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Various classical solutions to lower dimensional Ishibashi-Kawai-Kitazawa-Tsuchiya–like Lorentzian
matrix models are examined in their commutative limit. Poisson manifolds emerge in this limit, and their
associated induced and effective metrics are computed. Signature change is found to be a common feature
of these manifolds when quadratic and cubic terms are included in the bosonic action. In fact, a single
manifold may exhibit multiple signature changes. Regions with a Lorentzian signature may serve as toy
models for cosmological spacetimes, complete with cosmological singularities, occurring at the signature
change. The singularities are resolved away from the commutative limit. Toy models of open and closed
cosmological spacetimes are given in two and four dimensions. The four-dimensional cosmologies are
constructed from noncommutative complex projective spaces, and they are found to display a rapid
expansion near the initial singularity.
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I. INTRODUCTION

Signature change is believed to be a feature of quantum
gravity [1–10]. It has been discussed in the context of string
theory [6], loop quantum gravity [7,10], and causal dynami-
cal triangulation [8]. Recently, signature change has also
been shown to result from certain solutions to matrix
equations [11–13]. These are the classical equations of
motion that follow from Ishibashi, Kawai, Kitazawa, and
Tsuchiya (IKKT)-type models [14] with a Lorentzian back-
ground target metric. The signature change occurs in the
induced metrics of the continuous manifolds that emerge
upon taking the commutative (or equivalently, continuum or
semiclassical) limit of the matrix model solutions. Actually,
as argued by Steinacker, the relevant metric for these
emergent manifolds is not, in general, the induced metric,
but rather it is the metric that appears upon the coupling to
matter [15]. The latter is the so-called effective metric of the
emergent manifold, and it is determined from the symplectic
structure that appears in the commutative limit, as well as the
inducedmetric. Signature changes also occur for the effective
metric of these manifolds, and, in fact, they precisely
coincide with the signature changes in the induced metric.
The signature changes in the induced or effective metric
correspond to singularities in the curvature tensor

constructed from thesemetrics. The singularities are resolved
away from the commutative limit, where the description of
the solution is in terms of representations of some matrix
algebras.
As well as being of intrinsic interest, signature changing

matrix model solutions could prove useful for cosmology.
It has been shown that toy cosmological models can be
constructed for regions of the manifolds where the metric
has a Lorentzian signature. These regions can represent
both open and closed cosmologies, complete with cos-
mological singularities that occur at the signature changes.
As stated above such singularities are resolved away from
the commutative limit. Furthermore, in [13], a rapid
expansion, although not exponential, was found to occur
immediately after the big bang singularity.
The previous examples of matrix models where signature

change was observed include the fuzzy sphere embedded in
a three-dimensional Lorentzian background [11], fuzzy
CP2 in an eight-dimensional Lorentzian background [12],
and noncommutativeH4 in ten-dimensional Lorentz space-
time [13]. For the purpose of examining signature changes,
it is sufficient to restrict to the bosonic sector of the matrix
models. In this article we present multiple additional
examples of solutions to bosonic matrix models that exhibit
signature change. We argue that signature change is
actually a common feature of solutions to IKKT-type
matrix models with indefinite background metrics, in
particular, when mass terms are included in the matrix
model action. (Mass terms have been shown to result from
an IR regularization [16].) In fact, a single solution can
exhibit multiple signature changes. As an aside, it is known
that there are zero mean curvature surfaces in three-
dimensional Minkowski space that change from being
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spacelike to being timelike [17–21].1 The signature chang-
ing surfaces that emerge from solutions to the Lorentzian
matrix models studied here do not have zero mean
curvature.
As a warm-up, we review two-dimensional solutions to

the three-dimensional Lorentz matrix model, consisting of
a quartic (Yang-Mills) and a cubic term, and without a
quadratic (mass) term. Known solutions are noncommu-
tative ðAÞdS2 [22–26] and the noncommutative cylinder
[27–29]. They lead to a fixed signature upon taking the
commutative limit. New solutions appear when the quad-
ratic term is included in the action. These new solutions
exhibit signature change. One such solution, found previ-
ously, is the Lorentzian fuzzy sphere [11]. Others can be
constructed by deforming the noncommutative AdS2 sol-
ution. After taking the commutative limit of these matrix
solutions, one finds regions of the emergent manifolds
where the metric has a Lorentzian signature. In the case
of the Lorentzian fuzzy sphere, the Lorentzian region
crudely describes a two-dimensional closed cosmology,
complete with an initial and a final singularity. In the case
of the deformation of noncommutative (Euclidean) ðAÞdS2,
the Lorentzian region describes a two-dimensional open
cosmology.
Natural extensions of these solutions to higher dimen-

