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Various classical solutions to lower dimensional Ishibashi-Kawai-Kitazawa-Tsuchiya—like Lorentzian
matrix models are examined in their commutative limit. Poisson manifolds emerge in this limit, and their
associated induced and effective metrics are computed. Signature change is found to be a common feature
of these manifolds when quadratic and cubic terms are included in the bosonic action. In fact, a single
manifold may exhibit multiple signature changes. Regions with a Lorentzian signature may serve as toy
models for cosmological spacetimes, complete with cosmological singularities, occurring at the signature
change. The singularities are resolved away from the commutative limit. Toy models of open and closed
cosmological spacetimes are given in two and four dimensions. The four-dimensional cosmologies are
constructed from noncommutative complex projective spaces, and they are found to display a rapid

expansion near the initial singularity.
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I. INTRODUCTION

Signature change is believed to be a feature of quantum
gravity [1-10]. It has been discussed in the context of string
theory [6], loop quantum gravity [7,10], and causal dynami-
cal triangulation [8]. Recently, signature change has also
been shown to result from certain solutions to matrix
equations [11-13]. These are the classical equations of
motion that follow from Ishibashi, Kawai, Kitazawa, and
Tsuchiya (IKKT)-type models [14] with a Lorentzian back-
ground target metric. The signature change occurs in the
induced metrics of the continuous manifolds that emerge
upon taking the commutative (or equivalently, continuum or
semiclassical) limit of the matrix model solutions. Actually,
as argued by Steinacker, the relevant metric for these
emergent manifolds is not, in general, the induced metric,
but rather it is the metric that appears upon the coupling to
matter [15]. The latter is the so-called effective metric of the
emergent manifold, and it is determined from the symplectic
structure that appears in the commutative limit, as well as the
induced metric. Signature changes also occur for the effective
metric of these manifolds, and, in fact, they precisely
coincide with the signature changes in the induced metric.
The signature changes in the induced or effective metric
correspond to singularities in the curvature tensor
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constructed from these metrics. The singularities are resolved
away from the commutative limit, where the description of
the solution is in terms of representations of some matrix
algebras.

As well as being of intrinsic interest, signature changing
matrix model solutions could prove useful for cosmology.
It has been shown that toy cosmological models can be
constructed for regions of the manifolds where the metric
has a Lorentzian signature. These regions can represent
both open and closed cosmologies, complete with cos-
mological singularities that occur at the signature changes.
As stated above such singularities are resolved away from
the commutative limit. Furthermore, in [13], a rapid
expansion, although not exponential, was found to occur
immediately after the big bang singularity.

The previous examples of matrix models where signature
change was observed include the fuzzy sphere embedded in
a three-dimensional Lorentzian background [11], fuzzy
CP? in an eight-dimensional Lorentzian background [12],
and noncommutative H* in ten-dimensional Lorentz space-
time [13]. For the purpose of examining signature changes,
it is sufficient to restrict to the bosonic sector of the matrix
models. In this article we present multiple additional
examples of solutions to bosonic matrix models that exhibit
signature change. We argue that signature change is
actually a common feature of solutions to IKKT-type
matrix models with indefinite background metrics, in
particular, when mass terms are included in the matrix
model action. (Mass terms have been shown to result from
an IR regularization [16].) In fact, a single solution can
exhibit multiple signature changes. As an aside, it is known
that there are zero mean curvature surfaces in three-
dimensional Minkowski space that change from being
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spacelike to being timelike [17-21)." The signature chang-
ing surfaces that emerge from solutions to the Lorentzian
matrix models studied here do not have zero mean
curvature.

As a warm-up, we review two-dimensional solutions to
the three-dimensional Lorentz matrix model, consisting of
a quartic (Yang-Mills) and a cubic term, and without a
quadratic (mass) term. Known solutions are noncommu-
tative (A)dS? [22-26] and the noncommutative cylinder
[27-29]. They lead to a fixed signature upon taking the
commutative limit. New solutions appear when the quad-
ratic term is included in the action. These new solutions
exhibit signature change. One such solution, found previ-
ously, is the Lorentzian fuzzy sphere [11]. Others can be
constructed by deforming the noncommutative AdS? sol-
ution. After taking the commutative limit of these matrix
solutions, one finds regions of the emergent manifolds
where the metric has a Lorentzian signature. In the case
of the Lorentzian fuzzy sphere, the Lorentzian region
crudely describes a two-dimensional closed cosmology,
complete with an initial and a final singularity. In the case
of the deformation of noncommutative (Euclidean) (A)dS?,
the Lorentzian region describes a two-dimensional open
cosmology.

Natural extensions of these solutions to higher dimen-
sions are the noncommutative complex projective spaces
[30-36]. Since we wish to recover noncompact manifolds,
as well as compact manifolds in the commutative limit, we
should consider the indefinite versions of these noncom-
mutative spaces [37] as well as those constructed from
compact groups. For four-dimensional solutions, there are
then three such candidates: noncommutative CP%, CP!!,
and CP%2. The latter two solve an eight-dimensional
(massless) matrix model with an indefinite background
metric, specifically, the su(2,1) Cartan-Killing metric.
These solutions give a fixed signature after taking the
commutative limit. So as with the two-dimensional sol-
utions, the massless matrix model yields no signature
change. Once again, new solutions appear when a mass
term is included, and they exhibit signature change, possibly
multiple signature changes. These solutions include defor-
mations of noncommutative CP?, CP"!, and CP*2* A
deformed noncommutative CP%2 solution can undergo two
signature changes, while a deformed noncommutative CP?
solution can have up to three signature changes. Upon taking
the commutative limit, the deformed noncommutative CP!!
and CP"? solutions have regions with Lorentzian signature
that describe expanding open spacetime cosmologies, com-
plete with a big bang singularity occurring at the signature

'We thank J. Hoppe for bringing this to our attention.

As state above, we assume the background metric to be the
su(2,1) Cartan-Killing metric. Noncommutative CP? and its
deformations were shown to solve an eight-dimensional Lor-
entzian matrix model with a different background metric in [12].

change. The commutative limit of the deformed noncom-
mutative CP? solution has a region with Lorentzian sig-
nature that describes a closed spacetime cosmology,
complete with initial/final singularities. As with the non-
commutative H* solution found in [13], these solutions
display an extremely rapid expansion near the cosmological
singularities. Also as in [13], the spacetimes emerging from
the deformed noncommutative CP'! and CP%? solutions
expand linearly at late times. It suggests that these are
universal properties of 4d signature changing solutions to
IKKT-type matrix models.

The outline for this article is the following: In Sec. II we
review the noncommutative (A)dS? and cylinder solutions
to the (massless) three-dimensional Lorentz matrix model.
We include the mass term in the matrix model action in
Sec. III, and examine the resulting signature changing
matrix model solutions. The noncommutative CP"! and
CP"? solutions to an eight-dimensional (massless) matrix
model (in the semiclassical limit) are examined in Sec. I'V.
The mass term is added to the action in Sec. V, and there we
study the resulting deformed noncommutative CP!,
CP%?, and CP? solutions. In Appendix A we list some
properties of su(2,1) in the defining representation. In
Appendix B we review a derivation of the effective metric
and compute it for the examples of CP"! and CP%2.

II. THREE-DIMENSIONAL
LORENTZIAN MATRIX MODEL

We begin by considering the bosonic sector of the three-
dimensional Lorentzian matrix model with an action
consisting of a quartic (Yang-Mills) term and a cubic term:

S(X) = é Tr (— i X, X,][X¥, X"] + é €, X" [XY, Xﬁ]) .
(2.1)

Here X*, u =0, 1, 2, are infinite-dimensional Hermitian
matrices and a and g are constants. Tr denotes a trace,
indices y, v, 4, ..., are raised and lowered with the Lorentz
metric 77, = diag(—, +, +), and the totally antisymmetric
symbol €,,, is defined such that ¢y, = 1. Extremizing the
action with respect to variations in X leads to the classical
equations of motion
[[X,. X, ). X¥] + iaeﬂM[X”,X*] =0. (2.2)
The equations of motion (2.2) are invariant under the
following:
(i) unitary “gauge” transformations, X* — UX*UT,
where U is an infinite dimensional unitary matrix,
(i) 2+ 1 Lorentz transformations X* — L* X", where
L is a 3 x 3 Lorentz matrix, and
(iii) translations in the three-dimensional Minkowski
space X* — X* + o*1, where 1 is the unit matrix.
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Well known solutions to these equations are non-
commutative (A)dS? [22-26] and the noncommutative
cylinder [27-29]. Both are associated with unitary irre-
ducible representations of three-dimensional Lie algebras.
Noncommutative (A)dS? corresponds to unitary irreduc-
ible representations of su(1, 1), while the noncommutative
cylinder corresponds to unitary irreducible representations
of the two-dimensional Euclidean algebra E,. Thus the
former solution is defined by

[X”,XD] = iaeﬂ,,,lXﬂ, X, X*  fixed, (2.3)
while the latter is
[Xo.X.]=+2aX,, [X_.X_]=0, X.X_ fixed, (2.4)

where X, = X, 4 iX,. Noncommutative (A)dS? preserves
the Lorentz symmetry (ii) of the equations of motion, while
the noncommutative cylinder breaks the symmetry to the
two-dimensional rotation group. Noncommutative AdS? was
recently shown to be asymptotically commutative, and the
holographic principle was applied to map a scalar field theory
on noncommutative AdS? to a conformal theory on the
boundary [26].

