pipe for the two different

detector setups.



88 Chapter 5. Proton Beam Test of a Silicon Strip Tracking Station

Figure 5.3: Picture of a complete double-sided sensor module equipped with two identical L-shaped
PCBs. Main components of each individual sensor bord are: (1) double-sided sensor, (2) pitch adapter,
(3) three APV25-Sls chips, (4) high density connector (for chips power supply, slow control, data
output) and (5) sensor HV connector (only in one board). Picture taken from [W+10].

a high density connector needed for the data flows were also mounted. A photograph of a
double-sided module is presented in Figure 5.3.

The on-detector readout was connected with a supply board which provided the operating
voltage and acted as repeater and transition card for the frontend signals. The clock and
trigger signals were generated by a FPGA mounted in a VME board allowing an adjustable
clock frequency between 0.5 and 50 M H z. Slow control for the frontend chips, supply board and
FPGA was implemented using the standard I?C' [W*10]. For the digitization, a commercial
ADC card was used. The whole test station was controlled by a standard computer.

5.1.3 Online monitoring and data acquisition

The DAQ flow was initiated by the coincidence of three scintillators hits. The trigger signal is
then delivered by the FPGA. This leads to the pulse preamplification and shaping processes
through the frontend pipeline incorporated in the APVs. The resulting analog signals, with
digital headers are then sent to the ADC where the digitization is performed. The digitized
data are transferred to the VME board and stored temporarily.

The stored data undergo several processing steps within the VME-FPGA board. To begin
with the FPGA performs a frontend identification, followed by the signal extraction: the
signal is separated from the header. Then, the pedestal correction and the noise suppression
are performed. The resulting signals are finally written and stored in a FIFO.

The digitized data are transferred to the computer via an Ethernet network. The computer
itself runs a dedicated software for the online data acquisition monitoring. During the beam
test, a total of about 85 million events have been recorded.

Another type of data results from the online cluster finder algorithm, that was also imple-
mented at the FPGA data processing level. In this case, information belonging to the same
sensor side, resulting from a single beam particle crossing is merged together to form the cluster
data. A more detail description of the beam telescope can be found at [W10].

In the following, only the digitized data will be taken into account in order to validate the
LuMo reconstructed method.
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Figure 5.4: Flow diagram of the beam test data analysis chain.

5.2 Offline analysis and results

The offline analysis for this study used the LuMo reconstruction algorithm implemented in
PandaRoot. A detailed description of the algorithm was given in the previous chapter.

The analysis starts by taking the beam test data file. The data format had to be restruc-
tured in order to be consistent with the PandaRoot software. This operation will be described
in more detail in the upcoming section. The output is used as input to first perform the clus-
terization and then the hit reconstruction. At this level, a complete description of the detector
setup is needed. Thus, two files, one containing the digitization parameters such as the pitch,
the strip orientation on each side, and another giving the detector geometry, were provided.
The next step is the track reconstruction. The output of this process allows the calibration
of the detector geometry to be performed. This process was necessary to correct the relative
misalignment between the sensor planes allowing a better estimate of the detector resolution
and efficiency. The alignment method was developed for this beam test and is described later
in this chapter. The geometry file is updated according to the modification in the alignment
process. This process is iterated until the resolution of the alignment is optimized. A flow
diagram summarizing the analysis chain is shown in Figure 5.4.

5.2.1 Raw data restructuring

The output raw data from the beam test was stored in ASCII files in which a hit is represented
by the trigger identification, the frontend and channel fired and the amplitude of the charge
collected in ADC channels. The restructuring of the data consists of converting the frontend
number into the module and side numbers, the channel number into the strip number and
performing the gain calibration.

In the raw data file, the frontends are labeled 0 to 23 and the channels 0 to 127. Each
group of six consecutive frontend numbers represents a module with three consecutive frontends
per side. The strip number corresponding to the channel ¢; of the frontend fe; in a side is
calculated as (fer — feg) X 128 + ¢; + 1, where feq is the number of the first frontend on the
same side. Thus, after the conversion the strips from each side of the sensor are numbered
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Figure 5.5: Typical strip fired distributions of the four stations for the data at ppeqm = 2.95GeV/c
(upper row) and ppeam = 0.893 GeV/c (lower row). These histograms correspond to detector Setup 1.

from 1 to 384. The two dimensional histograms in Figure 5.5 show the distributions of the
frequency each strip fired for all four modules for the two beam momentum setups.

The histograms on the figure are ordered from the left to the right according to the module
positions along the beam direction. On the histogram corresponding to module 1, the beam
spot shape can be seen which represents the overlap area of the trigger hodoscopes. The beam
impact spot on the sensor surface widens from one station to the next. This is mainly due to
the combination of the beam divergence and small angle scattering effects.

The different shape of the beam spot for the 2.95 GeV//c and the 0.893 GeV/c data is most
likely the result of different focus properties of the beam at different momenta.

One can also observe the positions of the beam axis on the different sensor modules.
This reflects the limited precision with which the modules were mounted on the frame. The
determination of the actual positions of each station will be the purpose of the alignment
procedure presented later in this chapter.

The offline gain calibration was performed for all readout channels in each individual sensor
side. The calibration coefficient for each channel was calculated by the quotient of the average
deposited charge on the sensor side to the average charge collected by this channel. In this case,
only the hits from tracks that went through all four stations were considered. Furthermore,
among these hits, only those ones which fired a single strip were used i.e. the amount of charge
deposited in the sensor are collected by only one strip, were used. The consequence of these
cuts is that the long tail of the Landau distribution of the charges was significantly reduced.
This is explicitly shown by Figure 5.6. As a result, the position of the mean position of the
distribution becomes stable and thus corresponds to the average deposited charges in all strips
of the sensor side.

The calibration has only been performed for strips that have more than 150 entries.
For other strips (mainly those ones at the edges) the calibration coefficient was set to 1.
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Figure 5.6: Charge distributions of all reconstructed clusters and clusters of size 1 (yellow area), for
the two beam momenta. The left scale corresponds to the single-strip cluster charge distribution and
the right scale to the distribution of all cluster charge. This figure correponds to the P-side of the
double-sided sensor in module 1.

Figure 5.7 shows the mean deposited charge per strip for strips satisfying the conditions
mentioned above after calibration for both beam momenta and for each sensitive sensor
side. The collected charges are slightly higher on the back side than in the front side of
the double-sided module. This is because the front side corresponds to the P-side and the
back side to the N-side of the sensor, and the N-side is effected by higher noise. Similar
values are obtained for the single-sided modules. The average charge per sensor side is
about 237 ADC counts and 516 ADC counts for the 2.95GeV/c and 0.893 GeV/c beam
momenta, respectively. The deposited charge at lower beam momentum is higher than for
the higher beam momentum, as expected. Fluctuations from one side to another of about
9% and about 4% around the averages are observed for the first three modules, for the
2.95GeV/c and 0.893 GeV/c beam momenta, respectively. The mean charge values in the
sensor side of module 4 were not included in these average values because the gain was a
factor two lower for the corresponding channels. Furthermore, the gain of the last 128 chan-
nels of the N-side of module 4 was lower during the 0.893 GeV//c beam momentum data taking.

The analysis of the charge distributions per strip per sensor side was used to determine
the charge threshold for the different running conditions. The threshold corresponds to the
minimum charge that can be collected on the strip. Histograms in the upper row of Figure 5.8
show the typical distributions of the charge per strip in a sensor side for the Setup 1 at the
2.95GeV/c beam momentum (left) and for the Setup 1 with the 0.893 GeV/c beam momentum
and the Setup 2 (right). The distributions of the corresponding minimum charges for all chan-
nels are plotted in the lower row of the same figure. Gaussian fits to these distributions were
used to estimate the charge thresholds for these two experimental conditions. For geometry
Setup 1 at 2.95 GeV/c beam momentum, the threshold of about 64 ADC channels was found
with a spread of about 2 ADC channels. For Setup 1 with ppeqm = 0.893 GeV/c and for Setup
2, it is about 32 ADC channels with a spread of about 1 ADC channel. For this latter case,
the last 128 strips of module 4 were not taken into account in the calculation.
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Figure 5.7: Distribution of the mean deposited charge for each strip at (left column) ppeam = 2.95
GeV/c and (right column) ppeam = 0.893 GeV/c corresponding to single-strip cluster.
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Figure 5.8: Upper row: Typical distribution of the deposited charge for each strip in a given sensor
side (in this case the P-side of module 4) corresponding to the the Setup 1 at the 2.95 GeV/c beam
momentum (left) and for the Setup 1 with the 0.893 GeV/c beam momentum and the Setup 2 (right).
Lower row: Distributions of the minimum deposited charge per strip for all four modules for these two
experimental setups. The blue lines on top of the lower figure part are Gaussian fits to the distribution.
The means of the fits give the thresholds values.
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Figure 5.9: Relative fraction of the cluster size at each sensitive sensor side of the tracking station.
The upper and lower rows are for data taken at 2.95 and 0.893 GeV/¢, respectively.

5.2.2 Reconstructed cluster properties

The cluster size and charge have been investigated as functions of the beam momentum
(Setupl) and the angle of incidence (Setup 2). All results presented in this section were
obtained from incident tracks that hit all four stations.