sions are the noncommutative complex projective spaces
[30–36]. Since we wish to recover noncompact manifolds,
as well as compact manifolds in the commutative limit, we
should consider the indefinite versions of these noncom-
mutative spaces [37] as well as those constructed from
compact groups. For four-dimensional solutions, there are
then three such candidates: noncommutative CP2, CP1;1,
and CP0;2. The latter two solve an eight-dimensional
(massless) matrix model with an indefinite background
metric, specifically, the suð2; 1Þ Cartan-Killing metric.
These solutions give a fixed signature after taking the
commutative limit. So as with the two-dimensional sol-
utions, the massless matrix model yields no signature
change. Once again, new solutions appear when a mass
term is included, and they exhibit signature change, possibly
multiple signature changes. These solutions include defor-
mations of noncommutative CP2, CP1;1, and CP0;2.2 A
deformed noncommutative CP0;2 solution can undergo two
signature changes, while a deformed noncommutative CP2

solution can have up to three signature changes.Upon taking
the commutative limit, the deformed noncommutativeCP1;1

and CP0;2 solutions have regions with Lorentzian signature
that describe expanding open spacetime cosmologies, com-
plete with a big bang singularity occurring at the signature

change. The commutative limit of the deformed noncom-
mutative CP2 solution has a region with Lorentzian sig-
nature that describes a closed spacetime cosmology,
complete with initial/final singularities. As with the non-
commutative H4 solution found in [13], these solutions
display an extremely rapid expansion near the cosmological
singularities. Also as in [13], the spacetimes emerging from
the deformed noncommutative CP1;1 and CP0;2 solutions
expand linearly at late times. It suggests that these are
universal properties of 4d signature changing solutions to
IKKT-type matrix models.
The outline for this article is the following: In Sec. II we

review the noncommutative ðAÞdS2 and cylinder solutions
to the (massless) three-dimensional Lorentz matrix model.
We include the mass term in the matrix model action in
Sec. III, and examine the resulting signature changing
matrix model solutions. The noncommutative CP1;1 and
CP0;2 solutions to an eight-dimensional (massless) matrix
model (in the semiclassical limit) are examined in Sec. IV.
The mass term is added to the action in Sec. V, and there we
study the resulting deformed noncommutative CP1;1,
CP0;2, and CP2 solutions. In Appendix A we list some
properties of suð2; 1Þ in the defining representation. In
Appendix B we review a derivation of the effective metric
and compute it for the examples of CP1;1 and CP0;2.

II. THREE-DIMENSIONAL
LORENTZIAN MATRIX MODEL

We begin by considering the bosonic sector of the three-
dimensional Lorentzian matrix model with an action
consisting of a quartic (Yang-Mills) term and a cubic term:

SðXÞ ¼ 1

g2
Tr

�
−
1

4
½Xμ; Xν�½Xμ; Xν� þ i

3
aϵμνλXμ½Xν; Xλ�

�
:

ð2:1Þ

Here Xμ, μ ¼ 0, 1, 2, are infinite-dimensional Hermitian
matrices and a and g are constants. Tr denotes a trace,
indices μ; ν; λ;…, are raised and lowered with the Lorentz
metric ημν ¼ diagð−;þ;þÞ, and the totally antisymmetric
symbol ϵμνλ is defined such that ϵ012 ¼ 1. Extremizing the
action with respect to variations in Xμ leads to the classical
equations of motion

½½Xμ; Xν�; Xν� þ iaϵμνλ½Xν; Xλ� ¼ 0: ð2:2Þ

The equations of motion (2.2) are invariant under the
following:

(i) unitary “gauge” transformations, Xμ → UXμU†,
where U is an infinite dimensional unitary matrix,

(ii) 2þ 1 Lorentz transformations Xμ → Lμ
νXν, where

L is a 3 × 3 Lorentz matrix, and
(iii) translations in the three-dimensional Minkowski

space Xμ → Xμ þ vμ1, where 1 is the unit matrix.

1We thank J. Hoppe for bringing this to our attention.
2As state above, we assume the background metric to be the

suð2; 1Þ Cartan-Killing metric. Noncommutative CP2 and its
deformations were shown to solve an eight-dimensional Lor-
entzian matrix model with a different background metric in [12].
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Well known solutions to these equations are non-
commutative ðAÞdS2 [22–26] and the noncommutative
cylinder [27–29]. Both are associated with unitary irre-
ducible representations of three-dimensional Lie algebras.
Noncommutative ðAÞdS2 corresponds to unitary irreduc-
ible representations of suð1; 1Þ, while the noncommutative
cylinder corresponds to unitary irreducible representations
of the two-dimensional Euclidean algebra E2. Thus the
former solution is defined by