The commutative (or equivalently, continuum or semi-
classical) limit for these two solutions is clearly a — 0. Thus a
plays the role of 7 of quantum mechanics, and for conven-
ience we shall make the identification @ = # and then take the
limit 2 — 0. In the limit, functions of the matrices X y are
replaced by functions of commutative coordinates x,,
and to lowest order in 7, commutators of functions of X,
are replaced by i times Poisson brackets of the correspond-
ing functions of x,, [F(X),G(X)] - iA{F(x),G(x)}.

So in the commutative limit of the noncommutative
(A)dS? solution, Eq. (2.3) defines a two-dimensional
hyperboloid with an su(1, 1) Poisson algebra

{x,.x,} = ext. (2.5)

Two different geometries result from the choice of sign of
the Casimir in (2.3). The positive sign is associated
with noncommutative (A)dS?, while the negative sign is
associated with noncommutative Euclidean (A)dS?. We
describe them as follows:

(1) Noncommutative (A)dS?. A positive Casimir yields
the constraint x,x* = r? in the commutative limit,
which defines two-dimensional de Sitter (or anti—de
Sitter) space, (A)dS? (or H"!). r in this semiclassical
solution, and the ones that follow, denotes a constant
length scale, r > 0. A global parametrization for
(A)dS? is given by

x° sinh 7
x!' | =r| coshzcoss |, (2.6)
x2 coshzsino

where —oco < 7 < 00, 0 < 0 < 2z. Using this para-
metrization we obtain the following Lorentzian in-
duced metric on the surface’:

ds®> = r*(—dt* + cosh® 7dc?). (2.7)

The Poisson brackets (2.5) are recovered upon writing

{r.0) = —

~ rcosht’

(2.8)

(2) Noncommutative Euclidean (A)dS?. A negative
Casimir yields the constraint x,x* = —r? in the
commutative limit. This defines a two-sheeted hy-
perboloid corresponding to the Euclidean version of
de Sitter (or anti—de Sitter) space, Euclidean (A)dS?
(or H*P). A parametrization of the upper hyper-
boloid (x° > 0) is

x° cosht
x!' | =r| sinhzcoso |, (2.9)
x2 sinh 7 sin ¢

where again —oc0 <7 < o0, 0 <0 < 2z. Now the
induced metric on the surface has a Euclidean

signature
ds*> = r*(dr* + sinh? 7do?). (2.10)
Upon assigning the Poisson brackets
{r,0} = .1 (2.11)
rsinhz

we again recover the su(1,1) Poisson bracket
algebra (2.5).

The commutative limit of the noncommutative cylinder
solution (2.4) is obviously the cylinder. The Casimir
for the two-dimensional Euclidean algebra goes to
(x")? + (x?)? = r?, while the limiting Poisson brackets
are {x%, x'} = =2x2, {x, x?} = 2x!, {x', x*} = 0. A para-
metrization in terms of polar coordinates

50

T
x| = | rcose (2.12)

x? rsinc

yields the Lorentzian induced metric
ds* = —di®> + r*de?, (2.13)

and the Poisson algebra is recovered for {z,c} = 2.

AdS? and dS? are distinguished by the definition of the
timelike direction on the manifold. For the former, the time
parameter corresponds to o, and for the latter, it is 7.
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The above solutions admit either Euclidean or
Lorentzian induced metrics after taking the commutative
limit. The signature for any of these particular solutions
is fixed. Below we show that the inclusion of a mass
term in the action allows for solutions with signature
change.

III. INCLUSION OF A MASS TERM
IN THE 3d MATRIX MODEL

We next add a quadratic contribution to the three-
dimensional Lorentzian matrix model action (2.1):

1 1 J
S(X) = ? Tr<—1 (X, X, ][ X+, X] + %aeﬂﬂX”[X”,X’l]

+gX”X,,>. (3.1)

As stated in the Introduction, quadratic terms have been
shown to result from an IR regularization [16]. The
equations of motion resulting from variations of X are now
[X,. X,). X*] + iae, 1 [X*. X*] + bX, =0. (3.2)
As in this article we shall only be concerned with solutions
in the commutative limit, 7 — 0, we may as well take the
limit of these equations. In order for the cubic and quadratic
terms to contribute in the commutative limit we need that a
and b vanish in the limit according to
a — ha, b — h2p, (3.3)
where @ and f are nonvanishing and finite. Equation (3.2)
reduces to
—{{x. 0} x"} = aeﬂ,,,l{x”,x’l} +px, =0. (3.4)
The AdS? and Euclidean AdS? solutions, which are
associated with the su(1, 1) Poisson algebra (2.5), survive
when the mass term is included provided that the constants
a and f are constrained by
p=2(1-a). (3.5)
In the limit where the mass term vanishes, f = O and o = 1,
we recover the solutions of the previous section. On the
other hand, the noncommutative cylinder only solves the
equations in the limit of zero mass f — 0.
The mass term allows for new solutions, which have no
p — 0 limit. One such solution is the fuzzy sphere
embedded in the three-dimensional Lorentzian back-

ground, which was examined in [11]. In the commutative
limit it is defined by

(x0)2 + (X1)2 + (X2)2 — r2’

{x!, 22} =20,

(20, x1} = 22,
{x?,x0} = xI. (3.6)
These Poisson brackets solve the Lorentzian equations (3.4)
provided that @ = —% and f = —1. The solution obviously
does not preserve the Lorentz symmetry (ii) of the
equations of motion. One can introduce a spherical coor-
dinate parametrization

%0 cos @
x! | =r| sinfcos¢ |, (3.7)
x? sin @sin ¢

0 < ¢ < 2x,0 < 6 < x. Then the Poisson brackets in (3.6)
are recovered for {6, ¢} = Lcsc. The induced invariant
length which one computes from the Lorentzian back-
ground, ds? = dx* dx,, does not give the usual metric for a
sphere. Instead, one finds

ds* = r?(cos 20d6” + sin*0dg?). (3.8)
In addition to the coordinate singularities at the poles, there
are singularities in the metric at the latitudes ¢ = 7 and 34—”.
The Ricci scalar is divergent at these latitudes. The metric
tensor has a Euclidean signature for 0 <6 <7 and
% <60 <mx, and a Lorentzian signature for 7 <6 < %’.
The regions are illustrated in Fig. 1. The Lorentzian regions
of the fuzzy sphere solutions have both an initial and a final

1.0-1.0

FIG. 1. Commutative limit of the Lorentzian fuzzy sphere.
Singularities in the metric appear at 0 = § and 3z and the signature
of the metric changes at these latitudes. These latitudes are
associated with singularities in the Ricci scalar. The metric tensor
has a Euclidean signature for 0 < 6 < and 37” < 0 < & (darker

regions), and a Lorentzian signature forj < 6 < %" (lighter region).
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singularity and thus crudely describe a two-dimensional
closed cosmology. The singularities are resolved away
from the commutative limit, where the fuzzy sphere is
expressed in terms of N x N Hermitian matrices. Axially
symmetric deformations of the fuzzy sphere are also
solutions to the Lorentzian matrix model [11].

Other sets of solutions to the Lorentzian matrix model
which have no f — 0 limit are deformations of the non-
commutative AdS? and the Euclidean AdS? solutions. Like
the fuzzy sphere solution, they break the Lorentz symmetry
(i1) of the equations of motion, but preserve spatial rota-
tional invariance. Again, we shall only be concerned with
the commutative limit of these solutions:

(1) Deformed noncommutative AdS?. Here we replace

(2.6) by
X0 sinh 7
x!' | =r| pcoshrcoso (3.9)
x? pcoshzsine

p >0 is the deformation parameter. We again
assume the Poisson bracket (2.8) between 7 and o.
Substituting (3.9) into (3.4) gives f = 2p*(1 —a) =
1 + p? — 2a. Itis solved by the previous undeformed
AdS? solution, p? = 1 with (3.5), along with new
solutions that allow for arbitrary p > 0, provided that
1

a=s,
Using the parametrization (3.9), the induced invari-
ant interval on the surface is now

B=p2 (3.10)

ds? = r*cosh’z((—1 + p’tanh’t)d7> + p*do?).
(3.11)

For p? > 1 the induced metric tensor possesses
spacetime singularities at 7 = 7. = =+ tanh™! |%|,
which are associated with two signature changes.
For 7 > 7, and 7 < 7_ the signature of the induced
metric is Euclidean, while for 7_ <7 <7, the
signature of the induced metric is Lorentzian.
Figure 2 is a plot of deformed AdS, in the
three-dimensional embedding space for r =1,
p = 1.15.