5.2.2.1 Cluster properties as function of the beam momentum
Cluster size

Histograms showing the relative fraction of clusters having size of 1, 2 and > 2 in each
individual sensitive sensor side of the tracking station and for both beam momenta are plotted
in Figure 5.9.

For the single-sided modules, the front and back side clusters have equal size. In contrast,
the P-side clusters are wider than the N-side clusters in the double-sided modules. This might
be the consequence of the higher noise on the N-side. In fact, the same charge threshold
applied on both sides reduces much more the size of the clusters on the N-side than on the
P-side due the lower signal to noise ratio on the N-side.

The clusters in module 4 are narrower than the clusters in the other three modules for
both beam momenta. This is mainly a consequence of the lower gain on the channels on this
module. In fact, the number of strips fired during the passage of a single track depends on
several aspects such as noise and the incident track angle. The noise is expected to be similar
for all sensors. Due to the condition that the tracks hit all four planes, the incident angle is
nearly 90° for all modules despite the small misalignment of the modules. Another important
factor discussed previously is the charge diffusion. Assuming that the sensors have similar
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Reconstructed value of o, (keV')

2.95 GeV/c 893 MeV/c
Module Number Front Side  Back Side Front Side Back Side
1 5.87+£0.07 7.05+£0.08 12.03+0.10 14.05+0.11
2 6.48 £0.07 6.32+0.07 1297+0.11 12.19+0.11
3 6.41 £0.07 6.60+0.07 12.094+0.10 12.57+0.10
4 858 £0.11 9.57+0.12 11.924+0.13 13.13+0.13

Table 5.2: The fitted value of the width parameter o, of the Landau distribution.

physical properties, the charge diffusion should not cause a strong difference of the cluster
The cluster size also depends strongly on the ratio of the mean
charge to the threshold. If referred to Figure 5.7 with the threshold values given in Figure
5.8, this ratio is a factor of two bigger in the three first modules than in the module 4 due
to the lower gain on the corresponding channels. A similar factor is noted in the relative
fraction of clusters size equal to 1 in the front side part of Figure 5.9 for the two beam energies.

size for different sensors.

For all modules, at ppeam = 2.95GeV/c, there is a higher fraction of cluster size = 1.
Despite the threshold being set to half the value for ppeqm = 0.893 GeV/c beam momentum,
the relative ratio of the single-strip clusters of the ppeqm = 2.95 to the 0.893 GeV/c data is still
larger than 2. This reflects the widening of the clusters when the deposited charge increases.

Cluster charge

Figure 5.10 shows the distributions of the deposited charge of the reconstructed clusters
for each sensor side of the four detector modules and for both beam energies. Each individual
distribution has been fit with a Landau distribution convoluted with a Gaussian as given by
Equation (4.6).

Fits to the data to determine the values of the A,, og and oy are shown in Figure
5.10. The conversion of the collected charge in ADC counts to the deposited energy in eV
was performed by setting the most probable energy loss A, to 76 keV and 144 keV for the
higher and lower beam momenta, respectively. These values were taken from the theoretical
expectation of A, shown in Figure 5.11 [NT10]. The calibration coefficients were calculated
for each sensor of single-sided modules. For double-sided modules, the coefficient in the P-side
was used for both side. Other parameters were determined using these calibrations.

The measured values of the width parameter o of the Landau distribution for every
sensor side are given in Table 5.2. For ppeam = 2.95 GeV /¢, the fitted value has an average of
6.47 keV except the last module in which big values of x?/ndf were obtained. This value is
in good agreement with the existing value of about 6 keV for 300um thick silicon [HT84a].
The value of o, extrapolated to the lower beam momentum is about 12.0 keV'. The measured
value is consistent with this value.

Assuming the distant collisions to be dominated by the interaction of the innermost shell
(K-shell), then o will be similar for the two beam momenta and roughly equal to 5.7 keV
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Figure 5.10: Distributions of the deposited charge per cluster for each sensitive side of all four detector
modules for ppeam = 2.95GeV/e (left column) and ppeqm = 0.893 GeV/c (right column). Blue curves
are fits to the data with a Landau function convoluted with a Gaussian.
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Figure 5.11: Most probable energy loss in silicon, scaled to the mean loss of a minimum ionizing
particle, 388 eV/um (1.66 MeV - g=1 - em?). Picture taken from [N*10].

Reconstructed value of 0y,0is¢ (keV)

2.95 GeV/e 893 MeV/c
Module Number  Front Side Back Side Front Side Back Side
1 5.67+£0.27 &855+0.21 771+024 6.85+£0.25
2 5.64+0.17 6.86+£0.20 6.89+0.23 9.0240.23
3 6.94+0.19 6.89+0.24 6.70+0.21 6.59 £+ 0.26
4 14.35 £0.57 19.15+0.25 10.72+0.55 10.43+£0.30

Table 5.3: The r.m.s.’s of the Gaussian distributions representing the electronic noise at each indi-
vidual sensitive side of the four modules of the tracking station.

[H*84Db]. The electronic noise contribution can be estimated by :

Onoise = \/ Ué - U%{ .

The reconstructed value of 7,,0;sc 0On each sensor side is given in Table 5.3. In the double-sided
modules, the noise on the P-side is expected to be smaller than in the N-side. This is the case
for the noise reconstructed in the module 1 for the 2.95GeV/c beam momentum setup. In
the same module, the contrary is observed for the lower beam energy which may due to the
poor quality of the fit to the P-side charge distribution. For the module 4, the big values of
the noise are the consequence of the abnormal fit to the distributions for both beam momenta.
For the single-sided module 2, the discrepancy of the noise in the front and back sides is not
clear. However, similar noise values are measured in the module 3 for the front and back sides.
Considering only good x?/ndf fits, average noise values of 6.4 keV and 6.7 keV are measured
for the higher and lower beam momenta, respectively. These values are consistent with each
other taking into account the average fit error of about 0.2 keV. Here, the difference may be
due to the uncertainties in the charge calibration or the values of the charge threshold.

(5.1)
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5.2.2.2 Dependence of the cluster properties on the sensor rotation

In this section, the analysis was focused on the behavior of the reconstructed clusters in the
module 4, which was rotated about the global y—axis by an angle w between 0 to 45 degrees
(as illustrated Figure 5.2) for the 2.95GeV/c beam momentum setup. Basically, the fact of
rotating the sensor leads to changes of its geometry relative to the incident particle. These
changes include the increase of the effective thickness of the sensor and the narrowing of the
effective pitch of the strips of the side where their direction is parallel to the rotation axis.
Here, this side corresponds to the N-side of the sensor.

A straightforward consequence of the thickening of the sensor is the increase of the
path length of the track inside the sensor. The deposited charge is also expected to in-
crease accordingly since these two observables are proportional to each other, as illustrated
in Figure 5.12. In this figure the distributions of the cluster charge for both sides are
shown. In particular for the P-side sensor where the charge distributions have been fitted
with Landau convoluted with a Gaussian, one can observe the shift of the most probable
deposited charge, determined by the fit to a higher charge value when the incidence angle in-
creases. In this case, the change of the deposited charge for an incident angle w is proportional
to the factor 1/ cos(w) by which the path length increases with respect to the normal incidence.

The same behavior is not observed for the N-side cluster charge in particular for higher
polar angles (w > 10°). For this angular range, the decrease of the strip width has a more
significant effect on the charge collection. Indeed, a similar amount of charge collected by
mostly one or two strips for nearly normal incident tracks is shared by several strips and thus
is more strongly effected by the threshold. This explains the presence of the several peaks in
these distributions. This is also confirmed by the variation of the cluster width as a function
of the incident angle plotted in the left part of Figure 5.13.

The left part of Figure 5.13 represents the variation of the mean cluster width as a function
of the incident angle. In this figure, the P- and N-side clusters have identical widths for small
incident angles (w < 10°). The total amount of deposited charge is collected mostly by one
strip for w = 0°, 5° and by either one or two strips for w = 10°. Above this angle the P-side
cluster width varies only slightly with the angle. However the N-side cluster widens: the
mean cluster width increases linearly with the angle and reached a value of about 2.7 strips
at w = 35°. Then it drops for even higher incident angle because the charges that spread over
the further strips are below the charge threshold. Thus there is more pronounced peak in the
lower charge value as shown Figure 5.12.

The effect of the incident angle on the properties of the clusters on both sides are sum-
marized in Figure 5.13. The right plot of this figure shows the relative variation of the most
probable deposited charge with respect to the normal incident angle as a function of 1/ cos(w)
for the P-side clusters. A straight line was drawn with the points to show the linear behavior
of the variation. The two first points corresponding to w = 0° and w = 5° do not fit on the
line. This is due to the altered distribution of the deposited charge (see the two top plots of
Figure 5.12) and thus falsified the determination of the most probable value by the fit. This is
also the reason why the slope of the line differs from 1.
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Figure 5.13: Graphs showing the mean cluster size as a function of the incident angle w (left) and
the most probable deposited charge on the P-side as a function of 1/ cos(w) (right). The dashed line
represents the expected proportionality of the deposited charge with 1/ cos(w).

