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ABSTRACT

In this dissertation we study the action of the one loop dilatation operator on operators

with a classical dimension of order N . We consider the su(3) and su(2) sectors. The

operators in the su(3) sector are constructed using three complex fields X , Y and Z, while

operators in the su(2) sector are constructed from only the two complex fields Y and Z. For

the operators in these sectors non-planar diagrams contribute already at the leading order

in N and the planar and large N limits are distinct.

Although the spectrum of anomalous dimensions in su(3) has been computed for this class

of operators, previous studies have neglected certain terms which were argued to be small.

After dropping these terms diagonalizing the dilatation operator reduces to diagonalizing

a set of decoupled oscillators. In this dissertation we explicitly compute the terms which

were neglected previously and show that diagonalizing the dilatation operator still reduces

to diagonalizing a set of decoupled oscillators.

In the su(2) sector the action of the one loop and the two loop dilatation operator reduces

to a set of decoupled oscillators and factorizes into an action on the Z fields and an action on

the Y fields. Direct computation has shown that the action on the Y fields is the same at one

and two loops. In this dissertation, using the su(2) symmetry algebra as well as structural

features of field theory, we give compelling evidence that the factor in the dilatation operator

that acts on the Y s is given by the one loop expression, at any loop order.
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1 Introduction

The two great pillars of modern theoretical physics, Einstein’s general theory of relativity

(GR) and quantum mechanics (QM) have long been at apparent odds with one another. GR

provides an understanding of gravity through the realisation that space and time should be

unified. QM and its Lorentz invariant improvement, quantum field theory (QFT) describe

physics on small scales. In situations where large amounts of matter are found in small

volumes of space a unification of these two great theories is required. This unification - a

quantisation of gravity - has proved exceedingly difficult to construct. While quantisation

of theories such as electrodynamics resulted in very successful renormalisable QFTs, the

quantisation of gravity resulted in a non-renormalisable QFT. In other words, these attempts

at unifying GR and QFT resulted in a theory with no predictive power. A theory which

provides a consistent quantisation of gravity is string theory. Although much is still unknown

about string theory it has provided many fascinating results. Perhaps the greatest of these is

the AdS/CFT correspondence[1, 2, 3], which postulates a duality between string theory and

a gauge theory. To be precise, it states that type IIB string theory defined on AdS5 × S5 is

dual to N = 4 super Yang-Mills theory (SYM) defined on the boundary. The first indication

that such a duality may exist was due to t’Hooft[4], although it was Maldacena who first

made the duality concrete[1].

Quantum Chromo Dynamics (QCD) is an asymptotically free theory - the coupling tends

to zero as we increase energy. Since N = 4 SYM theory is closely related to QCD, we hope to

learn about QCD by studying N = 4 SYM. Understanding the strong coupling dynamics of

N = 4 SYM theory is a formidable problem that can’t be tackled using perturbation theory.

On the other hand, at high energies in string theory we have large curvature corrections

corresponding to strong coupling worldsheet physics, which is again beyond the scope of

current QFT methods. The beauty of the AdS/CFT correspondence is that it provides a

manner in which to make predictions in these situations - highly curved gravity backgrounds

are dual to weak coupling QFT, while nearly flat gravity backgrounds are dual to strongly

coupled QFT. As such, the AdS/CFT correspondence provides a tool with which to delve

deeply into both theories in a manner which was certainly not possible before. For instance,

at the classical level, the Dirac-Born-Infeld action provides a suitable description of giant

gravitons. However, since this action is not renormalizable, it can’t possibly provide a correct

starting point for a fundamental quantum theory. Using the AdS/CFT correspondence, it

should be possible to study giant graviton physics with both quantum and stringy corrections

included in the description.

An important point we have not yet mentioned is that everything we have described above

obviously relies on the premise that the AdS/CFT correspondence is in fact correct. By the
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very nature of the correspondence the task of proving it is a difficult one. Nonetheless, many

checks have been done and as of yet no exceptions have been found. The task of computing

quantities on both sides of the correspondence and ensuring they match remains an active

area of research.

In order to utilise the AdS/CFT correspondence a dictionary between the gauge theory

and the string theory is required. In N = 4 SYM there are six scalar Higgs fields φi
i = 1, 2, . . . , 6 that transform in the adjoint of the U(N) gauge group. Form the three

complex linear combinations

X = φ1 + iφ2, Y = φ3 + iφ4, Z = φ5 + iφ6 . (1.1)

The non-zero free field two point functions are

〈Z i
j(Z

†)kl 〉 = δilδ
k
j = 〈Y i

j (Y
†)kl 〉 = 〈X i

j(X
†)kl 〉 . (1.2)

Consider the 1
2
-BPS sector of the theory - that is the sector with operators built only from

the Z field. The gauge invariant operators in this sector are products of traces of powers of

Z. The dictionary relates these operators to different objects in the string theory depending

on the number of fields comprising each operator. Operators built from O(1) fields are dual
to gravitons. Operators built from O(

√
N) fields are dual to strings. Operators built from

O(N) fields are dual to giant gravitons. Finally, operators built from O(N2) fields are dual

to new spacetime geometries.

Another important element in the dictionary is the mapping of anomalous dimensions into

string state energies. Consequently, much work has recently been put into the computation

of the spectrum of anomalous dimensions. This is done by computing the action of the

dilatation operator. The dilatation operator can be defined perturbatively and as such, the

computation of its action amounts to summing Feynman diagrams. This is a highly non-

trivial task. Dramatic progress, however, was made through the discovery of integrability in

the planar limit[5, 6, 7]. The fate of integrability beyond the planar limit, however, is not

clear. In this dissertation we will investigate this issue.

Let us delve somewhat deeper into the operators of N = 4 SYM and argue why the

existence of integrability in the non-planar limit is by no means obvious. Consider the
1
2
-BPS operators

OJ ≡
TrZJ

√
JNJ

(1.3)

which are normalized to have a unit two point function

〈OJO
†
J〉 = 1 . (1.4)
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To obtain (1.4) we have summed only the planar diagrams. This is perfectly accurate at

large N as long as J2 ≪ N . Now consider the two point function between a double trace

structure given by OJ1OJ2 and the single trace OJ1+J2

〈OJ1OJ2O
†
J1+J2

〉 =
√

J1J2(J1 + J2)

N
. (1.5)

If we take N → ∞ holding J1 and J2 fixed, it is clear that the above two point function

vanishes. There is no conservation law forcing this correlator to vanish - its a nontrivial

statement about the dynamics. The two point function in the planar limit, between two

operators that have different multitrace structures, vanishes. Although we have described

this only in the 1
2
-BPS sector and for a specific example, this is a general property of matrix

models. Thus, if we want to compute anomalous dimensions in the planar limit of the theory,

we can focus on single trace operators since these will not mix with operators that have a

different trace structure. This property of the planar limit is a crucial ingredient in the

arguments for the integrability of the planar limit. Indeed, integrability follows because the

planar dilatation operator can be identified with the Hamiltonian of an integrable spin chain.

A single trace operator containing K fields can be identified with a spin chain state, where

the spin chain lives on a lattice that has K sites. The fields in the single trace operator

determine the states of the spins in the lattice. In this way, there is a bijection between

single trace operators and the states of a spin chain. If we scale J1, J2 as N
2
3 , the right hand

side of (1.5) scales as N0 at large N and different trace structures start to mix. This mixing

sets in even sooner: if we had computed the left hand side of (1.5) exactly, we would find

that mixing between different trace structures is no longer suppressed if J1, J2 &
√
N [23].

For the case of interest to us Ji ∼ N and there is uncontrolled mixing. Consequently, the

bijection between single trace operators and the states of a spin chain is not useful at all and

the link to the dynamics of a spin chain is lost.

Despite these drawbacks, recent evidence suggests that integrability may in fact be a

feature of the non-planar limit. Working in an appropriate basis, the restricted Schur basis,

and using group representation theory it has been shown that in the su(2) sector integrability

is present at one[25, 26, 27, 28] and two loops[31]. In this process a conservation law was

discovered. In the su(3) sector, however, this conservation law was found to be broken,

suggesting that integrability may not be present in this sector. In this dissertation we will

show that despite this broken conservation law integrability is a feature of the su(3) sector.

The natural interpretation of this result is that the conservation law that was found in the

su(2) sector is replaced by a new conservation law in the su(3) sector, which reduces to the

su(2) conservation law when suitably restricted. Further, we will extend the su(2) result to

all loops. This is achieved by using symmetry arguments and not by explicit computation,

suggesting that similar arguments can be used to study other sectors of the theory.

In chapter 2 we discuss the restricted Schur polynomial technology. In chapter 3 we

consider the su(3) sector of N = 4 SYM and show that this sector is integrable. In chapter 4
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we consider the su(2) sector and extend the result of integrability to all loops. We conclude

in chapter 5.

The content in chapters 3 and 4 is based on original work which appears on the arXiv

and has been submitted to JHEP for publication. Specifically, chapter 3 is based on

the paper “Subleading corrections to the Double Coset Ansatz preserve integrability” -

arXiv:1312.6230v1, authored by Robert de Mello Koch, Wandile Mabanga and Stuart Gra-

ham. Chapter 4 is based on the paper “Higher Loop Nonplanar Anomalous Dimensions from

Symmetry” - arXiv:1312:6227v1, authored by Robert de Mello Koch, Ilies Messamah and

Stuart Graham.
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2 Restricted Schur Polynomials

As we have seen above, the mixing of traces in the non-planar limit is unconstrained. As such,

the trace basis is no longer suitable and we need a convenient description that easily allows

us to simultaneously talk about all possible trace structures. The operators we consider are

constructed using n Z fields, m Y fields and p X fields. We are primarily interested in the

case that n,m, p all scale as N in the large N limit, but n ≫ m + p and m
p
∼ 1. Thus, the

operators that we consider are a small perturbation of a 1
2
-BPS operator. Z i

j is an operator

acting on N dimensional vector space V . By tensoring n copies of Z we obtain an operator

Z⊗n ≡ Z ⊗ Z ⊗ · · · ⊗ Z which acts on the space V ⊗n. V ⊗n admits a natural action of

the symmetric group Sn obtained by allowing σ ∈ Sn to permute the factors of V in V ⊗n.

Concretely, for σ ∈ Sn we have

(σ)IJ = δi1jσ(1)
δi2jσ(2)

· · · δinjσ(n)
. (2.1)

Using this action

Tr(σZ⊗n) = σIJ(Z
⊗n)JI = Z i1

iσ(1)
Z i2
iσ(2)
· · ·Z in

iσ(n)
. (2.2)

We can obtain every possible multi-trace structure by choosing the correct permutation σ.

For example, consider the simplest non-trivial case n = 2. The possible permutations, in

cycle notation, are σ = {(1)(2), (12)} which gives

σ = (1)(2) Tr(σZ⊗ 2) = Z i1
iσ(1)

Z i2
iσ(2)

= Z i1
i1
Z i2
i2
= TrZTrZ ,

σ = (12) Tr(σZ⊗ 2) = Z i1
iσ(1)

Z i2
iσ(2)

= Z i1
i2
Z i2
i1
= TrZ2 . (2.3)

At n = 2 each permutation corresponds to a different gauge invariant operator. This is not

generic. In general permutations in the same conjugacy class determine the same operator.

The set up we have just outlined allows us to trade gauge invariant operators for permuta-

tions. Thus the different multi-trace structures can now be discussed on an equal footing -

each corresponds to a permutation. For the large N limit we consider there is a particularly

useful set of gauge invariant operators, known as the Schur polynomials, given by [9]

χR(Z) =
1

n!

∑

σ∈Sn

χR(σ)Tr(σZ
⊗ n) . (2.4)

Notice that the right hand side includes a sum over all possible permutations which implies

that the Schur polynomials are a sum of all possible multi-trace structures. χR(σ) is the

character of symmetric group element σ in irreducible representation R. The irreducible

representations of the symmetric group Sn are labeled by Young diagrams with n boxes. The

set of Young diagrams with n boxes correspond to the partitions of n, so that the number of

Schur polynomials matches the number of gauge invariant operators. The Schur polynomials

simply provide an alternative basis to the trace basis. The fact that the matching of gauge
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invariant operators matches is more subtle than our discussion above suggests. Imagine that

N = 2. It is easy to check that at n = 3 there are only two independent gauge invariant

operators because (just write the two sides of this equation out in the basis in which Z is

diagonal)

Tr(Z3) =
1

2

[

3TrZ2TrZ − TrZTrZTrZ
]

. (2.5)

This is called a trace relation and there will be relations of this type whenever n > N as is

the case here. The Schur polynomials naturally take the trace relations into account, because

the Schur polynomial χR(Z) vanishes as soon as the Young diagram R has more than N

rows. Thus, for N = 2 and n = 3 there are only two Schur polynomials, given by χ (Z)

and χ (Z). Since we are going to take N → ∞ one might expect that the trace relations

never apply. This is the case in the planar limit where the number of fields in our operator

is held fixed as we scale N →∞. However, for the problems of interest in this dissertation,

the number of fields in each operator is also scaled as the limit is taken so that the number

of fields in each operator generically exceeds N and the trace relations must be respected.

Another important property of the Schur polynomials is that they diagonalize the two point

function

〈χR(Z)χS(Z†)〉 = fRδRS (2.6)

where fR is a product of factors, one for each box in the Young diagram R. A box in column

j and row i has factor N − i+ j.

The dilatation operator annihilates all operators in the 1
2
-BPS sector. Thus, to obtain

a non-trivial anomalous dimension problem we need to move beyond the 1
2
-BPS sector, by

taking p 6= 0 and/or m 6= 0.

Our discussion above of the 1
2
-BPS sector generalizes nicely to this more general setting.

Multitrace operators can again be associated to permutations σ ∈ Sm+n+p

Tr(σX⊗ p ⊗ Y ⊗m ⊗ Z⊗n) = X i1
iσ(1)
· · ·X ip

iσ(p)
Y
ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)

×Z im+p+1

iσ(m+p+1)
· · ·Z im+p+n

iσ(m+p+n)
. (2.7)

Permutations that are conjugate, with respect to the Sp × Sm × Sn subgroup

γσ1γ
−1 = σ2 γ ∈ Sp × Sm × Sn (2.8)

give rise to the same operator. The Schur polynomials generalize to the restricted Schur

polynomials[24, 15]

χR,(t,s,r)~µ~ν =
1

n!m!p!

∑

σ∈Sn+m+p

Tr(t,s,r)~µ~ν(Γ
R(σ))X i1

iσ(1)
· · ·X ip

iσ(p)
Y
ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)

×Z im+p+1

iσ(m+p+1)
· · ·Z im+p+n

iσ(m+p+n)
. (2.9)
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We call Tr(t,s,r)~µ~ν(Γ
R(σ)) the restricted trace of ΓR(σ)[10]. When computing this trace, we

trace over a subspace of the carrier space of R. R is an irreducible representation of Sn+m+p,

that is, it is a Young diagram with m + n + p boxes. We write R ⊢ m + n + p. This

subspace we trace over is a carrier space of the subgroup Sn × Sm × Sp. It is labeled by

three Young diagrams t ⊢ p, s ⊢ m and r ⊢ n. ~µ and ~ν are degeneracy labels; they are

each two dimensional vectors. Their two components resolve different copies of the two

representations s ⊢ m and t ⊢ p. To properly understand the role of the degeneracy labels

and what they label, we note that the restricted trace can be written as

Tr(t,s,r)~µ~ν(· · · ) = TrR(P(t,s,r)~µ~ν · · · ) (2.10)

where P(t,s,r)~µ~ν is an intertwining map. The degenaracy labels ~µ and ~ν play an important

role in constructing this intertwining map as we now explain. The first step in constructing

P(t,s,r)~µ~ν entails constructing a basis for the (t, s, r) irreducible representation of Sn×Sm×Sp.
To do this start from the Young diagram for irreducible representation R. Remove p boxes

in any order such that everytime a box is removed what remains is a valid Young diagram

and we remove pi boxes from row i. Assemble the pi into a vector ~p; this vector will play

an important role in what follows. Now remove m boxes in any order such that everytime a

box is removed what remains is a valid Young diagram and we remove mi boxes from row

i. Assemble the mi into a vector ~m; again, this vector will play an important role in what

follows. The boxes are labeled according to the order in which they are removed so that

the first box removed is box 1, the second box removed is box 2, and so on. In this way we

land up with a partly labeled Young diagram R. The unlabeled boxes have the shape r and

each partly labeled Young diagram is a distinct subspace of R that carries the irreducible

representation r under the Sn subgroup. Now assemble the vectors with first p boxes labeled

into an irrep t of Sp, resolving multiplicities that arise with ν1. In this process, the labels of

the next m boxes are simply ignored. For each state in a given Sp irreducible representation

specified by both t and ν1, one has all possible labelings of the next m boxes. Assemble

these into vectors in an irreducible representation s of Sm, resolving multiplicities with ν2.

The two multiplicity labels are assembled to produce the vector ~ν = (ν1, ν2). The result

of this exercise is a set of vectors labeled with two irreducible representations t ⊢ p and

s ⊢ m each with a multiplicity label ν1 and ν2, and two state labels, a, b, one for each state

|t, ν1, a; s, ν2, b〉. The boxes that are not labeled stand for vectors that belong to a unique

irreducible representation r of Sn. Use c to label states in r. We can make this explicit

and write our state as |t, ν1, a; s, ν2, b; r, c〉. This gives a basis for the (t, s, r) irreducible

representation of Sn × Sm × Sp. Now, the intertwining map is a matrix so that it has

both a row label and a column label. We can use different copies of the (t, s, r) irreducible

representation for the rows and columns of the intertwining map. Consequently

P(t,s,r)~µ~ν =
∑

a,b,c

|t, µ1, a; s, µ2, b; r, c〉〈t, ν1, a; s, ν2, b; r, c| (2.11)
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Since the Sm and Sp actions commute it is clear that

|t, µ1, a; s, µ2, b; r, c〉 = |t, µ1, a〉 ⊗ |s, µ2, b〉 ⊗ |r, c〉 (2.12)

where ⊗ is the usual tensor product on a vector space. It then also follows that the inter-

twining maps can be written as a tensor product

P(t,s,r)~µ~ν =
∑

a

|t, µ1, a〉〈t, ν1, a| ⊗
∑

b

|s, µ2, b〉〈s, ν2, b| ⊗
∑

c

|r, c〉〈r, c|

≡ ptµ1ν1 ⊗ psµ2ν2 ⊗ 1r (2.13)

The last factor in this product is always a genuine projector.

The restricted Schur polynomials share many of the nice properties that make the Schur

polynomials so useful. In particular, the restricted Schur polynomials respect the trace

relations and the two point function of the restricted Schur polynomials[15]

〈χR,(t,s,r)~µ~νχ†
T,(y,x,w)~β~α

〉 = fRhooksR
hooksrhooksshookst

δRT δrwδsxδtyδ~µ~βδ~ν~α (2.14)

again diagonalize the free field two point function. The number hooksR is a product of the

hook lengths in Young diagram R. We will often find it convenient to work with operators

ÔR,(t,s,r)~µ~ν normalized to have a unit two point function. These operators are related to the

restricted Schur polynomials χR,(t,s,r)~µ~ν as

ÔR,(t,s,r)~µ~ν =

√

hooksrhooksshookst
fRhooksR

χR,(t,s,r)~µ~ν . (2.15)

The key difficulty with working with the restricted Schur polynomials, is in constructing

and working with the intertwining maps P(t,s,r)~µ~ν . Convenient methods to accomplish this

have been developed for two rows in [25] and in general in [26]. Using these methods,

the one loop dilatation operator has been diagonalized in the su(2) sector (obtained by

setting p = 0)[25, 26, 27, 28]. In this sector, the one loop dilatation operator reduces to a

set of decoupled oscillators, which is an integrable system. These results provided perfect

confirmation of earlier numerical studies[29, 30]. At two loops the system remains integrable

in the su(2) sector[31]. The one loop results were generalized to p 6= 0 in [32], but the

interactions between the X and Y fields were argued to be subleading and were neglected.

The subleading terms are of order m
n
relative to the leading terms[32]. It is precisely these

terms that we will evaluate in chapter 3 of this dissertation.

When interactions between the X and Y fields are neglected, the vectors ~p and ~m defined

above are conserved[26]. The dilatation operator only mixes operators that have the same

~p and ~m values. This is not at all surprising - integrable systems are always accompanied

with higher conserved quantities. What makes the interaction between the X and Y fields

so interesting is that they spoil the conservation of ~p and ~m. This can mean one of two
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things: either, integrability does not persist beyond the su(2) sector and this large N but

non-planar limit is not integrable, or the dynamics remains integrable but the conservation

of ~p and ~m is not one of the conservation laws of this (extended) integrable system. Our

results are unambiguous - the second case is realized and the one loop dilatation operator

continues to be integrable when extended to act on operators built using all three complex

scalars. Indeed, we are able to identify the new terms we have evaluated with elements of the

Lie algebra of a unitary group. Diagonalizing the complete dilatation operator then reduces

to a solved problem in representation theory.
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3 Subleading corrections to the Double Coset Ansatz

preserve Integrability

3.1 Dilatation Operator

The one loop dilatation operator in the su(3) sector is given by[5]

D = −g2YMTr

(

[Y, Z]

[

d

dY
,
d

dZ

]

+ [X,Z]

[

d

dX
,
d

dZ

]

+ [Y,X ]

[

d

dY
,
d

dX

])

. (3.1)

To be completely explicit, the index structure is

Tr

(

[Y,X ]

[

d

dY
,
d

dX

])

= (Y i
l X

l
j −X i

lY
l
j )

(

d

dY k
j

d

dX i
k

− d

dXk
j

d

dY i
k

)

. (3.2)

Our first task is to consider the action of D on restricted Schur polynomials. In what follows

we will often need the identity [33]

Tr(σY ⊗m ⊗ Z⊗n) =
∑

T,t,u,~ν

dTn!m!

dtdu(n+m)!
χT,(t,u)~ν∗(σ

−1)χT,(t,u)~ν(Z, Y ) (3.3)

where if ~ν = (ν1, ν2) then ~ν∗ = (ν2, ν1). With a suitable choice of σ, the right hand side
above gives any desired multitrace operator. Thus, the above equation expresses an arbitrary
multitrace operator as a linear combination of restricted Schur polynomials. The sum above
runs over all Young diagrams T ⊢ m + n, t ⊢ n and u ⊢ m as well as over the multplicity
labels ~ν. dT denotes the dimension of the irreducible representation T of Sn+m. Similarly, dt
denotes the dimension of irreducible representation t of Sn and du the dimension of irreducible
representation u of Sm. Finally, χT,(t,u)~ν∗(σ

−1) is the restricted character obtained by tracing
ΓR(σ

−1) over the (t, u) subspace, i.e. χT,(t,u)~ν∗(σ
−1) = Tr(t,u)~ν∗(ΓT (σ

−1)). The multiplicity
index ~ν∗ = (ν2, ν1) tells us to trace the row index over the ν2 copy of (r, s) and the column
index over the ν1 copy. We will consider in detail the subleading term which mixes Y and X .
The remaining terms can be evaluated in an identical way. A straight forward computation
gives

[Y,X ]ij

(

d

dY k
j

d

dX i
k

− d

dXk
j

d

dY i
k

)

χR,(t,s,r)~µ~ν

= [Y,X ]ij

(

d

dY k
j

d

dX i
k

− d

dXk
j

d

dY i
k

)

1

n!m!p!

∑

σ∈Sn+m+p

Tr(t,s,r)~µ~ν(Γ
R(σ))X i1

iσ(1)
· · ·X ip

iσ(p)
Y

ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)

×Zim+p+1

iσ(m+p+1)
· · ·Zim+p+n

iσ(m+p+n)

=
mp

n!m!p!

∑

σ∈Sn+m+p

Tr(t,s,r)~µ~ν(Γ
R(σ))(δ

ip+1

iσ(1)
[Y,X ]i1iσ(p+1)

− δi1iσ(p+1)
[Y,X ]

ip+1

iσ(1)
)

×X i2
iσ(2)
· · ·X ip

iσ(p)
Y

ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
Z

im+p+1

iσ(m+p+1)
· · ·Zim+p+n

iσ(m+p+n)

=
mp

n!m!p!

∑

σ∈Sn+m+p

Tr(t,s,r)~µ~ν(Γ
R([(1, p+ 1), σ]))δi1iσ(1)

X i2
iσ(2)
· · ·X ip

iσ(p)
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×[Y,X ]
ip+1

iσ(p+1)
Y

ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
Z

im+p+1

iσ(m+p+1)
· · ·Zim+p+n

iσ(m+p+n)

The delta function in the summand will restrict the sum over Sn+m+p to a sum over the
Sn+m+p−1 subgroup. The Sn+m+p−1 subgroup is obtained by retaining those elements that
hold i1 inert, i.e. σ(1) = 1. To see how this happens, introduce the notation ρi = σ(i, 1) and
rewrite the above sum as a sum over Sn+m+p−1 and its cosets. The result is

[Y,X ]ij

(

d

dY k
j

d

dX i
k

− d

dXk
j

d

dY i
k

)

χR,(t,s,r)~µ~ν

=
mp

n!m!p!

∑

σ∈Sn+m+p−1

n+m+p
∑

i=1

Tr(t,s,r)~µ~ν(Γ
R([(1, p+ 1), ρi]))δ

i1
iρi(1)

X i2
iρi(2)

· · ·X ip
iρi(p)

×[Y,X ]
ip+1

iρi(p+1)
Y

ip+2

iρi(p+2)
· · ·Y ip+m

iρi(p+m)
Z

im+p+1

iρi(m+p+1)
· · ·Zim+p+n

iρi(m+p+n)

=
mp

n!m!p!