(2) Deformed noncommutative Euclidean AdS?. We
now deform the upper hyperboloid given in (2.9) to

x0 cosht
x!' | =r| psinhzcoss |,  (3.12)
x? psinhzsino

while retaining the Poisson bracket (2.11) between =
and o.p again denotes the deformation parameter.
Equation (3.12) with p #0 is a solution to (3.4)

FIG. 2. Deformed AdS, solution with r =1, p = 1.15. The
spacetime singularities occur at 7 =7, = 4 tanh™! |/%| The
lighter region has a Lorentzian signature, and the darker region
has a Euclidean signature.

provided that the relations (3.10) again hold. The
induced invariant interval on the surface is now

ds* = r’sinh®z((p*coth’z — 1)d7* + p*ds?). (3.13)
For p? <1 there is a singularity at 7 =71, =
tanh~! |p| that is associated with a signature change.
For 7 < 7, the signature of the induced metric is
Euclidean, while for 7 > 7, the signature of the
induced metric is Lorentzian. Figure 3 gives a plot of
deformed hyperboloid in the three-dimensional em-
bedding space for r =1, p = 0.85. The deformed
Buclidean AdS? solution has only an initial (big
bang) singularity that appears in the commutative

3

/
2 /'/

/

/ \

k
[/*
|

/ /
1b/4‘__x_g S— | . L . \/

-2 0 2

FIG. 3. Deformed Euclidean AdS? solution with r=1,
p =0.85. A spacetime singularity occurs at =7, =tanh™!|p|.
The lighter region has a Lorentzian signature, and the darker region
has a Euclidean signature.
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limit, and so, crudely speaking, the Lorentzian
region describes an open two-dimensional cosmol-
ogy. The singularity is resolved away from the
commutative limit.

IV. CP'! AND CP"? SOLUTIONS

Concerning the generalization to four dimensions, a
natural approach would be to examine noncommutative
CP? [30-36]. Actually, if we wish to recover noncompact
manifolds in the commutative limit, we should consider the
indefinite versions of noncommutative CP?; noncommu-
tative CP"! and CP%?. In this section we show that
noncommutative CP"! and CP%? are solutions to an
eight-dimensional matrix model with an indefinite back-
ground metric. As with our earlier result, we find no
signature change in the absence of a mass term in the
action. A mass term will be included in the following
section. Here, we begin with some general properties of
noncommutative CP"! and CP%? in the semiclassical limit,
and then construct an eight-dimensional matrix model for
which they are solutions.

A. Properties

Noncommutative CP?P4 was studied in [37]. Here we
shall only be interested in its semiclassical limit. CP?-4 are
hyperboloids H?%?P*! mod S'. They can be defined in
terms of p 4+ ¢+ 1 complex embedding coordinates z;,
i=1,....,p+q+ 1, satisfying the H?>¢>P*! constraint

p+1 pH+q+1
Zz?zi - Z Gz =1, (4.1)
i=1 i=p+2
along with the identification
Ve Rad ei/}Zl'. (42)

CP?4 can equivalently be defined as the coset space

SU(p+1,q)/U(p, q). For the semiclassical limit of non-

commutative CPP4 we must also introduce a compatible

Poisson structure. For this we take

i =p+2,..,pt+qg+1’
(4.3)

{Zi’Zj} N { ijs if 7,j

while all other Poisson brackets amongst z; and z; vanish.
Then one can regard (4.1) as the first class constraint that
generates the phase equivalence (4.2).

In specializing to CP"! and CP%2, it is convenient
to introduce the metric nC = diag(1,1,—1) on the
three-dimensional complex space spanned by z;, i =1,
2, 3. Then writing z' = (n)"z;, the constraint (4.1) for
CP"! becomes

7z =1, (4.4)
while for CP%? the constraint can be written as
7'z =-1. (4.5)
For both cases, the Poisson brackets (4.3) become
{25} ==, {d}={z.2;} =0. (4.6)

CP"! and CP%? can also be described in terms of orbits
on SU(2,1). Below we review some properties of the Lie
algebra su(2, 1). One can write down the defining repre-
sentation for su(2, 1) in terms of traceless 3 x 3 matrices,
ia, a=1,2,...,8, which are analogous to the Gell-Mann
matrices 4, spanning su(3). We denote matrix elements by
Zal'joi.j. ... = 1,2, 3. Unlike su(3) Gell-Mann matrices,

A, are not all Hermitian, but instead, satisfy
Aan€ =y, (4.7)

They are given in terms of the standard Gell-Mann matrices
in Appendix A. The commutation relations for 1, are

[/Ia’zb} = Zi}abczc7 (48)
where indices a, b, c, ..., are raised and lowered using the
Cartan-Killing metric on the eight-dimensional space

n=diag(1,1,1,—1,-1,=1,-1,1).  (4.9)
Fabe for su(2,1) are totally antisymmetric. Their values,
along with some properties of su(2,1), are given in
Appendix A.

CP%? is the coset space SU(2,1)/U(2). Using the
conventions of Appendix A, it is spanned by adjoint
orbits in su(2,1) through 13 and consists of elements
glsg~". g € SU(2,1). The little group of Ag is U(2), which
is generated by 4,, 15, 13, Ag. On the other hand, CP"! is the
coset space SU(2,1)/U(1,1). It corresponds to orbits
through

V3. 1
Ag = — 1 — _7/13_5/18’

NG (4.10)

CP"!' = {gAgg~", g € SU(2,1)}. The little group of Ag is
U(1,1), which is generated by

SO 1~ 35
AS?/167/177A3 = dlag(O, 1, —1) = —513 +§/18

Next, we can construct eight real coordinates x from z’
and zj using
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xt =i 142, (4.11)
They are invariant under the phase transformation (4.2) and
span a four-dimensional manifold. Using (A6), the con-
straints on the coordinates are

~ 2
dpexPx¢ =+ x,,

e =30 3

(4.12)
where one takes the upper sign in the second equation
for CP'! and the lower sign for CP%2. d,,, is totally
symmetric; the values are given in Appendix A. From (4.6),
x, satisfy an su(2, 1) Poisson bracket algebra

{xav xb} - 2}‘abcxc' (413)

B. Eight-dimensional matrix model

It is now easy to construct an eight-dimensional IKKT-
type matrix model for which (4.13) is a solution, at least in
the commutative limit. As before we only consider the
bosonic sector, spanned by eight infinite-dimensional
Hermitian matrices X,, with indices raised and lowered
with the indefinite flat metric 7,,;,. In analogy with the three-
dimensional model in (2.1), take the action to consist of a
quartic term and a cubic term:

$(0) = o5 Tr( = X XK X0+ SaF X010, X))

(4.14)

The cubic term appears ad hoc, and we remark that it is
actually unnecessary for the purpose of finding solutions
when a quadratic term is introduced instead. We consider
quadratic terms in Sec. V. On the other hand, the cubic term
leads to a richer structure for the space of solutions, and it is
for that reason we shall consider it.
The equations of motion following from (4.14) are

[[Xava]»Xb] + ia]?abc[xbvxc] =0. (415)
They are invariant under unitary “gauge” transformations,
SU(2,1) transformations, and translations. Assuming that
the constant a behaves as in (3.3) in the commutative limit
leads to

_{{xavxb}vxb} _afabc{xh’xc} =0. (4'16)
The Poisson brackets (4.13) solve these equations for o = 2.
They describe a CP'! or a CP%? solution, the choice
depending on the sign in the second constraint in (4.12).

For either solution, we can project the eight-dimensional

flat metric 7 down to the surface zz = z}z' = =+1, in order
to obtain the induced metric. Once again, i = 1, 2, 3. Using
the Fierz identity (A6), we get

ds> = dxdx, = 4((zz)(dzdz) — |Zdz\2), (4.17)
where Zzdz sz‘dzi, dzdz = dz;‘dzi, and we have used
d(zz) = 0. Equation (4.17) is the Fubini-Study metric
written on a noncompact space.

We next examine the induced metric tensor on a local

coordinate patch. We choose the local coordinates ({1, ¢, ),
defined by

1 2
Z Z
C1:—3, §2:—3,

2#0,  (4.18)

IS\
I8}

along with their complex conjugates. These coordinates
respect the equivalence relation (4.2). In the language of
constrained Hamilton formalism, they are first class var-
iables. From their definition it follows that |&;|*> + |{,]?> —
1 ==+|2%72 and zdz = |2 [X({(dS) + $5dE,) £ dlog 22,
where the upper [lower] sign applies for CP'! [CP"?].
Substituting into (4.17) gives the induced metric tensor on
the coordinate patch

1 1 .
4 ds* = Egé’ué’;dz:udé’v

_ |dS, [ +1dSa)> 161dE, + Gdd |
P +IGP =1 (6P +16P -1

(4.19)

It has the same form for both CP!'! and CP%2. Because
|&1)? 4+ 1&,])* = 1 < O for the latter, CP%? has a Euclidean
signature. The Poisson brackets (4.6) can be projected
down to the local coordinate patch as well. The result is

{C0n &} = Hi(I6 P+ 16P = DL = 8u)

{66 ={0.0r=0, uwv=12 (4.20)
Once again, the upper [lower] sign applies for CP!!