The optimal situation is at w = 10°. At this incident angle, the clusters on both sides of
the sensor have the same mean size of 1.5 strips. This situation corresponds to a transverse
path length comparable to the strip pitch when tracks pass through the sensor such as:

o pitch

tan(10”) ~ ——. 5.2

(10%) thickness (52)

Therefore the total amount of deposited charge was collected by either 1 or 2 strips. The

cluster size 1 corresponds to tracks which enter and exit at the boundaries of the actual strip

fired and its neighboring strips. The two strips cluster corresponds to tracks that enter and

exit in the center of the two strips fired, so that the deposited charge is equally shared by the
two strips.

5.2.3 Hit position reconstruction

Further analysis such as track reconstruction and detector alignment are only possible after
the hit positions have been correctly reconstructed.

The one-dimensional position reconstruction is based on the charge sharing process between
strips. This can be seen through the behavior of the n—function (see Equation (4.13)). The two-
dimensional position reconstruction matches the charge measured on both sides of the sensor.
Since no charge correlation can be expected between layers of the single-sided modules, the
charge matching is only used for the double-sided modules.

5.2.3.1 n—distribution

The charge sharing between strips is mainly determined by the charge diffusion process as
described in the previous chapter. The parameter og;rs representing the charge smearing is
characteristic of the material and does not depend on the incident particle energy. In order
to estimate the value of o4;rr, the n—distribution in the beam test data and simulation have
been compared.

Data taken at ppeqrm = 0.893 GeV/c were used since they have a large fraction of multi-strip
clusters as seen in Figure 5.9. In the simulation, the threshold and noise were set to the values
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Figure 5.14: Distribution of the np—function on the N-side (left) and P-side (right) of the double-
sided sensor in module 1. For both cases, the measured data (yellow filled area) are compared with the
simulation (colored lines) in which different values of o4,y were used.

reconstructed in this analysis. The comparisons were performed for different values of og;s;.
The distributions of the n—function are shown in Figure 5.14 for the P- and N-sides of the
double-sided sensor of module 1.

The distribution of the n—function for the N-side sensor, shown by the left plot of Figure
5.14, has two peaks located at n ~ 0.07 and 1 ~ 0.93 which correspond to the ratio of the
threshold to the most probable value ratio. The distribution was compared to the output of
the simulations in which og4;7¢ was set to 6, 8 and 10 um.

In the right part of Figure 5.14, the n—distribution at the P-side is shown. The distribution
exhibits three peaks. This is due to the big fluctuation of the charge threshold for the channels
on this side. In fact, the three-peak structure can be attributed as the result of the superposition
of two distributions: one corresponding to a lower threshold (threshold/A, ~ 0.1) which
generates the two peaks at the edges, and another with a higher threshold (threshold/A, ~ 0.5)
generating the bump in the center. The simulations were performed for the two values of the
thresholds corresponding to the threshold/A, ratio measured above.

For both sides of the sensor, the measured data are quite well reproduced by using og4;r ¢ = 8
or 10 ym. However, for the measured data, different peak heights for both sides and also a
shift of the central peak to the right can be noted. These have been observed before by other
measurements [Tre02| and are potentially due to the small rotation of the sensor.

5.2.3.2 Double-sided sensors charge correlation

The passage of an ionizing track through the sensor generates an identical number of holes
and electrons. Thus, a strong correlation between the P-side and N-side cluster charges is
expected. As a result, charge matching between the two sides should be very helpful to reduce
hit ambiguity.

Here the charge correlation between the reconstructed clusters on both sides of the sensors
in module 1 and module 4 was investigated for both beam momenta. Scatter plots of the P-
versus N-side cluster charges were used to study the correlation between both charges. Such
distributions are shown in the upper row of the two groups of plots in Figure 5.15. They exhibit
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a strong correlation between the reconstructed clusters on both sensor sides. The departure
of the distributions from the perfect correlation, in which the cluster charge on the P-side is
exactly equal to the cluster charge on the N-side, is mainly due to the readout electronics noise.
The noise on the N-side is slightly higher than on the P-side.

The difference of the cluster charges on both sides are plotted in the lower row of the two
groups of plots in Figure 5.15. These results have been fit with a Gaussian distribution of the
charge difference in both sides. A small dispersion of about 11 keV is obtained except for the
module 4 at ppeam = 2.95 GeV/c beam momentum. The larger spread in this module is due to
the lower gain compared to the threshold. This also explains the more pronounced deviation
from the perfect correlation in module 4 than in module 1. During the hit position reconstruc-
tion, only clusters on both sides with charge difference of 3o from the average difference were
considered.

5.2.4 Sensor alignment

Since the modules were manually mounted, the exact positions of the sensors were known with
a limited precision. In order to achieve the best estimation of the tracking station efficiency, it
is essential to determine the correct relative position and orientation of each individual sensor
during the beam test. For that purpose, a dedicated algorithm was implemented based on
particle tracks traversing planar sensors [KT03].

5.2.4.1 Alignment formalism

The alignment method consists of determining iteratively the correct transformation from the
global coordinate system (GCS) (z,v, z) to the sensor local coordinate system (LCS) (u,v,w)
by minimizing the x? hit residual function written as:

N
X2 = ZE;-FVJ._IEJ- . (5.3)
5=0

In this formula, the summation is done over all the N tracks, ¢ is the residual vector of
the measured hit position g, = (Um,vm,0) and the corrected track impact position q§ =
(ug,vg,0), and Vj is the covariance matrix associated with the track j.

Expression of the coordinate transformation

A complete transformation from the GCS to the LCS includes the translation of the origin
and the relative rotation of the axis of the LCS with respect to the GCS. The LCS is such that
its origin coincides with the geometric center of the sensor, the u— and v—axes are parallel to
the directions of the strips at the front and the back sides of the sensor, respectively, and the
w—axis is perpendicular to the sensor surface.

The transformation of a given hit is

ga=Ro:(r—17), (5.4)

where r = (z,y,2) and q = (u,v,w) are the hit positions in the global and local coordinate
systems, respectively, ry = (z(, ), 2) is the actual global coordinates of the sensor center and
Ry is the actual relative rotation of the local coordinate system with respect to the global
coordinate system.
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Figure 5.15: Scatter plots of charges in the P-side versus the N-side (upper row) and distributions
of the difference between the P-side and N-side cluster charges (lower row) for the two double-sided
modules for ppeam = 2.95 GeV/c (upper group) and ppeam = 0.893 GeV/c (lower group).



104 Chapter 5. Proton Beam Test of a Silicon Strip Tracking Station

These actual transformation matrices are obtained by incrementing the initial measured
transformation rg and R with the corrective translation Ar and rotation AR as following:

r, = 1o+ Ar, (5.5)
Ry = ARR, (5.6)
where the matrix AR is the product of the matrices R, Rg and R, expressing the rotations

by small angles Aa, A and A~y around the w—axis, the (new) u—axis and the (new) w—axis,
respectively i.e.:

1 Ay+Aa 0
AR =R.RgR, = | —(Ay+ Aa) 1 ApB (5.7)
0 AB 1

The correct transformation q¢ is then obtained and reads:
q° = ARR(r —rg) — Aq, (5.8)

with Aq = ARRAr = (Au, Av, Aw).

Expression of the residual

A straight line approximation of the particle trajectory in the vicinity of the sensor plane
leads to an expression of the corrected track impact position qf of

q; = ARR(r; + hé —r9) — Aq, (5.9)

where § is the unit trajectory direction vector in the GCS and h is the trajectory parameter
determined from the condition q - W = 0. Its final expression reads [K*03]

ARt

¢ = ARq, + (Aw — [AR =
q d: + (Aw — [ qa:]?))[ARt]g

Aq, (5.10)

in which # is the uncorrected trajectory direction in the LCS, qy is the uncorrected trajectory
impact position and the index 3 indicates the third components.

Using the corrective rotation AR given in Equation (5.7), the residual components are
expressed as:

ey = Uy — Au+ (Ay+ Aa)vg + (Aw + APvg) tan ¢ — uy, (5.11)
gy = Uy —Av— (Av+ Aa)uy + (Aw + APvg) tand — vy, (5.12)

where ¢ is the angle between the (vw)—plane and the track and 6 is the angles between the
(uw)—plane and the track.

In short, the minimization of the x? function defined in Equation (5.3) results in the
determination of the values of the alignment parameters. These parameters are explicitly
connected to the bivector residual (e, ¢€,) via the expressions Equations (5.11) and (5.12).
There are 6 parameters in total i.e. the three position parameters (Au, Av, Aw) and the
three orientation parameters (Aa, A3, Ay). This method is known as Hits and Impact Points
method (HIP).
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Setup 1 (2.95GeV/c) Setup 1 (0.893GeV/c) Setup 2 (2.95GeV/c)

Module Number =z (mm) y (mm) x (mm) y (mm) x (mm) y (mm)
1 -0.59 -0.71 -0.11 -0.59 1.41 -0.63
2 1.09 0.82 0.15 0.67 1.61 0.03
3 -0.16 0.91 0.06 0.77 0.57 -0.83
4 -0.32 -1.02 -0.11 -0.85 -3.95 1.50

Table 5.4: Start x— and y—positions of the four modules for the geometry alignment procedure for
the different experimental setups.