∑

σ∈Sn+m+p−1

Tr(t,s,r)~µ~ν(Γ
R([(1, p+ 1), {N +

n+m+p
∑

i=2

(i, 1)}]))

×TrV ⊗ n+m+p−1(σ ·X⊗ p−1 ⊗ [Y,X ]⊗ Y ⊗m−1 ⊗ Z⊗n)

=
mp

n!m!p!

∑

R′

cRR′

∑

σ∈Sn+m+p−1

Tr(t,s,r)~µ~ν(([Γ
R((1, p+ 1)),ΓR′

(σ)])

×TrV ⊗ n+m+p−1(σ ·X⊗ p−1 ⊗ [Y,X ]⊗ Y ⊗m−1 ⊗ Z⊗n)

The sum over R′ runs over all irreducible representations R′ of the Sn+m+p−1 subgroup that
can be subduced from the irreducible representation R of the Sn+m+p subgroup. As a Young
diagram R′ is obtained from R by dropping a single box. A prime on a letter denoting a
Young diagram will always indicate that we drop a box. To obtain the last line above, use
the fact that N +

∑n+m+p
i=2 (i, 1) when acting on any state within the subspace R′ subduced

by R gives cRR′ . This is proved by noting that
∑n+m+p

i=2 (i, 1) is a Jucys-Murphy element; see
[10] for the details.

[Y,X ]ij

(

d

dY k
j

d

dX i
k

− d

dXk
j

d

dY i
k

)

χR,(t,s,r)~µ~ν

=
mp

n!m!p!

∑

R′

cRR′

∑

σ∈Sn+m+p−1

Tr(t,s,r)~µ~ν(([Γ
R((1, p+ 1)),ΓR′

(σ)])

×TrV ⊗n+m+p−1([(1, p+ 1), σ] ·X⊗ p ⊗ Y ⊗m ⊗ Z⊗n)

=
mp

n!m!p!

∑

T,(y,x,w)~α~β

dTn!m!p!

dwdxdy(n+m+ p)!

∑

R′

cRR′

∑

σ∈Sn+m+p−1

Tr(t,s,r)~µ~ν(([Γ
R((1, p+ 1)),ΓR′

(σ)])

Tr(y,x,w)~α~β
(ΓT ([(1, p+ 1), σ]))χ

T,(y,x,w)~β~α(X,Y, Z)

=
∑

R′

cRR′

∑

T,(y,x,w)~α~β

dTmp

dwdxdy(n+m+ p)dR′

TrR⊕T ([PR,(t,s,r)~µ~ν ,Γ
R(1, p+ 1)]IR′T ′ [P

T,(y,x,w)~α~β
,ΓT (1, p+ 1)]IT ′R′)χ

T,(y,x,w)~β~α(X,Y, Z) .

To get to the last line sum over Sn+m+p−1 using the fundamental orthogonality relation.
Now consider the second term, which is treated in exactly the same way

[Y, Z]ij

(

d

dY k
j

d

dZi
k

− d

dZk
j

d

dY i
k

)

1

n!m!p!

∑

σ∈Sn+m+p

Tr(t,s,r)~µ~ν(Γ
R(σ))X i1

iσ(1)
· · ·X ip

iσ(p)
Y

ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)
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×Zim+p+1

iσ(m+p+1)
· · ·Zim+p+n

iσ(m+p+n)

=
mn

n!m!p!

∑

σ∈Sn+m+p

Tr(t,s,r)~µ~ν(Γ
R(σ))(δ

ip+1

iσ(p+m+1)
[Y, Z]

ip+m+1

iσ(p+1)
− δ

ip+m+1

iσ(p+1)
[Y, Z]

ip+1

iσ(p+m+1)
)

×X i1
iσ(1)
· · ·X ip

iσ(p)
Y

ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
Z

im+p+2

iσ(m+p+2)
· · ·Zim+p+n

iσ(m+p+n)

=
mn

n!m!p!

∑

σ∈Sn+m+p

Tr(t,s,r)~µ~ν(Γ
R((1, p+ 1)σ(1, p+ 1)))(δi1iσ(p+m+1)

[Y, Z]
ip+m+1

iσ(1)
− δ

ip+m+1

iσ(1)
[Y, Z]i1iσ(p+m+1)

)

×X i2
iσ(2)
· · ·X ip+1

iσ(p+1)
Y

ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
Z

im+p+2

iσ(m+p+2)
· · ·Zim+p+n

iσ(m+p+n)

=
mn

n!m!p!

∑

σ∈Sn+m+p

Tr(t,s,r)~µ~ν(Γ
R((1, p+ 1)[σ, (1, p+m+ 1)](1, p+ 1)))δi1iσ(1)

[Y, Z]
ip+m+1

iσ(p+m+1)

×X i2
iσ(2)
· · ·X ip+1

iσ(p+1)
Y

ip+2

iσ(p+2)
· · ·Y ip+m

iσ(p+m)
Z

im+p+2

iσ(m+p+2)
· · ·Zim+p+n

iσ(m+p+n)

=
mn

n!m!p!

∑

R′

cRR′

∑

σ∈Sn+m+p−1

Tr(t,s,r)~µ~ν(Γ
R(1, p+ 1)[ΓR′

(σ),ΓR(1, p+m+ 1)]ΓR(1, p+ 1)))

×TrV ⊗n+m+p−1([σ, (p + 1, p+m+ 1)] ·X⊗p ⊗ Y ⊗m−1 ⊗ [Y, Z]⊗ Z⊗n−1)

=
mn

n!m!p!

∑

T,(y,x,w)~α~β

dTn!m!p!

dwdxdy(n+m+ p)!

∑

R′

cRR′

∑

σ∈Sn+m+p−1

Tr(t,s,r)~µ~ν(Γ
R(1, p+ 1)[ΓR′

(σ),ΓR(1, p+m+ 1)]ΓR(1, p+ 1)))

×Tr(y,x,w)~α~β
(ΓT ((1, p+ 1)[σ, (1, p+m+ 1)](1, p+ 1)))χ

T,(y,x,w)~β~α(X,Y, Z)

=
∑

R′

cRR′

∑

T,(y,x,w)~α~β

dTmn

dwdxdy(n+m+ p)dR′

TrR⊕T ([Γ
R(1, p+ 1)PR,(t,s,r)~µ~νΓ

R(1, p+ 1),ΓR(1, p+m+ 1)]IR′T ′

×[ΓT (1, p+ 1)P
T,(y,x,w)~α~β

ΓT (1, p+ 1),ΓT (1, p+m+ 1)]IT ′R′)χ
T,(y,x,w)~β~α(X,Y, Z)

Finally, consider the third term

[X,Z]ij

(

d

dXk
j

d

dZi
k

− d

dZk
j

d

dX i
k

)

1

n!m!p!

∑

σ∈Sn+m+p

Tr(t,s,r)~µ~ν(Γ
R(σ))X i1

iσ(1)
· · ·X ip

iσ(p)
Y

ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)

×Zim+p+1

iσ(m+p+1)
· · ·Zim+p+n

iσ(m+p+n)

=
pn

n!m!p!

∑

σ∈Sn+m+p

Tr(t,s,r)~µ~ν(Γ
R(σ))(δi1iσ(p+m+1)

[X,Z]
ip+m+1

iσ(1)
− δ

ip+m+1

iσ(1)
[X,Z]i1iσ(p+m+1)

)

×X i2
iσ(2)
· · ·X ip

iσ(p)
Y

ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)
Z

im+p+2

iσ(m+p+2)
· · ·Zim+p+n

iσ(m+p+n)

=
pn

n!m!p!

∑

σ∈Sn+m+p

Tr(t,s,r)~µ~ν(Γ
R([σ, (1, p+m+ 1)]))δi1iσ(1)

[X,Z]
ip+m+1

iσ(p+m+1)

×X i2
iσ(2)
· · ·X ip

iσ(p)
Y

ip+1

iσ(p+1)
· · ·Y ip+m

iσ(p+m)
Z

im+p+2

iσ(m+p+2)
· · ·Zim+p+n

iσ(m+p+n)

=
pn

n!m!p!

∑

R′

cRR′

∑

σ∈Sn+m+p−1

Tr(t,s,r)~µ~ν([Γ
R′

(σ),ΓR(1, p+m+ 1)])

×TrV ⊗m+n+p−1(σ ·X⊗p−1 ⊗ Y ⊗m ⊗ [X,Z]⊗ Z⊗n−1)

=
pn

n!m!p!

∑

R′

cRR′

∑

T,(y,x,w)~α~β

dTn!m!p!

dwdxdy(n+m+ p)!

TrR⊕T ([PR,(t,s,r)~µ~ν ,Γ
R(1, p+m+ 1)]IR′T ′ [P

T,(y,x,w)~α~β
,ΓT (1, p+m+ 1)]IT ′R′)χ

T,(y,x,w)~β~α(X,Y, Z)
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=
∑

R′

cRR′

∑

T,(y,x,w)~α~β

dTnp

dwdxdy(n+m+ p)dR′

TrR⊕T ([PR,(t,s,r)~µ~ν ,Γ
R(1, p+m+ 1)]IR′T ′ [P

T,(y,x,w)~α~β
,ΓT (1, p+m+ 1)]IT ′R′)χ

T,(y,x,w)~β~α(X,Y, Z)

[Y,X ]ij

(

d

dY k
j

d

dX i
k

− d

dXk
j

d

dY i
k

)

ÔR,(t,s,r)~µ~ν

=
∑

R′

cRR′

∑

T,(y,x,w)~α~β

dTmp

dwdxdy(n+m+ p)dR′

√

fThooksT hooksrhooksshookst
fRhooksRhookswhooksxhooksy

TrR⊕T ([PR,(t,s,r)~µ~ν ,Γ
R(1, p+ 1)]IR′T ′ [P

T,(y,x,w)~α~β
,ΓT (1, p+ 1)]IT ′R′)Ô

T,(y,x,w)~β~α .

(3.4)

Using identical methods it is straight forward to find

[Y, Z]ij

(

d

dY k
j

d

dZi
k

− d

dZk
j

d

dY i
k

)

ÔR,(t,s,r)~µ~ν

=
∑

R′

cRR′

∑

T,(y,x,w)~α~β

dTmn

dwdxdy(n+m+ p)dR′

√

fThooksThooksrhooksshookst
fRhooksRhookswhooksxhooksy

TrR⊕T ([Γ
R(1, p+ 1)PR,(t,s,r)~µ~νΓ

R(1, p+ 1),ΓR(1, p+m+ 1)]IR′T ′

×[ΓT (1, p+ 1)P
T,(y,x,w)~α~β

ΓT (1, p+ 1),ΓT (1, p+m+ 1)]IT ′R′)Ô
T,(y,x,w)~β~α ,

(3.5)

[X,Z]ij

(

d

dXk
j

d

dZi
k

− d

dZk
j

d

dX i
k

)

ÔR,(t,s,r)~µ~ν

=
∑

R′

cRR′

∑

T,(y,x,w)~α~β

dT pn

dwdxdy(n+m+ p)dR′

√

fThooksThooksrhooksshookst
fRhooksRhookswhooksxhooksy

TrR⊕T ([PR,(t,s,r)~µ~ν ,Γ
R(1, p+m+ 1)]IR′T ′ [P

T,(y,x,w)~α~β
,ΓT (1, p+m+ 1)]IT ′R′)Ô

T,(y,x,w)~β~α .

(3.6)

The next step in the evaluation of the action of the dilatation operator entails computing

the traces over R ⊕ T that have appeared in our results above. Our results for the action

of the one loop dilatation operator given above are exact. From this point on we assume

the displaced corners approximation so that our answers for the traces are only valid in the

large N limit. The background information used in this section can be found in [26]. For

the term in the one loop dilatation operator that mixes X and Y the trace that needs to be

computed is

T = TrR⊕T ([PR,(t,s,r)~µ~ν ,Γ
R(1, p+ 1)]IR′T ′[PT,(y,x,w)~α~β,Γ

T (1, p+ 1)]IT ′R′) . (3.7)

To ease the notation we will use the following shorthand

PT,(y,x,w)~α~β ≡ py ⊗ px ⊗ 1w . (3.8)
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Consider the case that R′ is obtained from R by dropping a box in row i and that T ′ is

obtained from T by dropping a box from row j. The intertwiner is only non-zero if T ′ = R′.

In this case the intertwiners are

IR′T ′ = E
(1)
ij , IT ′R′ = E

(1)
ji . (3.9)

Since the trace T is a product of two commutators, when we expand things out we get a

total of four terms. Since both the swaps ΓR(1, p+ 1) and ΓT (1, p+ 1) have a trivial action

on the Z indices, we know that the result will be proportional to δrw and that the trace over

the Z indices produce a factor dr. Thus, after tracing over the Z indices we have

T =
(

Tr(pt ⊗ psΓR(1, p+ 1)E
(1)
ij py ⊗ pxΓT (1, p+ 1)E

(1)
ji )

−Tr(pt ⊗ psΓR(1, p+ 1)E
(1)
ij ΓT (1, p+ 1)py ⊗ pxE(1)

ji )

−Tr(ΓR(1, p+ 1)pt ⊗ psE(1)
ij py ⊗ pxΓT (1, p+ 1)E

(1)
ji )

+Tr(ΓR(1, p+ 1)pt ⊗ psE(1)
ij ΓT (1, p+ 1)py ⊗ pxE(1)

ji )
)

δrwdr . (3.10)

Allow the swaps to act on the intertwiners

(1, p+ 1)E
(1)
ij = E

(1)
lj E

(p+1)
il , (1, p+ 1)E

(1)
ji = E

(1)
li E

(p+1)
jl (3.11)

to obtain

T =
(

〈~p, t, ν1; a|E(1)
lj |~p′, y, α1; b〉〈~p′, y, β1; b|E(1)

ki |~p, t, µ1; a〉
×〈~m, s, ν2; c|E(p+1)

il |~m′, x, α2; d〉〈~m′, x, β2; d|E(p+1)
jk |~m, s, µ2; c〉

−〈~p, t, ν1; a|~p′, y, α1; b〉〈~p′, y, β1; b|E(1)
ji |~p, t, µ1; a〉

×〈~m, s, ν2; c|E(p+1)
ij |~m′, x, α2; d〉〈~m′, x, β2; d|~m, s, µ2; c〉

−〈~p, t, ν1; a|E(1)
ij |~p′, y, α1; b〉〈~p′, y, β1; b|~p, t, µ1; a〉

×〈~m, s, ν2; c|~m′, x, α2; d〉〈~m′, x, β2; d|E(p+1)
ji |~m, s, µ2; c〉

+〈~p, t, ν1; a|E(1)
il |~p′, y, α1; b〉〈~p′, y, β1; b|E(1)

jk |~p, t, µ1; a〉
×〈~m, s, ν2; c|E(p+1)

lj |~m′, x, α2; d〉〈~m′, x, β2; d|E(p+1)
ki |~m, s, µ2; c〉

)

δrwdr

=
(

〈~p, t, ν1; a|E(1)
lj |~p′, y, α1; b〉〈~p′, y, β1; b|E(1)

ki |~p, t, µ1; a〉
×〈~m, s, ν2; c|E(p+1)

il |~m′, x, α2; d〉〈~m′, x, β2; d|E(p+1)
jk |~m, s, µ2; c〉

−δ~p~p′δytδν1α1δ~m~m′δsxδβ2µ2〈~p′, y, β1; b|E(1)
ji |~p, t, µ1; a〉

×〈~m, s, ν2; c|E(p+1)
ij |~m′, x, α2; d〉

−δ~p~p′δytδµ1β1δ~m~m′δsxδα2ν2〈~p, t, ν1; a|E(1)
ij |~p′, y, α1; b〉

×〈~m′, x, β2; d|E(p+1)
ji |~m, s, µ2; c〉

+〈~p, t, ν1; a|E(1)
il |~p′, y, α1; b〉〈~p′, y, β1; b|E(1)

jk |~p, t, µ1; a〉
×〈~m, s, ν2; c|E(p+1)

lj |~m′, x, α2; d〉〈~m′, x, β2; d|E(p+1)
ki |~m, s, µ2; c〉

)

δrwdr . (3.12)
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In a similar way we obtain

TrR⊕T ([Γ
R(1, p+ 1)PR,(t,s,r)~µ~νΓ

R(1, p+ 1),ΓR(1, p+m+ 1)]IR′T ′

×[ΓT (1, p+ 1)PT,(y,x,w)~α~βΓ
T (1, p+ 1),ΓT (1, p+m+ 1)]IT ′R′)

= δtydtδ~p~p′δν1α1δβ1µ1dr′iδr′iw′
j
δ~m~m′

[

〈~m′, x, β2; d|E(p+1)
ii |~m, s, µ2; c〉〈~m, sν2; c|E(p+1)

jj |~m′, x, α2; d〉
+〈~m′, x, β2; d|E(p+1)

jj |~m, s, µ2; c〉〈~m, sν2; c|E(p+1)
ii |~m′, x, α2; d〉

]

−δijδtydtδ~p~p′δν1α1δβ1,µ1dr′iδrwδsxδ~m~m′

[

δν2α2〈~m, x, β2; c|E(p+1)
jj |~m, s, µ2; c〉

+δβ2µ2〈~m, sν2; c|E(p+1)
ii |~m, x, α2; c〉

]

(3.13)

relevant for the term in the one loop dilatation operator that mixes Z and Y and

TrR⊕T ([PR,(t,s,r)~µ~ν ,Γ
R(1, p+m+ 1)]IR′T ′[PT,(y,x,w)~α~β,Γ

T (1, p+m+ 1)]IT ′R′)

= δsxdsδ~p~p′δν2α2δβ2µ2dr′iδr′iw′
j
δ~m~m′

[

〈~p′, y, β1; d|E(1)
ii |~p, t, µ1; c〉〈~p, t, ν1; c|E(1)

jj |~p′, y, α1; d〉
+〈~p′, y, β1; d|E(1)

jj |~p, t, µ1; c〉〈~p, t, ν1; c|E(1)
ii |~p′, y, α1; d〉

]

−δijδtydsδ~p~p′δν2α2δβ2µ2dr′iδrwδsxδ~m~m′

[

δν1α1〈~p, y, β1; c|E(1)
jj |~p, t, µ1; c〉

+δβ1µ1〈~p, t, ν1; c|E(1)
ii |~p, y, α1; c〉

]

(3.14)

which is relevant for the term in the one loop dilatation operator that mixes X and Z.

This completes our discussion of the action of the one loop dilatation operator.

3.2 Gauss Operators

The problem of diagonalizing the terms in the dilatation operator that mix theX and Z fields

and the terms that mix the Y and Z fields has been solved[25, 26, 27, 28]. The operators

that have a good scaling dimension are the Gauss operators. Our ultimate goal is to write

the action of the terms in the dilatation operator that mix X and Y fields, on the Gauss

operators, which amounts to a change of basis from restricted Schur polynomials to Gauss

operators. Towards this end we describe how to construct Gauss operators for operators

built from three complex scalar fields and develop the tools we will need to change basis.

The results of this section are a simple generalization of [28].

Natural hints for the construction of the Gauss operators come from the AdS/CFT

correspondence. Indeed, the correspondence implies an equivalence between quantum states

in the quantum gravity and operators in the N = 4 SYM theory. In particular, the restricted

Schur polynomials χR,(t,s,r),~µ~ν(X, Y, Z) are dual to multiple giant graviton systems [34, 35, 36]

consisting of large branes in the AdS5 space when R has order one rows each of length order

N , or to systems consisting of large branes in the S5 space when R has order one columns

each of length order N . A giant graviton has a compact world volume so that the Gauss Law

forces the total charge on the giant’s world volume to vanish. Since the string end points are
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charged, this gives a constraint on the possible open string configurations that are allowed:

the number of strings leaving the giant must equal the number of strings arriving at the

giant. The matrices X and Y generate two species of 1-bit strings [37, 38, 39, 40]. Each

row of R corresponds to a giant graviton. Each open string configuration corresponds to a

pair of graphs - one for each open string species. We will refer to these as the X graph and

the Y graph. The vertices of the graph represent the branes and the directed links represent

the (oriented) strings. Motivated by [41] a useful combinatoric description of these graphs

is to divide each string into two halves and label each half. Using the orientation of the

string, label the outgoing ends with numbers {1, · · · , p} for the X graph or {1, · · · , m} for
the Y graph and the ingoing ends with these same numbers. A permutation σ ∈ Sp × Sm
is then determined by how the halves are joined. We will often decompose σ = σX ◦ σY
with σX ∈ Sp and σY ∈ Sm. Given a permutation, we can reconstruct the graphs. A graph

is not associated to a unique permutation because the strings leaving the i’th vertex are

indistinguishable, and the strings arriving at the i’th vertex are indistinguishable.

Figure 1: Any open string configuration can be mapped to a pair of labeled graphs. The black

graph describes the X matrices and the red graph the Y matrices. The two bold horizontal

lines are identified. The graphs determine a permutation, so each open string configuration

is mapped to a permutation. For the graph shown the permutation in cycle notation is

σ = (2, 4)(5, 3, 6)(8, 10, 9). The figure shows a configuration for a three giant system with

ten open strings attached. Equivalently, this is an operator whose Young diagram describing

the Z fields has 3 long rows/columns and p = 7, m = 3. The vectors ~p and ~m describe the

number of strings leaving each node. Thus, ~p = (3, 2, 2), ~m = (1, 1, 1).
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We will make use of two subgroups in what follows

HY = Sm1 × · · · × Smg
HX = Sp1 × · · · × Spg . (3.15)

HX acts on boxes in the partly labeled Young diagrams that are labeled with an integer

i < p + 1, i.e. on the boxes associated to Xs. HY acts on boxes associated to Y s. These

two subgroups leave all partly labeled Young diagrams invariant. Consequently, the partly

labeled Young diagrams belong to Sp × Sm/HX ×HY . The Gauss graphs themselves are in

one-to-one correspondence with elements of the double coset

HX ×HY \ Sp × Sm/HX ×HY (3.16)

Introduce the states (these states span V ⊗p+m)

|v, ~p, ~m〉 ≡ |v⊗p11 ⊗ v⊗p22 ⊗ · · · v⊗pgg ⊗ v⊗m1
g+1 ⊗ v⊗m2

g+2 ⊗ · · · v⊗mg

2g 〉 . (3.17)

There is an action of the Sp × Sm group defined on this space by

σ|vi1 ⊗ · · · ⊗ vim+p
〉 = |viσ(1)

⊗ · · · ⊗ viσ(m+p)
〉 . (3.18)

This can trivially be enlarged to obtain an action of Sp+m, but we want to consider only

permutations that mix X indices with each other and Y indices with each other, but not

X and Y indices. Introduce the notation |vσ〉 ≡ σ|v, ~p, ~m〉. Invariance under the HX ×HY

subgroup can be written as

|vσ〉 = |vσγ〉 γ ∈ HX ×HY (3.19)

or even

|vσ〉 =
1

|HX ×HY |
∑

γ∈HX×HY

|vσγ〉 . (3.20)

Recall that the operator that projects onto representation r of a group G is given by[42]

Pr =
dr
|G|
∑

g∈G
χr(g)g . (3.21)

By the identity representation we mean the representation for which all the elements of

HX × HY are represented by 1. We want to project onto the identity representation of

HX × HY within the carrier space (s, t) organizing the Xs and Y s. Recall that t ⊢ p and

s ⊢ m. The characters in the identity representation are of course all equal to 1. The identity

representation may appear more than once in (s, t). Resolve these different copies with a

multiplicity label ~µ. The multiplicity label has two components, one that refers to s and one

that refers to t. Introduce branching coefficients that resolve these projectors into a set of

projectors onto each of the one dimensional spaces labeled by ~µ

1

|HX ×HY |
∑

γ∈HX×HY

Γ(s,t)(γ)ik =
∑

~µ

B
(s,t)→1HX×HY

i~µ B
s→1HX×HY

k~µ . (3.22)
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Thus, for example, B
(s,t)→1H
i~ν B

(s,t)→1H
k~ν projects onto the copy ν1 of the identity representation

of HX in s and onto the copy ν2 of the identity representation of HY in t. The branching

coefficient B
(s,t)→1HX×HY

i~µ can be understood as the one dimensional vector that spans the ~ν

copy of 1HX×HY
inside the carrier space of (s, t)

|~v〉i = B
(s,t)→1HX×HY

i~ν . (3.23)

Vector orthogonality says

〈~ν|~µ〉 = δ~µ~ν =
∑

i

B
(s,t)→1HX×HY

i~µ B
(s,t)→1HX×HY

i~ν (3.24)

whilst vector completeness says

∑

~µ

|~µ〉〈~µ| = 1HX×HY
(3.25)

or, displaying all indices,

∑

~µ

B
(s,t)→1HX×HY

i~µ B
(s,t)→1HX×HY

j~µ = (1HX×HY
)ij . (3.26)

Together (3.24) and (3.26) allow us to think of the branching coefficients B
(s,t)→1HX×HY

i~µ as a

matrix that implements a change of basis

|i〉 =
∑

~µ

B
(s,t)→1HX×HY

i~µ |~µ〉 |~µ〉 =
∑

i

B
(s,t)→1HX×HY

i~µ |i〉 . (3.27)

We are now ready to argue that the Gauss operators are simply an alternative basis to

the restricted Schur polynomials. First, following [28], we will show that the number of

restricted Schur polynmials is equal to the number of Gauss operators. Towards this end

consider

|v(s,t), i, j〉 =
∑

σ∈Sm×Sp

Γ
(s,t)
ij (σ)σ|v, ~p, ~m〉 . (3.28)

Above we have projected onto the representation (s, t) of Sm × Sp. You can think of j as a

label for different vectors and of i as the components of the vector. According to [26] this

space is organized by the Schur-Weyl duality between Sm×Sp and U(m)×U(p). Concretely,
we can trade the index j for a Gelfand-Tsetlin pattern. Thus, using [26] we know that we

can decompose this space as

V ⊗p+m
g = ⊕s⊢m t⊢p

c1(s)≤g c1(t)≤g

V
U(m)×U(p)
(s,t) ⊗ V Sm×Sp

(s,t)

= ⊕s⊢m t⊢p

c1(s)≤g c1(t)≤g

⊕~m ~p V
U(g)×U(g)→U(1)g×U(1)g

(s,t)→(~m,~p) ⊗ V Sm×Sp

(s,t) . (3.29)

18



The first factor in the last line above is the space of Gelfand-Tsetlin patterns. Now, lets

consider a different decomposition of this space, as follows[28]

|v(s,t), i, j〉 =
∑

σ∈Sm×Sp

Γ
(s,t)
ij (σ)σ|v, ~p, ~m〉

=
∑

σ∈Sm×Sp

Γ
(s,t)
ij (σ)|vσ〉

=
1

|HX ×HY |
∑

σ∈Sm×Sp

∑

γ∈HX×HY

Γ(s,t)(σγ)ij |vσ〉

=
1

|HX ×HY |
∑

σ∈Sm×Sp

∑

γ∈HX×HY

Γ(s,t)(σ)ikΓ
(s,t)(γ)kj|vσ〉

=
∑

σ∈Sm×Sp

Γ(s,t)(σ)ik
∑

~µ

B
(s,t)→1HX×HY

k~µ B
(s,t)→1HX×HY

j~µ |vσ〉 . (3.30)

As we have already discussed, the branching coefficients provide a natural change of basis

from one space to the other

|~m, ~p, (s, t), ~µ; i〉 =
∑

j

B
(s,t)→1HX×HY

j~µ

∑

σ∈Sm×Sp

Γ
(s,t)
ij (σ)σ|vσ〉 . (3.31)

This decomposition is[28]

V ⊗p+m
g = ⊕s⊢m t⊢p

c1(s)≤g c1(t)≤g

V
U(m)×U(p)
(s,t) ⊗ V Sm×Sp

(s,t)

= ⊕s⊢m t⊢p

c1(s)≤g c1(t)≤g

⊕~m ~p V
Sm×Sp→HX×HY

(s,t)→1HX×HY

⊗ V Sm×Sp

(s,t) . (3.32)

Comparing (3.29) to (3.32) we conclude that

|V U(g)×U(g)→U(1)g×U(1)g

(s,t)→(~m,~p) | = |V Sm×Sp→HX×HY

(s,t)→1HX×HY

| . (3.33)

Using the idea that the branching coefficients provide a transformation between two

bases, we easily write the Gauss operators

OR,r(σX , σY ) =
|HX ×HY |√

m!p!