[CP?]. The resulting symplectic two-form is Kihler:

i

Qz;z

Ge,crdC, A dC. (4.21)

Next we rewrite the induced metric and symplectic two-
form using three Euler-like angles (0,¢,y), 0 <0 <z,
0<¢ <2 0 <y <4nr, along with one real variable z,
—00 < 7 < 00. We treat CP! and CP%? separately:

(1) CP"'. Now write

' 0

¢ = i)/ cothrcosi,
o 2 . 6

&= elw=a)/ cothrsmi, (4.22)

which is consistent with the requirement that
I&1> +|&,)> = 1 > 0. The induced metric in these
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coordinates has the Taub-(Newman, Unti, Tambur-
ino) NUT form (which was also true for the CP?
solution [12])

ds?> = g,.dv* + ggo(dO* + sin® d¢?)

+ Gy (dy + cos Odep)?. (4.23)
We get
gee=—4,  geg=cosh’z, g, =—cosh’zsinh’z,
(4.24)

with the other nonvanishing components of the
induced metric being g,, = g, c0s> @ + ggg sin’ 6
and g4 = gy, cos 0. The result indicates that there
are two spacelike directions and two timelike direc-
tions. The symplectic two-form in terms of these
coordinates is

Qcpri = —sinhzcoshzdr A (dy + cos Odep)

1
+5 coshzsin 0dO A dg

1
=- Ed(coshzr(dl// + cos dg)). (4.25)
(2) CP"2. Here choose
i(y+¢)/2 0
£ = eilvte tanhrcosi,
=)/ in?
$ = elv=0 tanhrsmi, (4.26)
which is consistent with the inequality

1£1)* 4+ 1&,]* = 1 < 0. The resulting induced metric
again has the Taub-NUT form (4.23). In comparing
with (4.24), results differ for the gyy component,

= —cosh?zsinh?z,

(4.27)

9rr = —4, 9oo = —Sil’lhzT, Gyy

where again gy = g,,, cos? 0 + gggsin?6  and
9yp = Gyy c0s 0. The induced metric now has a
Euclidean signature, and the symplectic two-form is

Qcpo2 = —sinhzcoshzdr A (dy + cos 0dgp)
1
+3 sinh?z sin 0dO A d¢

=- % d(sinh?z(dy + cos 0d¢)). (4.28)

Both metric tensors (4.24) and (4.27) (including the
corresponding results for g,, and g,,) describing cp!!
and CP%2, respectively, are solutions to the sourceless

Einstein equations with cosmological constant A = %.4

Obviously, the metric tensors do not exhibit signature
change. In both cases, the sign of the determinant of the
metric tensor, det g = ¢,.,,, (goo Sin0)?, is positive (away
from coordinate singularities).

The above discussion utilized the induced metric tensor.
However, the relevant metric in the semiclassical limit for a
matrix model solution is not, in general, the induced metric,
but rather it is the metric that appears in the coupling to
matter [15]. This is the so-called “effective” metric tensor,
which we here denote by y,,. It can be determined from the
induced metric g,, and the symplectric matrix ©" using

1
Vdety[p = ——
| detyly G

It follows that |dety| = |detg|, and we can use this
identification to determine the effective metric from the
induced metric. We review a derivation of (4.29) in
Appendix B. In two dimensions, it is known that the
effective metric is identical to the induced metric, y,, = g,,
[38]. This is also the case for the CP!-! and CP°?2 solutions,
as is shown in Appendix B, and so all the previous results
that followed from the induced metric also apply for the
effective metric. On the other hand, for the solutions of the
next section, in addition to finding signature change, we
find that the effective metric and the induced metric for any
particular emergent manifold are in general distinct.

[©7Tge™.  (4.29)

V. INCLUSION OF A MASS TERM
IN THE 8 MATRIX MODEL

In analogy to Sec. III, we now add a mass term to the
matrix model action (4.14),

S(X) = é Tr <—% (X, Xp][X%, XP]

n %a}abCX“ [X?, X¢] + 613Xaxa> . (5.1)
The matrix equations of motion become
([Xo. X), XP] + iaf e [XP, X + 126X, = 0. (5.2)

In the semiclassical limit 2 — 0, we take a — Aa, along
with b — #%p. Then (5.2) goes to
_{{xa’xb}’xb} _afabc{xb’xc} + lzﬁxa =0. (53)

“CP? is also a solution to the sourceless Einstein equations
with cosmological constant A = % [12].
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These equations are solved by (4.13) for

a=2(1+p). (5.4)
Thus CP"! and CP%? are solutions to the massive matrix
model. In the limit where the mass term vanishes, ,B =0
and a = 2, we recover the solutions of the previous section.
CP"! and CP"? solutions also persist in the absence of the
cubic term in the matrix model action (5.1). For this we
need @ = 0 and § = —1. The mass term allows for other
solutions that have no f — 0 limit. Among these solutions
are the deformations of CP'! and CP%2, as well as
deformations of CP?, which we discuss in the following
subsections.

A. Deformations of CP!! and CP"2

For deformations of CP"! and CP%? we modify the
ansatz (4.11) to

X1-3 Zﬂzf[zl—ﬂijzj, X417 :Z?[/Nh—ﬂiﬂj, Xg :VZ?[ES] j
(5.3)

where p and v are deformation parameters, which we shall
restrict to be real. This is a solution to Eq. (5.3) provided
that the following relations hold amongst the parameters:

(2u—a) <u2 +%> +3up =0,

pr+ A2 —alu+v)+48=0,

2v—a+2up=0. (5.6)
These relations reduce to (5.4) when 4 = v = 1, and so we
recover undeformed CP'! and CP®? in this limit. For
generic values of the parameters, there are nontrivial
solutions to these algebraic relations, which can be

expressed as functions of the mass parameter j. For a
particular choice of signs,

Zﬂﬁz —B-1-vIp|
25+1

_ P 4B - 65 + prlp) -2
27 +4p+2)

9’

E)

(5.7)

where

VP = B - 12F -2 -128-2. (58)

Upon requiring yLﬁ] to be real, we obtain three disconnected
intervals (i)—(iii) in j:

(i) p < % (6 ~3v6—1/98 + 40\/6) ~ —0.746,
(ii) % (6 ~3v6+1/98 + 40\/6) ~—0.603 < )
< % (6 +3v6—1/98 + 40\/8> ~ —0.325,
(iii) % (64+3V6+1/98+40V6) ~13.67 <. (59)

We further restrict ¢ to be real. (Reality of @ and v then
follows.) For solution (5.7), this reduces the acceptable

regions in f§ to

(i') —3.414 <p < —0.746,
(ii') — 0.603 < < —0.586,

(iii") 13.67 < B. (5.10)
When 3 = —0.6, we recover the undeformed case y=v=1
(along with @ = 0.8). Therefore, matrix solutions in the
range (ii’) can be regarded as continuous deformations of
the undeformed solutions, while those in the ranges (i) and
(iii) cannot be continuously connected to the undeformed
solutions.

In addition to the family of solutions given in (5.7) and
(5.8), Eq. (5.6) have the simple solution:

=

a=v =0,

3 ’ 2
:——’ = —. 5.11
5 p=5. (510

It is a solution for the case where the cubic term in the
matrix model action (5.1) is absent. From (5.5), v =0
implies that the projection of the solution along the eighth
direction vanishes, xg = 0. This solution is not contained in
(5.7) and (5.8).
The ansatz (5.5) for y and v not both equal to one leads to
two types of solutions:
(1) Deformed CP"!, where the complex coordinates z’
satisfy the constraint (4.4), and
(2) Deformed CP°?2, where the complex coordinates
7 satisfy (4.5).
We next compute the induced metric for these two types of
solutions.

1. Induced metric

The induced metric is again computed by projecting the
eight-dimensional flat metric (4.9) onto the surface. From
the ansatz (5.5) we get

086015-9



A. STERN and CHUANG XU PHYS. REV. D 98, 086015 (2018)

ds* = dx“dx, = 4(|z,* + |2a|* = |z3]*) (|dz, [* + |dzo|? = |dz3|*) — 4|27 dz) + 23dzs — 25dzs)?
+4(u? = 1) (|21 + 22*) (|dz1 [* + |dza*) + (0 = 1)(z]dz) + 25dzs — 21dz] — 22d25)?