½Xμ; Xν� ¼ iaϵμνλXλ; XμXμ fixed; ð2:3Þ
while the latter is

½X0;X��¼�2aX�; ½Xþ;X−�¼0; XþX− fixed; ð2:4Þ
where X� ¼ X1 � iX2. Noncommutative ðAÞdS2 preserves
the Lorentz symmetry (ii) of the equations of motion, while
the noncommutative cylinder breaks the symmetry to the
two-dimensional rotation group.NoncommutativeAdS2was
recently shown to be asymptotically commutative, and the
holographic principlewas applied tomap a scalar field theory
on noncommutative AdS2 to a conformal theory on the
boundary [26].
The commutative (or equivalently, continuum or semi-

classical) limit for these two solutions is clearlya → 0. Thusa
plays the role of ℏ of quantum mechanics, and for conven-
iencewe shallmake the identificationa ¼ ℏ and then take the
limit ℏ → 0. In the limit, functions of the matrices Xμ are
replaced by functions of commutative coordinates xμ,
and to lowest order in ℏ, commutators of functions of Xμ

are replaced by iℏ times Poisson brackets of the correspond-
ing functions of xμ, ½F ðXÞ;GðXÞ� → iℏfF ðxÞ;GðxÞg.
So in the commutative limit of the noncommutative

ðAÞdS2 solution, Eq. (2.3) defines a two-dimensional
hyperboloid with an suð1; 1Þ Poisson algebra

fxμ; xνg ¼ ϵμνλxλ: ð2:5Þ
Two different geometries result from the choice of sign of
the Casimir in (2.3). The positive sign is associated
with noncommutative ðAÞdS2, while the negative sign is
associated with noncommutative Euclidean ðAÞdS2. We
describe them as follows:
(1) Noncommutative ðAÞdS2. A positive Casimir yields

the constraint xμxμ ¼ r2 in the commutative limit,
which defines two-dimensional de Sitter (or anti–de
Sitter) space, ðAÞdS2 (or H1;1). r in this semiclassical
solution, and the ones that follow, denotes a constant
length scale, r > 0. A global parametrization for
ðAÞdS2 is given by0

BB@
x0

x1

x2

1
CCA ¼ r

0
BB@

sinh τ

cosh τ cos σ

cosh τ sin σ

1
CCA; ð2:6Þ

where −∞ < τ < ∞, 0 ≤ σ < 2π. Using this para-
metrization we obtain the following Lorentzian in-
duced metric on the surface3:

ds2 ¼ r2ð−dτ2 þ cosh2 τdσ2Þ: ð2:7Þ
The Poisson brackets (2.5) are recovered upon writing

fτ; σg ¼ 1

r cosh τ
: ð2:8Þ

(2) Noncommutative Euclidean ðAÞdS2. A negative
Casimir yields the constraint xμxμ ¼ −r2 in the
commutative limit. This defines a two-sheeted hy-
perboloid corresponding to the Euclidean version of
de Sitter (or anti–de Sitter) space, Euclidean ðAÞdS2
(or H2;0). A parametrization of the upper hyper-
boloid (x0 > 0) is0

BB@
x0

x1

x2

1
CCA ¼ r

0
BB@

cosh τ

sinh τ cos σ

sinh τ sin σ

1
CCA; ð2:9Þ

where again −∞ < τ < ∞, 0 ≤ σ < 2π. Now the
induced metric on the surface has a Euclidean
signature

ds2 ¼ r2ðdτ2 þ sinh2 τdσ2Þ: ð2:10Þ
Upon assigning the Poisson brackets

fτ; σg ¼ 1

r sinh τ
ð2:11Þ

we again recover the suð1; 1Þ Poisson bracket
algebra (2.5).

The commutative limit of the noncommutative cylinder
solution (2.4) is obviously the cylinder. The Casimir
for the two-dimensional Euclidean algebra goes to
ðx1Þ2 þ ðx2Þ2 ¼ r2, while the limiting Poisson brackets
are fx0; x1g ¼ −2x2, fx0; x2g ¼ 2x1, fx1; x2g ¼ 0. A para-
metrization in terms of polar coordinates0

BB@
x0

x1

x2

1
CCA ¼

0
BB@

τ

r cos σ

r sin σ

1
CCA ð2:12Þ

yields the Lorentzian induced metric

ds2 ¼ −dτ2 þ r2dσ2; ð2:13Þ

and the Poisson algebra is recovered for fτ; σg ¼ 2.

3AdS2 and dS2 are distinguished by the definition of the
timelike direction on the manifold. For the former, the time
parameter corresponds to σ, and for the latter, it is τ.
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The above solutions admit either Euclidean or
Lorentzian induced metrics after taking the commutative
limit. The signature for any of these particular solutions
is fixed. Below we show that the inclusion of a mass
term in the action allows for solutions with signature
change.