∑

jk

∑

s⊢m

∑

t⊢p

∑

~µ

∑

~ν

√

dsdtΓ
(s,t)(σX ◦ σY )jk

×B(s,t)→1HX×HY

j~µ B
(s,t)→1HX×HY

k~ν OR,(t,s,r)~µ~ν . (3.34)

Note that the factor
√
dsdt can not be determined by group theory alone. It is chosen so

that the group theoretic coefficients

C
(s,t)
~µ~ν (σX ◦ σY ) =

|HX ×HY |√
m!p!

∑

jk

∑

s⊢m

∑

t⊢p

√

dsdtΓ
(s,t)(σX ◦ σY )jkB

(s,t)→1HX×HY

j~µ B
(s,t)→1HX×HY

k~ν

(3.35)

19



provide an orthogonal transformation between the restricted Schur polynomials and the

Gauss graph basis. Indeed,

∑

(s,t)

∑

~µ

∑

~ν

C
(s,t)
~µ~ν (σX ◦ σY )C(s,t)

~µ~ν (τX ◦ τY ) =
∑

γ∈HX×HY

δ(γ1 σX ◦ σY γ2 τ−1
X ◦ τ−1

Y ) . (3.36)

There is an important point that is worth stressing here: Our Gauss operators are nor-

malized as

〈OR,r(σX , σY )OR,r(τX , τY )
†〉 =

∑

γ∈HX×HY

δ(γ1 σX ◦ σY γ2 τ−1
X ◦ τ−1

Y ) . (3.37)

These operators certainly do not have unit two point function. For example, if we set

both σX , σY and τX , τY equal to the identity permutation, the right hand side evaluates to

|HX ×HY |. Our final answer is simplest when expressed in terms of normalized operators

ÔR,r(σX , σY ) ≡
1

NσX ,σY

OR,r(σX , σY ) , (3.38)

N2
σX ,σY

= 〈OR,r(σX , σY )OR,r(σX , σY )
†〉 . (3.39)

We will not obtain or need the explicit form of NσX ,σY .

3.3 Dilatation Operator in the Gauss Graph Basis

We will now write the term in the dilatation operator that mixes X and Y in the Gauss

graph basis, i.e. we will write this term in the basis provided by (3.34). We already know

that the other two terms are diagonal in this basis and we know their detailed form[26, 28].

Towards this end, transform the intertwining operator used to construct the restricted

Schur polynomial

PR,(t,s,r)~µ~ν =
∑

i

|~m, ~p, (s, t), ~µ; i〉〈~m, ~p, (s, t), ~ν; i| ⊗ 1r (3.40)

to the Gauss graph basis. Of course, it is only

p~m~p(t,s)~µ~ν =
∑

i

|~m, ~p, (s, t), ~µ; i〉〈~m, ~p, (s, t), ~ν; i| (3.41)

that we need to consider. The transformation is a simple computation

∑

(s,t)

|~m, ~p, (s, t), ~µ; i〉〈~m, ~p, (s, t), ~ν; i|B(s,t)→1HX×HY

l~ν B
(s,t)→1HX×HY

m~µ Γ
(s,t)
lm (σ2)

=
1

|HX ×HY |m!p!

∑

(s,t)

∑

σ,τ∈Sm×Sp

dsdt B
(s,t)→1HX×HY

j~µ Γ
(s,t)
bj (σ)|vσ〉〈vτ |Γ(s,t)

bk (τ)B
(s,t)→1HX×HY

k~ν
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×B(s,t)→1HX×HY

l~ν B
(s,t)→1HX×HY

m~µ Γ
(s,t)
lm (σ2)

=
1

|HX ×HY |m!p!

∑

(s,t)

∑

σ,τ∈Sm×Sp

dsdt |vσ〉〈vτ |Γ(s,t)
jk (σ−1τ)B

(s,t)→1HX×HY

j~µ B
(s,t)→1HX×HY

k~ν

B
(s,t)→1HX×HY

l~ν B
(s,t)→1HX×HY

m~µ Γlm(σ2)

=
1

|HX ×HY |m!p!

∑

(s,t)

∑

σ,τ∈Sm×Sp

1

|HX ×HY |2
∑

γ1,γ2∈HX×HY

dsdtΓ
(s,t)
jm (γ1)Γ

(s,t)
kl (γ2)Γ

(s,t)
lm (σ2)

×Γ(s,t)
jk (σ−1τ)|vσ〉〈vτ |

=
1

m!p!|HX ×HY |
∑

(s,t)

∑

σ,τ∈Sm×Sp

1

|HX ×HY |2
∑

γ1,γ2∈HX×HY

dsdtχu(γ1σ
−1
2 γ−1

2 τ−1σ)|vσ〉〈vτ |

=
1

|HX ×HY |3
∑

σ,τ∈Sm×Sp

∑

γ1,γ2∈HX×HY

δ(γ1σ
−1
2 γ−1

2 τ−1σ)|vσ〉〈vτ | . (3.42)

Notice that up to normalization this is a sum over all σ, τ ∈ Sm × Sp of |vσ〉〈vτ | with the

condition that τ−1σ belongs to the same coset as σ2 does. With this result in hand, we easily

find

〈O†
T,w(σ2)DXYOR,r(σ1)〉 =

=
|HX ×HY ||H ′

X ×H ′
Y |

m!p!

∑

jk

∑

s⊢m

∑

t⊢p

∑

~µ~ν

∑

lm

∑

x⊢m

∑

y⊢p

∑

~α~β

√

dsdt
√

dxdyΓ
(s,t)(σ1)jkΓ

(x,y)(σ2)lm

×B(s,t)→1HX×HY

j~µ B
(s,t)→1HX×HY

k~ν B
(x,y)→1H′

X
×H′

Y

l~α B
(x,y)→1H′

X
×H′

Y

m~β
〈O†

T,(y,x,w)~α~β
DXYOR,(t,s,r)~µ~ν〉

=
|HX ×HY ||H ′

X ×H ′
Y |

m!p!

∑

jk

∑

s⊢m

∑

t⊢p

∑

~µ~ν

∑

lm

∑

x⊢m

∑

y⊢p

∑

~α~β

√

dsdt
√

dxdyΓ
(s,t)(σ1)jkΓ

(x,y)(σ2)lm

×B(s,t)→1HX×HY

j~µ B
(s,t)→1HX×HY

k~ν B
(x,y)→1H′

X
×H′

Y

l~α B
(x,y)→1H′

X
×H′

Y

m~β

×
∑

R′

cRR′

dTmp

dxdy(n+m+ p)dR′

√

fThooksThooksshookst
fRhooksRhooksxhooksy

δrw

×
(

〈~p, t, ν1; a|E(1)
lj |~p′, y, α1; b〉〈~p′, y, β1; b|E(1)

ki |~p, t, µ1; a〉
×〈~m, s, ν2; c|E(p+1)

il |~m′, x, α2; d〉〈~m′, x, β2; d|E(p+1)
jk |~m, s, µ2; c〉

−δ~p~p′δytδν1α1δ~m~m′δsxδβ2µ2〈~p′, y, β1; b|E(1)
ji |~p, t, µ1; a〉〈~m, s, ν2; c|E(p+1)

ij |~m′, x, α2; d〉
−δ~p~p′δytδµ1β1δ~m~m′δsxδα2ν2〈~p, t, ν1; a|E(1)

ij |~p′, y, α1; b〉〈~m′, x, β2; d|E(p+1)
ji |~m, s, µ2; c〉

+〈~p, t, ν1; a|E(1)
il |~p′, y, α1; b〉〈~p′, y, β1; b|E(1)

jk |~p, t, µ1; a〉
×〈~m, s, ν2; c|E(p+1)

lj |~m′, x, α2; d〉〈~m′, x, β2; d|E(p+1)
ki |~m, s, µ2; c〉

)

=
|HX ×HY ||H ′

X ×H ′
Y |

m!p!

∑

jk

∑

s⊢m

∑

t⊢p

∑

~µ~ν

∑

lm

∑

x⊢m

∑

y⊢p

∑

~α~β

Γ(s,t)(σ1)jkΓ
(x,y)(σ2)lm

×B(s,t)→1HX×HY

j~µ B
(s,t)→1HX×HY

k~ν B
(x,y)→1H′

X
×H′

Y

l~α B
(x,y)→1H′

X
×H′

Y

m~β
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∑

R′

cRR′

dTmp

(n+m+ p)dR′

√

fThooksT
fRhooksR

δrw

(

〈~p, t, ν1; a|E(1)
lj |~p′, y, α1; b〉〈~p′, y, β1; b|E(1)

ki |~p, t, µ1; a〉

×〈~m, s, ν2; c|E(p+1)
il |~m′, x, α2; d〉〈~m′, x, β2; d|E(p+1)

jk |~m, s, µ2; c〉
−δ~p~p′δytδν1α1δ~m~m′δsxδβ2µ2〈~p′, y, β1; b|E(1)

ji |~p, t, µ1; a〉〈~m, s, ν2; c|E(p+1)
ij |~m′, x, α2; d〉

−δ~p~p′δytδµ1β1δ~m~m′δsxδα2ν2〈~p, t, ν1; a|E(1)
ij |~p′, y, α1; b〉〈~m′, x, β2; d|E(p+1)

ji |~m, s, µ2; c〉
+〈~p, t, ν1; a|E(1)

il |~p′, y, α1; b〉〈~p′, y, β1; b|E(1)
jk |~p, t, µ1; a〉

×〈~m, s, ν2; c|E(p+1)
lj |~m′, x, α2; d〉〈~m′, x, β2; d|E(p+1)

ki |~m, s, µ2; c〉
)

.

There are four terms in the above expression. We will deal with each term, one at a time.

3.3.1 First term

Focus on the first term for now

=
|HX ×HY ||H ′

X ×H ′
Y |

m!p!

∑

jk

∑

s⊢m

∑

t⊢p

∑

~µ~ν

∑

lm

∑

x⊢m

∑

y⊢p

∑

~α~β

Γ(s,t)(σ1)jkΓ
(x,y)(σ2)lm

×B(s,t)→1HX×HY

j~µ B
(s,t)→1HX×HY

k~ν B
(x,y)→1H′

X
×H′

Y

l~α B
(x,y)→1H′

X
×H′

Y

m~β

∑

R′

cRR′

dTmp

(n +m+ p)dR′

√

fThooksT
fRhooksR

δrw〈~p, t, ν1; a|E(1)
lj |~p′, y, α1; b〉〈~p′, y, β1; b|E(1)

ki |~p, t, µ1; a〉

×〈~m, s, ν2; c|E(p+1)
il |~m′, x, α2; d〉〈~m′, x, β2; d|E(p+1)

jk |~m, s, µ2; c〉
=

1

|HX ×HY |2|H ′
X ×H ′

Y |2m!p!

∑

R′

cRR′hooksR′mp

√

fT

fRhooksRhooksT
δrw

∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

∑

γ1,γ2∈H′
X
×H′

Y

∑

β1,β2∈HX×HY

×〈v, ~p′, ~m′|Eτ−1(p+1)
ji τ−1 (1, p + 1)φβ2σ2β

−1
1 |v, ~p, ~m〉〈v, ~p, ~m|E

φ−1(p+1)
ij φ−1 (1, p + 1) τγ2σ1γ

−1
1 |v, ~p′, ~m′〉

Now, lets study the case that i = j. To find a simple condition on ~p′, ~m′ and ~p, ~m that tells

us when this matrix element is non-zero, focus on

〈vτ |E(p+1)
ji (1, p+ 1) |vψ〉〈vφ| (1, p+ 1)E

(1)
ij |vσ〉 . (3.43)

If i = j, the matrix element 〈v, ~p′, ~m′|τ−1E
(p+1)
ji (1, p+1)ψ|v, ~p, ~m〉 forces ~p+ ~m = ~p′+ ~m′.

Indeed, E
(p+1)
ii is one if the vector in the first slot of ψ|v, ~p, ~m〉 is v1 and it is zero otherwise,

so it clearly does not change the identity of any vectors. The remaining elements between

the two states (i.e. τ−1 and (1, p+1)ψ) can swap vectors around but not change the identity

of any vector. Thus, the identity of the collection of vectors used to construct |v, ~p, ~m〉 must

match the identity of the collection of vectors used to construct |v, ~p′, ~m′〉. This then proves

that ~p + ~m = ~p′ + ~m′. We can argue for this conclusion in a second way: recall that we

obtain R′ from R by dropping box in row i and we obtain T ′ from T by dropping a box in

row j. Thus, if i = j, since R′ = T ′ we are saying that R = T . We already know that r = w.
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~p+ ~m tells us the collection of boxes that needs to be dropped from R to get r and ~p′ + ~m′

tells us the collection of boxes that needs to be dropped from T to get w. Since R = T and

r = w, this then again proves that ~p+ ~m = ~p′ + ~m′. We can say a bit more. Consider

〈v, ~p, ~m|φ−1 (1, p+ 1)E
(1)
ii σ|v, ~p′, ~m′〉 . (3.44)

This tells you that if you take the state |v, ~p′, ~m′〉 and shuffle some of the X slots amongst

each other and some of the Y slots amongst each other (σ does this shuffling) keeping only

states with vector vi in their first slot, and then swapping the vectors in slots 1 and p + 1,

we can get the vector |v, ~p, ~m〉 by shuffling (according to φ−1) what we have. Thus, to get

|v, ~p, ~m〉 from |v, ~p′, ~m′〉 we removed vi from an X slot of |v, ~p′, ~m′〉 and inserted it

into a Y slot of |v, ~p, ~m〉.
Now consider

〈v, ~p′, ~m′|τ−1E
(p+1)
ii (1, p+ 1)ψ|v, ~p, ~m〉 . (3.45)

This tells you that if you take the state |v, ~p, ~m〉 and shuffle some of the X slots amongst

each other and some of the Y slots amongst each other (ψ does this shuffling) keeping only

states with vector vi in their first slot, and then, swapping the vectors in slots 1 and p + 1,

we can get the vector |v, ~p′, ~m′〉 by shuffling (according to τ−1) what we have. Thus, to

get |v, ~p′, ~m′〉 from |v, ~p, ~m〉 we removed vi from an X slot of |v, ~p, ~m〉 and inserted

it into a Y slot of |v, ~p, ~m〉.
Thus, the two vectors we are swapping have the same identity. This implies that we must

have ~p = ~p′ and ~m = ~m′. Since we must have ~p = ~p′ and ~m = ~m′ we find

=
1

|HX ×HY |4m!p!

∑

R′

cRR′hooksR′mp

√

fT

fRhooksRhooksT
δrw

∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

∑

γ1,γ2,β1,β2∈HX×HY

×〈v, ~p, ~m|Eτ−1(p+1)
ji τ−1 (1, p + 1)φβ2σ2β

−1
1 |v, ~p, ~m〉〈v, ~p, ~m|E

φ−1(p+1)
ij φ−1 (1, p + 1) τγ2σ1γ

−1
1 |v, ~p, ~m〉

=
1

|HX ×HY |4m!p!

∑

R′

cRR′hooksR′mp

√

fT

fRhooksRhooksT
δrw

∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

∑

γ1,γ2,β1,β2,ρ1,ρ2∈HX×HY

×δ(τ−1 φβ2σ2β
−1
1 ρ1)δ(φ

−1 τγ2σ1γ
−1
1 ρ2)

×
∑

k,q∈Si,m

∑

l,r∈Si,p

δ(τ−1(p + 1), k)δ(τ−1(1), l)δ(φ−1(p + 1), q)δ(φ−1(1), r) .

Now, set τ = ατ̃ and β = αβ̃ with α ∈ Zm × Zp, with Zm × Zp a product of cyclic groups.

The above expression becomes

=
1

|HX ×HY |4m!p!

∑

R′

cRR′hooksR′mp

√

fT

fRhooksRhooksT
δrw

∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

×
∑

γ1,γ2,β1,β2,ρ1,ρ2∈HX×HY

δ(τ−1 φβ2σ2β
−1
1 ρ1)δ(φ

−1 τγ2σ1γ
−1
1 ρ2)

×
∑

k,q∈Si,m

∑

l,r∈Si,p

δ(τ−1(α(p + 1)), k)δ(τ−1(α(1)), l)δ(φ−1(α(p + 1)), q)δ(φ−1(α(1)), r)
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=
∑

α∈Zm×Zp

1

|HX ×HY |4m!p!

∑

R′

cRR′hooksR′

√

fT

fRhooksRhooksT
δrw

∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

×
∑

γ1,γ2,β1,β2,ρ1,ρ2∈HX×HY

δ(τ−1 φβ2σ2β
−1
1 ρ1)δ(φ

−1 τγ2σ1γ
−1
1 ρ2)

×
∑

k,q∈Si,m

∑

l,r∈Si,p

δ(τ−1(α(p + 1)), k)δ(τ−1(α(1)), l)δ(φ−1(α(p + 1)), q)δ(φ−1(α(1)), r)

=
1

|HX ×HY |4m!p!

∑

R′

cRR′hooksR′

√

fT

fRhooksRhooksT
δrw

∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

×
∑

γ1,γ2,β1,β2,ρ1,ρ2∈HX×HY

δ(τ−1 φβ2σ2β
−1
1 ρ1)δ(φ

−1 τγ2σ1γ
−1
1 ρ2)

×
∑

k,q∈Si,m

∑

l,r∈Si,p

δ(τ−1(φ(q)), k)δ(τ−1(φ(r)), l)

=
1

|HX ×HY |4
∑

R′

cRR′hooksR′

√

fT

fRhooksRhooksT
δrw

∑

φ∈Sm×Sp

×
∑

γ1,γ2,β1,β2,ρ1,ρ2∈HX×HY

δ(φβ2σ2β
−1
1 ρ1)δ(φ

−1 γ2σ1γ
−1
1 ρ2)

∑

k,q∈Si,m

∑

l,r∈Si,p

δ(φ(q), k)δ(φ(r), l)

=
1

|HX ×HY |2
∑

R′

cRR′hooksR′

√

fT

fRhooksRhooksT
δrw

∑

φ∈Sm×Sp

∑

γ1,γ2,β1,β2∈HX×HY

×δ(φβ2σ2β−1
1 )δ(φ−1 γ2σ1γ

−1
1 )

∑

k,q∈Si,m

∑

l,r∈Si,p

δ(φ(q), k)δ(φ(r), l)

=
1

|HX ×HY |2
∑

R′

cRR′hooksR′

√

fT

fRhooksRhooksT
δrw

∑

γ1,γ2,β1,β2∈HX×HY

×δ(γ2σ1γ−1
1 β2σ2β

−1
1 )nXii (σ1)n

Y
ii (σ1)

=
∑

R′

cRR′hooksR′

√

fT

fRhooksRhooksT
δrw

∑

β1,β2∈HX×HY

δ(σ1β2σ2β
−1
1 )nXii (σ1)n

Y
ii (σ1) .

(3.46)

Now, return to the case that i 6= j. The matrix element 〈v, ~p′, ~m′|τ−1E
(p+1)
ji (1, p +

1)ψ|v, ~p, ~m〉 forces ~p + ~m 6= ~p′ + ~m′. Indeed, (1, p + 1)ψ shuffles vectors, E
(p+1)
ji removes vi

and inserts vj and τ
−1 does some more shuffling. Thus, using an obvious notation, we have

~p + ~m− î = ~p′ + ~m′ − ĵ . (3.47)

We can also see this by noting that since i 6= j we know that R 6= T . We still have r = w so

that the collection of boxes that needs to be dropped from R to get r (described by ~p+ ~m)

and the collection of boxes that needs to be dropped from T to get w (described by ~p′ + ~m′)

can’t possibly be equal.

Again, we can say more. Consider

〈v, ~p, ~m|φ−1 (1, p+ 1)E
(1)
ij σ|v, ~p′, ~m′〉 . (3.48)
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This tells you that if you take the state |v, ~p′, ~m′〉 and shuffle some of the X slots amongst

each other and some of the Y slots amongst each other (σ does this shuffling) keeping only

states with vector vj in their first slot, replacing this vector vj with another vector vi and

then swapping the vectors in slots 1 and p + 1, we can get the vector |v, ~p, ~m〉 by shuffling

(according to φ−1) what we have. We can summarize this as

~p′ − ĵ = ~p− â
~m′ − â = ~m− î . (3.49)

Now consider

〈v, ~p′, ~m′|τ−1E
(p+1)
ji (1, p+ 1)ψ|v, ~p, ~m〉 . (3.50)

This tells you that if you take the state |v, ~p, ~m〉 and shuffle some of the X slots amongst

each other and some of the Y slots amongst each other (ψ does this shuffling) keeping only

states with vector vi in their first slot, replacing this vector vi with vj and then, swapping

the vectors in slots 1 and p + 1, we can get the vector |v, ~p′, ~m′〉 by shuffling (according to

τ−1) what we have. We can summarize this as

~p− î = ~p′ − b̂
~m− b̂ = ~m′ − ĵ . (3.51)

The equations (3.49) and (3.51) only have two solutions. If we choose â = î, we must

have b̂ = ĵ and then

~m = ~m′

~p− î = ~p′ − ĵ . (3.52)

If we choose â = ĵ, we must have b̂ = î and then

~p = ~p′

~m− î = ~m′ − ĵ . (3.53)

Thus, only ~m or ~p can change - but not both. In fact, only one of the Gauss graphs (there

is one graph for the Xs and one for the Y s) change - but not both.

It is now rather simple to write the relation between |v, ~p′, ~m′〉 and |v, ~p, ~m〉. Consider

for example, (3.52). Let Sj,p denote the collection of slots that (i) are X slots and (ii) are

occupied by vj . There are similar definitions for Sj,m, S
′
j,p and S ′

j,m. To go from ~p to ~p′,

we want to remove a vi and replace it with a vj and then reorder the slots into the order

prescribed by (3.17). We can do this as

|v, ~p′, ~m′〉 = ζE
(q)
ji |v, ~p, ~m〉 q ∈ Si,p ζ ∈ Sm × Sp . (3.54)
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Consequently we can again write a definite relation between |v, ~p′, ~m′〉 and |v, ~p, ~m〉. This

allows us to simplify the matrix element expressions to the structure of elements we have

already evaluated. Now, consider

A =
1

|HX ×HY |2|H ′
X ×H ′

Y |2m!p!

∑

R′

cRR′hooksR′mp

√

fT
fRhooksRhooksT

δrw
∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

∑

γ1,γ2∈H′
X
×H′

Y

∑

β1,β2∈HX×HY

×〈v, ~p′, ~m′|Eτ−1(p+1)
ji τ−1 (1, p+ 1)φβ2σ2β

−1
1 |v, ~p, ~m〉

×〈v, ~p, ~m|Eφ−1(p+1)
ij φ−1 (1, p+ 1) τγ2σ1γ

−1
1 |v, ~p′, ~m′〉

=
1

|HX ×HY |2|H ′
X ×H ′

Y |2m!p!