1
+ 3 (W = 1)(zidzy + 3dzy + 225dz3 + 21dZ} + 20d75 + 223d7Z5)%. (5.12)

We have not yet specialized to the two cases 1. and 2.
The result (5.12) can be rewritten in terms of the local coordinates (£, ¢,), defined in (4.18), according to

ds? = dfz(~|zs P [EP & (|d¢, P + [dg,[)
+ 42 = 1) (|23 £ 1)((1 % 23| )z + |23 P(1dE0 P + dEal?) + Bzadzs + B 25dzs)

+ W = D(|PE-E) + (1 £ [2]2)(25dzs — 23d23))* + (= 1)(d]zs ), (5.13)
|

where E = {7d¢; + {3d¢, and we have used |, > + |£,* = The remaining nonvanishing components of the
1 + |z3|72. The upper [lower] sign applies for deformed induced metric are again obtained from g,, =
CP"! [CP"?]. The expression (5.13) simplifies after making Gy €08% 0 + ggg sin® @ and g,,4 = g, cos 0. The un-
the gauge choice that z3 is real, which we shall do below. deformed CP!!' induced metric tensor in (4.24) is
The signature of the induced metric becomes more recovered from (5.14) upon setting 4 = v = 1. This
evident after expressing it in terms of the three Euler-like limit thus corresponds to there being two spacelike
angles 6, ¢, y, along with parameter z spanning R, as we directions and two timelike directions, with
did in Sec. IV for the undeformed metrics. For this we sign(g,z» gg9) = (—,+) and detg > 0 (away from
now specialize to the two cases: 1. deformed CP'! and 2. coordinate singularities). The same two spacelike
deformed CP%2. directions and two timelike directions appear in the
(1) Deformed CP"!. limit |z| — 0. Signature change can occur when we go
For this case we can apply coordinate transforma- away from either of these two limits, as we describe

tion (4.22). Upon making the phase choice z3 =sinhr, below.
Eq. (5.13) can be written in the Taub-NUT form For the solutions given by (5.7) and (5.8), given
(4.23), where the metric components are now some value of  (# —1, —0.6) in the regions (i'), (ii’),
and (iii), the sign of either g,, or gy9 changes at some
Gee = 4((U? + ? — 2)cosh’zsinh?z — 1), value of |z|. We plot the values of |z| versus /3 for

which this occurs in Fig. 4. g, changes sign when

— coch2r(12eochr — «inh2
9o = cosh“z(u"cosh’z — sinh"z), (u*> +1* —2)sinh?> zcosh? 7 = 1 (indicated by the

Gy = —cosh?zsinh?z. (5.14) solid curves in Fig. 4). gy changes sign when
|7l Il [Tl
i 0.55f
1 |
1 25 [
1.5F ! !
1 1
! ! 0.50f
\ 20f
1 1
1 1
1 1
'. /
1ol
0 ||I 15 ,’I 0.45
! /
1 /
1
\ 1.0 040
1
050 !
0.5 0.35F
-3.0 -25 -2.0 -15 -1.0 p -0.600 -0.595 -0.590 p
(a) region 7') (b) region ii") (c) region iii)

FIG. 4. Signature changes in the induced metric g,, and effective metric y,,, for deformed CP"! are given in plots of |z| versus Jin the

three disconnected regions: (a) (') —3.414 < < —0.746, (b) (ii’) —0.603 < B < —0.586, and (c) (iii) 13.67 < j3. A sign change in gy
or ygy is indicated by the dashed curves. A sign change in g,, or y,,, is indicated by the solid curves.
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(@)

tanh? 7 = y? (indicated by the dashed curves in
Fig. 4). Above the solid curves, sign(g,;,ggps) =
(+.+) and det g < 0 and so the induced metric has
a Lorentzian signature in this region. In this case, the
timelike direction corresponds to dy + cos Odgp. It
corresponds to a spacetime with closed timelike
curves. Above the dashed curves, sign(g,., ggpo) =
(=, =), while detg > 0. In this case, the induced
metric space has a Euclidean signature.

For the solution (5.11), a sign change in gy occurs
attanh? 7 = £, and the induced metric has a Euclidean
signature for tanh? 7 > 2.

Deformed CP°2.

Here we apply the coordinate transformation
(4.26) to (5.13), along with the phase choice
z3 = cosh 7. The induced invariant interval again
takes the Taub-NUT form (4.23), with the matrix
elements now being

Gee = 4((4* + v* — 2)cosh?zsinh?z — 1),
goe = sinh?>z(u?sinh?>z — cosh?7),

Gyy = —cosh?zsinh?’z, (5.15)

Gpp = Gy €OS> 0 + gpg sin® 0, and g, = g,,,, cOS 6.
Only the results for ggy differ in expressions (5.14)
and (5.15). The latter reduce to that of undeformed
CP%2 Eq. (4.27), when u = v = 1. For that limit, as
well as for |z] = 0, sign(¢,;, gge) = (—, —) and
detg > 0 (away from coordinate singularities). In
this case, the induced metric has a Euclidean
signature. As with deformed CP!"!, signature change
can occur when we go away from these limits, as we
describe below.

For the solutions given by (5.7) and (5.8), we find
that for any fixed value of f in the regions (i), (ii’),
and (iii), either a sign change occurs for both g,, and
Jee» OF there is no signature change. We plot the
signature changes for deformed CP%? in Fig. 5. gy
changes sign when coth’? 7 = y? (indicated by the
dashed curves in Fig. 5). g,, changes sign when
(u* +1* —2)sinh?> rcosh? 7 = 1 (indicated by the
solid curves in Fig. 5). We find that there are no sign
changes in the induced metric for —1 < f < —0.746
and —0.603 </ < —0.6. So for these subregions, the
signature of the induced metric remains Euclidean
for all z. For the complementary subregions, a sign
change occurs in g, say at || = |7;|, and gy, at a
later |z|, say |z,|, i.e., |72] > |7;]. For |7| > |z,
sign(g,s, goo) = (+,+), and so the induced metric
has a Lorentzian signature in this case. The timelike
direction corresponds to dy + cos 8d¢g, once again
corresponding to a spacetime with closed timelike
curves. For the intermediate interval in |z| where
71| < lz] <za|, we get sign(g.:. ggp) = (+.—). In
this case, the induced metric has a Lorentzian
signature, with 7 defining the timelike direction.
Any 7 slice is topologically a three-sphere, since
from (4.26),

[C1? + 18,* = tanh? 7. (5.16)

Restricting to positive 7, the interval 7; < 7 < 7, has
an initial singularity at 7, and a final singularity at z,.
Therefore, although not very realistic, it describes a
closed spacetime cosmology.

Il

0.55

i
1
\
\
\
\
\
\

-0.598 -0.596 -0.594 -0.592 -0.590 -0.588 -0.586 B

-3.0 -25 -20 -1.5 -1.0 B

(a) region 7') (b) region i7") (c) region %i7)

FIG.5. Signature changes in the induced metric g,, and effective metric y,, for deformed CP°2 are given in plots of |z| versus /3 for in
the three disconnected regions: (a) (i) — 3.414 < < —0.746, (b) (ii’) —0.603 < < —0.586, and (c) (iii) 13.67 < 3. A sign change in
Joo OT ¥gp 1s indicated by the dashed curves. A sign change in g, or y,,, is indicated by the solid curves. No sign changes occur in either

the induced metric or the effective metric for —1 < f < —0.746 and —0.603 </ < —0.6.
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No signature change in the induced metric results
from the solution (5.11).

We remark that while the induced metrics for the two
solutions 1. and 2. are modified from their undeformed
counterparts, their Poisson brackets, and corresponding
symplectic two-forms, are unchanged. That is, for
deformed CP"! the symplectic two-form is (4.25) and
for deformed CP®? the symplectic two-form is (4.28). This
is relevant for the computation of the effective metric,
which we do in the following subsection.

2. Effective metric

In Sec. IV we found that the induced metric g, and the
effective metric y,, for undeformed CP'! and CP%? are
identical. The same result does not hold for the corre-
sponding deformed solutions, as we show below.
Furthermore, more realistic cosmologies follow from the
effective metric of the deformed CP"-! and CP%? solutions.

(1) Deformed CP"!'. To compute the effective metric we

need the symplectic matrix, as well as the induced
metric. For the deformed, as well as undeformed,
CP"! solutions, the nonvanishing components of the
inverse symplectic matrix are given in (B4), while
the induced metric for deformed CP'! is given by
(5.14). In addition, |det®| is given in (B5), while
| dety| gets deformed, such that

|dety||det®| = 4|g,.|(u* cosh?z —sinh?7)?,  (5.17)

with g,, given in (5.14). As a result, the nonvanish-
ing components of the effective metric tensor are
given by

y‘[‘[ —

\/|dety|[det@] ’

Yoo 1

VI dety[[det®]  4(u* —tanh’)’
Yyw _ 1
4(sech’zesch?c+2 —p? —1?)’