5.2.4.2 Tracking station alignment
Preliminary calibration

The method of geometry calibration by tracks described previously is only valid for an
approximation to a small misalignment. In this case, it is necessary to have an optimal situation
in terms of sensor positions before performing the alignment procedure. Therefore, a rough
estimation of the position of each individual module in GCS is required. The obtained position
will be then used as start positions for the sensors for the alignment process.

Initially, the detector axis (w—axis) was assumed to be collinear to the beam direction
(z—axis). The z—positions of the modules were assumed to be relatively accurately measured.
Therefore, the position estimation consists of determining the lateral shifts, i.e. in the x— and
y—directions, that will be performed for each individual detector module. The magnitude of
the displacement of a single module is given by the mean value of the hit residual distributions
in the two directions. Here, the hit residual is defined by the difference between the measured
hit position and the projected track position reconstructed from equally weighted hits. This
means that during the track fitting, the hit errors were set to a same value and any correlation
between modules was not considered. Using the x? function defined in Equation (4.31), one
can choose the 4 x 4 identity covariance matrices for the x— and y—components. The results
of this operation are given in Table 5.4 for Setup 1 at ppeam = 2.95 and 0.893 GeV/c and for
Setup 2.

Sensor alignment

During the alignment process, several assumption have been made. As already mentioned
above, the z—position of each individual module was assumed to be accurately measured. In
addition, since the tracks are nearly perpendicular to the detector plane, the alignment pro-
cedure has very low sensitivity to shifts in the w—direction, i.e. Aw = 0. Also, due to lack of
information, the relative displacement between the two sensors in the single-sided modules was
neglected. As a consequence, they undergo the same geometrical transformation during the
process. Furthermore, since the track fitting process uses the first two modules as a reference,
no additional translations were allowed for these modules. The second module was however al-
lowed to be rotated. Consequently, the whole transformation acts only on the two last modules.

The track fitting parameters were calculated from simulation. As developed in Section
4.3.4.2, the hit errors on the two first planes corresponds to the intrinsic detector resolution
ie. 01 = 092 ~ 14um. The hit errors on the two last planes are given in Table 5.5. The
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Parameter
Dbeam [GEV/(] o1 [em] oa [em)] o3 [em] o4 [em]  psa
Setup 1 2.95 1.4 x 10:1 1.4 x 10:1 0.0207  0.0404 0.64
0.893 1.4 x 10 1.4 x 10 0.0952  0.1865 0.68
Setup 2 2.95 14x107* 1.4x10"* 0.0126 0.0157 0.71

Table 5.5: Hit errors and correlation coefficients corresponding to the two experimental setups.

non-zero off-diagonal element of the correlation matrix is also given in this table for both beam
momenta.

These errors were assigned to the measured hit position during the x?—minimization for the
alignment process. The errors for the track impact position were set to the detector resolution.
Therefore, the covariance matrix used in Equation (5.3) is independent of the track and for a
given module 4, it is written:

. 2 2

VZ — 0’7’65 + O-Z 2 0 2 (513)
0 Ores + a;

where 0,¢5 is the detector resolution and o; is the hit errors at the i** module. Here it was

assumed that there is no correlation between the u— and v—coordinates.

The minimization was performed sequentially for each module. Each minimization leads to
a correction of the geometry. The full reconstruction chain is repeated for every single module
transformation. For each detector setup, about 70,000 tracks were used. For the case of Setup
2, the alignment procedure was only performed at normal incident angle (w = 0°). The error
of the angle at which Module 4 was rotated, was assumed to be small relative to the alignment
precision.

An illustration of the geometry calibration is shown Figure 5.16. The evolution of the
distributions of the hit residuals AZ = (Az, Ay) in the GCS at each individual module after
every complete iteration are plotted in this figure. These plots corresponds to the data taken
with Setup 1 at ppeqm = 2.95 GeV/c. The width and the position of the residual distributions in
Module 1 remain unchanged throughout the process since the corresponding hits, with the ones
at Module 2, were used as reference for the track fitting procedure. The residual distributions
on Module 2 were slightly changed because rotations were allowed to be performed during the
calibration. Nevertheless, the width of the distributions remains on the order of 14 ym. In
the two last modules, the distributions moved towards Ax = Ay = 0 and its width narrowed.
On both modules, the width of the distribution is limited by the errors of the measured
hit position on this module. The width converged quickly to the error values after only 2
iterations. Typically, the sensor alignment was achieved after 3 iterations. This is illustrated
by the variation of the fit parameters as a function of the number of iterations shown in Figure
5.17. After 3 iterations, the value of each individual parameter did not change significantly.

The summary of the values of the alignment parameters with respect to the start posi-
tions obtained after the complete geometry calibration for detector Setup 1 at 2.95GeV/c
and 0.893 GeV/c beam momenta is given in Table 5.6 and Table 5.7, respectively, and for the
detector Setup 2 at the normal incident track (w = 0°) is given in Table 5.8.



5.2. Offline analysis and results

107

Module 1 Module 2 Module 3 Module 4

Q70000_ T 1 T T T _: 70000_ T T T T L _: 3000- L L Ll 1 T E ’400_ T T T T T -:
< —n=0 ] k| ]
60000F I n J60000F E b E
g 1 |3 | 1 2500k 1 1200 :
050000- —n=2 - 50000 3 1000F ]
I | n2 |3 1 2000 3 ]
40000F — s |J40000F 3 s00k E
30000F == 3 50000F 3% 1 sk 3
20000F 320000 4 1000 7 4ooF E
10000F 3 10000f 3 sof 1 200k 3
B anaaaaa L L I prd prree e o]
] 3 s000F 4 ™00 ) ]
60000F | 360000 3 1 ]
E 1 2500F 3 1200 ]
50000k | E 50000F E 2000 1000k _:
40000F ! 340000 3 o0t 3
30000F 430000F ] 15008 1 sook 3
20000F 3 20000F 1 1o00r 1 400k E
10000F 310000F 1 soof 1 200p E
1 1 1 L bt 1 1 4 1 1 L. 1 0 IR PR k

00T 0 i 02 02 07 0i_"02 02707 0 0102 0z 01 0 o1, 02
AX [em] A X [em] A X [em] A X [em]

Figure 5.16: Distributions of the hits residuals Az (upper row) and Ay (lower row) in each individual
module after n iterations.
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Setup 1 at ppeam = 2.95GeV/c
Module Number Awu (mm) Av (mm) A« (mrad) ASB (mrad) Ay (mrad)

2 — — -0.32 22.26 -5.71-107°
3 3.8 3.72 3.46 -21.87 3.65-1073
4 7.98 7.80 -5.36 -18.14 0.28

Table 5.6: Alignment parameters values for the module 2, 3 and 4 for the data taken with the geometry
Setup 1 at ppeam = 2.95 GeV/c relative to the start position in Table 5.4.

Setup 1 at ppegm = 0.893 GeV/c
Module Number Au (mm) Av (mm) A« (mrad) ASB (mrad) Ay (mrad)

2 — — 1.27-1072 -35.75 2321074
3 1.24 1.25 1.22 26.33 1.20
4 0.78 1.82 -9.42 -29.99 2.55

Table 5.7: Alignment parameters values for the module 2, 3 and 4 for the data taken with the geometry
Setup 1 at ppeam = 0.893 GeV/c relative to the start position in Table 5.4.

Setup 2 at w = 0°
Module Number Au (mm) Av (mm) A« (mrad) AB (mrad) Ay (mrad)

2 — — -1.42 -10.33 -4.22-1073
3 2.24 0.85 2.32 -32.24 9.60-1073
4 8.04 7.66 6.63 13.61 4.18 1072

Table 5.8: Alignment parameters values for the module 2, 3 and 4 for the data taken with the geometry
Setup 2 at normal track incident relative to the start position in Table 5.4.

5.2.5 Detector resolution

After the alignment, the resolution of the tracking station can be determined. For a given
experimental setup, a virtual plane perpendicular to the z—direction was placed in the middle
of the second and third modules. Two straight lines formed by the hits at the two first modules
and by the hits at two last modules, respectively, are projected onto the virtual plane. The
detector resolution can be estimated by investigating the bivector residuals A% = (Ax, Ay) of
the positions of the two projected lines on that plane. An illustration of the method is shown
in Figure 5.18. In this study, the beam test measured data were compared to the simulation.

For Setup 1, the virtual plane is located at z = +109.85 ¢m. In the simulation, the residuals
have Gaussian distributions with means Az = Ay = 0. Similar values of means are obtained
for the measured data. But the residual distributions for the measured data differ to the
simulation by the existence of the long tail on both sides of the central Gaussian distribution.
This can be seen through the distributions of of Ar = /(Az)? + (Ay)? shown in Figure 5.19
for both simulation and measured data. The non-Gaussian tail on this distribution represents
the single scattering events.
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Figure 5.18: Illustration of the projections of the lines formed by the hits at the two first modules
and by the hits at two last modules onto a virtual plane located at z = (22 + 23)/2.

m Py = 2.95 GeV/c m Py = 0.893 GeV/c ]
1072 10°
‘ — Data

b
‘ —— Data
Simulation —— Simulation

10°
10+ WWNWMHHH M 10 %%MWWM

1 e e e e 1 M = I S R | A 1|
0 005 01 015 02 0 0.2 04 06 08

A rfem] Ar[em]

Counts
Counts

Figure 5.19: Distributions of the residuals of the two lines projection points onto the virtual plane
located at z = +109.85 ¢m corresponding to the detector Setup 1 for ppeam = 2.95GeV/c (left) and
Dbeam = 0.893 GeV/c (right).