∑

R′

√
cRR′cTR′

× hooksR′√
hooksRhooksT

mpδrw
∑

τ,φ∈Sm×Sp

∑

γ1,γ2∈H′
X
×H′

Y

∑

β1,β2∈HX×HY

×〈v, ~p′, ~m′|Eτ−1(p+1)
ji τ−1 (1, p+ 1)φβ2σ2β

−1
1 |v, ~p, ~m〉

×〈v, ~p, ~m|Eφ−1(p+1)
ij φ−1 (1, p+ 1) τγ2σ1γ

−1
1 |v, ~p′, ~m′〉 . (3.55)

To start, study

〈v, ~p′, ~m′|Eτ−1(p+1)
ji τ−1 (1, p+ 1)φβ2σ2β

−1
1 |v, ~p, ~m〉

= 〈v, ~p′, ~m′|τ−1E
(p+1)
ji (1, p+ 1)φβ2σ2β

−1
1 |v, ~p, ~m〉 (3.56)

and consider a matrix element for which ~m = ~m′ and ~p = ~p′ − ĵ + î. In this case, we know

that we can write

|v, ~p′, ~m′〉 = ζE
(q)
ji |v, ~p, ~m〉 ζ ∈ Sp q ∈ Si,p (3.57)

We can choose any basis for the vectors |v, ~p, ~m〉, |v, ~p′, ~m′〉 that we like - the result will be

independent of the choice we make. In (3.17) choose the i and j vectors to sit in adjacent

slots, and always choose q to lie on the border between the two. In this case we can always

choose ζq to be the identity. With this choice understood, we have

|v, ~p′, ~m′〉 = E
(q)
ji |v, ~p, ~m〉 q ∈ Si,p . (3.58)

In a similar way

〈v, ~p, ~m|Eφ−1(p+1)
ij φ−1 (1, p+ 1) τγ2σ1γ

−1
1 |v, ~p′, ~m′〉

= 〈v, ~p, ~m|φ−1E
(p+1)
ij (1, p+ 1) τγ2σ1γ

−1
1 |v, ~p′, ~m′〉 (3.59)

and, from (3.58) we have

|v, ~p, ~m〉 = E
(q)
ij |v, ~p′, ~m′〉 . (3.60)
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Consequently

A =
1

|HX ×HY |2|H ′
X ×H ′

Y |2m!p!

∑

R′

√
cRR′cTR′

hooksR′√
hooksRhooksT

mpδrw
∑

γ1,γ2∈H′
X
×H′

Y

×
∑

β1,β2∈HX×HY

∑

τ,φ∈Sm×Sp

〈v, ~p′, ~m′|τ−1E
(p+1)
ji (1, p+ 1)φβ2σ2β

−1
1 |v, ~p, ~m〉

×〈v, ~p, ~m|φ−1E
(p+1)
ij (1, p+ 1) τγ2σ1γ

−1
1 |v, ~p′, ~m′〉

=
1

|HX ×HY |2|H ′
X ×H ′

Y |2m!p!

∑

R′

√
cRR′cTR′

hooksR′√
hooksRhooksT

mpδrw
∑

γ1,γ2∈H′
X
×H′

Y

×
∑

β1,β2∈HX×HY

∑

τ,φ∈Sm×Sp

〈v, ~p, ~m|E(q)
ij τ

−1E
(p+1)
ji (1, p+ 1)φβ2σ2β

−1
1 |v, ~p, ~m〉

×〈v, ~p′, ~m′|E(q)
ji φ

−1E
(p+1)
ij (1, p+ 1) τγ2σ1γ

−1
1 |v, ~p′, ~m′〉

=
1

|HX ×HY |2|H ′
X ×H ′

Y |2m!p!

∑

R′

√
cRR′cTR′

hooksR′√
hooksRhooksT

mpδrw
∑

γ1,γ2∈H′
X
×H′

Y

×
∑

β1,β2∈HX×HY

∑

τ,φ∈Sm×Sp

〈v, ~p, ~m|τ−1E
τ(q)
ij E

(p+1)
ji (1, p+ 1)φβ2σ2β

−1
1 |v, ~p, ~m〉

×〈v, ~p′, ~m′|φ−1E
φ(q)
ji E

(p+1)
ij (1, p+ 1) τγ2σ1γ

−1
1 |v, ~p′, ~m′〉

=
1

|HX ×HY |2|H ′
X ×H ′

Y |2m!p!

∑

R′

√
cRR′cTR′

hooksR′√
hooksRhooksT

mpδrw
∑

γ1,γ2∈H′
X
×H′

Y
∑

β1,β2∈HX×HY

∑

τ,φ∈Sm×Sp

〈vτ |Eτ(q)
ij E

(p+1)
ji (1, p+ 1)φβ2σ2β

−1
1 τ−1|vτ 〉)

×〈v′φ|Eφ(q)
ji E

(p+1)
ij (1, p+ 1) τγ2σ1γ

−1
1 φ−1|v′φ〉

(3.61)

We need to understand 〈vτ |Eτ(q)
ij E

(p+1)
ji (1, p+1) and 〈v′φ|Eφ(q)

ji E
(p+1)
ij (1, p+1) better. Consider

〈vτ |Eτ(q)
ij E

(p+1)
ji (1, p+ 1) first. Turn this into a ket state

(1, p+ 1)E
(p+1)
ij E

τ(q)
ji τ |v〉 = (1, p+ 1) τ E

τ−1(p+1)
ij E

(q)
ji |v〉

= τ (τ−1(1), τ−1(p+ 1))E
τ−1(p+1)
ij E

(q)
ji |v〉 (3.62)

Now, there are a few things we should note. First, recall that i 6= j. In the matrix element

〈vτ |Eτ(q)
ij E

(p+1)
ji (1, p+ 1)φβ2σ2β

−1
1 τ−1|vτ 〉 (3.63)

we know that φβ2σ2β
−1
1 τ−1 is an element in Sm × Sp and thus it is not able to swap vectors

between the Y and X slots. The product E
τ(q)
ij E

(p+1)
ji makes an X slot change as (imagine

acting to the right) j → i and a Y slot change as i → j. This amounts to exchanging an i

vector from X with a j vector from Y . The only way that the above matrix element can be

non-zero, is if (1, p+ 1) is able to swap these two back again. Thus, we can write

τ (τ−1(1), τ−1(p+ 1))E
τ−1(p+1)
ij E

(q)
ji |v〉 = τ E

τ−1(1)
ij E

τ−1(p+1)
ji E

τ−1(p+1)
ij E

(q)
ji |v〉
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=
∑

l∈Sj,m

δ(τ−1(p+ 1), l)τ E
τ−1(1)
ij E

(q)
ji |v〉

=
∑

l∈Sj,m

δ(τ−1(p + 1), l)



δ(τ−1(1), q) +
∑

r∈Sj,p

δ(τ−1(1), r) (q, r)



 τ |v〉 . (3.64)

Now, each of the terms in round brackets for which index r belongs to a string that loops

back to node j above makes the same contribution so that we have

(1, p+ 1)E
(p+1)
ij E

τ(q)
ji |vτ 〉 = nXjj(σ2)

∑

l∈Sj,m

δ(τ−1(p+ 1), l)δ(τ−1(1), q)|vτ〉 . (3.65)

The above equation is not exactly true (certain terms on the RHS have been dropped) but

it gives the correct result when plugged into (3.61). A very similar argument implies that

we can replace

(1, p+ 1)E
(p+1)
ji E

(φζq)(q)
ij |v′φ〉 = nXii (σ1)

∑

w∈S′
i,m

δ(φ−1(p+ 1), w)δ(φ−1(1), ζq(q))|v′φ〉 (3.66)

We can now use these results to compute

A =
nXii (σ1)n

X
jj(σ2)

|HX ×HY |2|H ′
X ×H ′

Y |2m!p!

∑

R′

√
cRR′cTR′

hooksR′√
hooksRhooksT

mpδrw

×
∑

γ1,γ2∈H′
X
×H′

Y

∑

β1,β2∈HX×HY

∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

∑

l∈Sj,m

∑

w∈S′
i,m

δ(τ−1(p+ 1), l)δ(φ−1(p+ 1), w)

δ(τ−1(1), q)δ(φ−1(1), ζq(q))〈vτ |φβ2σ2β−1
1 τ−1|vτ 〉 〈v′φ|τγ2σ1γ−1

1 φ−1|v′φ〉

=
nXii (σ1)n

X
jj(σ2)

|HX ×HY |2|H ′
X ×H ′

Y |2m!p!

∑

R′

√
cRR′cTR′

hooksR′√
hooksRhooksT

mpδrw

×
∑

γ1,γ2,γ∈H′
X
×H′

Y

∑

β1,β2,β∈HX×HY

∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

∑

l∈Sj,m

∑

w∈S′
i,m

δ(τ−1(p+ 1), l)δ(φ−1(p+ 1), w)

δ(τ−1(1), q)δ(φ−1(1), q)δ(τ−1φβ2σ2β
−1
1 β) δ(φ−1τγ2σ1γ

−1
1 γ)

=
nXii (σ1)n

X
jj(σ2)

|HX ×HY ||H ′
X ×H ′

Y |m!p!

∑

R′

√
cRR′cTR′

hooksR′√
hooksRhooksT

mpδrw

×
∑

γ1,γ2∈H′
X
×H′

Y

∑

β1,β2∈HX×HY

∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

∑

l∈Sj,m

∑

w∈S′
i,m

δ(τ−1(p+ 1), l)δ(φ−1(p+ 1), w)

δ(τ−1(1), q)δ(φ−1(1), q)δ(τ−1φβ2σ2β
−1
1 ) δ(φ−1τγ2σ1γ

−1
1 )

(3.67)

Now, we do the same trick as before, setting φ = αφ̃ and τ = ατ̃ . After performing

manipulations just like we did before we find

A =
nXii (σ1)n

X
jj(σ2)

|HX ×HY ||H ′
X ×H ′

Y |m!p!

∑

R′

√
cRR′cTR′

hooksR′√
hooksRhooksT

δrw
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×
∑

γ1,γ2∈H′
X
×H′

Y

∑

β1,β2∈HX×HY

∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

×
∑

l∈Sj,m

∑

w∈S′
i,m

δ(τ−1φ(w), l)δ(τ−1φ(q), q)δ(τ−1φβ2σ2β
−1
1 ) δ(φ−1τγ2σ1γ

−1
1 )

=
nXii (σ1)n

X
jj(σ2)

|HX ×HY ||H ′
X ×H ′

Y |
∑

R′

√
cRR′cTR′

hooksR′√
hooksRhooksT

δrw
∑

γ1,γ2∈H′
X
×H′

Y

∑

β1,β2∈HX×HY

∑

τ∈Sm×Sp

×
∑

l∈Sj,m

∑

w∈S′
i,m

δ(τ−1(w), l)δ(τ−1(q), q)δ(τ−1β2σ2β
−1
1 ) δ(τγ2σ1γ

−1
1 )

=
nXii (σ1)n

X
jj(σ2)

|HX ×HY ||H ′
X ×H ′

Y |
∑

R′

√
cRR′cTR′

hooksR′√
hooksRhooksT

δrw
∑

γ1,γ2∈H′
X
×H′

Y

∑

β1,β2∈HX×HY

×
∑

l∈Sj,m

∑

w∈S′
i,m

δ(γ2σ1γ
−1
1 (w), l)δ(γ2σ1γ

−1
1 (q), q) δ(β2σ2β

−1
1 γ2σ1γ

−1
1 ) .

(3.68)

Consider

∑

l∈Sj,m

∑

w∈S′
i,m

δ(γ2σ1γ
−1
1 (w), l) = nY+

ij (σ1) (3.69)

where nY+
ij (σ2) = nY+

ij (σ1) is the number of strings going from i to j in the Gauss graph

associated to the Y s. The fact that this nY+
ij (σ2) appears suggests that the strings stretching

between i and j in the Gauss graph associated to the Y s are participating, even though it is

the X Gauss graph that undergoes the transition. Thus

A =
nXii (σ1)n

X
jj(σ2)

|HX ×HY ||H ′
X ×H ′

Y |
∑

R′

√
cRR′cTR′

hooksR′√
hooksRhooksT

δrw
∑

γ1,γ2∈H′
X
×H′

Y

∑

β1,β2∈HX×HY

nY+
ij (σ2)δ(γ2σ1γ

−1
1 (q), q) δ(β2σ2β

−1
1 γ2σ1γ

−1
1 )

(3.70)

Next, consider the role of δ(γ2σ1γ
−1
1 (q), q). This tells us that a single string, which loops

back to the same brane, is plucked from brane i (or j) and reattached to brane j (or i). This

follows because the string which is plucked has startpoint q and end point γ2σ1γ
−1
1 (q). So

the delta function is setting the start point equal to the end point. Another way to say it is

that states with different values for the nYij or n
X
ij don’t mix - and this is why the terms in

the dilatation operator that mix X and Y commute with terms that mix X and Z and the

terms that mix Y and Z. The role of this delta function is also easy to interpret in terms of

the Gauss graph: the two Gauss graphs that mix, σ1 and σ2, are related by peeling a closed

loop from node i of σX1 (or σY1 ) and reattaching it to node j of σX2 (or σY2 ). This implies

that, as permutations, σ1 and σ2 are identical (recall that closed loops are 1 cycles).

If we peel a string from node i of σX1 and reattach it to node j of σX2 , the factor

nXii (σ1)n
X
jj(σ2) = nXii (σ1)(n

X
jj(σ1)+ 1) = (nXii (σ2)+ 1)nXjj(σ2) is the number of strings starting

29



and ending at node i before we peel a string off, multiplied by the number of strings starting

and ending at node j after we have attached the string.

Notice that the delta function δ(γ2σ1γ
−1
1 (q), q) reduces the full sum over γ1 and γ2 to

those elements of H ′
X×H ′

Y that leave q inert. This is a subgroup of (H ′
X×H ′

Y )∩ (HX×HY )

that we will denote Gσ1,q. Consequently, the size of this matrix element is

nXii (σ1)n
X
jj(σ2)n

Y+
ij (σ2)|Gσ1,q| (3.71)

Notice that

|Gσ1,q|
Nσ1

= nXii (σ1)
|Gσ1,q|
Nσ2

= nXjj(σ2) . (3.72)

These two formulas follow because Nσ counts the number of symmetries of the Gauss graph,

while |Gσ,q| counts the number of symmetries that don’t include permutations of the closed

loop corresponding to q. Thus, we finally see that the normalized matrix element is nothing

but

√
cRR′cTR′

hooksR′√
hooksRhooksT

δrw

√

nXii (σ1)n
X
jj(σ2)n

Y+
ij (σ2) . (3.73)

The evaluation of the fourth term is practically identical and will not be discussed.

3.3.2 Second Term

Now consider the second term

B =
|HX ×HY ||H ′

X ×H ′
Y |

m!p!

∑

jk

∑

s⊢m

∑

t⊢p

∑

~µ~ν

∑

lm

∑

x⊢m

∑

y⊢p

∑

~α~β

Γ(s,t)(σ1)jkΓ
(x,y)(σ2)lm

×B(s,t)→1HX×HY

j~µ B
(s,t)→1HX×HY

k~ν B
(x,y)→1H′

X
×H′

Y

l~α B
(x,y)→1H′

X
×H′

Y

m~β

∑

R′

cRR′

dTmp

(n +m+ p)dR′

√

fThooksT
fRhooksR

δrw〈~p, t, ν1; a|~p′, y, α1; b〉〈~p′, y, β1; b|E(1)
ji |~p, t, µ1; a〉

×〈~m, s, ν2; c|E(p+1)
ij |~m′, x, α2; d〉〈~m′, x, β2; d|~m, s, µ2; c〉

=
1

|HX ×HY |2|H ′
X ×H ′

Y |2m!p!

∑

R′

cRR′

dTmp

(n +m+ p)dR′

√

fThooksT
fRhooksR

δrw
∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

∑

γ1,γ2∈H′
X
×H′

Y

∑

β1,β2∈HX×HY

×δ~m~m′δ~p~p′〈v, ~p′, ~m′|τ−1E
(1)
ji φβ2σ2β

−1
1 |v, ~p, ~m〉

×〈v, ~p, ~m|φ−1E
(p+1)
ij τγ2σ1γ

−1
1 |v, ~p′, ~m′〉 .

(3.74)

For the above result to be nonzero it is clear that we need

~p = ~p′ ~m− î+ ĵ = ~m′ (3.75)
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as well as

~p = ~p′ ~m = ~m′ . (3.76)

Consequently, this term is only non-zero when i = j. In this case

B =
1

|HX ×HY |4m!p!

∑

R′

cRR′

dTmp

(n+m+ p)dR′

√

fThooksT
fRhooksR

δrw
∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

∑

γ1,γ2,γ∈HX×HY

∑

β1,β2,β∈HX×HY

×
∑

k∈Sj,m

δ(τ−1(1), k)δ(τ−1φβ2σ2β
−1
1 β)

×
∑

l∈Si,m

δ(φ−1(p+ 1), l)δ(φ−1τγ2σ1γ
−1
1 γ)

=
1

|HX ×HY |2m!p!

∑

R′

cRR′

dTmp

(n+m+ p)dR′

√

fThooksT
fRhooksR

δrw
∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

∑

γ1,γ2∈HX×HY

∑

β1,β2∈HX×HY

×
∑

k∈Sj,m

δ(τ−1(1), k)δ(τ−1φβ2σ2β
−1
1 )

×
∑

l∈Si,m

δ(φ−1(p+ 1), l)δ(φ−1τγ2σ1γ
−1
1 )

=
1

|HX ×HY |2m!p!

∑

R′

cRR′

dT
(n+m+ p)dR′

√

fThooksT
fRhooksR

δrw
∑

τ∈Sm×Sp

∑

φ∈Sm×Sp

∑

γ1,γ2∈HX×HY

∑

β1,β2∈HX×HY

×
∑

k∈Sj,m

m
∑

r=1

δ(τ−1(m), k)
∑

l∈Si,m

p+m
∑

s=p+1

δ(φ−1(s), l)δ(τ−1φβ2σ2β
−1
1 )δ(φ−1τγ2σ1γ

−1
1 )

=
1

|HX ×HY |2
∑

R′

cRR′

dTp

(n+m+ p)dR′

√

fThooksT
fRhooksR

δrw
∑

τ∈Sm×Sp

∑

γ1,γ2∈HX×HY

∑

β1,β2∈HX×HY

×n+,X
i n+,Y

i δ(τ−1β2σ2β
−1
1 )δ(τγ2σ1γ

−1
1 )

=
1

|HX ×HY |2
∑

R′

cRR′

dT
(n +m+ p)dR′

√

fThooksT
fRhooksR

δrw
∑

γ1,γ2∈HX×HY

∑

β1,β2∈HX×HY

×n+,X
i n+,Y

i δ(β2σ2β
−1
1 γ2σ1γ

−1
1 )

=
∑

R′

cRR′

dT
(n +m+ p)dR′

√

fThooksT
fRhooksR

δrw
∑

β1,β2∈HX×HY

n+,X
ii n+,Y

ii δ(β2σ2β
−1
1 σ1)
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(3.77)

In summary, and perhaps writing it a bit more clearly, we have

B =
|HX ×HY ||H ′

X ×H ′
Y |

m!p!

∑

jk

∑

s⊢m

∑

t⊢p

∑

~µ~ν

∑

lm

∑

x⊢m

∑

y⊢p

∑

~α~β

Γ(s,t)(σ1)jkΓ
(x,y)(σ2)lm

×B(s,t)→1HX×HY

j~µ B
(s,t)→1HX×HY

k~ν B
(x,y)→1H′

X
×H′

Y

l~α B
(x,y)→1H′

X
×H′

Y

m~β

∑

R′

cRR′

dTmp

(n+m+ p)dR′

√

fThooksT
fRhooksR

δrw〈~p, t, ν1; a|~p′, y, α1; b〉〈~p′, y, β1; b|E(1)
ji |~p, t, µ1; a〉

×〈~m, s, ν2; c|E(p+1)
ij |~m′, x, α2; d〉〈~m′, x, β2; d|~m, s, µ2; c〉

= δ~p~p′δ~m~m′

∑

R′
i

cRR′
i

dT
(n +m+ p)dR′

√

fThooksT
fRhooksR

δrw
∑

β1,β2∈HX×HY

n+,X
i n+,Y

i δ(β2σ2β
−1
1 σ1)

(3.78)

Notice that this term is already diagonal in the Gauss graph basis. Notation: n+,X
i is the

number of strings ending on node i of the X Gauss graph; nXii is the number of strings

starting on and then looping back to end on node i of the X Gauss graph.

The evaluation of the third term is practically identical and will not be discussed.

3.3.3 Final Answer

In this section we will summarize the action of the term in the dilatation operator that mixes

Xs and Y s on the Gauss operators.

Figure 2: The Gauss graph on the left is described by σ1, while the Gauss graph on the right

is described by σ2. To make a transition between the two pairs of Gauss graphs shown, we

pluck a string from node i of the X graph on the left and attach it to node j of the X graph

on the right. The numbers which participate are (i) the number of strings nYij stretching

between nodes i and j of the Y graph, (ii) the number of strings attached to node i of the

X graph before a string is removed nXii (σ1) = nXii (σ2) + 1 and (iii) the number of strings

attached to the node j of the X graph after a string is attached nXii (σ1) + 1 = nXii (σ2).
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Here is the final answer for matrix elements of D taken with normalized operators. The

diagonal terms are

〈O†
R,r(σ)DXYOR,r(σ)〉 = 2

p
∑

i=1

cRR′
i

li

(

n(σ)+X
i n(σ)+Y

i − n(σ)+X
ii n(σ)+Y

ii

)

(3.79)

Now, consider an off diagonal term. One possible non-zero matrix element corresponds to

the case that the X Gauss graph changes, by detaching a loop from node i of the σX1 Gauss

graph and reattaching it to node j. The matrix element describing this process is (recall

that we only ever get a non-zero matrix element if nYij(σ1) = nYij(σ2) and n
X
ij (σ1) = nXij (σ2))

〈O†
R,r(σ1)DXYOR,r(σ2)〉 = −

√

cRR′cTR′

lilj
nYij(σ1)

√

nXii (σ1)(n
X
jj(σ1) + 1) (3.80)

Another non-zero matrix element is obtained when the Y Gauss graph changes, by detaching

a loop from node i of the σY1 Gauss graph and reattaching it to node j. The matrix element

describing this process is

〈O†
R,r(σ1)DXYOR,r(σ2)〉 = −

√

cRR′cTR′

lilj
nXij

√

nYii (σ1)(n
Y
jj(σ1) + 1) (3.81)

This gives a complete description of the action of the term in the dilatation operator that

mixes Xs and Y s on the Gauss operators.

3.4 Diagonalization

To understand the structure of the diagonalization problem, lets start off with a warm up

problem. This will also be an example of the use of the formulas (3.79), (3.80) and (3.81),

which will allow the reader to test her understanding of our result. Consider the Gauss

graphs shown in figure 3. Using the formulas from the previous section, there is a transition

between |1〉 and |2〉. To understand how we have labeled the dots, we must detach a loop

from black node 3 of |1〉 and attach it to black node 2 of |2〉. Denote the Gauss graph

correspodning to |1〉 by σ1 and the Gauss graph of |2〉 by σ2. We have nX23(σ1) = 1 (read

from the red Gauss graph), nY22(σ1) + 1 = 2 read from |1〉 and nY33(σ1) = 1 read from |1〉.
Thus, in total the matrix element is

−
√

(N + l2)(N + l3)

l2l3

√
2 (3.82)

As a second example, the matrix element for the transition between |2〉 and |3〉 is

−
√

(N + l1)(N + l3)

l1l3
(3.83)
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Figure 3: The 10 states that appear in our first example are defined in the figure above.

For the 10 states shown, we have the off diagonal piece of the dilatation operator given by

−
√

(N + l1)(N + l2)

l1l2
M12 −

√

(N + l2)(N + l3)

l2l3
M23 −

√

(N + l1)(N + l3)

l1l3
M13 (3.84)

where

M12 =





































0 0 −
√
2 0 −

√
2 0 0 0 0 0

0 0 0 −2 0 0 0 0 −
√
3 0

−
√
2 0 0 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0 0 −
√
3

−
√
2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 −
√
3 0 0 0 0 0 0 0 0

0 0 0 −
√
3 0 0 0 0 0 0





































(3.85)
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M23 =





































0 −
√
2 0 0 0 −

√
2 0 0 0 0

−
√
2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 0 −
√
3 0

0 0 0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

−
√
2 0 0 0 0 0 0 0 0 0

0 0 −2 0 0 0 0 −
√
3 0 0

0 0 0 0 0 0 −
√
3 0 0 0

0 0 −
√
3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





































(3.86)

M13 =





































0 0 0 −
√
2 0 0 −

√
2 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

−
√
2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −2 0 0 0 −
√
3

0 0 0 0 −2 0 0 −
√
3 0 0

−
√
2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −
√
3 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 −
√
3 0 0 0 0 0





































(3.87)

and we have the on diagonal piece of the dilatation operator given by

(N + l1)

l1
M11 +

(N + l2)

l2
M22 +

(N + l3)

l3
M13 (3.88)

where

M11 =





































2 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 4 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 6





































(3.89)
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M22 =





































2 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 6 0

0 0 0 0 0 0 0 0 0 0





































(3.90)

M33 =





































2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 4 0 0 0 0

0 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 0 6 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





































(3.91)

To get some insight into the structure of these matrices, note that the matrix

M =M11 +M22 +M33 +M12 +M23 +M13 (3.92)

has eigenvalues 0, 3, 3, 6, 6, 6, 9, 9, 9, 9. The even spacing and the degeneracy of the eigenval-

ues matches the weights of the symmetric representation of SU(3). This strongly

suggests that, we can understand the off diagonal pieces of the dilatation operator as rais-

ing/lowering operators of some SU(k) representations, with k ≤ g. Recall that g is the

number of rows in our restricted Schur polynomials. This guess turns out to be correct as

we now explain.