\/|dety||det®|
(5.18)

in addition 0 7,y = 7y, c0s*0 + ygesin’ @ and
Yup = Yy €Os 6. The results again agree with the
undeformed induced metric (4.24) inthe y = v =1
limit. This limit has two spacelike directions and two
timelike directions, with sign(y,,,.7e) = (—. +)
and dety > 0 (away from coordinate singularities).
Signature changes occur in the effective metric for
the same values of the parameters at which the
signature changes occur for the induced metric.
For the solutions given by (5.7) and (5.8),
signature changes are again given in Fig. 4. A sign
change in y, (as with gyy) appears when tanh? 7 = z?

2
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(indicated by the dashed curves in Fig. 4). The
effective metric has a Euclidean signature above the
dashed curves. A sign change in y,,, (as with g;)
appears when (u* +1? —2)sinh?> zcosh? 7 = 1 (in-
dicated by the solid curves in Fig. 4). Above the solid
curves, the signature of the effective metric is Lor-
entzian, dety < 0, and 7 is the timelike direction. A 7
slice again defines a three-sphere, since from (4.22),

[C17 + [C2f* = coth® 7. (5.19)

Restricting to positive 7, this region with a Lorentzian
signature has an initial singularity, and therefore, it
describes an open spacetime. We shall see in the
next subsection that it corresponds to an expanding
cosmology.

For the solution (5.11), a sign change in yg, occurs
attanh? 7 = %, and the effective metric has a Euclidean
signature for tanh? 7 > 2. There are no regions with a
Lorentzian signature in this case.

Deformed CP?2. We repeat the above calculation to
get the effective metric y,, for deformed CP*?. The
inverse symplectic matrix is the same as for un-
deformed CP°2, with nonvanishing components
(B7). The induced metric for deformed CP°? is
given in (5.15). Using the result for | det ®| in (B8),
we now get

|dety||det®| = 4|g,.|(u?sinh?>z —cosh?7)2,  (5.20)
with g,, given in (5.15). Now the nonvanishing
components of the effective metric tensor are found
to be

yTT

/| dety|| det ©|

Yoo _ 1
4(u? — coth’z)’

/| dety|| det O]

Yy _ 1
4(u? + v» — 2 — desch?27)

/| dety|| det ©|
(5.21)

again with 7,4, = 7,,,, c0s* 0 + ygg sin* 0 and y,, =
Yy €08 6. The results reduce to the undeformed
induced metric (4.27) in the limit y =v =1, de-
scribing a space with a Euclidean signature.

For the solution given by (5.7) and (5.8), signature
changes in the effective metric occur at the same
values of the parameters as the signature changes for
the induced metric, which are indicated in Fig. 5. yy,
(like gyg) changes sign when coth’z = x? (indicated
by the dashed curves in Fig. 5). y,,, (like g.)
changes sign when (u?>+1%—2)sinh?*zcosh?z=1
(indicated by the solid curves in Fig. 5). As seen
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in Fig. 5, given any fixed value of  in the regions (i),
(ii"), and (iii), either a sign change occurs in both y,,,,
and yg or there is no signature change. No sign
changes in the effective metric for —1 < § < —0.746
and —0.603 < < —0.6. So for these subregions
the signature of the induced metric remains
Euclidean. For the complementary regions, a sign
change occurs iny,,, at |z| = |z, and ygg at |z] = |7,],
with |7, > |7;]. In the intermediate region
71] < [¢l < [, Sign(7yy» va0) = (+ —). Here the
effective metric has a Lorentzian signature, but unlike
what happens with the induced metric, dy + cos 0d¢
is associated with the timelike direction, yielding
closed timelike curves. For |z| > |z,|, i.e., above the
dashed curves, sign(y,,,.79) = (4. +), and so the
effective metric picks up a Lorentzian signature, with
7 being the timelike direction. From (5.16), a 7 slice is
a three-sphere. Restricting to positive 7, this region
with a Lorentzian signature has an initial singularity,
and so describes an open spacetime cosmology, which
we next show, is expanding.

No signature change in the effective metric results
from the solution (5.11).

3. Expansion

From the deformed CP"! and CP%? solutions we found
regions in parameter space where the effective metric has a
Lorentzian signature, and possessed an initial singularity.

(1) Deformed CP"'. For the spatial volume, we get

a(|7])? = (47)? cosh? 7| sinh 7| cosh? 7 — sinh? z[|(u2 + 12 — 2) cosh? 7 sinh? 7 — 13,

Any time (7) slice is a three-sphere, or more precisely, a
Berger sphere. These examples correspond to spacetime
cosmologies with a big bang. To show that they are
expanding we introduce a spatial scale a(|z]). We define
it as the cubed root of the three-volume at any 7 slice

ale) = [ /ldets®doaga.

where y3) denotes the effective metric on the 7 slice. From
the form of the metric tensor, dety®) = y,,,, (y4y sin0)?, and
since y,,, and ygy only depend on z. Then

(5.22)

a(|z])* = (47)%\/ 11y |70l (5.23)
We wish to determine how the spatial scale evolves with
respect to the proper time ¢ in the comoving frame

H(r) = / : Vo @)dr

_ / “dety () detO(F) e, (5.24)

70

The lower integration limit 7, corresponds to the value of =
at the big bang, i.e., the signature change.

We next compute and plot a(|z|) versus #(z) for the two
cases, deformed CP"! and deformed CP"2, in the regions
of a Lorentzian signature:

(5.25)

after substituting (5.14) and (5.17) into (5.23). For the proper time #(|z|) in the comoving frame we get

t(r) = 2/ |u? cosh? 7/ — sinh? 2| (u® + 12 — 2) cosh? 7/ sinh? 7/ — 1[id7,
70

and 7, is associated with the signature change, given by sinh® 27, =

(5.26)

4

[y It corresponds to the value of 7 at the

initial singularity, where from (5.25), the spatial scale vanishes. In Fig. 6(a) we plot a(|z|) versus #(z) for regions of
deformed CP'! where the effective metric has a Lorentzian signature, using three values of 3. It shows a very rapid

5

expansion near the origin. For 7 close to 7o, Eqs. (5.25) and (5.26) give a ~ (r —7,)® and ¢ ~ (7 — 7, ). Hence,

a ~ 5. For large 7, a is linear in t. The same large distance behavior was found for solutions in [13].

(2) For deformed CP%2, Eq. (5.23) gives

a(|z])® = (4x)?|sinh z]> cosh z|u? sinh? 7 — cosh? z[z|(u2 4 12 — 2) cosh? 7 sinh? 7 — 13,

(5.27)

after using (5.15) and from (5.20). Equation (5.24) gives

t(r) = 2/ |u? sinh? 7/ — cosh? 7/[2| (4 + 1* — 2) cosh? 7/ sinh® 7/ — 1]id7.
7o

(5.28)
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(a) deformed C' P! (b) deformed C'P%?

oo =~ N W A o N
I

t

FIG. 6. a(|z]) versus #(z) for regions of (a) deformed CP"! and
(b) deformed CP%? where the effective metric has a Lorentzian

signature (and 7 is the timelike direction) for B = -3 (solid
curve), —0.595 (dashed curve), and 14 (dot-dashed curve).

Again, the initial value 7, for 7 is associated with a
signature change, now satisfying coth? 7, = u?. It
corresponds to a big-bang singularity, and from
(5.27), a(|zo|) = 0. In Fig. 6(b) we plot a(|z|) versus
t(r) for regions of deformed CP%? where the
effective metric has a Lorentzian signature, using
three values of 3. It too shows a rapid expansion near
the origin. For 7 close to 7y, Egs. (5.27) and (5.28)
give a ~ (7 —1y)s and ¢ ~ (z — 7,)2. Hence, a ~ B.
As with the case of deformed CP"! and [13], a ~ ¢
for large z.

B. Deformed CP?

We now look for solutions to the previous eight-
dimensional matrix model that are deformations of
noncommutative CP?. CP? is a solution to an eight-
dimensional matrix model in a Euclidean background. In
[12], such solutions were found when the background
metric is changed to diag(+ + + + + + +—). Here we
show that deformations of noncommutative CP? solve the
matrix model with the indefinite metric (4.9), and that they
may be associated with multiple signature changes.