If the tails are not considered, the standard deviations of the central Gaussian distribution
can be used as an estimate of the resolution in the two directions. In this case slightly
better resolutions o4, are obtained for the tracking station compared to the resolutions
Osim from the simulation. Similar resolutions are obtained in the z— and y—directions:
Odata = 150+ 1.2 um (0gim = 179 um) and o44tq ~ 750+ 2.2 um (0gim = 780 um) are obtained
for ppeam = 2.95 and 0.893 GeV /¢, respectively. These values depend strongly on the position
of the virtual plane and, especially for the data, on the precision of the geometry calibration
procedure. The agreement between the data and the simulation results reflects the correctness
of the alignment procedure and the tracking procedure.

For Setup 2, the position of the virtual plane is at z = 145 c¢m. The residual distributions
of the projected positions on this plane are similar to this results above. Fits to the central
Gaussian distribution were used to determine the resolution. The variations of the resolution
as a function of the incident angle w are shown in Figure 5.20 for the two coordinates. As a
reference the results from simulations are also plotted in the same frame. At normal incidence,
in the simulation, similar resolutions of about 129 um are obtained in both directions. The
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Figure 5.20: Variation of the resolution in the x—direction (left) and the y—direction (right) as a
function of the incident angle for Setup 2.

resolution in y—direction is not sensitive to the incident angle. But in the z—direction, the
resolution decreases at bigger incident angles and worsens by a factor of about 1.5 at w = 45°.
The measured data agree with the simulation for small incident angles (w < 30°). Data
points stand out from those of the simulation for larger angles and the resolution deteriorates.
This may be a consequence of the geometry not being recalibrated at each rotated angle.

5.2.6 Tracking station efficiency

The track finding method used for the beam test analysis was the line projection method
described in the previous chapter. Since, the method is triggered by the hits found in the
outer planes, the combination of the external hits represents the probable number of tracks
that can be reconstructed. In this case, the efficiency € is defined by the ratio of the number
of reconstructed track to the number of hits reconstructed at the two outer planes:

_ # Reconstructed Track
~ #Probable Track Candidate ’

(5.14)

Within the track finding algorithm, a track can only be reconstructed if all four modules
are hit, i.e. the efficiency is obtained by the probability of finding hits in the two intermediate
planes for a given probable track candidate configuration. Here, the study was only performed
over the effective acceptance of the tracking station i.e. only probable tracks candidate belong-
ing to the overlapped area of all modules are considered. Based on this cut, if eo and e3 are
the efficiencies of finding hit in the second and third planes, respectively, the total efficiency
reads:

€=¢€y-€3. (5.15)

In the intermediate planes, the hits were searched for over a finite region that was deter-
mined for each plane by the simulations. For a given plane, it was deduced from the width of
the distribution of the residual between the projected position of the line formed by the outer
hits and the hit position on this plane. The distributions in the z— and y—directions of such
residuals are Gaussian of oo and o3 widths at the second and third planes, respectively. The
values of the width corresponding to the different experimental setups are given in Table 5.9.
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o3 [um] o3 |um]

Setup 1

Dbeam = 2.95GeV/c 12585  102.34
Dbeam = 0.893GeV/c  557.63  458.88

Setup 2

w=0° 125.85 38.13
w=5° 127.32 37.95
w = 10° 127.89 37.84
w = 20° 128.54 38.17
w = 30° 129.97 38.33
w = 35° 133.81 38.99
w = 40° 136.17 39.08
w = 45° 138.38 39.36

Table 5.9: Widths of the residual distributions between the position of the line formed by the two hits
of the outer planes projected onto the second and third planes and the hit positions on these planes.

Here, the searching area was set to 30. The efficiencies of the two considered modules
are about eg = e3 ~ 97.7%. The average efficiency obtained for the tracking station is about
€ ~ 95%. During this study, the region containing dead channels were omitted. Thus, this
result is mainly dominated by the precision of the geometry calibration process.

5.3 Summary

Tests of the silicon strip tracking station were performed with proton beams at the COSY
accelerator. Two beam energies of 2.95 GeV/c and 0.893 GeV/c were used during a one week
beam test. For the 2.95GeV/c beam momentum, two different detector setups, see Figure
5.2, were tested.

The data analysis was conducted using the simulation software conceived for the luminosity
monitor and which has been implemented in PandaRoot. In this way, the beam test provided
an opportunity to validate the reconstruction chain in the software. The results of the data
analysis were presented throughout this chapter.

It was shown that the width of the clusters are narrower for the high beam momentum
since the deposited charge is much lower than in the low beam momentum. The charge
calibration was done by setting the most probable deposited charge obtained by a fit to
the charge distribution with a Landau convoluted by a Gaussian function to the theoretical
calculation given in [N*10].

The analysis of the data taken with the geometry setup that had one module rotated
provided the establishment of the linear proportionality of the cluster charge with 1/ cosw
where w is the track incident angle with respect to the sensor surface. The study of the
angular dependence of the cluster size shows that the rotation affects more the cluster on the
side where the strip direction is parallel to the axis of the rotation. In this side, the cluster
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size varies linearly with the incident angle, especially for 5° < w < 35°. On the opposite side,
the cluster size is practically constant.

A validation of the one-dimensional hit position reconstruction was performed by com-
paring the n—distribution for the beam test data with simulations where different Gaussian
widths modeling the charge diffusion, og;rs, were used. The simulation used the noise and
threshold values reconstructed during the analysis. It follows then that the simulations with
ogify = 8 to 10 um are good approximations of the measured data. But this only stands for
the N-side of the sensor. The existence of the peak near n = 0.55 makes the n—distribution
at the P-side difficult to reproduce in simulation.

For single-sided sensor modules, the two-dimensional position reconstruction was per-
formed for all possible combinations of the clusters reconstructed on both sides. In this case,
it was impossible to discriminate actual hits from ghost hits. However, for double-sided sensor
modules, the strong correlation of charges collected in the P- and N-sides was exploited to
suppress ghost hits.

The spatial resolution was determined after performing a geometry calibration. An
algorithm developed in [KT03] was briefly introduced in the text and was implemented to
perform the offline alignment of the modules of the tracking stations. The resolution of
the tracking station was estimated relative to a virtual plane located in the middle of the
modules placed on the second and the third positions. A good agreement with the simulation
was obtained for the data taken with the detector Setup 1 (at both momenta) and with the
detector Setup 2 at nearly normal track incidence in which the resolutions were 150 um,
750 pm and 126 pm, respectively.

The efficiency of the tracking station was evaluated in terms of the probability of finding
hits on the second and third planes for a given track configuration defined by two hits of the
outer planes within the effective acceptance of the detector. An individual efficiency of above
97% and a global efficiency of about 95% were obtained for all different experimental setups
used during the beam test.



CHAPTER 6

Mass and Width Reconstruction of the
X(3872) Meson with PANDA

The PANDA experiment will allow the direct formation of the X (3872) meson to be measured
via pp annihilation. The measurement of its properties, mainly the mass and the width, will
be performed by studying its decay products. Despite the narrowness of the X (3872), PANDA
is expected to have sufficient resolution to measure the width. A direct analysis of the final
states mass spectrum will not be effective to determine the X (3872) meson properties, instead
the well-known resonance scan method will be used.

Simulation studies on the performance of the PANDA experiment to reconstruct the mass
and the width of the X (3872) meson is presented in this chapter. It is focused on the formation
and exclusive decay of the X (3872) meson to the 777~ .J/1 final state. The J/v state will be
identified through its leptonic decay and the dipion system is assumed to be the result of the
intermediate p meson decay. The complete decay chain is then written as

p — X(3872) — J/vp°; (6.1)
J/p = 17 1= {e, u};
pO - ata.

This study is based on the line shape assumption given in [CMO08|. The description of the
event generator used for this simulation is given in the first section of this chapter. The next
section describes the simulation using the resonance scan method. This is followed by the
mass and width determination. And finally, the results will be presented as a summary of this
chapter.

6.1 Event generator

The resonance scan method is based on the measurement of the count rate for the 77~ J/¢
final state at different center-of-mass energies, called scan points. The 77w~ J/1 invariant
mass will be generated with a function that has two main components: the signal and the
instrumental background.