First, we need to define a bijection between the Gauss graphs that mix and the states of a

particular unitary group representation. Lets start by considering a situation for which the Y

Gauss graph is fixed and we have transitions between different X Gauss graphs. We can only

have transitions of closed loops between nodes i and j in the X Gauss graph if nYij(σ) 6= 0.

Denote the number of connected components of σY by C. Each connected component is a

set of directed line segments running between nodes. Let c denote the number of connected

components that have more than a single node. Let the number of nodes in each of these

connected components be ni, i = 1, ..., c. The irreducible representation that organizes the

σX graphs is an irreducible representation of the group

SU(n1)× SU(n2)× · · · × SU(nc) (3.93)
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Focus on one of the connected components, say the jth connected component. Assume that

there are a total of ñ closed loops attached to nodes of σX that belong to this connected

component. The irreducible representation of the SU(nj) factor in the above group that

plays a role is labeled by a Young diagram that has a single row containing ñ boxes. We now

want to give the map between different X Gauss graphs and states of this representation.

Number the nodes in the jth connected component from 1 up to nj. Consider an X Gauss

graph that has n11 strings attached to node 1, n22 to node 2, and so on up to nnjnj
attached

to node nj . The Gelfand-Tsetlin pattern for this state

|M〉 =

















m1,nj
m2,nj

. . . mnj−1,nj
mnjnj

m1,nj−1 m2,nj−1 . . . mnj−1,nj−1

. . . . . . . . .

m1,2 m2,2

m1,1

















has mp,q = 0 for p > 1 and

m1,q =

q
∑

i=1

nii (3.94)

This completes our discussion of how the Gauss graphs are organized, for a fixed σY . To

complete the discussion note that there is a completely parallel argument with the roles of

σX and σY switched.

As a concrete example, the Gauss graph in figure 4 corresponds to the Gelfand-Tsetlin

pattern

|M〉 =







n11 + n22 + n33 0 0

n11 + n22 0

n11







This map between Gelfand-Tsetlin patterns and operators labeled by Gauss graphs turns

out to be useful because we know the matrix elements of the Lie algebra elements in the

Gelfand-Tsetlin basis. For example, let us consider the lowering operator Ei,i+1. This will

shift nii → nii − 1 and ni+1,i+1 → ni+1,i+1 + 1. The net effect of these shifts in the Gelfand-

Tsetlin pattern is to replace mi,k → mi,k − 1; we will denote this pattern by M−
i . The

Gauss graph corresponding toM−
i is obtained from the Gauss graph corresponding toM by

peeling a closed loop from node i and reattaching it to node i+ 1. We have already studied

the matrix element of the dilatation operator that mixes these two Gauss graphs and have

found

−
√

cRR′cTR′

lili+1
nYi,i+1(σ)

√

nXii (σ)(n
X
i+1,i+1(σ) + 1) (3.95)

where σ describes the state with Gelfand-Tsetlin pattern M . According to [43] the matrix

element for the lowering operator, written in terms of the entries of the Gelfand-Tsetlin
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pattern, is

〈M−
i |Ei,i+1|M〉 =

√

√

√

√−
∏l+1

k′=1(mk′,l+1 −mk,l + k − k′ + 1)
∏l−1

k′=1(mk′,l−1 −mk,l + k − k′)
∏l

k′=1,k′ 6=k(mk′,l+1 −mk,l + k − k′ + 1)(mk′,l+1 −mk,l + k − k′)
(3.96)

Figure 4: The Gauss graph is shown in black. Closed loops can detach from a node and

reattach to another node.

Plugging in the patterns for the two Gauss graphs that mix, it is straight forward to see

that (3.96) evaluates to

√

nXii (σ)(n
X
i+1,i+1(σ) + 1) (3.97)

Comparing to (3.95) we see that the off diagonal term of the dilatation operator that we are

considering is in fact

−
√

cRR′cTR′

lili+1
nYi,i+1(σ)Ei,i+1 (3.98)

We will state the result for the general case, for which loops move on both the X and Y

Gauss graphs, using an example for illustration. The Gauss graph relevant for this example

is show in figure 5.

Note that σX has two connected components, one which has 2 nodes and one which has

4 nodes. Consequently the group relevant for the organization of the Y s is SU(2)× SU(4).
Counting closed loops on the nodes in σY grouped by the connected components of σX we
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Figure 5: The graph on the left is σX . The graph on the right is σY . Each node label in the

above diagrams corresponds to a row number of Young diagram R in the restricted Schur

polynomial χR,(t,s,r)~µ~ν . The Gauss graphs shown correspond to an R with 6 long rows.

find that the representation of SU(2) we need is while the representation of SU(4) we

need is . Also, σY has three connected components, each of which has 2 nodes.

Consequently the group relevant for the organization of the Y s is SU(2)× SU(2)× SU(2).
Counting closed loops on the nodes in σX grouped by the connected components of σY we

find that the three representations for the three different SU(2) groups we have are ,

and . Denoting the groups that appear with a superscript

G(1) ×G(2) ×G(3) ×G(4) ×G(5) = SU(2)× SU(4)× SU(2)× SU(2)× SU(2) (3.99)

we can write the off diagonal terms in the dilatation operator as (the superscript on the Lie

algebra element tells you which group it belongs to)

Doff diagonal = −
√

(N + l3)(N + l4)

l3l4
(E

(2)
12 + E

(2)
21 )−

√

(N + l4)(N + l5)

l4l5
(E

(2)
23 + E

(2)
32 )

−
√

(N + l5)(N + l6)

l5l6
(E

(2)
34 + E

(2)
43 )−

√

(N + l6)(N + l3)

l6l3
(E

(2)
14 + E

(2)
41 )

−2
√

(N + l1)(N + l2)

l1l2
(E

(1)
12 + E

(1)
21 )− 2

√

(N + l3)(N + l4)

l3l4
(E

(3)
12 + E

(3)
21 )

−2
√

(N + l3)(N + l4)

l3l4
(E

(4)
12 + E

(4)
21 )− 2

√

(N + l3)(N + l4)

l3l4
(E

(5)
12 + E

(5)
21 )(3.100)

The specific representation we should use for each Lie algebra has been spelt out above.
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3.5 Conclusions and Discussion

In this chapter we have evaluated certain subleading terms in the action of the dilatation

operator in the su(3) sector. The operators we have studied have a classical dimension

that scales as N . Consequently, even at large N , non-planar diagrams need to be summed

and the limit we study is quite distinct from the planar limit. There is by now growing

evidence that the dilatation operator in the large N but non-planar limit can be mapped

into the Hamiltonian of a set of decoupled oscillators and hence that this limit of the theory

continues to enjoy integrability. In the su(2) sector, a new conservation law has been found.

The corrections that we have evaluated spoil this new conservation law and consequently,

these terms may be the first indiactions that the limit we consider is not integrable.

Our results clearly show that although the new terms do spoil the old conservation law,

the system that emerges continues to be integrable. Indeed, the terms in the Hamiltonian

that mix X and Z or Y and Z commute with the terms that mix X and Y , so that we

simply need to change basis inside eigenspaces of fixed anomalous dimension. This change

of basis has been reduced to the problem of diagonalizing certain elements in the Lie algebra

of a well defined representation of a definite product of special unitary groups (the specific

representation and product can be read off of the Gauss graphs as we explained in the last

section). This is a solved problem in group theory.

The term in the dilatation operator that mixes X and Y does not act on the Z labels.

The eigenproblem in the Z label, after moving to the Gauss operator basis, reduces to an

oscillator problem[27]. The eigenvalues of the term in the dilatation operator that mixes

X and Y sets the ground state energy of these oscillators. Note however that the BPS

operators, which correspond to Gauss graphs with loops that start and end on the same

node but no directed segments between nodes, are annihilated by the term in the dilatation

operator that mixes X and Y , so that these operators remain BPS even when the corrections

we have computed are included.
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4 Higher Loop Non-planar Anomalous Dimensions

In this chapter we consider the action of the dilatation operator at higher loops in the su(2)

sector. The restricted Schur polynomials we consider are built only from the two adjoint

scalars Z and Y . In other words we set p = 0 in (2.9). The one loop and two loop answers

for the spectrum of anomalous dimensions show an interesting pattern. The action of the

dilatation operator at one loop and at two loops factorizes into a piece that acts only on

the r label - i.e. on the Z fields and a piece that acts only on the s and ~µ labels, i.e. on

the Y fields. Further, at one loop and at two loop the factor that acts on the Y fields is

identical[31]. This prompts a very natural question: does this persist at higher loops? In

this chapter we will argue that it does.

A brute force field theoretic approach to this problem seems hopeless. Here however,

we can take some guidance from progress made in the planar sector of the theory [44].

Indeed, working in the su(2|3) sector of theory and using the symmetry algebra as well as

structural features from field theory, a great deal of information was obtained about higher

loop corrections to the dilatation operator[44]. In the su(2) sector that we study, we have

operators ~J that generate an SU(2) subgroup of the full SU(4) R symmetry enjoyed by the

theory. The ~J rotate the Y and Z fields amongst each other. Since their eigenvalues are fixed

by the su(2) algebra, we know that these generators do not receive quantum corrections. One

of our results is a concrete expression for the action of these generators, in the large N limit,

on restricted Schur polynomials. This is described in section 4.1. In contrast to the operators
~J the dilatation operator does receive quantum corrections. Since the operators ~J commute

with the dilatation operator, we do have some information about higher loop corrections.

Using this algebra, together with the large N limit and the constraints that follow from the

fact that the dilatation operator is constructed by summing Feynman diagrams, we will give

compelling evidence that the factor in the dilatation operator that acts on the Y s is given by

the one loop expression at any loop order. Concretely, the algebra
[

~J,D
]

= 0 implies a set of

recursion relations, hermitticity of the dilatation operator equates certain matrix elements of

D and the fact that we work at large N implies that we can neglect changes in Young diagram

r and further that the relation between R and r is preserved by D1. The derivation of these

recursion relations and the structure of the dilatation operator and a demonstration that

they determine the one loop dilatation operator is carried out in section 4.2. This analysis is

most easily extended to higher loops by employing a continuum limit. The structure of this

continuum limit is developed in section 4.3. In section 4.4 we demonstrate that the recursion

relations derived in section 4.2 are replaced by partial differential equations. These partial

differential equations describe all higher loops corrections to the dilatation operator. As we

explain in section 4.4, they can be solved rather completely.

1r is obtained by removing boxes from R. When we say that the relation between R and r is preserved

by D, we mean that D will only mix operators that are obtained by pulling the same number of boxes from

each row of the big Young diagram R to obtain r.
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The fact that the factor in the dilatation operator that acts on the Y s is given by the one

loop expression at any loop order is not completely unexpected. Indeed, the diagonalization

of this factor, achieved in general in [28], gives the set of states that is consistent with the

Gauss Law constraints on a compact giant graviton world volume[24]. We expect these

constraints to be satisfied at any order in the loop expansion, because the Gauss Law is an

exact statement.

For simplicity we have restricted ourselves to the sector of the theory that is dual to a

system of two giant gravitons. It would be straight forward but rather tedious to extend this

to systems of more than two giant gravitons. A much more interesting generalization is to

go beyond the su(2) sector, because symmetry is not very constraining in the su(2) sector.

This follows because the dilatation operator is abelian and not part of a bigger algebra.

Restricted Schur polynomials for the su(2|3) sector have been derived in [45] and the use of

symmetry in this sector would represent a very interesting generalization.

Another problem that should be tackled is to determine the factor in the dilatation op-

erator that acts on the Z label. Understanding this factor, together with the results of this

chapter, would allow a determination of the exact large N anomalous dimensions. This is

not as unexpected as one might expect. Indeed, the operators we study are dual to giant

gravitons. One expects the local relativistic invariant world volume theory dynamics to

emerge from the sector of the theory we are considering. This picture suggests a relatively

simple expression for the anomalous dimensions, determined by relativistic dispersion rela-

tions. The simplicity we find in this chapter is the first signal that this expectation is correct.

For closely related discussions see [46, 47].

4.1 Action of su(2) elements on restricted Schur polynomials

In this section our goal is to compute the action of the generators J± and J3 on restricted

Schur polynomials. We will freely make use of the results obtained in [26] in this section.

Recall that in terms of the complex coordinates z and y, we can realize the su(2) algebra as

follows

J+ = y
∂

∂z
, J− = z

∂

∂y
, J3 = y

∂

∂y
− z ∂

∂z
. (4.1)

This follows because SU(2) rotates the complex coordinates into each other. These genera-

tors close the usual algebra

[

J+, J−
]

= J3,
[

J3, J±
]

= ±2J± . (4.2)

When acting on the restricted Schur polynomials the generators are

J+ = Tr

(

Y
d

dZ

)

, J− = Tr

(

Z
d

dY

)

, J3 = Tr

(

Y
d

dY

)

− Tr

(

Z
d

dZ

)

. (4.3)
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This follows because the SU(2) R-symmetry rotates the matrices Z and Y into each other.

In what follows we will again make use of the identity (3.3).

Consider a system of g giant gravitons, i.e. the Young diagrams labeling the restricted

Schur polynomials have a total of g rows. Our operators are built using n Zs and m Y s,

with n≫ m. With p = 0 (2.9) becomes

χR,(r,s)~µ(Z, Y ) =
1

n!m!

∑

σ∈Sn+m

Tr(r,s)~µ
(

ΓR(σ)
)

Tr(σY ⊗m ⊗ Z⊗n) . (4.4)

We now have only one multiplicity label ~µ, which resolves the different copies of s ⊢ m. As

before, the restricted trace can be written in terms of an intertwining map PR,(r,s)~µ as

Tr(r,s)~µ (· · · ) = Tr
(

PR,(r,s)~µ · · ·
)

(4.5)

which factorizes as[26]

PR,(r,s)~µ = ps~µ ⊗ 1r (4.6)

It is possible to compute PR,(r,s)~µ explicitly for restricted Schur polynomials that are labeled

by Young diagrams R with long rows and well separated corners[26]. We call this the

displaced corners approximation. Recall that n≫ m and that R has g long rows. We hold

g fixed and order 1 as we take N → ∞. In this limit the difference in the lengths of the

corresponding rows of R and r can be neglected. Let Vg be a g dimensional vector space. In

the construction of the projectors we removed m boxes from R to produce r with each box

represented by a vector in Vg. The matrix Eij acting in Vg is a g × g matrix with a 1 in the

ith row and jth column, and zeros elsewhere. The space V ⊗ k
g obtained by tensoring k copies

of Vg will also play a role in what follows. The matrix E
(a)
ij acts as Eij on the ath copy of

Vg in V ⊗ k
g and as the identity on all other copies. In the displaced corners approximation

the multiplicity label is a pair of Gelfand-Tsetlin patterns. Both the space V ⊗ k
g as well as

the E
(a)
ij will play an important role in the computations that follow. For more details and

background see [26]. Consider the action of J−

J−χR,(r,s)~µ(Z, Y ) = Tr

(

Z
d

dY

)

χR,(r,s)~µ(Z, Y )

=
m

n!m!

∑

σ∈Sn+m

Tr(r,s)~µ
(

ΓR(σ)
)

Tr(σY ⊗m−1 ⊗ Z⊗n+1)

=
m

n!m!

∑

σ∈Sn+m

Tr(r,s)~µ
(

ΓR(σ)
)

∑

T,(t+,u−)~ν

dT (n + 1)!(m− 1)!

dt+du−(n+m)!
χT,(t+,u−)~ν∗(σ

−1)χT,(t+,u−)~ν(Z, Y )

=
∑

T,(t+,u−)~ν

dT (n+ 1)

dt+du−(n +m)!

(n+m)!

dT
δRTTrR⊕T (PR,(r,s)~µPT,(t+,u−)~ν∗)χT,(t+,u−)~ν(Z, Y )

=
∑

(t+,u−)~ν

n+ 1

dt+du−
TrR(PR,(r,s)~µPR,(t+,u−)~ν∗)χR,(t+,u−)~ν(Z, Y ) . (4.7)
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In the above expression t+ is a Young diagram with n + 1 boxes, t+ ⊢ n + 1. The +

superscript indicates that a box has been added to t. Similarly u− ⊢ m − 1 with the −
superscript indicating that a box has been removed from u. Let us now discuss how to

perform the trace in the above expression. Using the factorized form of the intertwining

map in (4.6), we have[26]

TrR(PR,(r,s)~µPR,(t+,u−)~ν∗) = TrR(ps~µ ⊗ 1r · pu−~ν∗ ⊗ 1t+) . (4.8)

The only way that this trace can be non-zero is if it is possible for t+ to subduce r. Write

the projector 1t+ in terms of its action on the mth slot and 1r. As an example to illustrate

the idea, consider

1 = E
(m)
11 ⊗ 1 + E

(m)
22 ⊗ 1 . (4.9)

In the same way, if t+′
i = r we have2

1t+ = E
(m)
ii ⊗ 1r + · · · (4.10)

where · · · collects the terms that don’t contribute to the value of the trace. Consequently,

in the displaced corners approximation we find[26]

TrR(PR,(r,s)~µPR,(t+,u−)~ν∗) = TrR(ps~µ ⊗ 1r · pu−~ν∗ ⊗ 1t+)

=
∑

i

drTrV ⊗m
g

(ps~µ · pu−~ν∗ ⊗ E(m)
ii )δt+′

i r . (4.11)

To proceed further, recall that the multiplicity labels ~µ and ~ν stand for Gelfand-Tsetlin

patterns, that is, states of U(g). In addition, Eii = |~v(i)〉〈~v(i)| and there is no sum on i.

The state |~v(i)〉 is a state in the fundamental of U(g) - it is a g dimensional vector of zeros

except for the ith entry which is a 1. The projector ps~µ is[26]

ps~µ =
ds
∑

a=1

|Mµ1
s , a〉〈Mµ2

s , a| (4.12)

where |Mµ1
s , a〉 is a state labeled by a Gelfand-Tsetlin pattern. Mµ1

s is the pattern and a

labels states inside symmetric group irreducible representation s. This state is obtained by

taking a suitable linear combination of tensor products of m copies (one for each slot) of

the fundamental representation of U(g). Rewrite this state as a linear combination of states

which are each the tensor product of the fundamental representation for the mth slot, with

a state obtained by taking the tensor product of states of the remaining m− 1 slots3

|Mµ1
s , a〉 =

∑

M
α1
s′
,M l

F

CM
µ1
s

M
α1
s′
,M l

F

|Mα1
s′ , b〉 ⊗ |M l

F 〉 . (4.13)

2t+′

i is the Young diagram obtained by dropping a box from the ith row of t+.
3It is useful to spell out the index structure of the next equation. The index a runs over states in Sm

irreducible representation s. The index b runs over states in irreducible representations s′ subduced by s

when Sm is restricted to Sm−1. We can thus put a and the sets of different b indices (one for every s′) into

correspondence.
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|M l
F 〉 stands for a state in the fundamental representation of U(g), |M l

F 〉 = |~v(l)〉. When

E
(m)
ii acts on |Mµ1

s , a〉 it will pick out the piece with l = i. Thus,

TrV ⊗m
g

(ps~µ · pu−~ν∗ ⊗ E(m)
ii ) = CM

µ1
s

M
α1
s′
,M i

F

CM
µ2
s

M
α2
s′
,M i

F

TrV ⊗m−1
g

(ps′~α · pu−~ν∗)
= du−C

M
µ1
s

M
ν1
u−
,M i

F

CM
µ2
s

M
ν2
u−
,M i

F

. (4.14)

The Clebsch-Gordan coefficient can be written is in terms of bras and kets as follows

CM
µ1
s

M
ν1
u−
,M i

F

= 〈ν1 ⊗ ~v(i)|µ1〉 . (4.15)

Using this notation we finally have

TrR(PR,(r,s)~µPR,(t+,u−)~ν∗) =
∑

i

drdu−〈µ2|ν2 ⊗ ~v(i)〉〈ν1 ⊗ ~v(i)|µ1〉δt+′
i r . (4.16)

Thus,

J−χR,(r,s)~µ(Z, Y ) =
∑

(t+,u−)~ν

n + 1

dt+du−
TrR(PR,(r,s)~µPR,(t+,u−)~ν∗)χR,(t+,u−)~ν

=
∑

(t+,u−)~ν

∑

i

δRT δt+′
i r

(n+ 1)dr
dt+

〈µ2|ν2 ⊗ ~v(i)〉〈ν1 ⊗ ~v(i)|µ1〉χR,(t+,u−)~ν . (4.17)

We want the action on normalized operators. The two point function of our operators are[15]

〈χR,(r,s)~µ(Z, Y )χ†
T,(t,u)~ν(Z, Y )〉 = δRT δrtδsuδ~µ~ν

fRhooksR
hooksrhookss

. (4.18)

By rescaling we can get operators with two point function equal to 1. Denote these by

OR,(r,s)~µ(Z, Y ). Acting on the normalized operators we have

J−OR,(r,s)~µ(Z, Y ) =
∑

T,(t+,u−)~ν

(J−)T,(t+,u−)~ν , R,(r,s)~µOT,(t+,u−)~ν(Z, Y ) (4.19)

where

(J−)T,(t+,u−)~ν ,R,(r,s)~µ =

√

hooksrhookss
hookst+hooksu−

×
∑

i

δRT δt+′
i r

(n+ 1)dr
dt+

〈µ2|ν2 ⊗ ~v(i)〉〈ν1 ⊗ ~v(i)|µ1〉

=

√

hookst+hookss
hooksrhooksu−

∑

i

δRT δt+′
i r〈µ2|ν2 ⊗ ~v(i)〉〈ν1 ⊗ ~v(i)|µ1〉 . (4.20)

Very similar arguments give

J+OR,(r,s)~µ(Z, Y ) =
∑

T,(t−,u+)~ν

(J+)T,(t−,u+)~ν , R,(r,s)~µOT,(t−,u+)~ν(Z, Y ) (4.21)
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where

(J+)T,(t−,u+)~ν , R,(r,s)~µ =

√

hooksrhookss
hookst−hooksu+

×
∑

i

δRT δt−r′i(m+ 1)
ds
du+
〈µ2 ⊗ ~v(i)|ν2〉〈ν1|µ1 ⊗ ~v(i)〉

=

√

hooksrhooksu+

hookst−hookss

∑

i

δRT δt−r′i〈µ2 ⊗ ~v(i)|ν2〉〈ν1|µ1 ⊗ ~v(i)〉 (4.22)

and

J3OR,(r,s)~µ(Z, Y ) =
∑

T,(t,u)~ν

(J3)T,(t,u)~ν , R,(r,s)~µOT,(t,u)~ν(Z, Y ) (4.23)

where

(J3)T,(t,u)~ν ,R,(r,s)~µ = δRT δtrδusδ~µ~ν(m− n) . (4.24)

Our main interest is in the case of 2 rows. This is the simplest setting in which to

develop our arguments because in this case there are no multiplicities for the irreducible

representations that organize the Y fields. We will make use of a vector ~m which summarizes

how to obtain r from R. Consider OR,(r,s). The vector ~m = (m1, m2) tells us how boxes

should be removed from R to obtain r. Denoting the row lengths of R by (R1, R2) and of r

by (r1, r2), we have R1 = r1 +m1 and R2 = r2 +m2. As explained in Appendix E.1 of [26],

we can trade the irreducible representation s organizing the Y fields and ~m for an SU(2)

state. In the new labelling, we specify an operator (which belongs to the sector of the theory

constructed using n Zs and m Y s) by giving the Young diagram r and an SU(2) state with

labels (j, j3) where
4

s = (j, j3) ←→ s1 =
m+ 2j

2
, s2 =

m− 2j

2
, j3 =

m1 −m2

2
. (4.25)

We will use the j, j3 notation in what follows.