We once again assume that the three complex coordi-
nates z; satisfy the constraint (4.4), but now that the indices
are raised and lowered with the three-dimensional
Euclidean metric. The Poisson brackets that arise from
the commutative limit of fuzzy CP? are (4.6) (now,
assuming the Euclidean metric) [12]. We replace the
su(2,1) Gell-Mann matrices 1, in (5.5) by su(3) Gell-
Mann matrices 4,, i.e.,

X3 = MZ?[/Il-ﬂijZ*ﬂ X47=723; M4—7szj’

xg = vzj[Ag]' ;7. (5.29)

Now substitute this ansatz into the equations of motion
(5.3) to get the following conditions on the parameters:

(2u - ) (u2 —%) +3up =0,

W12 =2—alu+v)+4p=0,

2u(f-1)+a=0, (5.30)

which differs from (5.6) in various signs. We can
obtain (5.30) by making the replacement (a,f,u,v) —
(ia, B, iu, iv) in (5.6). To obtain a solution to (5.30), we
can then make the same replacement in the solution (5.7).
The result is

P iy S bt ()
—2p+1

_ P AP — 6+ Py + 2

208 - 4p+2) ’

El

(5.31)

where y[f3] was defined in (5.8). The parameters y, v, and a
(and necessarily, y[—ﬁ]) are all real only for the following
two disconnected intervals in j:

(1) 0325 <B <0586, (i) 341 <p. (532

1. Induced metric

The metric induced from the flat background metric (4.9)
onto the surface spanned by (5.29) is

ds® = dx“dx,

1
= —dsis + (1 + /7> (dx? + dx3 + dx3)

1

+ <1 +—2> dx2, (5.33)
v

where dsig denotes the Fubini-Study metric
8 0
dsts = Y (d(z72,2))? = 4(|daf — ['da).  (5.34)
a=1
Here we introduce the notation |dz|* = dzidZ,

7'dz = 7/d7', and 774,z = 7} [xla]ijzj. Then (5.33) becomes
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ds®> = —4(|dz|> = |Z'dz|?)

+402 + D(l21]* + |22)(ldzi | + |dzaf?) + (0 + 1)(z7dz; + 23d2; = 21d2] — 22d73)?

3

1
+ = (2 + 1)(2dz) + 23dzy — 225dzs + 21d2} + 2od2s — 223d75)°.

(5.35)

Next introduce local coordinates (£;,,) defined in (4.18), now satisfying |{;|> + |¢,|> + 1 = |z%|72. Then

ds® = =4(z3)*(|d,[* + [dCo|* = (23)*[E)
1

L4 (= () ((dZ3>2(

(13)2

where we again chose z3 to be real and defined
E={]d¢, + {5dl,. We introduce Euler-like angles
(0, ¢, y), along with 7, which now is an angular variable,
0<rt< % using

; 0
¢ = et cos Stant,

i .0
& = esv=9) sin tan . (5.37)

It then follows that (z3)*> = cos” 7. The induced invariant
interval again takes the Taub-NUT form (4.23), with the
nonvanishing matrix elements

Gee = 4(=1 4+ (p? — 1?)sin’zcos’7),
Goo = sin’z(—cos’t + p’sin’t),

2 2

7C08°T, (5.38)

Gyy = —SIN
along with Gpp = Gy €S> 0 + g sin® 0 and
9yp = Gyy c0s 0. The induced metric has a Euclidean
signature for 7 close to zero. A sign change in gg occurs
for tant = ﬁ If 4?—1? >4, two additional signature
changes occur in the induced metric for the domain

0 <7<3. Specifically, g, changes sign when
sin 27 :\/ﬁ. We find numerically that u> <1? for

solutions (5.31) with ﬁ in the region (i) in (5.32), and that
u> > 12 in the region (ii). So only one signature change
occurs when /3 has the values in (i). It is a change from the
Euclidean signature to one where the induced metric has
two spacelike directions and two timelike directions.

On the other hand, three signature changes can occur
when /3 has values in (ii). They are plotted as a function of /
in Fig. 7. A sign change in gy is indicated by the solid
curve, and sign changes in g,, are indicated by the dashed
and dot-dashed curves. The induced metric has a Euclidean
signature below the solid curve. In the tiny intermediate
region between the dashed and the solid curves, the induced
metric has two spacelike directions and two timelike
directions. It has a Lorentzian signature in the other

- 1) + (23)*(|d1 [P + |dE, ) + z3dz3(E* + a))

+ (1 + D((z3)*(E=E))> = (0 + 1)(2z3dz3)*,

(5.36)

intermediate region between the dashed and dot-dashed
curves, with dy + cos 8d¢ timelike. Above the dot-dashed
curve, the induced metric again has two spacelike direc-
tions and two timelike directions.

2. Effective metric

We next use (4.29) to compute the effective metric y,, for
deformed CP?. Starting with the canonical Poisson brack-
ets (4.6), we now obtain the following results for the
nonvanishing components of the symplectic matrix [@*]:

2
0% — _ csc6"
sin?z sin?z

(5.39)

1 2cotd
sinzcost’ -

oV =

Computing determinants, we get
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FIG. 7. Signature changes in the induced metric g,, and
effective metric y,, for deformed CP? are given in the plot of
7 versus /3 in the region (ii) 3.41 < . A sign change in gy or 7y is
indicated by the solid curve. Sign changes in g, or y,,, are
indicated by the dashed and dot-dashed curves.
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4csc? 6
det® = S 6.
cos? 7sin® ¢
| dety|| det®| = | det g|| det &|4|g,,|(cos® T — u? sin® 7)2.

(5.40)

As a result, the nonvanishing components of the effective
metric tensor are

yTT —

\/| dety|| det @] ’

Y60 1

Jldety[det0]  4(# —colr)’

Yo 1

/| dety|| det ©] 4(u* — 1» —sec’resc? 1)’ (5:41)
in addition oy, = 7,, cos’ 0+ ygesin’ 6 and y,, =
Yy €08 0. As with the deformed CP'! and CP? solutions,
signature changes in the effective metric coincide with
signature changes in the induced metric. So as with the
induced metric, the effective metric undergoes only one
signature change when f has the values in (i). It is a change
from the Euclidean signature to one where the effective metric
has two spacelike directions and two timelike directions.

Also as with the induced metric, the effective metric
undergoes three signature changes when f has the values in
(i1), which are indicated in Fig. 7. A sign change in yg
occurs for tanz = \;lt_l (indicated by the solid curve in Fig. 7),

% (indicated

=
by the dashed and dot-dashed curves in Fig. 7). The
effective metric has a Euclidean signature below the solid
curve. In the tiny intermediate region between the solid and
the dashed curves, the effective metric, like the induced
metric, has two spacelike directions and two timelike
directions. The effective metric has a Lorentzian signature
in the intermediate region between the dashed and dot-
dashed curves, with 7 being timelike. Above the dot-dashed
curve, the induced metric has two spacelike directions and
two timelike directions.

For the Lorentzian region, which we found between the
dashed and dot-dashed curves in Fig. 7, the effective metric
describes a closed spacetime cosmology. For a fixed / with
values in (ii), the sign changes in y,,,, depicted as red and
blue curves in Fig. 7, correspond to spacetime singularities.
We denote the values of 7 at these singularities by 7, and 7,
with 7, < 7;. Which one of these is the initial singularity,
and which one is the final singularity, of course, depends on
the direction of time. We obtain the time evolution of the
spatial scale for this region in the next subsection.

and sign changes in y,,,, occur at sin 27 =

3. Expansion and contraction

In the previous section, we saw that the effective metrig
for deformed CP? can have a Lorentzian signature when j

12
10

N B O @
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FIG. 8. a(r) versus #(z) for the region of deformed CP? where

the effective metric has a Lorentzian signature, for § = 3.5 (solid
curve), 3.75 (dashed curve), and 5 (dot-dashed curve).

has the values in (ii). In this case, 7 is the timelike
coordinate, and it evolves from one signature change to
another. From (5.37), |¢;|* + |¢,|* = tan? 7, and so, as with
the deformed CP'! and CP%? solutions, a 7 slice of the
four-dimensional manifold away from singularities is a
three-sphere, or more precisely, a Berger sphere. We can
compute the spatial scale a(|z]) at any 7 slice and proper
time ¢ in the comoving frame for the deformed CP?
solution, using (5.23) and (5.24), respectively. For the
former, we get

a(|z])?® = (4x)?|sin* zcos 7| cot? = — p2[2| (u? — 1?)

x sin? 7 cos? 7 — 15 (5.42)
It follows that the spatial scale vanishes at the signature
changes, which are associated with the cosmological
singularities. For the latter, Eq. (5.24) gives

t(r) = 2/ de'| cos? 7 — pi sin? 72| (u? — 1?)
70

2 2

x sin? 7 cos? 7 — 1Ji. (5.43)
The lower integration limit 7, corresponds to the value of 7

at the coordinate singularity defined by sin2z, = ﬁ,
7y < %, corresponding to the sign change in y,,,. In Fig. 8,
we plot a(z) versus 7(z) for three values of /3 in region (ii).
For 7 close to 7y, we get a ~ (t — 7)1, 1 ~ (7 — 7)i, and
hence, a ~ £15. We find identical behavior near the other
singularity at 7 =17;. We thus get a very rapid initial
expansion and a very rapid final contraction.

