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1. INTRODUCTION

One of the most important characteristics of an electron storage ring is the size of the
beam. Not only is the efficiency of the ring a direct function of this parameter, but
also the choice of almost all important characteristics of the ring, including its cost
and power consumption, depends on the proper and accurate evaluation of the beam
size.

In an electron storage ring, the horizontal size of the beam (at least for single-beam
operation) is determined mainly by two different competing physical processes. The
quantum radiation noise, being a classic example of a pure stochastic process, increases
the phase space occupied by a bunch of particles. That causes the size of the beam to
grow proportionally to the square root of time (or conversely the rate of the beam
emittance growth is a constant, depending on the ring parameters).

On the other hand, the damping of particle oscillations diminishes the phase volume
(the rate of the beam emittance decrease is another constant, depending on the ring
parameters).

The combined effect of these two processes produces an equilibrium (Gaussian)
particle distribution in phase space and an equilibrium size of the whole ensemble of
the particles (beam size). In a small storage ring (in the energy range of several hundred
MeV), the processes described indeed comprise the main effect. The calculations of the
horizontal beam size for such a ring are quite simple, are in good agreement with
experiment and give sound and reliable foundation for the design of a ring. 1 The
vertical size can then be found provided the coupling coefficient of the ring is known.
The beam size of a linear storage ring, established due to the phenomena described
above is usually referred to as the natural beam size.

The situation is more complicated for colliding-beam operation. The beam-beam
interaction changes the particle distribution and usually increases the vertical size of

t Work supported by the Department of Energy, Contract DE-AC03-76SF00515.

67
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the beams, thus reducing the luminosity of the ring, the beam lifetime and the signal-to
noise ratio of an experimental apparatus. There exist no good theoretical ways for
beam-size calculation including the beam-beam interaction.

Further complications arise for larger storage rings. The need for chromatic
corrections, which are larger the bigger is the size and the energy of the storage ring,
makes it a more and more nonlinear machine. The presence in the lattice of nonlinear
magnetic fields (sextupoles) changes the character of the distribution function. It is no
longer Gaussian. In fact, the actual distribution function for nonlinear lattice has not
been known until now. The same is also true for the beam size.

For example, in a machine such as SPEAR, the distribution is not Gaussian (for large
amplitudes) and the size of the bunch is also not the natural one. These effects are more
pronounced for the vertical plane (cf. the results of measurements on SPEAR made by
H. Wiedemann2

). Of course, the size of the beam at any particular point of the lattice
might be changed by other reasons then the presence of the sextupoles. For example, a
spurious dispersion function together with the energy spread in the beam can change
the effective beam size. But this does not change the main fact-one needs to be able to
evaluate the beam size taking the nonlinear magnets into account.

The absence of an analytical approach for the beam-size calculations is circum
vented at the present time by using different computational methods and programs.
Although they proved to be extremely useful both in the design and operational stages
of modern storage rings, it is obvious how limited such methods are for certain
problems. For example, they are completely inadequate for all problems in which
stochastic noise is an essential part.

For an electron storage ring, beam-size evaluation including beam-beam interaction
gives an example of such a problem. Another good example is finding the beam size for
a nonlinear machine. The list of such problems can probably be made much longer.

I hope the present work gives a way to solve some of these problems, at least in
principle. The approach described here is an application of the well-known Green's
function method, which in this case is applied to the Fokker-Planck equation gov
erning the distribution function in the phase space of particle motion. 3

A similar approach proved to be useful in solving other problems, such as estimating
the particle losses in an electron accelerator due to the presence of a boundary4-6 or
finding the threshold of a longitudinal instability due to the longitudinal impedance of
the ring.?

The new step made in this paper is to consider the particle motion in two degrees of
freedom rather than in one dimension, a characteristic of all the previous work. This
step seems to be necessary for an adequate description of the problem, at least for the
class of problems which are considered below.