We know that J+ removes a Z box and adds a Y box. Thus, it could have the following

possible actions on r, the irreducible representation organizing the Zs (the box to be removed

has a − sign in it - i.e. drop the box with the − sign)

−→
−

j3, r1, r2 j3 +
1

2
, r1 − 1, r2

OR

4si denote the row lengths of s.
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−→ −
j3 − 1

2
, r1, r2 − 1 (4.26)

It is trivial to understand how the row lengths r1 and r2 change when the box shown is

dropped. To understand the changes in j3, note the following: J+ does not change the shape

of R so that if we know how r changes, we know how ~m changes. In the first possibility

above we remove a box from the first row of r which implies that m1 grows by 1 and hence

that j3 grows by 1
2
. In the second possibility above we remove a box from the second row of

r which implies that m2 grows by 1 and hence that j3 decreases by 1
2
. Since we have added

a Y box, J+ can have the following action on s (the box that has been addded has a + in it)
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−→
+

j j +
1

2

OR

−→ +

j − 1

2
(4.27)

Consequently we have5

J+O
(n,m)(r1, j, j

3) = A+O
(n−1,m+1)(r1 − 1, j +

1

2
, j3 +

1

2
) +B+O

(n−1,m+1)(r1 − 1, j − 1

2
, j3 +

1

2
)

+C+O
(n−1,m+1)(r1, j +

1

2
, j3 − 1

2
) +D+O

(n−1,m+1)(r1, j −
1

2
, j3 − 1

2
) . (4.28)

We will describe the computation of A+ in detail. From (4.22) we have

A+ =

√

hooksr
hookst−

√

hooksu+

hookss

(

〈j, j3; 1
2
,
1

2
|j + 1

2
, j3 +

1

2
〉
)2

(4.29)

where
√

hooksr
hookst−

=

√

(r1 + 1)(r1 − r2)
(r1 − r2 + 1)

√

hooksu+

hookss
=

√

m+ 2j + 4

2

2j + 1

2j + 2
(

〈j, j3; 1
2
,
1

2
|j + 1

2
, j3 +

1

2
〉
)2

=
j + j3 + 1

2j + 1
. (4.30)

Putting the above factors together, we find

A+ =

√

(r1 + 1)(r1 − r2)
(r1 − r2 + 1)

√

m+ 2j + 4

2

2j + 1

2j + 2

j + j3 + 1

2j + 1
. (4.31)

In the large N limit this simplifies to

A+ =
√
r1

√

m+ 2j + 4

2

2j + 1

2j + 2

j + j3 + 1

2j + 1
. (4.32)

5Note that we don’t need to display r2 since r2 = n− r1.
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Very similar arguments imply that

B+ =
√
r1

√

m− 2j + 2

2

2j + 1

2j

j − j3
2j + 1

,

C+ =
√
r2

√

m+ 2j + 4

2

2j + 1

2j + 2

j − j3 + 1

2j + 1
,

D+ =
√
r2

√

m+ 2j + 4

2

2j + 1

2j

j + j3

2j + 1
. (4.33)

Next, consider the action of J−. We know that J− removes a Y box and adds a Z

box. Thus, it could have the following possible actions on r, the irreducible representation

organizing the Zs (the box added has a + sign in it)

−→
+

j3, r1, r2 j3 − 1

2
, r1 + 1, r2

OR

−→ +

j3 +
1

2
, r1, r2 + 1 (4.34)

Since we have removed a Y box, J− can have the following action on s (the box removed

has a − in it)

−→
−

j j − 1

2

OR

−→ −
j +

1

2
(4.35)

Consequently we have

J−O
(n,m)(r1, j, j

3) = A−O
(n+1,m−1)(r1 + 1, j +

1

2
, j3 − 1

2
) +B−O

(n+1,m−1)(r1 + 1, j − 1

2
, j3 − 1

2
)

+C−O
(n+1,m−1)(r1, j +

1

2
, j3 +

1

2
) +D−O

(n+1,m−1)(r1, j −
1

2
, j3 +

1

2
) . (4.36)

To compute A−, note that (4.20) implies that

A− =

√

hookst+

hooksr

√

hookss
hooksu−

(

〈j, j3|1
2
,
1

2
; j +

1

2
, j3 − 1

2
〉
)2

(4.37)
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where

√

hookst+

hooksr
=

√

(r1 + 2)(r1 − r2 + 1)

(r1 − r2 + 2)
√

hookss
hooksu−

=

√

m− 2j

2

2j + 2

2j + 1
(

〈j, j3|1
2
,
1

2
; j +

1

2
, j3 − 1

2
〉
)2

=
j − j3 + 1

2j + 2
. (4.38)

Thus, we find

A− =

√

(r1 + 2)(r1 − r2 + 1)

(r1 − r2 + 2)

√

m− 2j

2

2j + 2

2j + 1

j − j3 + 1

2j + 2
. (4.39)

In the large N limit this becomes

A− =
√
r1

√

m− 2j

2

2j + 2

2j + 1

j − j3 + 1

2j + 2
. (4.40)

Very similar arguments imply that

B− =
√
r1

√

m+ 2j + 2

2

2j

2j + 1

j + j3

2j
,

C− =
√
r2

√

m− 2j

2

2j + 2

2j + 1

j + j3 + 1

2j + 2
,

D− =
√
r2

√

m+ 2j + 2

2

2j

2j + 1

j − j3
2j

. (4.41)

Using these results it is straight forward to find

[J+, J−]O
(n,m)(r1, j, j

3) = −nO(n,m)(r1, j, j
3) . (4.42)

Noting that J3O
(n,m)(r1, j, j

3) = (m − n)O(n,m)(r1, j, j
3), this is indeed the correct large N

limit of (4.2).

4.2 Recursion relations and one loop dilatation operator

The one loop dilatation operator in the su(2) sector[6]

D2 = −g2YMTr
[

Y, Z
][

∂Y , ∂Z
]

(4.43)

50



acting on two giant graviton systems, is given by [25, 26]

D2O
(n,m)(r1, j, j

3) = g2YM

[

−1
2

(

m− (m+ 2)(j3)2

j(j + 1)

)

∆O(n,m)(r1, j, j
3)

+

√

(m+ 2j + 4)(m− 2j)

(2j + 1)(2j + 3)

(j + j3 + 1)(j − j3 + 1)

2(j + 1)
∆O(n,m)(r1, j + 1, j3)

+

√

(m+ 2j + 2)(m− 2j + 2)

(2j + 1)(2j − 1)

(j + j3)(j − j3)
2j

∆O(n,m)(r1, j − 1, j3)

]

(4.44)

where (r2 = n− r1)

∆O(n,m)(r1, j, j
3) =

√

(N + r1)(N + r2)(O
(n,m)(r1 + 1, j, j3) +O(n,m)(r1 − 1, j, j3))

−(2N + r1 + r2)O
(n,m)(r1, j, j

3) . (4.45)

Our goal in this section is to argue that we can recover (4.44) by requiring that the correct

algebra

[

D2, J±
]

= 0 =
[

D2, J3
]

(4.46)

is obeyed. We have already obtained a formula for the action of J± and J3 on restricted

Schur polynomials. Our first task is thus to obtain a similar result for the action of D2,

that can be used in (4.46). We are not trying to write down a detailed formula for D2, but

rather, want to write the general structure of this action that is consistent with the fact that

it is derived by summing Feynman diagrams, we are working at large N and the dilatation

operator is a hermittian operator. Given this general form, we will derive the detailed matrix

elements by requiring (4.46).

There is a pair of derivatives in the one loop dilatation operator (4.43). Since they

share an index, their action on the restricted Schur polynomials produces a Kronecker delta

function. Equivalently, at one loop our Feynman diagrams have a single interaction vertex

and this vertex has two pairs of adjacent fields, Z, Y and Z†, Y †. Wick contraction with the

vertex will thus set a pair of indices equal, producing a Kronecker delta function. The net

consequence of this Kronecker delta function is that the sum over Sn+m appearing in the

evaluation of D2 is reduced to a sum over the subgroup Sn+m−1[30]. When we sum over the

Sn+m−1 subgroup, the fundamental orthogonality relation forces one of the representations

of Sn+m−1 subduced by T to be equal to one of the representations subduced by R. This

allows D2 to shift the position of a single box in each of the Young diagram labels of the

restricted Schur polynomial. This is precisely the process we saw in chapter 3. At p-loops

we will have p insertions of the interaction vertex producing (at most) p Kronecker delta

functions, thereby reducing the sum over Sn+m to a sum over Sn+m−p. This allows the p-loop

dilatation operator to shift the position of (at most) p-boxes in each of the Young diagram
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labels of the restricted Schur polynomial. Returning to one loop, a single box shifts position

under the action of D2. This implies that we can have the following changes in the labels of

our operators

j3 → j3, j3 ± 1 ,

j → j, j ± 1 ,

r1 → r1, r1 ± 1 . (4.47)

This change of labels implies a total of 27 possible terms under the action of D2

D2O
(n,m)(r1, j, j

3) =
1
∑

c=−1

1
∑

d=−1

1
∑

e=−1

β
(n,m)

r1,j,j3
(c, d, e)O(n,m)(r1 + c, j + d, j3 + e) (4.48)

This is slightly too general, as we have not yet put in the constraint that only 1 box can

move, i.e. that even if R and T don’t agree, by removing a single box from R and a single

box from T we can get Young diagrams which do agree. The boxes that must be moved

between R and T can be deduced from the boxes moving between r and t and the number

of Y boxes that move between the rows (determined by j3). The matrix element of the

dilatation operator that takes

O
(n,m)
r1,j,j3

−→ O
(n,m)
r1+a,j+b,j3+c

≡ O
(n,m)
t1,j′,j3′

(4.49)

is β
(n,m)

r1,j,j3
(a, b, c). The integer a determines how r1 changes, t1 − r1 = a. The integer c

determines how j3 changes, j3′ − j3 = c. From the definition of j3 we have

2j3 = (R1 − r1)− (R2 − r2) , (4.50)

2j3′ = (T1 − t1)− (T2 − t2) . (4.51)

We also know that T1 + T2 = R1 +R2 = m+ n and t1 + t2 = r1 + r2 = n so that

2j3 = 2R1 − (m+ n)− 2r1 + n , (4.52)

2j3′ = 2T1 − (m+ n)− 2t1 + n . (4.53)

Subtracting these last two equations gives

2(j3′ − j3) = 2c = 2(T1 −R1) + 2(r1 − t1) = 2(T1 − R1)− 2a . (4.54)

Thus, T1 − R1 = a+ c and we must have |a+ c| ≤ 1. This forces

β
(n,m)
r1,j,j3

(1, 0, 1) = 0 β
(n,m)
r1,j,j3

(−1, 0,−1) = 0

β
(n,m)

r1,j,j3
(1, 1, 1) = 0 β

(n,m)

r1,j,j3
(−1, 1,−1) = 0

β
(n,m)
r1,j,j3

(1,−1, 1) = 0 β
(n,m)
r1,j,j3

(−1,−1,−1) = 0 . (4.55)
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This reduces the number of terms in the action ofD2 to 21. Next, we know that the dilatation

operator is hermittian D2 = D†
2. This implies that

〈r1 + a, j + b, j3 + c|D2|r1, j, j3〉 = 〈r1, j, j3|D2|r1 + a, j + b, j3 + c〉 . (4.56)

Further, since

〈r1 + a, j + b, j3 + c|D2|r1, j, j3〉 = β
(n,m)

r1,j,j3
(a, b, c) (4.57)

and

〈r1, j, j3|D2|r1 + a, j + b, j3 + c〉 = β
(n,m)
r1+a,j+b,j3+c

(−a,−b,−c) (4.58)

we find that the condition D2 = D†
2 implies that

β
(n,m)

r1,j,j3
(a, b, c) = β

(n,m)

r1+a,j+b,j3+c
(−a,−b,−c) . (4.59)

This reduces the number of unknown terms to be determined to 11.

In the large N limit, the string coupling gs = 1
N

goes to zero. Consequently there is

no string splitting or joining. Since each trace in the SYM theory corresponds to a closed

string state, this translates into the fact that, in the planar limit in the SYM theory, different

multi-trace structures do not mix. For the open string sector, when the string coupling goes

to zero there is again no splitting and joining so that the open string Chan-Paton factors

are frozen. Recall the translation of a giant graviton system into an operator in the field

theory[39, 24, 48, 49, 10, 11, 13, 26, 28]: in the operator O
(n,m)

r,j,j3 each row of r corresponds to

a giant graviton and each impurity Y corresponds to an open string (this last interpretation

is proved in [26, 28]). j3 tells us the number of open string end points attached to each giant.

Since the Chan-Paton factors are frozen, j3 is not changed by the action of the dilatation

operator and

β(a, b,±1) = 0 . (4.60)

This now leaves 4 unknown terms to be determined.

Another consequence of working at large N in the displaced corners approximation, is

β
(n,m)

r1+α,j,j3
(a, b, c) = β

(n,m)

r1,j,j3
(a, b, c) (4.61)

with α any number of order 1. This follows because r1 is order N and the matrix elements of

the dilatation operator depend smoothly on the parameters r1, j, j
3, so we can replace r1+α

by r1 making negligible error in the large N limit. There is one point that deserves attention.

In general our results depend on r1, r2 and on r1− r2. Even if r1 = O(N) and r2 = O(N), if

r1 − r2 = O(1), replacing r1 + α→ r1 can result in errors that do not vanish as N →∞. In

the displaced corners approximation all r row lengths are well separated and this does not

happen. It then follows that the ri are conserved and that the coefficients of
√
r1 and

√
r2 in
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(4.46) must separately vanish. This has a very natural physical interpretation: the ri set the

momenta of the giant gravitons and the back reaction on each giant graviton is negligible.

Although we are mainly interested in the dependence of the dilatation operator on j, j3,

we do know that

β
(n,m)
r1,j,j3

(±1, d, e) =
√

(N + r1)(N + r2)f(j, j
3, d, e)

=
√

(N + r1)(N + n− r1)f(j, j3, d, e)
β
(n,m)
r1,j,j3

(0, d, e) = (2N + r1 + r2)g(j, j
3, d, e)

= (2N + n)g(j, j3, d, e) . (4.62)

These formulas deserve some discussion. The dependence of matrix elements on factors6 of

boxes in the Young diagram labels has two sources:

1. There is an overall normalization
√

fT
fR
. The factors of any boxes that are common to

R and T will cancel so that we are left with

F1 =

√

∏

i∈boxes in T that are not in R ci
∏

j∈boxes in R that are not in T cj
(4.63)

2. When evaluating the dilatation operator, we need to sum over Sn+m. As discussed

above, derivatives with respect to Y and Z produce Kronecker delta functions that

restrict the sum to the subgroup Sn+m−1. The original trace over R ⊢ m + n then

becomes a trace over an irreducible representation of the subgroup R′ ⊢ m + n − 1.

The sum then produces the factor of the box that must be removed from R to obtain R′.

The trace splits into a trace over r′ ⊢ n− 1 which sets r′ = t′ and a trace over s which

depends only on j, j3. This dependence is summarized in the functions f(j, j3, d, e)

and g(j, j3, d, e) above and it is these functions that we want to constrain using the

su(2) invariance.

For the first term in (4.62) we have

F1 =

√

N + r1
N + r2

F2 = N + r2 or F1 =

√

N + r2
N + r1

F2 = N + r1 (4.64)

so that

F1 · F2 =
√

(N + r1)(N + r2) (4.65)

For the second term in (4.62) we have two contributions which both have F1 = 1 and

F2 = N + r1 or F2 = N + r2 (4.66)

6Recall that a box in row i and column j has a factor N − i+ j.
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Thus, the total coefficient of this term is

N + r1 +N + r2 = 2N + r1 + r2 = 2N + n (4.67)

Since we are computing a commutator, the answer for D2 will not be unique. Indeed,

replacing D2 → D2 + α1 with α a constant, will not change the value of the commutator.

To fix the value of α note that there are BPS operators belonging to the su(2) sector. These

operators are annihilated by D2, so that the smallest eigenvalue of D2 is zero. This fixes α.

Now, use

J+O
(n,m)
r1,j,j3

=

0
∑

a=−1

1
2
∑

b=− 1
2

α
(n,m)
r1,j,j3

(a, b)O
(n−1,m+1)

r1+a,j+b,j3− 1
2
−a (4.68)

where (using the results of the last section)

α
(n,m)

r1,j,j3
(−1, 1

2
) =
√
r1

√

m+ 2j + 4

2

j + j3 + 1
√

(2j + 2)(2j + 1)
(4.69)

α
(n,m)

r1,j,j3
(−1,−1

2
) =
√
r1

√

m− 2j + 2

2

j − j3
√

2j(2j + 1)
(4.70)

α
(n,m)
r1,j,j3

(0,
1

2
) =
√
r2

√

m+ 2j + 4

2

j − j3 + 1
√

(2j + 2)(2j + 1)
(4.71)

α
(n,m)

r1,j,j3
(0,−1

2
) =
√
r2

√

m− 2j + 2

2

j + j3
√

2j(2j + 1)
(4.72)

and use

D2O
(n,m)

r1,j,j3
=

−1
∑

a=1

−1
∑

b=1

−1
∑

c=1

β
(n,m)

r1,j,j3
(a, b, c)O

(n,m)

r1+a,j+b,j3+c
(4.73)

to evaluate

[

J+, D2

]

O
(n,m)
r1,j,j3

= 0 . (4.74)

The result is

0
∑

a=−1

1
2
∑

b=− 1
2

1
∑

c=−1

1
∑

d=−1

1
∑

e=−1

(

β
(n,m)
r1,j,j3

(c, d, e)α
(n,m)
r1+c,j+d,j3+e

(a, b) (4.75)

−α(n,m)

r1,j,j3
(a, b)β

(n−1,m+1)

r1+a,j+b,j3− 1
2
−a(c, d, e)

)

O
(n−1,m+1)

r1+a+c,j+d+b,j3+e− 1
2
−a = 0 .
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The operators O
(n,m)

r1,j,j3
are all linearly independent, so that the coefficient of each term must

vanish separately. Further, since α
(n,m)
r1,j,j3

(−1, ·) ∝ √r1 and α
(n,m)
r1,j,j3

(0, ·) ∝ √r2, terms with

different values of a in α
(n,m)

r1,j,j3
(a, ·) must separately vanish.

To illustrate some of the details, we will discuss some examples of equations that we

obtain from (4.75). In particular, we will explain how the βr1,j,j3(0, 1, 0) matrix element is

determined. Set a = 0, c = 0, e = 0, d+ b = −3
2
⇒ (d, b) = (−1,−1

2
) to obtain

β
(n,m)
r1,j,j3

(0,−1, 0)α(n,m)
r1,j−1,j3(0,−

1

2
)− α(n,m)

r1,j,j3
(0,−1

2
)β

(n−1,m+1)

r1,j− 1
2
,j3− 1

2

(0,−1, 0) = 0 ,

√

m− 2j + 4

2

j + j3 − 1
√

(2j − 2)(2j − 1)
β
(n,m)

r1,j,j3
(0,−1, 0) (4.76)

−
√

m− 2j + 2

2

j + j3
√

2j(2j + 1)
β
(n−1,m+1)

r1,j− 1
2
,j3− 1

2

(0,−1, 0) = 0 .

Next, set a = −1, c = 0, e = 0, d+ b = −3
2
⇒ (d, b) = (−1,−1

2
) to obtain

β
(n,m)
r1,j,j3

(0,−1, 0)α(n,m)
r1,j−1,j3(−1,−

1

2
)− α(n,m)

r1,j,j3
(−1,−1

2
)β

(n−1,m+1)

r1−1,j− 1
2
,j3+ 1

2

(0,−1, 0) = 0 ,

√

m− 2j + 4

2

j − j3 − 1
√

(2j − 2)(2j − 1)
β
(n,m)
r1,j,j3

(0,−1, 0) (4.77)

−
√

m− 2j + 2

2

j − j3
√

(2j + 1)2j
β
(n−1,m+1)

r1−1,j− 1
2
,j3+ 1

2

(0,−1, 0) = 0 .

Combining (4.76) and (4.77) we find

β
(n,m)

r1,j,j3
(0,−1, 0) = j + j3

j + j3 − 1

j − j3
j − j3 + 1

β
(n,m)

r1,j,j3−1(0,−1, 0) (4.78)

which implies that

β
(n,m)
r1,j,j3

(0,−1, 0) ∝ (j + j3)(j − j3) . (4.79)

Daggering equation (4.78) we find

β
(n,m)

r1,j,j3
(0, 1, 0) =

j + j3 + 1

j + j3
j − j3 + 1

j − j3 + 2
β
(n,m)

r1,j,j3−1(0, 1, 0) (4.80)

which implies that

β
(n,m)

r1,j,j3
(0, 1, 0) ∝ (j + j3 + 1)(j − j3 + 1) . (4.81)
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Now, set a = 0, b = 1
2
, c = 0, d = 1 and e = 0 to obtain

β
(n,m)

r1,j,j3
(0, 1, 0)α

(n,m)

r1,j+1,j3(0,
1

2
)− α(n,m)

r1,j,j3
(0,

1

2
)β

(n−1,m+1)

r1,j+
1
2
,j3− 1

2

(0, 1, 0) = 0 ,

√

m+ 2j + 6

2

j − j3 + 2
√

(2j + 4)(2j + 3)
β
(n,m)
r1,j,j3

(0, 1, 0) (4.82)

−
√

m+ 2j + 4

2

j − j3 + 1
√

(2j + 1)(2j + 2)
β
(n−1,m+1)

r1,j+
1
2
,j3− 1

2

(0, 1, 0) = 0 .

Daggering this we find

β
(n−1,m+1)

r1,j− 1
2
,j3− 1

2

(0,−1, 0) =
√

m+ 2j + 2

m+ 2j

j − j3
j − j3 − 1

√

(2j − 3)(2j − 2)

(2j − 1)2j
β
(n,m)
r1,j−1,j3(0,−1, 0) .

Combining this with (4.76) we find

β
(n,m)

r1,j,j3
(0,−1, 0) =

√

(m− 2j + 2)(m+ 2j + 2)

(m− 2j + 4)(m+ 2j)

2j − 2

2j

√

(2j − 1)(2j − 3)

(2j + 1)(2j − 1)

× j + j3

j + j3 − 1

j − j3
j − j3 − 1

β
(n,m)
r1,j−1,j3(0,−1, 0)

which implies that

β
(n,m)
r1,j,j3

(0,−1, 0) ∝
√

(m+ 2j + 2)(m− 2j + 2)

(2j + 1)(2j − 1)

(j + j3)(j − j3)
2j

(4.83)

which is indeed the correct result. Daggering, we find

β
(n,m)
r1,j,j3

(0, 1, 0) ∝
√

(m+ 2j + 4)(m− 2j)

(2j + 1)(2j + 3)

(j + j3 + 1)(j − j3 + 1)

2(j + 1)
(4.84)

which is also correct. Solving the complete set of recursion relations we find

D2O
(n,m)(r1, j, j

3) =
√

(m− 2j + 2)(m+ 2j + 2)

(2j + 1)(2j − 1)

(j + j3)(j − j3)
2j

[

c010(2N + r1 + r2)O
(n,m)(r1, j − 1, j3)

+c110
√

(N + r1)(N + r2)(O
(n,m)(r1 − 1, j − 1, j3) +O(n,m)(r1 + 1, j − 1, j3))

]

+

√

(m+ 2j + 4)(m− 2j)

(2j + 3)(2j + 1)

(j + j3 + 1)(j − j3 + 1)

2j + 2

[

c010(2N + r1 + r2)O
(n,m)(r1, j + 1, j3)

+c110
√

(N + r1)(N + r2)(O
(n,m)(r1 − 1, j + 1, j3) +O(n,m)(r1 + 1, j + 1, j3))

]

+

(

−1
2

(

m− (m+ 2)(j3)2

j(j + 1)

))

[

c010(2N + r1 + r2)O
(n,m)(r1, j, j

3)

+c110
√

(N + r1)(N + r2)(O
(n,m)(r1 − 1, j, j3) +O(n,m)(r1 + 1, j, j3))

]
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where c010 and c110 are arbitrary constants, independent of j, j3 and r1. Thus, we have

determined the j, j3 dependence of the matrix elements of the one loop dilatation operator.

Achieving this at higher loops is one of the main goals of this dissertation. To completely

determine the spectrum of anomalous dimensions, we need to determine the constants c010
and c110 in the above expression. These constants are tightly constrained as we now explain.

In the large N regime, we can take a continuum limit of the action of the dilatation operator.

Towards this end, introduce the continuous variable ρ = r1−r2
2
√
N+r2

and replace O(r,m)(r1, j, j
3)

with O(r,m)(ρ, j, j3). r1 is the longer (top) row and r2 is the shorter bottom row. When

ρ is order 1 the dilatation operator becomes an N independent differential operator[27].

Expanding we have

√

(N + r1)(N + r2) = (N + r2)

(

1 +
1

2

r1 − r2
N + r2

− 1

8

(r1 − r2)2
(N + r2)2

+ ....

)

The first term above is O(N), the second O(
√
N) and the third O(1).

O(n,m)

(

ρ− 1√
N + r2

, j, j3
)

= O(n,m)(ρ, j, j3)− 1√
N + r2

∂O(n,m)

∂ρ

∣

∣

∣

ρ,j,j3
+

1

N + r2

∂2O(n,m)

∂ρ2

∣

∣

∣

ρ,j,j3
+...

These expansions are only valid if r1 − r2 ≪ N + r2, which is certainly not always the case.

However, we will learn something about the relation between the coeficients c110 and c010 by

studying this situation. Using these expansions we have

c010(2N + r1 + r2)O
(n,m)(r1, j, j

3)

+c110
√

(N + r1)(N + r2)(O
(n,m)(r1 − 1, j, j3) +O(n,m)(r1 + 1, j, j3))

=
[

c110 + 2c010
]

(N + r2)O
(n,m)(r1, j, j

3) +
1

2

[

c110 + 2c010
]
√

N + r2O
(n,m)(r1, j, j

3) +O(1)

Again, the lowest eigenvalue of this operator is zero, reflecting a BPS operator. To achieve

this, the O(N) and O(
√
N) pieces of this expansion must cancel which determines c110 +

2c010 = 0. Thus, up to an overall normalization which our argument can’t determine, we

have reproduced (4.44).

4.3 Continuum Limit

We have demonstrated that the requirement that the one loop dilatation operator closes

the correct Lie algebra when commuted with an su(2) subgroup of the R-symmetry group

determines a set of recursion relations. Solving these recursion relations we have recovered the

formula for the one loop dilatation operator derived in [25, 26] by detailed computation. We

are interested in carrying this analysis out at higher loops. The resulting recursion relations

become very clumsy to solve. To overcome this difficulty, we will now pursue a continuum

approach to the problem, replacing the discrete variables j, j3 by continuous variables xj , xj3.

The advantage of considering a continuum limit is that our recursion relations will be replaced
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by partial differential equations and we are able to explicitly determine the general solution

of these partial differential equations. In this section we will motivate the continuum limit

we study by considering the dilatation operator eigenproblem at one loop.