III. INCLUSION OF A MASS TERM
IN THE 3d MATRIX MODEL

We next add a quadratic contribution to the three-
dimensional Lorentzian matrix model action (2.1):

SðXÞ ¼ 1

g2
Tr

�
−
1

4
½Xμ; Xν�½Xμ; Xν� þ i

3
aϵμνλXμ½Xν; Xλ�

þ b
2
XμXμ

�
: ð3:1Þ

As stated in the Introduction, quadratic terms have been
shown to result from an IR regularization [16]. The
equations of motion resulting from variations of Xμ are now

½½Xμ; Xν�; Xν� þ iaϵμνλ½Xν; Xλ� þ bXμ ¼ 0: ð3:2Þ

As in this article we shall only be concerned with solutions
in the commutative limit, ℏ → 0, we may as well take the
limit of these equations. In order for the cubic and quadratic
terms to contribute in the commutative limit we need that a
and b vanish in the limit according to

a → ℏα; b → ℏ2β; ð3:3Þ

where α and β are nonvanishing and finite. Equation (3.2)
reduces to

−ffxμ; xνg; xνg − αϵμνλfxν; xλg þ βxμ ¼ 0: ð3:4Þ

The AdS2 and Euclidean AdS2 solutions, which are
associated with the suð1; 1Þ Poisson algebra (2.5), survive
when the mass term is included provided that the constants
α and β are constrained by

β ¼ 2ð1 − αÞ: ð3:5Þ

In the limit where the mass term vanishes, β ¼ 0 and α ¼ 1,
we recover the solutions of the previous section. On the
other hand, the noncommutative cylinder only solves the
equations in the limit of zero mass β → 0.
The mass term allows for new solutions, which have no

β → 0 limit. One such solution is the fuzzy sphere
embedded in the three-dimensional Lorentzian back-
ground, which was examined in [11]. In the commutative
limit it is defined by

ðx0Þ2 þ ðx1Þ2 þ ðx2Þ2 ¼ r2; fx0; x1g ¼ x2;

fx1; x2g ¼ x0; fx2; x0g ¼ x1: ð3:6Þ

These Poisson brackets solve the Lorentzian equations (3.4)
provided that α ¼ − 1

2
and β ¼ −1. The solution obviously

does not preserve the Lorentz symmetry (ii) of the
equations of motion. One can introduce a spherical coor-
dinate parametrization0

BB@
x0

x1

x2

1
CCA ¼ r

0
BB@

cos θ

sin θ cosϕ

sin θ sinϕ

1
CCA; ð3:7Þ

0 ≤ ϕ < 2π, 0 < θ < π. Then the Poisson brackets in (3.6)
are recovered for fθ;ϕg ¼ 1

r csc θ. The induced invariant
length which one computes from the Lorentzian back-
ground, ds2 ¼ dxμdxμ, does not give the usual metric for a
sphere. Instead, one finds

ds2 ¼ r2ðcos 2θdθ2 þ sin2θdϕ2Þ: ð3:8Þ

In addition to the coordinate singularities at the poles, there
are singularities in the metric at the latitudes θ ¼ π

4
and 3π

4
.

The Ricci scalar is divergent at these latitudes. The metric
tensor has a Euclidean signature for 0 < θ < π

4
and

3π
4
< θ < π, and a Lorentzian signature for π

4
< θ < 3π

4
.

The regions are illustrated in Fig. 1. The Lorentzian regions
of the fuzzy sphere solutions have both an initial and a final

FIG. 1. Commutative limit of the Lorentzian fuzzy sphere.
Singularities in the metric appear at θ ¼ π

4
and 3π

4
, and the signature

of the metric changes at these latitudes. These latitudes are
associated with singularities in the Ricci scalar. The metric tensor
has a Euclidean signature for 0 < θ < π

4
and 3π

4
< θ < π (darker

regions), and a Lorentzian signature for π
4
< θ < 3π

4
(lighter region).
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singularity and thus crudely describe a two-dimensional
closed cosmology. The singularities are resolved away
from the commutative limit, where the fuzzy sphere is
expressed in terms of N × N Hermitian matrices. Axially
symmetric deformations of the fuzzy sphere are also
solutions to the Lorentzian matrix model [11].
Other sets of solutions to the Lorentzian matrix model

which have no β → 0 limit are deformations of the non-
commutative AdS2 and the Euclidean AdS2 solutions. Like
the fuzzy sphere solution, they break the Lorentz symmetry
(ii) of the equations of motion, but preserve spatial rota-
tional invariance. Again, we shall only be concerned with
the commutative limit of these solutions:
(1) Deformed noncommutative AdS2. Here we replace

(2.6) by 0
BB@

x0

x1

x2

1
CCA ¼ r

0
BB@

sinh τ

ρ cosh τ cos σ

ρ cosh τ sin σ

1
CCA: ð3:9Þ

ρ > 0 is the deformation parameter. We again
assume the Poisson bracket (2.8) between τ and σ.
Substituting (3.9) into (3.4) gives β ¼ 2ρ2ð1 − αÞ ¼
1þ ρ2 − 2α. It is solved by the previous undeformed
AdS2 solution, ρ2 ¼ 1 with (3.5), along with new
solutions that allow for arbitrary ρ > 0, provided that

α ¼ 1

2
; β ¼ ρ2: ð3:10Þ

Using the parametrization (3.9), the induced invari-
ant interval on the surface is now

ds2 ¼ r2cosh2τðð−1þ ρ2tanh2τÞdτ2 þ ρ2dσ2Þ:
ð3:11Þ

For ρ2 > 1 the induced metric tensor possesses
spacetime singularities at τ ¼ τ� ¼ � tanh−1 j 1ρ j,
which are associated with two signature changes.
For τ > τþ and τ < τ− the signature of the induced
metric is Euclidean, while for τ− < τ < τþ the
signature of the induced metric is Lorentzian.
Figure 2 is a plot of deformed AdS2 in the
three-dimensional embedding space for r ¼ 1,
ρ ¼ 1.15.