Part I of this work consists of the formal solution of the Fokker-Planck equation in
terms of its Green's function 3 and describing the Green's function itself. The Green's
function and the description of some of its properties can be found in the Appendices.
In Section 2 of Part I, I discuss the distribution function in the transverse phase space of
a particle and its Fokker-Planck equation for a simple case of a weak-focusing
machine. Sections 3 and 4 are devoted to describing the Green's function and solution
of this equation. Then in Section 5 this technique is applied to a strong-focusing
machine and finally in Section 6 there is a discussion of applicability of this method, its
limitations and relation to other methods (such as the Hamiltonian method).

Subsequent parts of this work contain examples of applications of the method. In
particular, the calculations of the beam-size enhancement due to the presence of
sextupoles (Part III) and of the weak-beam blowup due to collisions with a strong
counter-rotating beam (Part IV) are performed there.
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Let us consider first the lateral motion of a particle in a weak-focusing machine. I as
sume that nonlinear forces can be represented in the form of nonlinear "kicks," i.e.,
sudden but regular jumps in the transverse velocity components of the particle. Apart
from these nonlinear forces, horizontal (x) and vertical (y) components of particle
motion are assumed to be uncoupled. If one neglects quantum radiation noise for a
moment, the transverse motion can be described as a damped two-dimensional
oscillation

d2xjdt2 + 2a. dxjdt + 002 X == I8(t - tk)Fx(x, y)
k

d 2yjdt 2 + 26 dy/ dt + n2 y == L6(t - tk)Fy(x, y)
k

(2.1)

(2.2)

In Eqs. (2.1) and (2.2),00 and n denote horizontal and vertical oscillation frequencies,
a. and 8 the corresponding damping constants and Fx(x, y) and Fy(x, y) the correspond
ing components of the nonlinear force. The definition of the sequence of the times tk at
which the particle experiences the sudden jumps in its velocities depends on the
particulars of the problem. In the case, for example, when there are N equally spaced
kicks around the machine,

(2.3)

where T is the particle revolution period and 000 == 2rr./T.
In the presence of radiation noise, stochastic terms should be added to the right-hand

sides of Eqs. (2.1) and (2.2) describing the effect of the noise.
Even if one would be able to solve such a system of stochastic equations, there would

still remain the problem of averaging the solution over the initial particle distribution.
Indeed, one is hardly interested in knowing the trajectories of each of many particles
comprising a bunch. It is much more useful to have information on the average
behavior of the whole particle ensemble.

We can get such information directly by considering from the start a distribution
function for the ensemble of the particles in transverse space

0/ == o/(x, x, y, y, t). (2.4)

The distribution function 0/ can be seen as a particle density in the four-dimensional
phase space of the coordinates and velocities. Since there is no loss of particles in the
problems we consider, the integral of 0/ over all space should be constant. It is
convenient to normalize 0/ to unity

(2.5)

In formulae (2.5) and throughout this paper V == (x, x, y, y) and dV == dx dx dy dYe
The integration in (2.5) is performed over the whole space, i.e., from - 00 to + 00 in each
of the four coordinates. The infinite limits of integrals for integration over the whole
space V will be omitted below.
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(2.7)

The equation describing the development of the distribution function in time and its
dependence on V in the presence of stochastic jumps of particle velocities is called the
Fokker-Planck equation. 8 In our case it has the following form

o'!1 o. \If) 0 (··\If) 0 .\If) 0 (··\If ~2\lf/~ • 2 ~2\lf/~ ·2at + Ox (x 'I' + Ox X'l' + oy (y'l' + oj Y'I') = qxu 'I' uX + qyu 'I' uy

(2.6)

The left-hand side of Eq. (2.6) is simply the full time derivative of the distribution
function d\lf/dt. If one neglects the noise, d\lf/dt = 0 showing that the density
calculated along the phase trajectory of the particle is constant (Liouville's theorem9

).