For what follows, it is necessary to point out the difference between physical and instru-
mental background. The physical background is due to measurement of the same 77~ .J/v
final state which does not come from the decay of the considered intermediate state. In this
simulation, this type of background is incorporated with the signal. The instrumental back-
ground is due to a different final states that were falsely identified as 77~ J /1 by the detector.
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The invariant mass distribution of the 7+ 7~.J/1 final state will be generated by a function
which is the weighted sum of the signal and instrumental background probability density
functions, fsrg and fpxq, respectively. The weights are the number of signal events Ngra
and the number of instrumental background Nk, respectively. The function is then written
as:

i, (M) = Nsia - fsia(m) + Npra - fBra(m) . (6.4)

The distribution of the 777~ J/1 count rate depends on the resolution of the detector
for a given center-of-mass energy. If ogrg is the detector resolution, the signal is a Gaussian
distribution with a mean /s and width og;g. The expression of the fsr is then:

m_‘/g>1 (6.5)

1
fsra(m,\/s, o516 - exp : (
( ) O'S[Gv27'r 0SIG

The instrumental background will be implemented by using the so-called ARGUS function
[AT90]. This function gives a good description of the phase space multi-body decays near the
threshold. Its probability density function has the form:

farc(m,mo,¢) =m- /1 - (:;)2 exp [c- (1 — (;Z))Q)] (6.6)

in which ¢ is the shape parameter which determines the curvature of the function and my is
the cutoff parameter which defines the phase space limit.

In the simulation, the phase space limit is shifted down from /s by 20g;¢ to take into
account the finite detector resolution. Thus, the background shape will be described by the
function fpxg defined as :

ferG(m,v/s,¢) = fara(m, /s + 20516, ¢) . (6.7)

The number of events Npx of the background is determined from the number Njcq; of
the signal corresponding to the cross section peak i.e. at the resonance mass, and the signal
to background ratio rgp as following:

Npeak ) -ASIG|peak
rsB ABKG|peak

_ Npcak fM”Lj;SSIf fsia(m, Min, 051G) 6.5)

+
TSE i Trc(m Mins o)

Nprka =

Examples of plots of the probability density functions of the 77 ~.J/¢ invariant mass
generator for given values of og;, ¢ and different values of rgp are drawn in Figure 6.1.
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Figure 6.1: The p.d.f. of #™7~J/¢ invariant mass at /s = 3872 MeV for signal to background
ratios rgp = 0.5 (left), rsp = 1 (middle) and rsp = 2 (right). The red and blue dashed curves are
the signal and the instrumental background components of the p.d.f., respectively. Here, The width of
the Gaussian signal function is o7 = 8.3 MeV, and the shape parameter of the ARGUS background
function is ¢ = —10.

6.2 Simulation of X (3872) — J/ymtn~

6.2.1 Line shape function

The final state production cross section varies as a function of the center-of-mass energy. The
corresponding line shape contains information on the nature of the decaying particle. Since
the exact nature of the X (3872) meson is still unknown, an assumption must be made to
define the line shape.

Numerical predictions of the cross section of the pp — 717~ .J/1) reaction near the X (3872)
threshold are described in [CMO08|. Two different cases were investigated corresponding on
the interpretations of the X (3872) meson being a loosely bound D°D*® molecule and being
the first excited state of the y. state. The cross section estimations take into account the
non-resonant final state and assume the dipion system comes from the p meson resonance.

The outcome of the calculations can be summarized by the determination of the line shape
as a superposition of a Breit-Wigner resonance peak and a first order polynomial physical
background. In the simulation described below the corresponding probability density function
opdf Was used to estimate to cross section at a given center-of-mass energy Vs

Lin/2
\/ - Mzn)2 + (Fm/2)2

where the first term refers to the non-relativistic Breit-Wigner X (3872) resonance, fuo is
the polynomial term for the non-resonant background. M;, and I';, are the input mass and
width, respectively, and ¢ is the relative fraction between the resonance signal and the physical
background.

+q- fpol(\/g) ) (69)

opar(vVs) = (1= ¢q) - (

It was assumed in this study that the X (3872) resonance occurs at /s = M;, = 3872 MeV.
The resonance scan simulations were performed for three different supposed values of the width:
Iy = 136keV, 0.5 MeV and 1 MeV. The choice of these values are essentially based on the
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Figure 6.2: The 77~ .J/1 production cross section as a function of the total width of the X (3872)
meson at the resonance mass location. The solid and dashed curves correspond to the DYD*? bound
state and x.1(2P) charmonium interpretations, respectively. Picture taken from [CMOS].

calculations performed in [CMO08| in which an upper and a lower bound of the total width are
estimated to be:

2I'p+ <TI'x < TI'xmaz
136 £32keV <TI'x < 2.3MeV. (6.10)

According to [CMO8|, the 77~ J /% final state production cross section depends strongly
on the total width of the X (3872) meson. This is explicitly shown in Figure 6.2 in which
the peak cross section corresponding to the two models (D°D*® bound state and x.(2P)
charmonium) is drawn within the width range given in Equation (6.10). It is also shown the
relatively higher cross section in the D°D*? bound state interpretation comparing to the x¢;
charmonium interpretation.

Based on these results, the X (3872) interpreted as a x.1(2P) state was adopted, in which
the cross section of the final state production is lower and the peak cross section opeqs is within
the range:

Opeak = 2.19 —238nb for TI'y =2.3—0.136 MeV . (6.11)

In contrast, the cross section for the physical background has a very small variation over
the width of the X (3872). As a consequence, one can assume that in the vicinity of the
X (3872) threshold (e.g within a range of +2 MeV'), the physical background cross section is
constant. The value of 1.2 nb was used in the simulation.

After combining this information, the line shapes for the three simulated widths are pre-
sented in Figure 6.3.

6.2.2 Input simulation parameters
The expected number of events in the signal, Ng;g, at a given scan point /s is given by
NSIGZE'fB'U‘ﬁ‘Tbeam (6.12)

where o is the cross section, ¢ includes the geometry acceptance of the detector and the final
state reconstruction efficiency, £ = f L - dt and Tpeqym are the integrated luminosity and the
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Figure 6.3: The line shapes used in the event generator for the three input widths.

beam time spent for the measurement, respectively, and fg is the combined branching ratios
of the decay chain, which is, for the channel of interest, expressed as:

f5=B(X — pp) x B(X — pJ/) x B(p = nFm—) x B(J/¢ = 1T17) . (6.13)
l;irn Bout

Given that the cross section calculations performed in [CMOS§] include the Equations (6.1)
and (6.3) decay channels, the combined branching ratio fz was reduced to the leptonic decay
of the J/v branching ratio as:

f8 = B(J/p—ete, upu)
— 12%. (6.14)

Since the PANDA detector has nearly 47 solid angle coverage, the product of the geometry
acceptance with the reconstruction efficiency e for the 7T7~J/1 final state is taken to be

about 0.3 at /s = 3872 MeV [pC09a].

For these simulations, the PANDA high resolution mode with a relative momentum
spread dp/p ~ 3 x 1075 corresponding to an instantaneous luminosity of 2 x 103! em ™! - 571,
Assuming a 50% duty cycle of the HESR accelerator, the integrated luminosity used for the

simulation is about 864nb~!/day.

The resonance scan was performed at 10 different scan points within the interval +£2 MeV
around M;,. The time spent for each scan point was set to 4 days. At each scan point,
the Gaussian signal function has a width of og;¢ = 8.3 MeV corresponding to the detec-
tor resolution. This value is taken from the simulation study on the benchmark channel
pp — = J /1) — mTr eTe” exclusive process at 3872 MeV center-of-mass energy with the
PandaRoot framework analysis and described elsewhere [pC09a]. The shape parameter of the

ARGUS instrumental background function was set to —10.

A summary of the input parameters of the resonance scan simulation is given in Table 6.1
and the expected daily rates at peak for the different input widths obtained from the peak
cross section and the relation (6.12) in Table 6.2.
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Parameter Name Symbol Value
Input resonance mass M;, 3872 MeV
Input resonance widths | 0.136,0.5,1 MeV
Acceptance x Efficiency € 0.3
Integrated luminosity L 864 nb~t/day
Combined branching ratio B 0.12
Physical background cross section OPHYS.BKG. 1.2nb
Number of scan points nsp 10
Energy range scan around the resonance AFE 2MeV
Time spent per scan Tveam ddays
Gaussian signal width osIG 8.3 MeV
Instrumental background shape parameter c —10

Table 6.1: Input parameters for the event generator of the simulation.

T, (MeV) 0.136 0.5 1

Opeak (1) 238 20 6
Npears (/day) 7042 622 186

Table 6.2: Expected daily rate of the 777 ~.J /1 final state at PANDA at the X (3872) resonance mass,
where the X (3872) meson is interpreted as x.1(2P) charmonium. The peak cross section value have
been deduced from Figure 6.2.

6.2.3 Resonance scan simulation

The resonance scan simulation consists on generating the 77~ .J /1 invariant mass spectra at
the 10 different scan points around the expected resonance mass by using the fj, = function
defined in Equation (6.4). The input number of signal events and instrumental background
events are generated according to Poisson distributions with expectation values Ngrg calcu-
lated from Equation (6.12), and Npg¢ calculated from Equation (6.8), respectively. For the

later, the value of the signal to background ratio needs to be set.