(2) Deformed noncommutative Euclidean AdS2. We
now deform the upper hyperboloid given in (2.9) to0

BB@
x0

x1

x2

1
CCA ¼ r

0
BB@

cosh τ

ρ sinh τ cos σ

ρ sinh τ sin σ

1
CCA; ð3:12Þ

while retaining the Poisson bracket (2.11) between τ
and σ:ρ again denotes the deformation parameter.
Equation (3.12) with ρ ≠ 0 is a solution to (3.4)

provided that the relations (3.10) again hold. The
induced invariant interval on the surface is now

ds2¼ r2sinh2τððρ2coth2τ−1Þdτ2þρ2dσ2Þ: ð3:13Þ

For ρ2 < 1 there is a singularity at τ ¼ τþ ¼
tanh−1 jρj that is associated with a signature change.
For τ < τþ the signature of the induced metric is
Euclidean, while for τ > τþ the signature of the
induced metric is Lorentzian. Figure 3 gives a plot of
deformed hyperboloid in the three-dimensional em-
bedding space for r ¼ 1, ρ ¼ 0.85. The deformed
Euclidean AdS2 solution has only an initial (big
bang) singularity that appears in the commutative

FIG. 2. Deformed AdS2 solution with r ¼ 1, ρ ¼ 1.15. The
spacetime singularities occur at τ ¼ τ� ¼ � tanh−1 j 1ρ j. The
lighter region has a Lorentzian signature, and the darker region
has a Euclidean signature.

FIG. 3. Deformed Euclidean AdS2 solution with r ¼ 1,
ρ ¼ 0.85. A spacetime singularity occurs at τ¼τþ¼ tanh−1 jρj.
The lighter region has a Lorentzian signature, and the darker region
has a Euclidean signature.
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limit, and so, crudely speaking, the Lorentzian
region describes an open two-dimensional cosmol-
ogy. The singularity is resolved away from the
commutative limit.

IV. CP1;1 AND CP0;2 SOLUTIONS

Concerning the generalization to four dimensions, a
natural approach would be to examine noncommutative
CP2 [30–36]. Actually, if we wish to recover noncompact
manifolds in the commutative limit, we should consider the
indefinite versions of noncommutative CP2; noncommu-
tative CP1;1 and CP0;2. In this section we show that
noncommutative CP1;1 and CP0;2 are solutions to an
eight-dimensional matrix model with an indefinite back-
ground metric. As with our earlier result, we find no
signature change in the absence of a mass term in the
action. A mass term will be included in the following
section. Here, we begin with some general properties of
noncommutative CP1;1 and CP0;2 in the semiclassical limit,
and then construct an eight-dimensional matrix model for
which they are solutions.

A. Properties

Noncommutative CPp;q was studied in [37]. Here we
shall only be interested in its semiclassical limit. CPp;q are
hyperboloids H2q;2pþ1 mod S1. They can be defined in
terms of pþ qþ 1 complex embedding coordinates zi,
i ¼ 1;…; pþ qþ 1, satisfying the H2q;2pþ1 constraint

Xpþ1

i¼1

z�i zi −
Xpþqþ1

i¼pþ2

z�i zi ¼ 1; ð4:1Þ

along with the identification

zi ∼ eiβzi: ð4:2Þ
CPp;q can equivalently be defined as the coset space
SUðpþ 1; qÞ=Uðp; qÞ. For the semiclassical limit of non-
commutative CPp;q we must also introduce a compatible
Poisson structure. For this we take

fzi; z�jg ¼
�−iδij; if i; j ¼ 1;…; pþ 1;

iδij; if i; j ¼ pþ 2;…; pþ qþ 1
;

ð4:3Þ
while all other Poisson brackets amongst zi and z�i vanish.
Then one can regard (4.1) as the first class constraint that
generates the phase equivalence (4.2).
In specializing to CP1;1 and CP0;2, it is convenient

to introduce the metric ηC ¼ diagð1; 1;−1Þ on the
three-dimensional complex space spanned by zi, i ¼ 1,
2, 3. Then writing zi ¼ ðηCÞijzj, the constraint (4.1) for
CP1;1 becomes

ziz�i ¼ 1; ð4:4Þ

while for CP0;2 the constraint can be written as

ziz�i ¼ −1. ð4:5Þ
For both cases, the Poisson brackets (4.3) become

fzi; z�jg ¼ −iδij; fzi; zjg ¼ fz�i ; z�jg ¼ 0: ð4:6Þ

CP1;1 and CP0;2 can also be described in terms of orbits
on SUð2; 1Þ. Below we review some properties of the Lie
algebra suð2; 1Þ. One can write down the defining repre-
sentation for suð2; 1Þ in terms of traceless 3 × 3 matrices,
λ̃a, a ¼ 1; 2;…; 8, which are analogous to the Gell-Mann
matrices λa spanning suð3Þ. We denote matrix elements by
½λ̃a�ij; i; j;… ¼ 1, 2, 3. Unlike suð3Þ Gell-Mann matrices,