The structure of the action of the one loop dilatation operator problem given in (4.44)

exhibits an interesting factorization. There is an action of ∆ which acts only on the r label

times an action that is only on the j, j3 labels. The continuum limit we consider here is

concerned with the action on the j, j3 labels. Recall that we take m to be O(
√
N). The

discrete eigenproblem that we consider is[25, 26]

− λψ(j, j3) =
√

(m+ 2j + 4)(m− 2j)

(2j + 1)(2j + 3)

(j + j3 + 1)(j − j3 + 1)

2(j + 1)
ψ(j + 1, j3)

√

(m+ 2j + 2)(m− 2j + 2)

(2j + 1)(2j − 1)

(j + j3)(j − j3)
2j

ψ(j − 1, j3)− 1

2

(

m− (m+ 2)(j3)2

j(j + 1)

)

ψ(j, j3) .

(4.85)

The variables that become continuous as we take N →∞ are

xj =
j√
m
, xj3 =

j3√
m

(4.86)

Replace ψ(j, j3) by ψ(xj , xj3) and use the expansions

− 1

2

(

m− (m+ 2)(j3)2

j(j + 1)

)

= −m
2

+
m

2

x2j3

x2j
−
√
m

2

x2j3

x3j
+
x2j3

2x4j
+
x2j3

x2j
(4.87)

√

(m+ 2j + 4)(m− 2j)

(2j + 1)(2j + 3)

(j + j3 + 1)(j − j3 + 1)

2(j + 1)
=
m

4
+

1

2
− x2j

2
+

1

32x2j

−m
4

x2j3

x2j
− 1

2

x2j3

x2j
+
x2j3

2
−

25x2j3

32x4j
+

√
mx2j3

2x3j
(4.88)

√

(m+ 2j + 2)(m− 2j + 2)

(2j + 1)(2j − 1)

(j + j3)(j − j3)
2j

=
m

4
+

1

2
− x2j

2
+

1

32x2j

−m
4

x2j3

x2j
− 1

2

x2j3

x2j
+
x2j3

2
−

x2j3

32x4j
. (4.89)

It is now a simple matter to find the following eigenproblem in the continuum

1

4

(

1−
x2j3

x2j

)

d2ψ

dx2j
+
x2j3

2x3j

dψ

dxj
+

[

−
5x2j3

16x4j
+ 1− x2j +

1

16x2j
+ x2j3

]

ψ = −λψ . (4.90)
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In obtaining this result the form for our continuum limit, as spelled out in (4.86) is crucial.

Indeed, if one sets xj = j/mα the “kinetic” and “harmonic potential” terms on the LHS are

only the same size if α = 1
2
. Now, set ψ =

√
xjg to obtain

1

4

(

1−
x2j3

x2j

)

d2g

dx2j
+

1

4xj

(

1 +
x2j3

2x3j

)

dg

dxj
+
[

1− x2j + x2j3
]

g = −λg . (4.91)

Finally, in terms of the new variable u defined by u2 = x2j − x2j3 we find

1

4

d2g

du2
+

1

4u

dg

du
+ (1− u2)g = −λg . (4.92)

If we set r = 2u we find the eigenproblem of the 2-dimensional oscillator with zero angular

momentum. The energy spacing is 2 (recall j ≥ 0 to see this). This is exactly the spectrum

obtained by solving the discrete problem[25, 26]. It is also easy to check that the eigenvectors

of the discrete problem are in perfect agreement with the eigenfunctions of (4.92). Thus, the

continuum problem contains the same information as the discrete problem.

To get the correct spectrum we must obtain the O(m), O(
√
m) and O(1) pieces of the

matrix elements of the dilatation operator. Writing things schematically, we should expand

our dilatation operator matrix elements as

β = mf (0) +
√
mf (1) + f (2) +

f (3)

√
m

+O(
1

m
) (4.93)

and we should expand

α =
√
mα(0) + α(1) +

1√
m
α(2) +

1

m
α(3) +O(

1

m
3
2

) (4.94)

After expansion (4.46) gives 3 sets of non-trivial equations, and these three equations are

the complete content of the recursion relations. They are obtained by plugging the above

expansions into (4.46) and setting the coefficients of m,
√
m and 1 to zero. The terms with

coefficient m
3
2 trivially vanish. The terms with negative powers of m also do not give new

equations: they vanish automatically because we are working in the m =
√
N →∞ limit.

At one loop, solving the partial differential equations that arise from (4.46) must repro-

duce the following expansions

β
(n,m)

r1,j,j3
(c, 0, 0) = −m

2
+
m

2

x2j3

x2j
−
√
m

2

x2j3

x3j
+
x2j3

2x4j
+
x2j3

x2j
(4.95)

β
(n,m)

r1,j,j3
(c, 1, 0) =

m

4
+

1

2
− x2j

2
+

1

32x2j
− m

4

x2j3

x2j
− 1

2

x2j3

x2j
+
x2j3

2
−

25x2j3

32x4j
+

√
mx2j3

2x3j
(4.96)

β
(n,m)

r1,j,j3
(c,−1, 0) = m

4
+

1

2
− x2j

2
+

1

32x2j
− m

4

x2j3

x2j
− 1

2

x2j3

x2j
+
x2j3

2
−

x2j3

32x4j
(4.97)
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Given these continuum results, we can immediately claim that we have reproduced (4.44).

Indeed, the ambiguity in reconstructing the exact functions β
(n,m)

r1,j,j3
(c, d, 0) of the discrete

variables j, j3 from the continuum expressions above is order 1
m

and we are working in the

m =
√
N →∞ limit.

Finally, it is important to note that the solutions to our continuum differential equations

are not unique. Indeed, we are finding a dilatation operator D that obeys

[J±, D] = 0 = [J3, D] . (4.98)

Given a first solution, another solution is easily constructed by rescaling and shifting

D → κ1D + 2k01 (4.99)

where 1 is the identity. Thus, there will always be two arbitrary constants in our solutions.

This has important implications for us, particularly when it comes to finding the most

general solution to the partial differential equations we will derive. For example, by choosing

κ1 =
1√
m
γ we see that we shift

β = mf (0) +
√
mf (1) + f (2) +

f (3)

√
m

+O(
1

m
) −→

β ′ = mf (0) +
√
m(f (1) + γf (0)) + f (2) + γf (1) +

f (3) + γf (2)

√
m

+O(
1

m
)

In what follows, we will construct the solution that has γ = 0 and say that “we have the

most general solution up to symmetry”. Note that by choosing κ1 =
1
m
γ we would have

β ′ = mf (0) +
√
mf (1) + f (2) + γf (0) +

f (3) + γf (1)

√
m

+O(
1

m
) .

We will thus also not include terms ∝ f (0) when solving the partial differential equations

that determine f (2). This completes out discussion of the continuum limit.

4.4 Differential Equations and Higher Loop Anomalous Dimen-

sions

The main goal of this section is to study the constraints implied by (4.46) on the p-loop

dilatation operator. As we discussed above, the p-loop dilatation operator allows a total of

p boxes on the Young diagram labels of the restricted Schur polynomial to move. In this

case, the requirement that J+ commutes with D implies that

1
2
∑

b=− 1
2

p
∑

d=−p

[

β
(n,m)
r1,j,j3

(c, d, 0)α
(n,m)
r1+c,j+d,j3

(a, b)
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−α(n,m)
r1,j,j3

(a, b)β
(n−1,m+1)

r1+a,j+b,j3− 1
2
−a(c, d, 0)

]

O
(n−1,m+1)

r1+a+c,j+d+b,j3− 1
2
−a = 0 (4.100)

which can be rewritten as

β
(n,m)

r1,j,j3
(c, d, 0)α

(n,m)

r1+c,j+d,j3
(a,

1

2
) + β

(n,m)

r1,j,j3
(c, d+ 1, 0)α

(n,m)

r1+c,j+d+1,j3(a,−
1

2
)

−α(n,m)
r1,j,j3

(a,
1

2
)β

(n−1,m+1)

r1+a,j+
1
2
,j3− 1

2
−a(c, d, 0)− α

(n,m)
r1,j,j3

(a,−1
2
)β

(n−1,m+1)

r1+a,j− 1
2
,j3− 1

2
−a(c, d+ 1, 0) = 0 .

(4.101)

Recall that α(−1, ·) ∝ √r1 and α(0, ·) ∝ √r2 so that we get independent equations from

(4.100) for each value of a = {−1, 0}, c = {−p,−p+1, · · · , p−1, p}, and d+ b where b = ±1
2

and d = {−p,−p + 1, · · · , p − 1, p}. We will freely make use of the result of the Chapter

Appendix in this section.

To begin we will consider a = 0 in (4.101). A few words on how we perform the expansion

of the αr1,j,j3(a,±1
2
) is in order. After rewriting j, j3 in terms of xj , xj3

αr1,j,j3(0,
1

2
) =
√
r2

√

m+ 2j + 4

2

j − j3 + 1√
2j + 2

√
2j + 1

=
√
r2

√

m

2

√

1 + 2
xj√
m

+
4

m

xj − xj3 + 1√
m

√

2xj +
2√
m

√

2xj +
1√
m

(4.102)

we perform an expansion treating 1√
m

and 1
m

as small numbers. Using these expansions,

after equating the coefficients of m
3
2 to zero, in

β
(n,m)
r1,j,j3

(c, d, 0)α
(n,m)
r1+c,j+d,j3

(0,
1

2
)− β(n−1,m+1)

r1,j+
1
2
,j3− 1

2

(c, d, 0)α
(n,m)
r1,j,j

(0,
1

2
)

+β
(n,m)
r1,j,j3

(c, d+ 1, 0)α
(n,m)
r1+c,j+d+1,j3(0,−

1

2
)− β(n−1,m+1)

r1,j− 1
2
,j3− 1

2

(c, d+ 1, 0)α
(n,m)
r1,j,j3

(0,−1
2
) = 0(4.103)

we find

(xj − xj3)
2
√
2xj

f
(0)
c,d (xj , xj3) +

(xj + xj3)

2
√
2xj

f
(0)
c,d+1(xj , xj3)

−(xj − xj3)
2
√
2xj

f
(0)
c,d (xj , xj3)−

(xj + xj3)

2
√
2xj

f
(0)
c,d+1(xj , xj3) = 0 (4.104)

which is trivially obeyed. By equating the O(m) term to zero we have

2xj3(df
(0)
c,d − (d+ 1)f

(0)
c,d+1) + xj

(

xj

(

∂f
(0)
c,d

∂xj3
+
∂f

(0)
c,d+1

∂xj3
−
∂f

(0)
c,d

∂xj
+
∂f

(0)
c,d+1

∂xj

)

+xj3

(

−
∂f

(0)
c,d

∂xj3
+
∂f

(0)
c,d+1

∂xj3
+
∂f

(0)
c,d

∂xj
+
∂f

(0)
c,d+1

∂xj

))

= 0 (4.105)

Equating the O(
√
m) term to zero gives

xj

(

2d
(

4x2j − 1
)

(f
(0)
c,d − f

(0)
c,d+1)− xj

[

xj

(

∂2f
(0)
c,d

∂x2j3
+
∂2f

(0)
c,d+1

∂x2j3
− 4

∂f
(1)
c,d

∂xj3
− 4

∂f
(1)
c,d+1

∂xj3
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−2
∂2f

(0)
c,d

∂xj∂xj3
+ 2

∂2f
(0)
c,d+1

∂xj∂xj3

)

−
∂f

(0)
c,d

∂xj3
+
∂f

(0)
c,d+1

∂xj3
+
∂f

(0)
c,d

∂xj
+
∂f

(0)
c,d+1

∂xj

]

+ x2j

(

−
[

4xj

(

−
∂f

(0)
c,d

∂xj3

+
∂f

(0)
c,d+1

∂xj3
+
∂f

(0)
c,d

∂xj
+
∂f

(0)
c,d+1

∂xj

)

+ 8f
(0)
c,d + 16f

(0)
c,d+1 + 4

∂f
(1)
c,d

∂xj
− 4

∂f
(1)
c,d+1

∂xj
+
∂2f

(0)
c,d

∂x2j

+
∂2f

(0)
c,d+1

∂x2j

])

+ 2f
(0)
c,d+1

)

− xj3
(

xj

[

−8df (1)
c,d + 8df

(1)
c,d+1 − 3

∂f
(0)
c,d

∂xj3
+
∂f

(0)
c,d+1

∂xj3
+ 8f

(1)
c,d+1

+3
∂f

(0)
c,d

∂xj
+
∂f

(0)
c,d+1

∂xj

]

+ 4(2d+ 3)
[

df
(0)
c,d − (d+ 1)f

(0)
c,d+1

]

+ x2j

[

−
∂2f

(0)
c,d

∂x2j3
+
∂2f

(0)
c,d+1

∂x2j3
+ 4

∂f
(1)
c,d

∂xj3

−4
∂f

(1)
c,d+1

∂xj3
+ 2

∂2f
(0)
c,d

∂xj∂xj3
+ 2

∂2f
(0)
c,d+1

∂xj∂xj3
− 8f

(0)
c,d + 8f

(0)
c,d+1 − 4

∂f
(1)
c,d

∂xj
− 4

∂f
(1)
c,d+1

∂xj

−
∂2f

(0)
c,d

∂x2j
+
∂2f

(0)
c,d+1

∂x2j

]

+ 4x3j

(

∂f
(0)
c,d

∂xj3
+
∂f

(0)
c,d+1

∂xj3
−
∂f

(0)
c,d

∂xj
+
∂f

(0)
c,d+1

∂xj

))

= 0

(4.106)

Finally, equating the O(1) term to zero we find another equation that is rather long and

hence we will not quote it here. We will also study the equations obtained by plugging

a = −1 into (4.101). Equating the term in

β
(n,m)
r1,j,j3

(c, d, 0)α
(n,m)
r1+c,j+d,j3

(−1, 1
2
)− β(n−1,m+1)

r1−1,j+ 1
2
,j3+ 1

2

(c, d, 0)α
(n,m)
r1,j,j

(−1, 1
2
)

+β
(n,m)

r1,j,j3
(c, d+ 1, 0)α

(n,m)

r1+c,j+d+1,j3(−1,−
1

2
)− β(n−1,m+1)

r1−1,j− 1
2
,j3+ 1

2

(c, d+ 1, 0)α
(n,m)

r1,j,j3
(−1,−1

2
) = 0

(4.107)

of order m3/2 to zero, we find the equation

(xj + xj3)

2
√
2xj

f
(0)
c,d (xj , xj3) +

(xj − xj3)
2
√
2xj

f
(0)
c,d+1(xj , xj3)

−(xj + xj3)

2
√
2xj

f
(0)
c,d (xj , xj3)−

(xj − xj3)
2
√
2xj

f
(0)
c,d+1(xj , xj3) = 0 (4.108)

that is again trivially obeyed. The coefficient of the term of order m is

− x2j

(

∂f
(0)
c,d

∂xj3
+
∂f

(0)
c,d+1

∂xj3
+
∂f

(0)
c,d

∂xj
−
∂f

(0)
c,d+1

∂xj

)

−xj3
(

2df
(0)
c,d − 2(d+ 1)f

(0)
c,d+1 + xj

(

∂f
(0)
c,d

∂xj3
−
∂f

(0)
c,d+1

∂xj3
+
∂f

(0)
c,d

∂xj
+
∂f

(0)
c,d+1

∂xj

))

= 0 (4.109)

From the coefficient of the O(
√
m) term we find

xj

(

−x2j

[

−8(d− 1)f
(0)
c,d + 8(d+ 2)f

(0)
c,d+1 +

∂2f
(0)
c,d

∂x2j3
+
∂2f

(0)
c,d+1

∂x2j3
+ 4

∂f
(1)
c,d

∂xj3
+ 4

∂f
(1)
c,d+1

∂xj3
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+2
∂2f

(0)
c,d

∂xj∂xj3
− 2

∂2f
(0)
c,d+1

∂xj∂xj3
+ 4

∂f
(1)
c,d

∂xj
− 4

∂f
(1)
c,d+1

∂xj
+
∂2f

(0)
c,d

∂x2j
+
∂2f

(0)
c,d+1

∂x2j

]

+2(d(f
(0)
c,d+1 − f

(0)
c,d ) + f

(0)
c,d+1)− 4x3j

[

∂f
(0)
c,d

∂xj3
−
∂f

(0)
c,d+1

∂xj3
+
∂f

(0)
c,d

∂xj
+
∂f

(0)
c,d+1

∂xj

]

−xj
[

∂f
(0)
c,d

∂xj3
−
∂f

(0)
c,d+1

∂xj3
+
∂f

(0)
c,d

∂xj
+
∂f

(0)
c,d+1

∂xj

])

− xj3
(

−xj
[

−8df (1)
c,d + 8df

(1)
c,d+1 + 3

∂f
(0)
c,d

∂xj3

−
∂f

(0)
c,d+1

∂xj3
+ 8f

(1)
c,d+1 + 3

∂f
(0)
c,d

∂xj
+
∂f

(0)
c,d+1

∂xj

]

− 4(2d+ 3)(df
(0)
c,d − (d+ 1)f

(0)
c,d+1)

+x2j

(

∂2f
(0)
c,d

∂x2j3
−
∂2f

(0)
c,d+1

∂x2j3
+ 4

∂f
(1)
c,d

∂xj3
− 4

∂f
(1)
c,d+1

∂xj3
+ 2

∂2f
(0)
c,d

∂xj∂xj3
+ 2

∂2f
(0)
c,d+1

∂xj∂xj3
+ 8f

(0)
c,d − 8f

(0)
c,d+1

+4
∂f

(1)
c,d

∂xj
+ 4

∂f
(1)
c,d+1

∂xj
+
∂2f

(0)
c,d

∂x2j
−
∂2f

(0)
c,d+1

∂x2j

)

+ 4x3j

(

∂f
(0)
c,d

∂xj3
+
∂f

(0)
c,d+1

∂xj3
+
∂f

(0)
c,d

∂xj
−
∂f

(0)
c,d+1

∂xj

))

= 0

(4.110)

Finally, the coefficient of the O(1) term gives another long equation that we will again not

quote.

Apart from the partial differential equations obtained above, we also need to require that

the dilatation operator is hermittian. Recall that

(β†)
(n,m)
r1,j,j3

(a, b, c) = β
(n,m)
r1+c,j+b,j3+c

(−a,−b,−c) (4.111)

Thus, we require

β
(n,m)
r1,j,j3

(c, q, 0) = β
(n,m)
r1,j+q,j3

(−c,−q, 0) = β
(n,m)
r1,j+q,j3

(c,−q, 0) (4.112)

which implies that

mf (0)
c,a (xj , xj3) +

√
mf (1)

c,a (xj , xj3) + f (2)
c,a (xj, xj3) +

1√
m
f
(3)
(c,a)(xj , xj3)

= mf
(0)
c,−a(xj +

a√
m
, xj3) +

√
mf

(1)
c,−a(xj +

a√
m
, xj3) + f

(2)
c,−a(xj +

a√
m
, xj3)

+
1√
m
f
(3)
(c,−a)(xj +

a√
m
, xj3) . (4.113)

Our goal now is to solve the equations given above for the leading order of the functions

introduced. There are two equations we will use: (4.105) and (4.109). Introduce the functions

F+ ≡ f
(0)
c,d + f

(0)
c,d+1 F− ≡ f

(0)
c,d − f

(0)
c,d+1 (4.114)

In terms of these functions (4.105) becomes

2xj3

[

dF− +
F− − F+

2

]

+ x2j

[

∂F+

∂xj3
− ∂F−

∂xj

]

+ xjxj3

[

∂F+

∂xj
− ∂F−

∂xj3

]

= 0 (4.115)
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and (4.109) becomes

2xj3

[

dF− +
F− − F+

2

]

+ x2j

[

∂F+

∂xj3
+
∂F−

∂xj

]

+ xjxj3

[

∂F+

∂xj
+
∂F−

∂xj3

]

= 0 . (4.116)

Suming these two equations we learn that

xj
∂F−

∂xj
+ xj3

∂F−

∂xj3
= 0 (4.117)

which implies that

F− = F−(u) u =
xj3

xj
. (4.118)

Note that this holds for any d. If we set d = p, since F− = f
(0)
c,p we learn that f

(0)
c,p = f

(0)
c,p (u).

If we set d = p− 1, since F− = f
(0)
c,p−1 − f (0)

c,p depends only on u and we already argued that

f
(0)
c,p depends only on u, we learn that f

(0)
c,p−1 = f

(0)
c,p−1(u). We can keep going in this way and

consequently we have actually proved that

f
(0)
cd = f

(0)
cd (u) (4.119)

for any d. This is a dramatic simplification - we had a collection of functions of two variables

and now we have a collection of functions that depend only on one variable.

Now, again set d = p. In this case F+ = F− = F (u). We find that (4.105) becomes

xj
∂F

∂xj3
+ xj3

∂F

∂xj
= −2xj3

xj
pF (4.120)

which has the general solution

F = f (0)
c,p = κp(1− u2)p = κp

(

1−
x2j3

x2j

)p

(4.121)

where κp is a constant. This has reproduced the correct answer for one loop when p = 1 and

has determined the leading order to an infinite number of higher loop dilatation operator

coefficients.

Now, return to (4.115), and rewrite it using the new variable y = 1 − u2 to obtain the

simple form

y
df

(0)
c,d

dy
+ y

df
(0)
c,d+1

dy
= df

(0)
c,d − (d+ 1)df

(0)
c,d+1 . (4.122)

If we now, set d = p− 1 in (4.122) we can solve to obtain

f
(0)
c,p−1 = −2pκpyp + κp−1y

p−1 . (4.123)

Next, set d = p− 2 in (4.122) and again solve to obtain

f
(0)
c,p−2 = p(2p− 1)κpy

p − 2(p− 1)κp−1y
p−1 + κp−2y

p−2 . (4.124)

It is clear that we could continue with this process and determine all of the f
(0)
c,d . We have

however determined all that we will need about the leading order. We will now show that

we can determine the one loop answer and then return to the general p-loop analysis.
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4.5 One Loop

To determine the next to leading order, plug d = 1 and the known leading order functions

into (4.106) to obtain

2

xj3

(

∂f
(1)
c,1

∂xj3
− ∂f

(1)
c,1

∂xj

)

x4j (xj − xj3) + 4f
(1)
c,1 x

3
j − κ1(2xj − xj3)(xj + xj3) = 0 ,

(4.125)

plug d = 0 and the known leading order functions into (4.106) to obtain

x3jxj3

(

xj

[

−∂f
(1)
c,0

∂xj3
+
∂f

(1)
c,1

∂xj3
+
∂f

(1)
c,0

∂xj
+
∂f

(1)
c,1

∂xj

]

− 2f
(1)
c,1

)

+x5j

(

∂f
(1)
c,0

∂xj3
+
∂f

(1)
c,1

∂xj3
− ∂f

(1)
c,0

∂xj
+
∂f

(1)
c,1

∂xj

)

+ κ1xjx
2
j3 + κ1x

3
j3 = 0 , (4.126)

and finally, plug d = −2 and the known leading order functions into (4.106) to obtain

xj

(

∂f
(1)
c,−1

∂xj3
+
∂f

(1)
c,−1

∂xj

)

(xj + xj3) + 2f
(1)
c,−1xj3 = 0 . (4.127)

Next, plug d = 1 and the known leading order functions into (4.110) to obtain

− 2

xj3

(

∂f
(1)
c,1

∂xj3
+
∂f

(1)
c,1

∂xj

)

x4j (xj + xj3)−
(

4f
(1)
c,1 x

3
j + κ1

(

−2x2j + xjxj3 + x2j3
)

)

= 0 ,

(4.128)

plug d = 0 and the known leading order functions into (4.110) to obtain

− x3jxj3
(

xj

[

∂f
(1)
c,0

∂xj3
− ∂f

(1)
c,1

∂xj3
+
∂f

(1)
c,0

∂xj
+
∂f

(1)
c,1

∂xj

]

− 2f
(1)
c,1

)

−x5j

(

∂f
(1)
c,0

∂xj3
+
∂f

(1)
c,1

∂xj3
+
∂f

(1)
c,0

∂xj
− ∂f

(1)
c,1

∂xj

)

+ κ1xjx
2
j3 − κ1x3j3 = 0 , (4.129)

and finally, plug d = −2 and the known leading order functions into (4.110) to obtain

− xj
(

∂f
(1)
c,−1

∂xj3
− ∂f

(1)
c,−1

∂xj

)

(xj − xj3)− 2f
(1)
c,−1xj3 = 0 . (4.130)

We will now solve the above 6 partial differential equations simultaneously. To start, sum

(4.125) and (4.128) which leads to

4

(

xj
∂f

(1)
c,1

∂xj
+ xj3

∂f
(1)
c,1

∂xj3

)

+ 2κ1
x2j3

x3j
= 0 . (4.131)
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The most general solution, regular at xj3 = 0 is

f
(1)
c,1 =

κ1
2

x2j3

x3j
+

∞
∑

n=0

cn
xnj3

xnj
. (4.132)

Inserting this solution into (4.125) we find
∑

n

2cnx
3−n
j xn−2

j3

(

nx2j − (n− 2)x2j3
)

= 0 . (4.133)

Rearranging a little we find

∞
∑

m=−2

2cm+2(m+ 2)x3−mj xmj3 −
∞
∑

n=0

2cn(n− 2)x3−nj xnj3 = 0 .