VI. CONCLUSIONS

We have obtained a number of new solutions to IKKT-type
matrix models, which exhibit signature change in the
commutative limit. All such examples found so far, including
the noncommutative H* solution of [13], require including a
mass term in the matrix action. Since mass terms result from
an IR regularization [16], itis interesting to speculate whether

086015-16



SIGNATURE CHANGE IN MATRIX MODEL SOLUTIONS

PHYS. REV. D 98, 086015 (2018)

signature change on the brane is connected to the regulari-
zation.” On the other hand, we remark that the mass term
resulting from the regularization does not necessarily lead to
a signature change, since we have obtained solutions to the
massive matrix model that exhibit no signature change in the
commutative limit. For example, no sign changes occur in
either the induced metric or the effective metric for deformed
CP*? when —1 < <-0.746 and —0.603 < < —0.6.
Moreover, our work does not rule out the possibility of
solutions to a massless matrix model that exhibit signature
change in the commutative limit.

The four-dimensional solutions of Sec. V are deforma-
tions of noncommutative complex projective spaces, spe-
cifically noncommutative CP?>, CP'!, and CP%?. The
manifolds that emerge from these solutions can have multiple
signature changes. The manifolds resulting from a deformed
noncommutative CP%? solution can undergo two signature
changes, while those resulting from a deformed noncommu-
tative CP? solution can have up to three signature changes.
The regions where the effective metric of these manifolds
have a Lorentzian signature serve as crude models of closed
(in the case of noncommutative CP?) and open (in the case of
noncommutative CP"*! and CP%?) cosmological spacetimes.
They contain cosmological singularities that are resolved
away from the commutative limit. The evolution of the
spatial scale a as a function of the proper time ¢ in the
comoving frame was computed for these examples. For all
examples (and also the example of noncommutative H* in
[13]) an extremely rapid expansion (or contraction, in the
case of the big crunch singularity of the closed cosmology)
was found for the spatial scale a near the cosmological
singularities. Rather than following an exponential behavior,
we obtained a ~ 115 near ¢ = 0 for noncommutative CP? and
CP"!, and a ~ £ for noncommutative CP*2. Also like
noncommutative H* [13], the spacetimes emerging from
the deformed noncommutative CP'! and CP? solutions
expand linearly at late times, a ~ .

Unlike the spacetime manifold that emerges from non-
commutative H* [13], the manifolds that emerge from
noncommutative CP?, CP"!, and CP"? are not maximally
symmetric. For the latter manifolds, any time slice of the
spacetime is a Berger sphere. Although being, perhaps, less
realistic than noncommutative H* with regards to cosmol-
ogy, the examples of noncommutative CP?, CP"!, and
CP"? are considerably simpler spaces than noncommuta-
tive H*, with evidently similar outcomes for the evolution
of the spatial scale. Noncommutative H* carries an addi-
tional bundle structure that is not present for the solutions
of Sec. V. In order to close the algebra on noncommutative
H*, one must extend it to a larger noncommutative space.
That space is noncommutative CP'2. In the commutative

SWe thank the referee for this remark.

limit, one recovers the CP!? manifold, an S? bundle
over AdS*.

The eight-dimensional matrix model considered in
Secs. IV and V utilized a particular indefinite background
metric 7, the su(2, 1) Cartan-Killing metric. Other indefinite
background metrics can be considered. = diag(+ + + +
+ + +—) was used in [12], to obtain noncommutative CP?
solutions. We can preserve SO(3) rotational symmetry
with a generalization of the background metric to
n = diag(ks, k3, k3, —, —, —, —, K3 ), K3, kg = +. (We exclude
k3 = kg = —, since this will only produce a Euclidean
induced and effective metric.) If, e.g., we search for deformed
CP"! and CP? solutions to the matrix equations (5.3) with
this metric, then the conditions (5.6) generalize to

1 -
(2u —a) <ﬂ2’<3 + 5) +3up =0,

w2y + 12kg + 2 — a(uks + vkg) + 48 = 0,

w—a+2up=0, (6.1)

where we again assumed the ansatz (5.5). Solutions for
different choices of k3 and kg may be found, although they
may be quite nontrivial, and many more four-dimensional
signature changing manifolds are expected to emerge in the
commutative limit.

In this article we have neglected stability issues and the
addition of fermions. The question of stable solutions to
matrix models is highly nontrivial. For two-dimensional
solutions it was found previously that longitudinal and
transverse fluctuations contribute with opposite signs to the
kinetic energy. It is unclear how the extension to a fully
supersymmetric theory can resolve this issue. We hope to
address such questions in the future.
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APPENDIX A: SOME PROPERTIES OF su(2,1) IN
THE DEFINING REPRESENTATION

In terms of su(3) Gell-Mann matrices 4,, the su(2, 1)
Gell-Mann matrices 1, are given by

o1
|

a = Aa a=12.738,

a' =4,5,6,17.

o0
|

o = ilars (A1)
They satisfy the Hermiticity properties (4.7). _

The structure constants for su(2, 1) are C,,¢ = fapantc,
where 7,, is the Cartan-Killing metric (4.9), and Fupe are
totally antisymmetric, with the nonvanishing values
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s V3
f845 :f867 :_7’

~ ~ ~ ~ ~ ~ 1
fl47:fl65:f246:f257:f345:f376:_§

iz =1,
(A2)

Except for f),; these structure constants are opposite in
sign from those obtained from the standard Gell-Mann
matrices of su(3).

Some useful identities for the su(2,1) Gell-Mann
matrices and f ;. are

trd Ay = [Za]ij 26)s = 20ap- (A3)
Gudole =20 4 3nal, (A

J~C ahcf bcd = 3N4as (A5)
Y ), = 2655 25k (A6)

[,], denotes the anticommutator, and d,,. are totally
symmetric, with the nonvanishing values

S n e e s 1
dyyz = dss3 = dyye = di57 = dyse = R

~ ~ ~ 1
deos = dr73 = dhyy = 3

~ ~ ~ 1

dyjg = dyg = dyzg = —=,
118 228 338 \/g

~ ~ ~ ~ 1

d = d = d = d = —,
448 558 668 778 2\/§

~ 1

dggg = ——=. A7
888 \/§ ( )

Equation (A6) is the Fierz identity, which has the same
form as that for su(3).

APPENDIX B: EFFECTIVE METRIC

Here we review the derivation of (4.29), relating the
effective metric y,, to the induced metric. We use the
example of the massless scalar field [15]. We then use the
result to compute the effective metrics for (undeformed)
CP"! and CP"2.

Denote the scalar field by ® = ®(X) on a noncommu-
tative background spanned by matrices X,. The standard
action is

1
~o Tr[X,, ®|[X“D],
a=1,2,...,d. Now take the semiclassical limit # — O.
This means again replacing matrices X, by commuting
variables x,, corresponding to embedding coordinates of
some continuous manifold. @ is then replaced by a
function ¢ on the manifold, and commutators are replaced

(B1)

by ih times Poisson brackets. We also need to replace
the trace by an integration [ du(x), where du(x) is an
invariant integration measure. Say that the manifold is
parametrized by ¢ = (¢', 62, ...,06"), n < d, with symplec-

tic two-form Q = $[07'] ,do* A do*. Then one can set

o do- . . . . .
du(x) = T Taking k — #k, the semiclassical limit of
(B1) is

1 do
50 | T e 9
= —L/L@wa x,0,00%0,x0,¢

21('2 \/m prau o v
1 do
B _Z_KZ/ /[ det®)
On the other hand, the standard action of a scalar field ¢ on
a background metric y,, is

1
—W/daxﬂdetﬂy"” PO, .

Identifying these two actions gives (4.29).

As examples, we compute the effective metrics for
(undeformed) CP"! and CP%?, and show that they are
identical to the corresponding induced metrics.

(1) Effective metric for CP"!. Using (4.25), the non-

vanishing components ®** for CP"! are

®pﬂg/m®{waﬂ¢au¢' (BZ)

(B3)

1 2cotd
ov—— gw=2%Y
coshzsinht cosh?t
2cscl
o = =Y B4
cosh?t (B4)
Then
4 2
det @ — .CLG s
sinh?zcosh®z
| dety| = 4cosh®zsinh?zsin?6. (BS)

Computing ®7 g® we find the following nonvanish-
ing components:

O g0 — 1.

[©7¢0]" = cosh?z’

o

7 go) — 4(cot2is—hzc:ch21) ’

@ go) = 1Ll (B6)

Using (4.29) and (B5), we then get y,, = g,,.
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(ii) Effective metric for CP%2. Using (4.28) the non-
vanishing components @ for CP%? are

OV — 1 ’ QWZZCotH’ ®6¢:_2CSC9.
coshzsinhz sinh?z sinh?z
(B7)
Here
4csc20
det® =———————, |dety|=4cosh’zsinh®zsin6.
sinh®zcosh-z

(B8)

The nonvanishing components of 7 g® are

[©7¢g0]" = —1,
[©7¢0]% = %,

o ——

O g — —él(cot;t?1 l—; TsechZT) ’

o7 goyiv — Heordesel C:itnflgic o (B9)

Using (4.29) and (B8), we once again gety,, = g,,.
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