λ̃a are not all Hermitian, but instead, satisfy

λ̃aη
C ¼ ηCλ̃†a: ð4:7Þ

They are given in terms of the standard Gell-Mann matrices
in Appendix A. The commutation relations for λ̃a are

½λ̃a; λ̃b� ¼ 2if̃abcλ̃
c; ð4:8Þ

where indices a; b; c;…, are raised and lowered using the
Cartan-Killing metric on the eight-dimensional space

η ¼ diagð1; 1; 1;−1;−1;−1;−1; 1Þ: ð4:9Þ

f̃abc for suð2; 1Þ are totally antisymmetric. Their values,
along with some properties of suð2; 1Þ, are given in
Appendix A.
CP0;2 is the coset space SUð2; 1Þ=Uð2Þ. Using the

conventions of Appendix A, it is spanned by adjoint
orbits in suð2; 1Þ through λ̃8 and consists of elements
gλ̃8g−1; g ∈ SUð2; 1Þ. The little group of λ̃8 is Uð2Þ, which
is generated by λ̃1; λ̃2; λ̃3; λ̃8. On the other hand, CP1;1 is the
coset space SUð2; 1Þ=Uð1; 1Þ. It corresponds to orbits
through

Λ̃8 ¼
1ffiffiffi
3

p

0
B@

−2
1

1

1
CA ¼ −

ffiffiffi
3

p

2
λ̃3 −

1

2
λ̃8; ð4:10Þ

CP1;1 ¼ fgΛ̃8g−1; g ∈ SUð2; 1Þg. The little group of Λ̃8 is
Uð1; 1Þ, which is generated by

Λ̃8; λ̃6; λ̃7; Λ̃3 ¼ diagð0; 1;−1Þ ¼ −
1

2
λ̃3 þ

ffiffiffi
3

p

2
λ̃8:

Next, we can construct eight real coordinates xa from zi

and z�i using
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xa ¼ z�i ½λ̃a�ijzj: ð4:11Þ

They are invariant under the phase transformation (4.2) and
span a four-dimensional manifold. Using (A6), the con-
straints on the coordinates are

xaxa ¼
4

3
; d̃abcxbxc ¼ � 2

3
xa; ð4:12Þ

where one takes the upper sign in the second equation
for CP1;1 and the lower sign for CP0;2. d̃abc is totally
symmetric; the values are given in Appendix A. From (4.6),
xa satisfy an suð2; 1Þ Poisson bracket algebra

fxa; xbg ¼ 2f̃abcxc: ð4:13Þ

B. Eight-dimensional matrix model

It is now easy to construct an eight-dimensional IKKT-
type matrix model for which (4.13) is a solution, at least in
the commutative limit. As before we only consider the
bosonic sector, spanned by eight infinite-dimensional
Hermitian matrices Xa, with indices raised and lowered
with the indefinite flat metric ηab. In analogy with the three-
dimensional model in (2.1), take the action to consist of a
quartic term and a cubic term:

SðXÞ ¼ 1

g2
Tr

�
−
1

4
½Xa;Xb�½Xa;Xb� þ i

3
af̃abcXa½Xb;Xc�

�
:

ð4:14Þ

The cubic term appears ad hoc, and we remark that it is
actually unnecessary for the purpose of finding solutions
when a quadratic term is introduced instead. We consider
quadratic terms in Sec. V. On the other hand, the cubic term
leads to a richer structure for the space of solutions, and it is
for that reason we shall consider it.
The equations of motion following from (4.14) are

½½Xa; Xb�; Xb� þ iaf̃abc½Xb; Xc� ¼ 0: ð4:15Þ

They are invariant under unitary “gauge” transformations,
SUð2; 1Þ transformations, and translations. Assuming that
the constant a behaves as in (3.3) in the commutative limit
leads to