The right-hand side of this equation represents the change of the distribution
function due to the radiation noise. The constants qx and qy represent the rates of this
noise for the x and y planes respectively.

One can argue that for the betatron oscillation the quantum emission causes the
jump in the particle coordinate rather then in its lateral velocity component. This
would change the second derivative in xon the right-hand side of Eq. (2.6) to the second
derivative in x.

It is easy to show that such a change in the equation does not make any difference in
the long run. Indeed, the betatron oscillation moves the phase-space point representing
the particle motion around so rapidly that the actual direction of small jumps of its
trajectory appears to be irrelevant. Formally, it can be shown that the Green's function
(see next Section) of the equation with the jumps in x is the same as the Green's function
for the equation with the jumps in x (with some redefinitions of its coefficients).
Furthermore, there is a contribution to the transverse size of the beam from energy
oscillations not taken into account here. For the vertical oscillations, the latter effect is
practically negligible, the main contribution coming from coupling to horizontal
oscillations.

We can consider Eq. (2.6) as an effective tool to describe the actual size of the beam.
By properly choosing coefficients in Eq. (2.6), specifically qx and qy, one is able to obtain
the distribution function that produces correct values for beam size. In particular, that
takes care of the horizontal-vertical and horizontal-longitudinal couplings. As we will
see below, the coefficients qx and qy do not enter into any final result separately, but
always in a ratio with damping constants in such a way as to give the unperturbed rms
value of the corresponding beam size.

Now, substitute into (2.6) x and y from Eqs. (2.1) and (2.2) to get

o'!1 . (O\fJ O\fJ)at + Dxo/ + Dyo/ = - ~ 8(t - tk ) Fx Ox + Fy oj ,

where I use the following abbreviations for differential operators in x, x, y, yacting on \fJ

(2.8)

(2.9)

The solution of Eq. (2.7) is the aim of this paper.
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By the Green's function G for Eq. (2.7) we understand a function of two phase-space
points Jt: Vo and two times t, to which satisfies the equation

(3.1)

and the initial condition

In Eq. (3.1) the differential operators Dx and Dy act on the variables V.
The physical meaning of the Green's function is the evolution in time t > to and

space V of the phase-space density, which initially (at time t == to) was represented by a
D-function distribution positioned at the point Vo.

It is clear from this remark that the integral of the Green's function over all space
should be 1 for all times t ~ to

(3.3)

Since all the coefficients in Eq. (3.1) are constants in time, the Green's function
actually depends on the difference t - to, rather than the two time variables separately.

Since both operators Dx (2.8) and Dy (2.9) only act on one set of coordinates (x, x) and
(y, y) respectively, the Green's function is a product of the two simpler Green's
functions Gx and Gy , each depending on the corresponding coordinates and time

The Green's function Gx for a one-dimensional damped linear stochastic oscillator has
been obtained by S. Chandrasekhar. 3 For the readers' convenience, the description of
the Green's function and some ofits properties can be found in the Appendices. As soon
as we know the Green's function of Eq. (2.7), its solution can be written right away. Let
us denote the expression on the right-hand side of Eq. (2.7) as I1(V, t). Then

i§ a formal solution of (2.7). The first term in (3.5) depends on the initial distribution
\f!(V, toJ To check that (3.5) satisfies Eq. (2.7), one may find a\flfat, Dx\fl and Dy\fl of (3.5)
and sum them all up. Then, using Eq. (3.1) and (3.2), it is easy to see that (3.5) is indeed
the solution of (2.7).