6.3 Mass and width reconstruction

6.3.1 Reconstruction of the X (3872) yield

A systematic Monte Carlo simulation on the 77~ .J/1 final state invariant mass distribution
has been carried out at each individual scan point. At every scan point, the invariant mass
distribution is fitted using the fay,,, function. During the fit, the parameters such as the reso-

nance mass and the ARGUS cutoff parameter mg (the phase space limit) were kept constant.
The remaining floating fit parameters were:

e the number of signal events: Ng;g,
e the number of instrumental background events: Npxq,

e the width of the Gaussian signal function: og;g, and
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e the ARGUS shape parameter: capg.

Examples of generated 77~ .J/¢ invariant mass spectra fitted with fys, = are shown in Figure
6.4. The spectra correspond to the resonance width of 1 MeV and a signal to background
ratio of 2. The top of each panel includes the corresponding center-of-mass energy at which

the resonance scan point is perfomed.
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Figure 6.4: Final state invariant mass spectra at 10 scan points around the resonance mass of
3872 MeV. On each individual histogram, the vertical red line indicates the energy scan position

and the blue curve is a fit to the distribution in Equation (6.4).

To account for the statistical fluctuation, the M;,, spectra have been generated 1000 times
at each scan point. The distribution of the fit values are plotted in Figure 6.5 for the Ng;¢a
parameter and in Figure 6.6 for its error ony,,. These figures correspond to the same simulation

setup as in Figure 6.4, i.e. I';, =1 MeV and rgp = 2.

The reconstructed X (3872) yield at a given center-of-mass energy, /s, corresponds to the
mean values of Ngjg. The distributions of the reconstructed Ngj¢ as a function /s are shown
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Figure 6.5: Distribution of the reconstructed number of signal event for 1000 Monte Carlo events at
each of the 10 scan points corresponding to I';,, = 1 MeV and rgp = 2.

in Figure 6.7 for the three simulated resonance widths and a signal to background ratio of 2.
On these plots, the vertical error bars are the measured errors on the reconstructed number
of signal events, and the horizontal error bars are the center-of-mass resolutions that will be
discussed in the next paragraph.

Accuracy of the fit procedure

This section presents an analysis of the precision of the signal and background extraction
procedure. The analysis was done by calculating the pull distribution for each fit parameter.
The pull of a parameter p is given by:

A
Pull, = =2 (6.15)
Op
in which Ap = pPreco — Pin Where preco, Pin are the reconstructed value and the input value,
respectively, and o, and the uncertainty on the reconstructed value of the parameter. A
standard normal distribution of the pull indicates that the fit procedure works correctly.
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Figure 6.6: Distribution of the errors on the fitted number of signal for 1000 Monte Carlo events
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Figure 6.7: Reconstructed yield distribution of the X (3872) meson as a function of the center-of-mass

energy for the three input widths.
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The pull distributions of the free parameters of the fit function are presented in Figure 6.8
for /s = 3871.8 MeV scan point. Gaussian fits are applied to each distribution. As it can be
seen in the figure, the means and widths of the Gaussian distributions are close to the expected
values of zero and one, respectively.
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Figure 6.8: Pull distributions of the Ns;a, Npxa, 0srg and ¢ parameters of the f;, —invariant mass

fit function at /s = 3871.8 MeV.

inv

Furthermore, potential correlations between the fit parameters were investigated. The
correlation coefficient p;; between the parameters p; and p; is expressed as:

kz (Apix — Api)(Apjx — Apj)
=1

(n— 1)Upiapj

where n are the number of Monte Carlo events o), is the fit error on the parameter p. The corre-
lation between any two parameters can be seen through the scatter plots of the corresponding
residuals. These plots are shown in Figure 6.9 for four involved fit parameters.

The correlation coefficients were calculated for all distributions and found to be about zero
except for the Ngra-Npak. Its value is about —0.15. This is because the Ng;o and Npgk
parameters were used as the weights on the sum of the two components function of the invariant
mass generator function in Equation (6.4).
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Figure 6.9: Scatter plots of the residuals showing the correlations between the fit parameters. For
each individual plot, the correlation coefficient p is printed on its upper right corner.

6.3.2 Mass and width determination

Since the mass and the width are incorporated in the expression of the cross section, its
distribution as a function of y/s must be provided. The cross section distribution is determined
from the reconstructed yield by using the relation (6.12) at each scan point. Using the same
formula the uncertainty Ao on the cross section at /s is:

1/2
1 1 /

2
Ao == £2-(AN)2+(2V2> -(AL)? (6.17)

where A = ¢ - f5 - Tpeam, AN and AL are the uncertainties on the reconstructed count rate
and on the integrated luminosity, respectively.

A fit to the cross section distribution gives the mass and the width of the X (3872) meson.
The fit function must consider the center-of-mass energy resolution. Therefore, the recon-
structed cross section will be fitted with the line shape function o,4s convoluted with Geqr, 2
Gauss describing the resolution function with o 5 width. The resulting function is thus:

“+oo

(def ® Gbeam)(\/gl) = / Updf(\/g) : Gbeam(f/ - \/57 U\/g) . d\/g (618)

—00
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Figure 6.10: Resolution of /s for the PANDA high resolution mode.

Center-of-mass energy resolution

The center-of-mass energy is related to the incident antiproton beam momentum by the

following relation:
Vs = [omy - (my+ J2+m2)] (6.19)

where m,, is the (anti)proton mass and p is the nominal beam momentum. For the PANDA
beam momentum range, the center-of-mass energy is within the range of 2.3 to 5.5 GeV/c?.

For a Gaussian distribution of the incident antiproton beam momentum with a spread of
dp, the center-of-mass energy will follow a Gaussian distribution of o 5 width which is the
center-of-mass energy resolution and computed as

mpp2 1

- —.0p/p. (6.20)
p*+m2 Vs

O’\/g:

The variation of o s as a function of the beam energy is shown in Figure 6.10 for the PANDA
high resolution mode. One can note from this figure the nearly linear behavior of the o s
variation for the beam energy relevant for PANDA and in particular in the vicinity of Vs =
3872 MeV, it can be approximated as a constant of o 5 ~ 50.4keV.

Cross section fit process

The fit procedure minimized the y?—function with respect to the mass and the width of
the resonance. Two-dimensional histograms of y? for various scans mass and width values
are shown in Figure 6.11 for the three input widths corresponding to the simulation setup
described previously. The minimization procedure found several local minima with respect
to the mass which explains the non-parabolic variation of the projected y?—function in the
y—axis over the considered mass range for these plots. The global minimum corresponds to
the reconstructed values of the mass and the width of the X (3872).

The reconstructed cross section distributions with which the above scans have been per-
formed are plotted in Figure 6.12. The horizontal error bars corresponds to the center-of-mass
resolution calculated from Equation (6.20). The vertical error bars are the uncertainties Ao
computed by the relation (6.18).
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Figure 6.11: The y? variation as functions of the mass and the width parameters for the three input
widths.

I,,=0.136 MeV | I'reqo = 0.762+ 0.034 MeV T,,=0.5 MeV |['ec, = 0.485 £ 0.059 MeV T reco = 0.989 % 0.065 MeV

Moo = 3872 + 0.02 MeV Moy, = 3872 + 0.02 MeV Mo, = 3872+ 0.03 MeV

6

o (nb)
o (nb)

00—

-

50~

e P RN B PR PN BN B
B0 3871 3872 3873 3874 &7 3871 3872 3873 3874 &7 3871 3872 3873 3874
\ s [MeV] \ s [MeV] Vs [MeV]

Figure 6.12: Reconstructed cross section distributions corresponding to the three input widths for
AL =0 and rgg = 2. The blue curve corresponds to the fit function given by Equation (6.18).

These simulations are based on the assumptions of the zero relative luminosity i.e. AL =0
and rgg = 2. However, rgp is unknown. Its effect on the extraction of the mass and the width
of the resonance was investigated by assuming other values. Also the AL = 0 assumption
represents only an idealistic situation. Actually, the integrated luminosity will not be measured
with perfect accuracy. The studies influence of these two parameters on the measurements of
the width and the mass were performed separately and are presented in the subsequent sections.

6.3.3 Effect of the signal to background ratio

Apart from the simulations using rgp = 2 which have been described so far, several values
of the signal to background ratio were considered. In these simulations, the relative error
on the luminosity was set to AL = 0. The distributions of the reconstructed cross section
corresponding to rgp = 0.5, 1 and 5 are shown in Figures 6.13 to 6.15.

For a small value of rgp the signal is merged with the instrumental background. As a result,
Ngi¢ and thus the cross section, are extracted with large error bars. The reconstruction of the
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Figure 6.13: Reconstructed cross section distributions for the three input widths and rgg = 0.5.
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Figure 6.14: Reconstructed cross section distributions for the three input widths and rgg = 1.
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Figure 6.15: Reconstructed cross section distributions for the three input widths and rgg = 5.
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Figure 6.16: Variations of the reconstructed width I';..., and its respective precision or as a function

AL
of the signal to background ratio rgp with - = 0%.

mass seems not to be influenced by rgp. However, the width was affected. In particular, as
expected the precision on which the width is reconstructed deteriorates when the rgp decreases.

The variations of the reconstructed width and its precision are summarized in Figure 6.16.
The worst precision obtained corresponds to the simulation setup I';;, = 0.136 MeV and rgp =
0.1 in which a couple of points near the resonance mass contribute into the fit.