−ffxa; xbg; xbg − αf̃abcfxb; xcg ¼ 0: ð4:16Þ

The Poisson brackets (4.13) solve these equations for α ¼ 2.
They describe a CP1;1 or a CP0;2 solution, the choice
depending on the sign in the second constraint in (4.12).
For either solution, we can project the eight-dimensional

flat metric η down to the surface z̄z ¼ z�i z
i ¼ �1, in order

to obtain the induced metric. Once again, i ¼ 1; 2; 3. Using
the Fierz identity (A6), we get

ds2 ¼ dxadxa ¼ 4ððz̄zÞðdz̄dzÞ − jz̄dzj2Þ; ð4:17Þ

where z̄dz ¼ z�i dz
i, dz̄dz ¼ dz�i dz

i, and we have used
dðz̄zÞ ¼ 0. Equation (4.17) is the Fubini-Study metric
written on a noncompact space.
We next examine the induced metric tensor on a local

coordinate patch. We choose the local coordinates ðζ1; ζ2Þ,
defined by

ζ1 ¼
z1

z3
; ζ2 ¼

z2

z3
; z3 ≠ 0; ð4:18Þ

along with their complex conjugates. These coordinates
respect the equivalence relation (4.2). In the language of
constrained Hamilton formalism, they are first class var-
iables. From their definition it follows that jζ1j2 þ jζ2j2 −
1 ¼ �jz3j−2 and z̄dz ¼ jz3j2ðζ�1dζ1 þ ζ�2dζ2Þ � d log z3,
where the upper [lower] sign applies for CP1;1 [CP0;2].
Substituting into (4.17) gives the induced metric tensor on
the coordinate patch

1

4
ds2 ¼ 1

2
gζuζ�vdζudζ

�
v

¼ jdζ1j2 þ jdζ2j2
jζ1j2 þ jζ2j2 − 1

−
jζ�1dζ1 þ ζ�2dζ2j2
ðjζ1j2 þ jζ2j2 − 1Þ2 : ð4:19Þ

It has the same form for both CP1;1 and CP0;2. Because
jζ1j2 þ jζ2j2 − 1 < 0 for the latter, CP0;2 has a Euclidean
signature. The Poisson brackets (4.6) can be projected
down to the local coordinate patch as well. The result is

fζu; ζ�vg ¼ �iðjζ1j2 þ jζ2j2 − 1Þðζuζ�v − δuvÞ;
fζu; ζvg ¼ fζ�u; ζ�vg ¼ 0; u; v ¼ 1; 2: ð4:20Þ

Once again, the upper [lower] sign applies for CP1;1

[CP0;2]. The resulting symplectic two-form is Kähler:

Ω ¼∓ i
2
gζuζ�vdζu ∧ dζ�v: ð4:21Þ

Next we rewrite the induced metric and symplectic two-
form using three Euler-like angles ðθ;ϕ;ψÞ, 0 ≤ θ < π,
0 ≤ ϕ < 2π, 0 ≤ ψ < 4π, along with one real variable τ,
−∞ < τ < ∞. We treat CP1;1 and CP0;2 separately:
(1) CP1;1. Now write

ζ1 ¼ eiðψþϕÞ=2 coth τ cos
θ

2
;

ζ2 ¼ eiðψ−ϕÞ=2 coth τ sin
θ

2
; ð4:22Þ

which is consistent with the requirement that
jζ1j2 þ jζ2j2 − 1 > 0. The induced metric in these
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coordinates has the Taub-(Newman, Unti, Tambur-
ino) NUT form (which was also true for the CP2

solution [12])

ds2 ¼ gττdτ2 þ gθθðdθ2 þ sin2 θdϕ2Þ
þ gψψ ðdψ þ cos θdϕÞ2: ð4:23Þ

We get

gττ ¼−4; gθθ ¼ cosh2τ; gψψ ¼−cosh2τsinh2τ;

ð4:24Þ
with the other nonvanishing components of the
induced metric being gϕϕ ¼ gψψ cos2 θ þ gθθ sin2 θ
and gψϕ ¼ gψψ cos θ. The result indicates that there
are two spacelike directions and two timelike direc-
tions. The symplectic two-form in terms of these
coordinates is

ΩCP1;1 ¼ − sinh τ cosh τdτ ∧ ðdψ þ cos θdϕÞ

þ 1

2
cosh2τ sin θdθ ∧ dϕ

¼ −
1

2
dðcosh2τðdψ þ cos θdϕÞÞ: ð4:25Þ

(2) CP0;2. Here choose

ζ1 ¼ eiðψþϕÞ=2 tanh τ cos
θ

2
;

ζ2 ¼ eiðψ−ϕÞ=2 tanh τ sin
θ

2
; ð4:26Þ

which is consistent with the inequality
jζ1j2 þ jζ2j2 − 1 < 0. The resulting induced metric
again has the Taub-NUT form (4.23). In comparing
with (4.24), results differ for the gθθ component,

gττ ¼−4; gθθ ¼−sinh2τ; gψψ ¼−cosh2τsinh2τ;

ð4:27Þ

where again gϕϕ ¼ gψψ cos2 θ þ gθθ sin2 θ and
gψϕ ¼ gψψ cos θ. The induced metric now has a
Euclidean signature, and the symplectic two-form is

ΩCP0;2 ¼ − sinh τ cosh τdτ ∧ ðdψ þ cos θdϕÞ

þ 1

2
sinh2τ sin θdθ ∧ dϕ

¼ −
1

2
dðsinh2τðdψ þ cos θdϕÞÞ: ð4:28Þ

Both metric tensors (4.24) and (4.27) (including the
corresponding results for gϕϕ and gψϕ) describing CP1;1

and CP0;2, respectively, are solutions to the sourceless

Einstein equations with cosmological constant Λ ¼ 3
2
.4

Obviously, the metric tensors do not exhibit signature
change. In both cases, the sign of the determinant of the
metric tensor, det g ¼ gττgψψ ðgθθ sin θÞ2, is positive (away
from coordinate singularities).
The above discussion utilized the induced metric tensor.