In our case, the function I1(V, t) itself depends on \fl. Hence (3.5) is an integral
equation for \f! rather than a real solution of (2.7)

(3.6)
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The summation in (3.7) should be performed for all tk ~ t for any given t.
Let us now consider the case where the nonlinear force can be treated as small in

some sense. As we will see later, this condition is realized in many practical problems. In
this case, we can search for \)I in terms of a perturbation theory

\)I = \)10 + \)11 + \)12 + ... (3.7)

Here \flo is the unperturbed solution of (2.7), i.e., the solution of the uniform equation
with II = o. \fI 1 then is the solution of (2.7) where \)I is substituted by \flo in the right
hand side. \)12 is the solution of (2.7) with \)I in II substituted by \II1 and so on

(3.8)

(3.9)

(3.10)

Finding the average values of the different parameters from the known distribution
function (3.7) is now a matter of integration. For example, the rms value of the vertical
size of the beam is given by

l:: (t) = fdV \jJ(V, t)y2 = cr/(l + ~1 + ~2 + """),

where

cr/ = fdV \jJo(V, t)y2

is by definition the square of the rms vertical size of the unperturbed beam.
Suppose that the nonlinear force F is proportional to some small parameter A. It is

seen from (3.8) and (3.9) that \fI 1 is then of order A, \II2 is of order A2 and so on. In other
words (3.7) is then a power series in the parameter A.

In the same way, the second expression in (3.10) is also a power-series expansion in
the parameter A. For example, for the weak beam-strong beam interaction, the bunch
current of the strong beam plays the role of the parameter A. Hence, for the beam-beam
interaction, the beam blowup can be found as an expansion in powers of the beam
current.

4. UNPERTURBED DISTRIBUTION FUNCTION

The unperturbed (Il = 0) distribution function \)Io(V, t) satisfies the equation

(4.1)
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where \ji(Vo, to) is the initial distribution function. As soon as it is given we can find from
(4.1) the distribution function at any later time t ~ to.

One example of the application of formula (4.1) is to solve the following problem. IO

A Gaussian bunch of particles is injected at time O. The rms values of x and x are
different from the proper values of the accelerator under consideration. The
distribution function is found describing the transition from the injection distribution
to the proper distribution with the eigen rms values.

Here I consider another example. Suppose that at time 0 a bunch of particles with a
8-function-like distribution in V is injected at the four-dimensional point Vo. The
development in time and space of the particle distribution is described now by the
Green's function itself

(4.2)

The behavior of this function is considered in Appendix A. In particular, for large times
(ext> 1 and 8t > 1). '!Jo(V, t) contains no information on the initial point Vo, nor does it
depend on time. The distribution function becomes the equilibrium distribution
function

(4.3)

where (Jx, ax, (Jy and (Jy are the rms values of the corresponding coordinates and
velocities. From formula (A23), (A24) of Appendix A one finds

(Jx
2 == qx/2ro2ex (4.4)

(Jx2 == qx/2ex (4.5)

(Jy2 == qy/2Q28 (4.6)

(Jy2 == qy/28 (4.7)

The same equilibrium distribution function (4.3) will of course emerge at large time
for any initial distribution function.

5. EXTENSION OF THE FORMALISM FOR A
STRONG-FOCUSING MACHINE

To be really useful, the formalism developed should be shown to be applicable to a
periodic lattice. To learn how to use it in this case, we start from equations similar to
(2.1), (2.2) for the transverse motion in a periodic lattice, which is characterized by two
periodic focusing functions Kx(s) and Ky(s)

d2x/ds2 + 2ex dx/ds + Kxx == L8(s - sk)Fx(x, y)
k

d2y/ds2 + 28 dy/ds + KyY == L 8(s - sk)Fy(x, y).
k

(5.1)

(5.2)
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I have changed the independent variable here to s == ct, where c is longitudinal particle
velocity. Let us make now the transformation to Courant-Snyder variables! 1 :

x == Jr3: U

d<p == ds/vxPx

y == Jj3;u

In these variables, the equations of motion are

u" + 2fiu' + V x 2U == L 8(<p - <Pk)Fx
k

u" + 28u' + Vy 2 0 == L 8(8 - 8k )Fy
k

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

Here and below primes denote derivation with respect to <p for u and 8 for 0, and

Fx(u,o) == VxJr3: Fx[x(u), y(o)J

Fy(u,o) == vyA Fy[x(u), y(o)J.