6.3.4 Effect of the luminosity uncertainty

The effect of finite uncertainty of the integrated luminosity % on the extracted mass and
width has been has studied for % = 3%, 5% and 10% at each individual scan point. % =3%
is the design goal of the LuMo, % = 10% corresponds to the precision by which HESR will
measure the luminosity and % = 5% corresponds to the case in which the design precision

of the LuMo will not be reached.

The plots showing the distributions of the reconstructed cross sections as a function of /s
for all three assumed input widths and luminosity errors mentioned above are presented in
Figures 6.17 to 6.19 for rgp = 2.

As expected, the relative uncertainty of the luminosity mainly deteriorates the precision
of the width measurement. The precision on the mass measurement is not strongly affected.
However, the changes are more pronounced for the bigger input widths. In fact, the luminosity
acts as a scaling factor on the cross section distribution. But due to the relative high value
of the cross section near the resonance mass, the case of I';;, = 0.136 MeV is less affected by
the relative uncertainty of the luminosity. The measured width and its precision are shown in

A
Figure 6.20 for different values of TE
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of the relative uncertainty of the luminosity measurement at each individual scan point e with
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6.4 Summary and discussion

Simulation studies on the mass and the width measurements of the X (3872) meson were
described in this chapter taking into account the PANDA detector and the HESR accelerator
specifications. The resonance scan method has been used to perform the measurement. The
studies were based on the more conservative estimate of the 77~ .J/1 final state production
cross section assuming the x.1(2P) charmonium interpretation of the X (3872) state [CMOS].
Other interpretations with higher cross section will have a higher precision to measure the
width.

The reconstruction considers that PANDA is running in the high resolution mode.
The effect of the signal to background ratio rgp and the error on the relative luminosity
measurement % at each scan point on the mass and the width measurements have been
investigated. The mass was almost perfectly reconstructed with a precision of an order
of 20 keV independently on the simulation parameters setup. However, the width and its
precision were most effected by the value of rgp and %. As expected, or is better for higher

rsp. Also it gets worse as % increases.

~ As a conclusion, a statistically based method was used to estimate the performance of
PANDA on the mass and width reconstruction of the X (3872) meson. The method presents
a strong dependence on the signal to background ratio parameter.

In this study, the width of the signal was determined by the detector resolution. However,
the instrumental background shape model is an assumption. That needs further investigation
to obtain a more realistic estimation of rgp. This can be done by performing a full detector
simulation using an adequate event generator. Detailed knowledge of the signal to background
ratio is needed for a precise measurement of the mass and the width of the X (3872) state
and further details of the line shape, and thus a better understanding of the nature of the
resonance.






CHAPTER 7

Conclusion and Outlook

The upcoming FAIR facility at Darmstadt will host the PANDA experiment which is dedi-
cated to some of the most relevant topics predicted by QCD in the low momentum transfer
region. It will perform very precise spectroscopy of hadronic systems resulting from pp
annihilation in the charmonium mass range, corresponding to an antiproton beam momentum
range of 1.5 to 15 GeV/ec. In particular the phase space cooled HESR antiproton beam will
allow unprecedented precision for the mass and width determination of narrow states such
as charmonium-like and open charm states, by using the resonance scan technique. This
technique will not be effective to extract the properties of a given state unless the luminosity
is known with high precision.

For this purpose a detector was designed to monitor the luminosity. It will provide
the cross section normalization for a given process by using the pp elastic scattering as the
reference channel. The conceptual design of the detector is based on the reconstruction of
the scattered antiproton track in the Coulomb-nuclear interference region. Due to some
constraints imposed by the PANDA detector and the HESR accelerator, the LuMo will be
located between z = +10 and +13m downstream of the interaction point. It will consist
of four layers of double-sided silicon strip sensors. Two sensor shapes are proposed by the
collaboration: rectangular and trapezoidal. This thesis was focused on the implementation of
the LuMo with rectangular sensors. The strip sensors have 50 um pitch, with a dimension of
2cm x bem x 300 um each, arranged radially from the beam axis. The first plane is located
at z = +10.5cm and the subsequent planes are separated by 20 cm. Therefore, the detector
covers a polar angle region from about 2.8 to 7.5 mrad.

The LuMo has been implemented inside the PandaRoot framework with which Monte
Carlo performance studies were carried out. This results in the determination of the spatial
resolution and angular resolution of the telescope. The detector resolution depends mainly
on the small angle scattering and the charge diffusion process. The charge diffusion was
implemented at the digitization level using a Gaussian charge smearing of 8 um width.
This improved the average spatial resolution from 14 ym to 8 ym. The track reconstruction
algorithm used the first two planes to define the polar angle and led to an angular resolution
proportional to 1/ppeam of 0.5 mrad and 0.05 mrad at ppeqrm, = 1.5 and 15 GeV/c, respectively.
The effect of external parameters such as the HESR beam emittance and the magnetic field
has been investigated. The magnetic field effects only the acceptance of the detector but the
beam emitance deteriorates both the acceptance and the angular resolution of the detector.
Using the expected properties of the HESR antiproton beam at the interaction region, a lower
limit of the angular resolution of 0.2 mrad at ppeam = 15 GeV/c was obtained.

A simulation of the luminosity measurement was performed using the DPM event
generator. Basically, it consists of the reconstruction of the pp elastic scattering t—spectrum
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and a fit to it with the corresponding differential cross section formula. Using the same
parameter values as the input ones, a systematic uncertainty on the luminosity due to the
intrinsic detector resolution, the beam emittance and the magnetic field, of 4.53% and 1.33%
were obtained at the lowest and the highest beam momenta, respectively. The influence of
the uncertainty on the cross section parameters (p, b and o.,) was investigated which led to
the determination of the correlation between these parameters and the luminosity. The study
of the effect of the pp inelastic scattering, expected to be a source of background, showed that
it is negligible because of its low rate in the detector due to the high discriminating power
of the dipole magnetic field. The statistical uncertainty was determined to be less than 1%
after about 25 seconds experimental running time. The results of this study showed that a
precision of about 3% on the measurement of the absolute luminosity is feasible.

The implemented algorithms were checked using the measured data from the beam test
of a prototype of a silicon strip tracking station perfomed with the COSY proton beam at
0.893 and 2.95GeV/c. The two different detector setups adopted during the beam test also
allow to investigate the cluster behavior dependence on the beam momentum and the incident
angle. The width of the charge smearing was determined by comparing the n—distribution
obtained by the measured data with the simulation with the same setup parameters (noise
and threshold values) as the beam test. For a 300 pm thick silicon sensor o4;rf = 8 — 10 um
was measured. The geometry calibration was performed using the HIP method allowing to
achieve the alignment of the sensors after 3 iterations. The detector resolution at a virtual
plane placed in the center between the second and third modules was determined to be similar
to the one obtained from the simulation and about 750 um and 150 um at ppeqm = 0.893 and
2.95GeV/c, respectively, for Setup 1 and 126 um at normal incidence for Setup 2. The global
efficiency of the tracking station was about 95%.

The last chapter of this thesis was dedicated for the development of a strategy to measure
the width and mass of the X (3872) state. The study was based on the x.1(2P) interpretation
of the state. The line shape was taken to be a Breit-Wigner resonance with a constant
physical background. Additional instrumental background following the ARGUS function was
used at each individual scan point. The measurements were performed considering the HESR
high resolution mode. The effect of the signal to (instrumental) background ratio rgp and the
error on the relative luminosity measurement % at each scan point on the mass and width
measurements have been investigated separately for % = 0% and rgp = 2, respectively.
As expected, the precision on the width measurement worsens as rgp decreases and best
precision is then achieved for rgp = 10 with o /T, < 1% for I';, = 0.5 and 1 MeV/c? and
or/Tin ~ 2% for Ty, = 136keV/c?. These resolutions were almost reached already with
rsg = 2. The uncertainty of the luminosity determination does not affect the resolution of
the small width state (I';, = 136 keV/c?) and causes a deterioration of those of larger widths
by a factor of 1.5 for 2% = 10%. Here it has to be noted that with the design luminosity

Ac

precision of the LuMo (57 = 3%) the best precision on the width measurement is achieved.

Further optimization of the LuMo are still under study as well for the geometry as for
the electronic readout system. The latter is undertaken by the LuMo Mainz group. As seen
in this thesis, the most influential factors on the measurement of luminosity are the detector
intrinsic resolution, the HESR beam emittance and the differential cross section parameters
p, b and oy:. According to the track reconstruction algorithm, the angular resolution of the
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LuMo depends strongly on the spatial resolution at the two first detector plane. Indeed, a
main issue on the geometry optimization is the reduction the effect of multiple scattering,
especially at the first plane, to achieve better resolution especially for low beam momenta.
This could be done by decreasing the thickness of the sensors at the first plane and/or by
reducing the distance between the two first planes.

The knowledge of p, b and o is also crucial to the precision with which the luminosity
will be determined. To measure these parameters with high accuracy, the HESR Day-One
Experiment was designed. It will measure these parameter in an independent way. An
overview of this experiment was given in this thesis, more details can be found in [XT11].
In the near future, the apparatus will be tested by a COSY proton beam that will assess its
performance.
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