From the coefficient of xjx
2
j3 we have 4c4 = 0. From the coefficient of x−1−2k

j x4+2k
j3 we have

(6 + 2k)c6+2k = (4 + 2k)c4+2k which together implies c2k = 0 for k ≥ 2. From the coefficient

of x3j we have 2c2 = −2c0. This just shifts the constant κ1 appearing in f
(0)
c,1 by a term of

O( 1√
m
) and we may as well set it to zero. We shoud have expected this - as we described in

the last section, this is one of the symmetries that are present in our equations. By setting

the coefficient of x4jx
−1
j3 to zero we find c1 = 0 and from the coefficient of x4−2k

j x−1+2k
j3 we find

c2k+1 = 0 for k > 1. Putting everything together we only get a solution if all the coefficients

cn = 0. Thus, we finally obtain

f
(1)
c,1 =

κ1
2

x2j3

x3j
(4.134)

which is indeed the correct answer.

Now, consider (4.127) and (4.130). From these two equations we can solve for
∂f

(1)
c,−1

∂xj
and

for
∂f

(1)
c,−1

∂xj

∂f
(1)
c,−1

∂xj
= −

4x2j3f
(1)
c,−1

xj(x
2
j − x2j3)

,
∂f

(1)
c,−1

∂xj3
=

4xj3f
(1)
c,−1

x2j − x2j3
. (4.135)

These two equations are integrable - they give the same answer for
∂2f

(1)
c,1

∂xj∂xj3
. The only solution

again corresponds to shifting κ1, so that up to symmetry the most general solution is

f
(1)
c,−1 = 0 (4.136)

which is again the correct answer.

Finally, consider (4.126) and (4.129). After plugging in the solution we found for f
(1)
c,1 we

find

2x4j

(

∂f
(1)
c,0

∂xj3
− ∂f

(1)
c,0

∂xj

)

+ 2κ1xjxj3 + 3κ1x
2
j3 = 0 (4.137)
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and

2x4j

(

∂f
(1)
c,0

∂xj3
+
∂f

(1)
c,0

∂xj

)

+ 2κ1xjxj3 − 3κ1x
2
j3 = 0 . (4.138)

It is trivial to obtain the unique solution up to symmetry

f
(1)
c,0 = −κ1

2

x2j3

x3j
(4.139)

which is again correct. This reproduces the complete leading correction at one loop.

We can now check if our solution is hermittian which implies the following two conditions

f (0)
c,a (xj , xj3) = f

(0)
c,−a(xj , xj3) (4.140)

and

f (1)
c,a (xj , xj3) = f

(1)
c,−a(xj , xj3) + a

∂f
(0)
c,−a

∂xj
. (4.141)

Recall that at one loop we have

f
(0)
c,±1 =

κ1
4

(

1−
x2j3

x2j

)

, f
(1)
c,1 =

κ1
2

x2j3

x3j
, f

(1)
c,−1 = 0 . (4.142)

It is a non-trivial fact that

f
(1)
c,1 (xj , xj3) = f

(1)
c,−1(xj , xj3) +

∂f
(0)
c,−1

∂xj
(4.143)

so that our one loop solution is indeed Hermittian.

Finally, the next order is determined by the requirement that the O(1) piece of (4.103)

vanishes. Plugging in the solutions for f (0), f (1) as well as d = 1, we find

16x6j

(

∂f
(2)
c,1

∂xj3
− ∂f

(2)
c,1

∂xj
+ xj3κ1

)

+ 16x5jxj3

(

−∂f
(2)
c,1

∂xj3
+
∂f

(2)
c,1

∂xj
+ xj3κ1

)

−16x4jxj3
(

−2f (2)
c,1 + x2j3κ1

)

− 16x7jκ1 − x3jκ1 + 25x2jxj3κ1 + 25xjx
2
j3κ1 − 25x3j3κ1 = 0

(4.144)

and

− 16x6j

(

∂f
(2)
c,1

∂xj3
+
∂f

(2)
c,1

∂xj
+ xj3κ1

)

− 16x5jxj3

(

∂f
(2)
c,1

∂xj3
+
∂f

(2)
c,1

∂xj
− xj3κ1

)

+16x4jxj3
(

−2f (2)
c,1 + x2j3κ1

)

− 16x7jκ1 − x3jκ1 − 25x2jxj3κ1 + 25xjx
2
j3κ1 + 25x3j3κ1 = 0 .

(4.145)
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Summing (4.144) and (4.145) we find

xj
∂f

(2)
c,1

∂xj
+ xj3

∂f
(2)
c,1

∂xj3
− x2j3κ1 + x2jκ1 +

κ1
16x2j

−
25x2j3

16x4j
κ1 = 0 . (4.146)

The general solution to this equation is (again we have required that the solution is regular

at xj3 = 0)

f
(2)
c,1 =

x2j3

2
κ1 −

x2j
2
κ1 +

κ1
32x2j

−
25x2j3

32x4j
κ1 +

∑

n=0

an
xnj3

xnj
. (4.147)

Plugging this into (4.144) we find

∞
∑

n=0

anx
−n−3
j xn−1

j3

(

nx2j − (n− 2)x2j3
)

= 0 . (4.148)

The most general solution to this equation is a0 = −a2 and an = 0 for n 6= 0, 2. You reach

precisely the same conclusion if you use (4.145) instead of (4.144). Thus, our solution is

f
(2)
c,1 =

x2j3

2
κ1 −

x2j
2
κ1 +

κ1
32x2j

−
25x2j3

32x4j
κ1 + k0 − k0

x2j3

x2j
. (4.149)

Setting k0 = 1
2
and κ1 = 1 we recover the answer from expanding the known dilatation

operator coefficients.

Plugging in the solutions for f (0), f (1) as well as d = 0 we find

16x6j

(

∂f
(2)
c,0

∂xj3
+
∂f

(2)
c,1

∂xj3
− ∂f

(2)
c,0

∂xj
+
∂f

(2)
c,1

∂xj
− xj3κ1

)

−16x5jxj3
(

∂f
(2)
c,0

∂xj3
− ∂f

(2)
c,1

∂xj3
− ∂f

(2)
c,0

∂xj
− ∂f

(2)
c,1

∂xj
+ xj3κ1

)

+16x4jxj3
(

x2j3κ1 − 2f
(2)
c,1

)

+ 16x7jκ1 + x3jκ1 + 11x2jxj3κ1 − 41xjx
2
j3κ1 − 43x3j3κ1 = 0

(4.150)

and

− 16x6j

(

∂f
(2)
c,0

∂xj3
+
∂f

(2)
c,1

∂xj3
+
∂f

(2)
c,0

∂xj
− ∂f

(2)
c,1

∂xj
− xj3κ1

)

−16x5jxj3
(

∂f
(2)
c,0

∂xj3
− ∂f

(2)
c,1

∂xj3
+
∂f

(2)
c,0

∂xj
+
∂f

(2)
c,1

∂xj
+ xj3κ1

)

−16x4jxj3
(

x2j3κ1 − 2f
(2)
c,1

)

+ 16x7jκ1 + x3jκ1 − 11x2jxj3κ1 − 41xjx
2
j3κ1 + 43x3j3κ1 = 0 .

(4.151)
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Now, summing (4.150) and (4.151) we find

− xj
∂f

(2)
c,0

∂xj
− xj3

∂f
(2)
c,0

∂xj3
+ xj

∂f
(2)
c,1

∂xj
+ xj3

∂f
(2)
c,1

∂xj3
− x2j3κ1 + x2jκ1 +

1

16x2j
κ1 −

41x2j3

16x4j
κ1 = 0 .

(4.152)

Plugging in the solution for f
(2)
c,1 that we constructed above, we find

xj
∂f

(2)
c,0

∂xj
+ xj3

∂f
(2)
c,0

∂xj3
+
x2j3

x4j
κ1 = 0 (4.153)

which has the general solution

f
(2)
c,0 =

x2j3

2x4j
κ1 +

∑

n=0

an
xnj3

xnj
. (4.154)

Inserting this solution into (4.150) we finally find

f
(2)
c,0 =

x2j3

2x4j
κ1 + 2k0

x2j3

x2j
(4.155)

where k0 is the same constant that appeared above.

Finally, plugging in the solutions for f (0), f (1) as well as d = −2 we find

16x6j

(

∂f
(2)
c,−1

∂xj3
+
∂f

(2)
c,−1

∂xj
+ xj3κ1

)

− 16x5jxj3

(

−∂f
(2)
c,−1

∂xj3
− ∂f

(2)
c,−1

∂xj
+ xj3κ1

)

−16x4jxj3
(

−2f (2)
c,−1 + x2j3κ1

)

+ 16x7jκ1 + x3jκ1 + x2jxj3κ1 − xjx2j3κ1 − x3j3κ1 = 0

(4.156)

and

− 16x6j

(

∂f
(2)
c,−1

∂xj3
− ∂f

(2)
c,−1

∂xj
+ xj3κ1

)

− 16x5jxj3

(

−∂f
(2)
c,−1

∂xj3
+
∂f

(2)
c,−1

∂xj
+ xj3κ1

)

+16x4jxj3
(

−2f (2)
c,−1 + x2j3κ1

)

+ 16x7jκ1 + x3jκ1 − x2jxj3κ1 − xjx2j3κ1 + x3j3κ1 = 0 .

(4.157)

Summing (4.156) and (4.157) we find

xj
∂f

(2)
c,−1

∂xj
+ xj3

∂f
(2)
c,−1

∂xj3
− x2j3κ1 + x2jκ1 +

κ1
16x2j

−
x2j3

16x4j
κ1 = 0 . (4.158)

The general solution to this equation is (again we have required that the solution is regular

at xj3 = 0)

f
(2)
c,−1 =

x2j3

2
κ1 −

x2j
2
κ1 +

κ1
32x2j

−
x2j3

32x4j
κ1 +

∑

n=0

an
xnj3

xnj
. (4.159)
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Plugging this into (4.156) we find

∞
∑

n=0

anx
−n−3
j xn−1

j3

(

nx2j − (n− 2)x2j3
)

= 0 . (4.160)

This is the equation we obtained above; the most general solution is a0 = −a2 and an = 0

for n 6= 0, 2. Thus, our solution is

f
(2)
c,−1 =

x2j3

2
κ1 −

x2j
2
κ1 +

κ1
32x2j

−
x2j3

32x4j
κ1 + k̃0 − k̃0

x2j3

x2j
. (4.161)

Setting k̃0 =
1
2
we recover the answer from expanding the known dilatation operator coeffi-

cients.

If we now study the d = −1 equation we can prove that k0 = k̃0. Thus, in summary we

have

f
(2)
c,1 =

x2j3

2
κ1 −

x2j
2
κ1 +

κ1
32x2j

−
25x2j3

32x4j
κ1 + k0 − k0

x2j3

x2j
, (4.162)

f
(2)
c,0 =

x2j3

2x4j
κ1 + 2k0

x2j3

x2j
, (4.163)

f
(2)
c,−1 =

x2j3

2
κ1 −

x2j
2
κ1 +

1

32x2j
κ1 −

x2j3

32x4j
κ1 + k0 − k0

x2j3

x2j
. (4.164)

Collecting the results we have found above, we have the three functions above as well as

f
(0)
c,1 =

κ1
4

(

1−
x2j3

x2j

)

, f
(0)
c,0 = −κ1

2

(

1−
x2j3

x2j

)

, f
(0)
c,−1 =

κ1
4

(

1−
x2j3

x2j

)

(4.165)

f
(1)
c,1 =

κ1
2

x2j3

x3j
, f

(1)
c,0 = −κ1

2

x2j3

x3j
, f

(1)
c,−1 = 0 . (4.166)

Requiring that the smallest eigenvalue of the one loop dilatation operator is zero determines

k0 = 0. Thus, up to an overall normalization which our argument can’t determine, we have

again reproduced (4.44).

4.6 General Discussion

In this section we will extended our arguments to higher loops. More specifically, in the

language of the discussion towards the end of section 4.3, our goal is to construct the most
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general solution up to symmetry. Recall that we have already determined (see (4.121) and

(4.123) above)

f (0)
c,p = κp

(

1−
x2j3

x2j

)p

, (4.167)

f
(0)
c,p−1 = −2pκp

(

1−
x2j3

x2j

)p

+ κp−1

(

1−
x2j3

x2j

)p−1

. (4.168)

Plug d = p and the known leading order functions into (4.106) to obtain

xj(xj − xj3)
(

xj

[

∂f
(1)
c,p

∂xj3
− ∂f

(1)
c,p

∂xj

]

(xj − xj3) + 2f (1)
c,p pxj3

)

+κp
(

2(p− 1)x4j + x2j3
(

2(p− 1)x2j + p(p+ 1)
)

− 2xjxj3
(

2(p− 1)x2j + p(p+ 1)
))

(

1−
x2j3

x2j

)p

= 0 .

Plug d = p and the known leading order functions into (4.110) to obtain

κp

(

1−
x2j3

x2j

)p
(

2(p− 1)x4j + 4(p− 1)x3jxj3 + 2(p− 1)x2jx
2
j3 + 2p(p+ 1)xjxj3 + p(p+ 1)x2j3

)

−xj(xj + xj3)

(

xj

[

∂f
(1)
c,p

∂xj3
+
∂f

(1)
c,p

∂xj

]

(xj + xj3) + 2f (1)
c,p pxj3

)

= 0 .

Summing these two we obtain

xj
∂f

(1)
c,p

∂xj
+ xj3

∂f
(1)
c,p

∂xj3
− κp

(

1−
x2j3

x2j

)p−1 [

2(p− 1)xj − p(p+ 1)
x2j3

x3j
− 2(p− 1)

x2j3

xj

]

= 0 .

The general solution to this equation, that is regular at xj3 = 0 is

f (1)
c,p = κp

(

1−
x2j3

x2j

)p−1 [

2(p− 1)xj + p(p+ 1)
x2j3

x3j
− 2(p− 1)

x2j3

xj

]

+

∞
∑

n=0

an
xnj3

xnj
.

Plugging this back into the first of our equations we find

∞
∑

n=0

anx
−n
j xnj3

[

n(xj − xj3)(xj + xj3) + 2px2j3
]

= 0 . (4.169)

The only solution is an = 0 so that

f (1)
c,p = κp

(

1−
x2j3

x2j

)p−1 [

2(p− 1)xj + p(p+ 1)
x2j3

x3j
− 2(p− 1)

x2j3

xj

]

. (4.170)
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Now, plug d = p and the known leading order functions and f
(1)
c,p into (4.106) to obtain

xj(xj − xj3)2(xj + xj3)

[

xj

(

∂f
(1)
c,p−1

∂xj3
− ∂f

(1)
c,p−1

∂xj

)

(xj − xj3) + 2f
(1)
c,p−1(p− 1)xj3

]

−
(

1−
x2j3

x2j

)p
(

x2jx
2
j3 (p(κp(6p+ 3) + κp−1(−p) + κp−1 + 2(p− 3)p− 3)

−2x2j
(

κp
(

4p2 − 6p+ 4
)

+ κp−1p− 2(κp−1 + p)
))

+2x6j(2κp − (p− 2)(κp−1 − 2p)) + x3jxj3
(

4x2j ((κp − 1)p(2p− 3) + κp−1(p− 2))

−p(4κpp+ κp − 2κp−1(p− 1) + 4(p− 1)p− 1))

+pxjx
3
j3

(

4κpp
2 − 4(κp − 1)(2p− 3)x2j + 4κpp+ κp + 4p2 − 4p− 1

)

−(κp − 1)px4j − 2x4j3 (p(κp(p+ 1)(2p+ 1) + (p− 3)p− 1)

−2(p− 1)x2j(κp(2p− 1)− p)
))

= 0

(4.171)

and plug d = p and the known leading order functions and f
(1)
c,p into (4.110) to obtain

− xj(xj − xj3)(xj + xj3)
2

[

xj

(

∂f
(1)
c,p−1

∂xj3
+
∂f

(1)
c,p−1

∂xj

)

(xj + xj3) + 2f
(1)
c,p−1(p− 1)xj3

]

(

1−
x2j3

x2j

)p
(

x2jx
2
j3

(

2x2j
[

κp
(

4p2 − 6p+ 4
)

+κp−1p− 2(κp−1 + p)]− p [κp(6p+ 3) + κp−1(−p) + κp−1 + 2(p− 3)p− 3])

+2x6j((p− 2)(κp−1 − 2p)− 2κp) + x3jxj3
(

4x2j ((κp − 1)p(2p− 3) + κp−1(p− 2))

−p(4κpp+ κp − 2κp−1(p− 1) + 4(p− 1)p− 1)) + pxjx
3
j3

(

4κpp
2

−4(κp − 1)(2p− 3)x2j + 4κpp+ κp + 4p2 − 4p− 1
)

+ (κp − 1)px4j
+2x4j3

(

p(κp(p+ 1)(2p+ 1) + (p− 3)p− 1)− 2(p− 1)x2j (κp(2p− 1)− p)
))

= 0 .

(4.172)

Summing these two we obtain

xj3
∂f

(1)
c,p−1

∂xj3
+ xj

∂f
(1)
c,p−1

∂xj
+

(

1−
x2j3

x2j

)p−2

F (xj, xj3) = 0 , (4.173)

where

F (xj, xj3) =
x2j3

xj

(

−8κp + 2κp−1p− 4κp−1 − 8p2κp + 16pκp
)

+xj
(

4κp − 2κp−1p+ 4κp−1 + 4p2κp − 8pκp
)

+ 2p3κp
x4j3

x5j

+
x2j3

x3j

(

κp−1p
2 − κp−1p− 2p3κp

)

+
(

4κp + 4p2κp − 8pκp
) x4j3

x3j
.

The general solution to this equation, which is regular at xj3 = 0 is

f
(1)
c,p−1 =

(

1−
x2j3

x2j

)p−2

G(xj , xj3) +
∞
∑

n=0

an
xnj3

xnj
(4.174)
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where

G(xj , xj3) = −
x2j3

xj

(

−8κp + 2κp−1p− 4κp−1 − 8p2κp + 16pκp
)

−xj
(

4κp − 2κp−1p+ 4κp−1 + 4p2κp − 8pκp
)

+ 2p3κp
x4j3

x5j

+
x2j3

x3j

(

κp−1p
2 − κp−1p− 2p3κp

)

−
(

4κp + 4p2κp − 8pκp
) x4j3

x3j
.

Plugging this back into the first equation above we find

x−n−1
j xn−1

j3

[

annx
2
j − anx2j3(n− 2p+ 2)

]

= 0 (4.175)

which forces an = 0.

Now, study the equation obtained by plugging d = −p− 1 and the known leading order

functions into (4.106) to obtain

xj(xj + xj3)

(

xj

[

∂f
(1)
c,−p

∂xj3
+
∂f

(1)
c,−p

∂xj

]

(xj + xj3) + 2f
(1)
c,−ppxj3

)

+κp(p− 1)
[

x2j3
(

p+ 2x2j
)

+ 2xjxj3
(

p+ 2x2j
)

+ 2x4j
]

(

1−
x2j3

x2j

)p

= 0 .

Plug d = p and the known leading order functions into (4.110) to obtain

κp(p− 1)

(

1−
x2j3

x2j

)p
[

x2j3
(

p+ 2x2j
)

− 2xjxj3
(

p+ 2x2j
)

+ 2x4j
]

−xj(xj − xj3)
(

xj

[

∂f
(1)
c,−p

∂xj3
− ∂f

(1)
c,−p

∂xj

]

(xj − xj3) + 2f
(1)
c,−ppxj3

)

= 0 .

Summing these two we obtain

x3j

(

∂f
(1)
c,−p

∂xj3
xj3 +

∂f
(1)
c,−p

∂xj
xj

)

− κp(p− 1)

(

1−
x2j3

x2j

)p−2
[

x2j3
(

p+ 2x2j
)

− 2x4j
]

= 0 .

The general solution to this equation, that is regular at xj3 = 0 is

f
(1)
c,−p = κp(p− 1)

(

1−
x2j3

x2j

)p−1(

−p
x2j3

x3j
+

2x2j3

xj
− 2xj

)

+
∞
∑

n=0

an
xnj3

xnj
. (4.176)

Plugging this back into the first equation above we learn that an = 0.

The only results we need from the above analysis are

f
(0)
c,±p = κp

(

1−
x2j3

x2j

)p

, (4.177)
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f (1)
c,p = κp

(

1−
x2j3

x2j

)p−1 [

2(p− 1)xj + p(p+ 1)
x2j3

x3j
− 2(p− 1)

x2j3

xj

]

, (4.178)

f
(1)
c,−p = κp(p− 1)

(

1−
x2j3

x2j

)p−1(

−p
x2j3

x3j
+

2x2j3

xj
− 2xj

)

+
∞
∑

n=0

an
xnj3

xnj
. (4.179)

Now, computing

f (1)
c,p (xj , xj3)− f (1)

c,−p(xj, xj3)− p
∂f

(0)
c,−p

∂xj
= 4κp(p− 1)xj

(

1−
x2j3

x2j

)p

(4.180)

we see that the only time that we get a Hermittian solution is when p = 1. Thus we are

forced to set f
(0)
c,±p = f

(1)
c,±p = 0 which then implies that f

(2)
c,±p = 0. We now apply the same

argument to conclude that f
(0)
c,±p∓1 = f

(1)
c,±p∓1 = f

(2)
c,±p∓1 = 0 and keep going. Finally, when we

get to f
(0)
c,±1, f

(1)
c,±1, f

(2)
c,±1, we will find the one loop answer. This proves that the form of the

piece of the dilatation operator that acts on the Y fields is not corrected at any higher loop

order.

4.7 Chapter Appendix: The relation between f
(n,m)
c,d (xj, xj3) and

f
(n−1,m+1)
c,d (xj, xj3)

In this appendix we derive a relation between f
(n,m)
c,d (xj , xj3) and f

(n−1,m+1)
c,d (xj , xj3) that is

used extensively in section 4.4. To make the discussion concrete we will study f
(n,m)
c,0 (xj , xj3)

which is the continuum limit function corresponding to the following dilatation operator

matrix element

− 1

2

[

m− (m+ 2)(j3)2

j(j + 1)

]

(4.181)

This becomes the following function

f
(n,m)
c,0 (xj , xj3) = −

1

2

[

m− (m+ 2)(
√
mxj3)

2

√
mxj(

√
mxj + 1)

]

(4.182)

We have the series expansion

f
(n,m)
c,0 (xj , xj3) =

∞
∑

q=0

m1− q

2f
(m)
c,0 (xj , xj3) (4.183)

When we replace m → m+ 1, we do so without changing j and j3 - it is the expression

(4.181) with m → m + 1 that solves the correct recursion relation. We must use the same
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definition of xj and xj3 for both f
(n,m)
c,0 (xj , xj3) and f

(n−1,m+1)
c,0 (xj , xj3), which implies that

the new dilatation operator matrix element

− 1

2

[

m+ 1− (m+ 1 + 2)(j3)2

j(j + 1)

]

(4.184)

leads to the following function

f
(n−1,m+1)
c,0 (xj , xj3) = −

1

2

[

m+ 1− (m+ 1 + 2)(
√
mxj3)

2

√
mxj(

√
mxj + 1)

]

. (4.185)

We can get this function from f
(n,m)
c,0 (xj , xj3) by (i) shifting every m→ m+ 1 and then (ii)

rescaling xj →
√

m
m+1

xj and xj3 →
√

m
m+1

xj3 . In summary

f
(n,m)
c,d (xj , xj3) =

∞
∑

q=0

m1− q

2f
(m)
c,d (xj , xj3) ,

f
(n−1,m+1)
c,d (xj , xj3) =

∞
∑

q=0

(m+ 1)1−
q

2 f
(m)
c,d (

√

m

m+ 1
xj ,

√

m

m+ 1
xj3) . (4.186)

Finally, note that

√

m

m+ 1
= 1− 1

2m
+

3

8m2
+ ... (4.187)
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5 Conclusion

In this dissertation we have presented further evidence for integrability in the large N but

non-planar limit of N = 4 SYM. In the su(3) sector we have shown that integrability is

present at one loop. The term we have focused on in this dissertation was argued to be

subleading in [32] and as such was neglected. In this approximation the conservation laws

found in the su(2) sector still hold and integrability was clearly still a feature. Inclusion

of this subleading term, however, sees the conservation law broken suggesting that perhaps

integrability is not exact in this sector. We have argued that this is not the case. Even when

the subleading term is included integrability is still present and as such integrability in the

su(3) sector is exact at one loop.

In the su(2) sector we have shown that integrability is present at all loops. Previous

explicit computations[25, 26, 27, 28, 31] have shown that integrability is present at one and

two loops. Rather than continuing with an explicit computation - indeed the precise form

of the dilatation operator is not even know beyond two loops - we have employed a powerful

symmetry argument. This results in a set of recursion relations which are readily solved

at one loop, reproducing the previous results. To proceed to higher loops the recursion

relations proved very tedious and as such a continuum limit was taken which resulted in a

set of partial differential equations. These were solved fully at all loops and brought us to

the conclusion that in this sector integrability is present at all loops.

An interesting extension of this work would be to consider the su(2|3) sector - the sector
containing operators built from all three adjoint scalar fields as well as the two fermionic

fields we have neglected in this work. Recently[46], it has been suggested that by computing

the spectrum of anomalous dimensions in this sector the relativistic dispersion relation would

emerge in the string theory. Application of the symmetry arguments presented in chapter 4

to the su(2|3) sector would provide an effective means of proving this conjecture definitively.

The focus in this dissertation has been on operators built from O(N) fields. Further work

would see this extended to operators built from O(N2) fields. Recall that these operators

are dual to new spacetime geometries. This sector of the theory remains rather unexplored.

The restricted Schur polynomial technology provides an effective tool for delving into this

sector. After further development of this technology the hope is that some limit of Einstein’s

field equations may emerge.
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