(5.9)

(5.10)

In the last two functions, x and y should be substituted by u and 0 according to (5.3)
and (5.5).

The corresponding Fokker-Planck equation in this case can be written in the form

where

,a~ - - , ao/ 2 ao/ _ a2 0/
D 0/ = 0 - - 280/ - 280 - - v 0 - - q -

v ao ao' y ao' y ao'2

(5.12)

(5.13)

The constants CX, 8, qx and qy cannot be obtained without considering the coupling of
horizontal to vertical and horizontal to longitudinal motions. The corresponding
expressions for them can be found, for example, in Sands' book. 1

Here I should make a comment similar to that made about Eq. (2.6). The form of the
stochastic term in (5.12) implies a jump in x' at the moment of a quantum emission. In a
strong-focusing machine, such jumps occur both in x' and x. But, as discussed in
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Section 2, we can keep Eq. (5.12), as long as the coefficients in it are chosen in such a way
as to produce the correct effective size of the beam including the effect of the horizontal
longitudinal coupling. The same argument applies also to Eq. (5.13), where coefficients
should be chosen in such a way as to give the effective unperturbed vertical size of the
beam due to coupling to the horizontal motion.

The Green's function of Eq. (5.11) G is the product GuGl) of the Green's functions of
the two equations

(5.14)

and

(5.15)

Gu is the same function of the variables (u, u', 4>, Uo, uo', <Po) as Gx is of the variables
(x, X, t, X o, xo, to).

G(V, s, Vo, so) == Gu(u, u', <p(s), Uo, uo', <p(so)) Gl)(D, D', 8(s), Do, Do', 8(so)) (5.16)

Again we denote the right-hand side of Eq. (5.11) by TI(V, s).

(5.17)

The formal solution of Eq. (5.11) is

"'(V, s) = fdVo G(V, s, Vo, so)\i!(Vo, so) + fa dcr fdVo G(V, s, Vo, cr)TI(Vo, cr)

(5.18)

To check that (5.18) satisfies Eq. (5.11), one may find a\fJ/as, Du\fJ, Dl)\fI and sum them
up with the proper coefficients. For example,

(5.19)

All the rest of Section 3 can now be repeated with almost no change. For example, the
unperturbed equilibrium function \flo is now

where Ex, Ey are horizontal and vertical emittances of the bunch

Ex == qx/2crvx
2

Ey == qy/28vy2
.

(5.17)

(5.18)
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6. DISCUSSION
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Let us summarize the features of the approach developed in this paper. First, I consider
transverse two-dimensional linear oscillations. These oscillations are treated as
uncoupled, apart from the coupling brought up by a nonlinear force, which is treated as
a perturbation.

The use of perturbation theory certainly limits the applicability of this method. One
limitation is that only those problems in which the perturbation is small can be treated.
For example, the beam-beam interaction may be treated for the case of a bunch current
that is not too high. The quantitative limits depend of course on the particulars of the
problem. Another limitation is that even for a problem where the perturbation is small,
there could arise conditions where the approximation breaks down. For example, on or
close to a particular resonance, the perturbed distribution function may deviate too far
from its unperturbed value to be considered in the frame of a perturbation theory.

Still such an approach might be useful in some cases. Usually, a storage ring operates
far from all major resonances and to know the behavior of the beam size around the
working point might be useful.

Further, the action of the nonlinear force is approximated by a 'kick' in transverse
particle velocities. This approximation is rather good for all cases where the effective
interaction length is much smaller than the wavelength of the betatron oscillations.

For the strong-focusing machine, I use a smooth approximation to describe the
betatron motion. Thus I am neglecting all the changes of the machine functions (such as
the beta-function) caused by the nonlinear force. I believe that such effects may be
important for the description of the behavior of a single particle, but they should be of
less importance for a bunch of particles. At least the changes of beta-function are
different for different particles.

The attractive feature of the method is that both the oscillation damping and the
quantum noise are taken into consideration. There is no doubt that both effects are
important for the correct evaluation of the beam size. There is a weak point, though, in
the method developed where 'effective' constants are used in equations governing the
evolution of the distribution function. Here more work is needed to demonstrate the
validity of such an approach.

The inclusion of damping and radiation noise into the treatment prevents the
Hamiltonian formalism from being used. The perturbation treatment of the distribu
tion function differs significantly from perturbation treatment in the Hamiltonian
theory. In a sense, the infinite sum (3.7) of the higher-order corrections to the
distribution function is equivalent to the first-order correction in a Hamiltonian, if the
Hamiltonian theory were applicable. Indeed, the unperturbed distribution function
[cf. for example, (5.16)J can be written in the form (Boltzmann's distribution)

(6.1)

where

(6.2)

with a similar expression for Hy •
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The last comment concerns Eqs. (2.7) and (5.11). The treatment of the beam-beam
interaction as a diffusion process has been attempted by myself. 12 There are similarities
between the method presented here and the diffusion-like calculations. For both
methods, the Fokker-Planck equation is the core. But there is a fundamental difference
between the equations used. In the diffusion approach, the beam-beam force (or at least
some part of it) is treated as stochastic, giving rise to noise in the particle motion (in
additional to the radiation noise). That makes it necessary to introduce into the theory
an arbitrary and not well-defined subtraction and a fitting parameter.

In contrast, the present method treats the beam-beam force as a fully deterministic
one. The method does not need and does not contain any undefined parameters.

The formal difference of the two methods can be seen from the way in which the
perturbing force appears in the equations. In the previous work,12 it appears as a
coefficient in the term a2",fa y2, while in the present work it appears before a",fa y.

ACKNOWLEDGMENTS

I am grateful to J. Rees who inspired and supported this work. I appreciate many useful
discussions with A. Chao, P. Morton, and M. Sands. My thanks are also to all the
participants of the machine physics seminar for their interest to this work. The
comments by A. Hutton, who read the manuscript, are appreciated.

REFERENCES

1. M. Sands, "The Physics of Electron Storage Rings", SLAC-121, UC-28 (ACC), November 1970.
2. H. Wiedemann, "Experiments on the Beam-Beam Effect in e+e- Storage Rings", in Nonlinear Dynamics

and the Beam-Beam Interaction, AlP Conference Proceedings, 57, p. 84 (1979).
3. S. Chandrasekhar, Rev. Mod. Phys., 15, 1 (1943).
4. L. Goldin and D. Koshkarev, Nuovo Cimento, 6, 286 (1957).
5. S. Kheifets, Prib. Tekh. Exper., 5, 17 (1960).
6. A. Chao, IEEE Trans. Nucl. Sci., NS-24, 1885 (1977).
7. P. Channell, "Strong Turbulence and the Anamolous Length of Stored Particle Beams", Ph.D Thesis,

LBL-4433, November 1975.
8. A. D. Fokker, Ann. d. Physik., 43, 812 (1914); M. Planck, Sitz, d. Preuss. Akad., p. 324 (1917).
9. H. Goldstein, Classical Mechanics (Addison-Wesley, N. Y., 1953).

10. W. Ebeling and S. Kheifets, Koharente Betatronschwingungen bei Injektion, DESY SI-77/03, DESY
PET 77/06, June 1977.

11. E. Courant and H. Snyder, Ann. Phys., 3,1 (1958).
12. S. Kheifets, IEEE Trans. Nucl. Sci., NS-26, 3615 (1979).
13. S. Kheifets, "Particle Losses in Modern Circular Accelerators", Ph.D. Thesis, Yerevan Physics Institute,

1960.

APPENDIX A

The Green's Function for a Stochastic Oscillator

I present here the Green's function for a one-dimensional oscillator. The solution is due
to S. Chandrasekhar. 3 A different method of obtaining the same solution has also been
developed. 13
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The solution of the equation

aG . aG . aG 2 aG a2G- + x- - 2a.G - 2a.x- - co x- - q- == 0 (Al)at ax ax ~ ax ax 2 '

which has a source at x == xo, X == xo at t == 0

G(x, x, xo, Xo, 0) = 8(x - xo) 8(x - xo)

has the form

(A2)

where

b = !L (e- 21l2t - 1)
Jl2

~ == [2 _ ab

Jll == - a. + ico'

Jl2 = -a. - ico'

The Green's function (A3) expressed in terms of x, X o, x, Xo is

(A4)

(AS)

(A6)

(A7)

(A8)

(A9)

(A8')

(A9')

(A10)

(All)

(AI2)

G = co~ exp{2cxt - A 1x2
- A 2 x2

- A 3 xx - A4 x/ - A 5 X0
2

Ttv ~

- A6 xOxO- A7 xxO- Asxxo - A9 xxO- AlOxxO}, (A3')
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where

1A == - (ae- 2 f.l2 t + be- 2 f.ll t + 21e-(f.ll +f.l2)t)
2 2~

1
As == 2~ (a + b + 21)

For large time (t --+ (0),

79

(Al3)

(Al4)

(Al5)

(Al6)

(Al7)

(Al8)

(Al9)

(A20)

(A2l)

(A22)

(A4')

(A5')

(A6')

(A7')

(A3")
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Hence, we get

S. KHEIFETS

(A23)

(A24)

One notices how the Green's function "forgets" its initial conditions x o, Xo as time
goes on.

APPENDIX B

Several Lower Moments of the Green's Function

It is useful for future applications to find several first moments of the Green's function. I
start from the calculation of the normalization integral (zeroth moment). We know that
this integral equals unity

f dx dx G(x, X, X o, xo, t) = 1.

On the other hand, performing the actual integration over the form (A3') we find

where we introduce the abbreviations

(Bl)

(B2)

Al = Al - A 3
2 /4A 2

A 7 = A 7 - A 3 A 9/2A 2

A 8 = A 8 - A 3 A 10 /2A 2

Equation (B2) immediately suggests

A4 - A 9
2 /4A 2 = A 7

2 /4A1

As - Aio/4A2 = A 8
2 /4A1

A6 - 2A9 A 10 /4A 2 = 2A7 A 8 /4A1

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

These equations will be extensively used in further parts of this work. Expressions
(B6-B9) are also checked by direct calculations using Eqs. (A13-A22).

Let us now consider the second moment x 2
•



GREEN'S FUNCTION METHOD

The integration yields

where

Po == 1/2Ai

ax 2
[ ClCO' Cl

2
]== -- 1 - e- 2at - - e- 2at sin 2co't - - (1 - e- 2at cos 2co't)

CO,2 co 2 co 2

P3 == A7 As/4A 1
2

=~ e- 2<lt(ex sin2 ro't + ro' sin ro't cos ro't).
co

There is a useful relationship between the coefficients Pi' P2 and P3

PiP2 - P3 == O.

The first moment x can also be expressed through the coefficients Pi and P2

Last, the second moment xx is a bit more complicated

Here

81

(BlO)

(Bll)

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)

(B18)

(B19)

(B20)

(B2l)

(B22)
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It is easy (although cumbersome) to find the coefficients A 2 , A 3 , A g and A 10 

Formulae for them, neglecting terms of order (a/co)2 and higher are

A == 2ax
2

e4at (1 _e- 2at - ~ e- 2at sin 2cot)
2 ~ co

8aj
2

2t - 2A 3 == - -- e a a sIn cot
~

(B23)

(B24)

(B25)

(B26)

There is no need to find ~, since the coefficients considered enter all formulae only as a
ratio.