However, the relevant metric in the semiclassical limit for a
matrix model solution is not, in general, the induced metric,
but rather it is the metric that appears in the coupling to
matter [15]. This is the so-called “effective” metric tensor,
which we here denote by γμν. It can be determined from the
induced metric gμν and the symplectric matrix Θμν using

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det γj

p
γμν ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detΘjp ½ΘTgΘ�μν: ð4:29Þ

It follows that j det γj ¼ j det gj, and we can use this
identification to determine the effective metric from the
induced metric. We review a derivation of (4.29) in
Appendix B. In two dimensions, it is known that the
effective metric is identical to the induced metric, γμν ¼ gμν
[38]. This is also the case for the CP1;1 and CP0;2 solutions,
as is shown in Appendix B, and so all the previous results
that followed from the induced metric also apply for the
effective metric. On the other hand, for the solutions of the
next section, in addition to finding signature change, we
find that the effective metric and the induced metric for any
particular emergent manifold are in general distinct.

V. INCLUSION OF A MASS TERM
IN THE 8d MATRIX MODEL

In analogy to Sec. III, we now add a mass term to the
matrix model action (4.14),

SðXÞ ¼ 1

g2
Tr

�
−
1

4
½Xa; Xb�½Xa; Xb�

þ i
3
af̃abcXa½Xb; Xc� þ 6b̃XaXa

�
: ð5:1Þ

The matrix equations of motion become

½½Xa; Xb�; Xb� þ iaf̃abc½Xb; Xc� þ 12b̃Xa ¼ 0: ð5:2Þ

In the semiclassical limit ℏ → 0, we take a → ℏα, along
with b̃ → ℏ2β̃. Then (5.2) goes to

−ffxa; xbg; xbg − αf̃abcfxb; xcg þ 12β̃xa ¼ 0: ð5:3Þ

4CP2 is also a solution to the sourceless Einstein equations
with cosmological constant Λ ¼ 3

2
[12].
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These equations are solved by (4.13) for

α ¼ 2ð1þ β̃Þ: ð5:4Þ

Thus CP1;1 and CP0;2 are solutions to the massive matrix
model. In the limit where the mass term vanishes, β̃ ¼ 0
and α ¼ 2, we recover the solutions of the previous section.
CP1;1 and CP0;2 solutions also persist in the absence of the
cubic term in the matrix model action (5.1). For this we
need α ¼ 0 and β̃ ¼ −1. The mass term allows for other
solutions that have no β → 0 limit. Among these solutions
are the deformations of CP1;1 and CP0;2, as well as
deformations of CP2, which we discuss in the following
subsections.

A. Deformations of CP1;1 and CP0;2

For deformations of CP1;1 and CP0;2 we modify the
ansatz (4.11) to

x1–3¼μz�i ½λ̃1−3�ijzj; x4–7¼z�i ½λ̃4−7�ijzj; x8¼νz�i ½λ̃8�ijzj;
ð5:5Þ

where μ and ν are deformation parameters, which we shall
restrict to be real. This is a solution to Eq. (5.3) provided
that the following relations hold amongst the parameters:

ð2μ − αÞ
�
μ2 þ 1

2

�
þ 3μβ̃ ¼ 0;

μ2 þ ν2 þ 2 − αðμþ νÞ þ 4β̃ ¼ 0;

2ν − αþ 2νβ̃ ¼ 0: ð5:6Þ

These relations reduce to (5.4) when μ ¼ ν ¼ 1, and so we
recover undeformed CP1;1 and CP0;2 in this limit. For
generic values of the parameters, there are nontrivial
solutions to these algebraic relations, which can be
expressed as functions of the mass parameter β̃. For a
particular choice of signs,

α ¼ 2μ
β̃2 − β̃ − 1 − γ½β̃�

2β̃ þ 1
;

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̃3 − 4β̃2 − 6β̃ þ β̃γ½β̃� − 2

2ðβ̃2 þ 4β̃ þ 2Þ

s
;

ν ¼ α

2ð1þ β̃Þ ; ð5:7Þ

where

γ½β̃� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̃4 − 12β̃3 − 22β̃2 − 12β̃ − 2

q
: ð5:8Þ

Upon requiring γ½β̃� to be real, we obtain three disconnected
intervals (i)–(iii) in β̃:

ðiÞ β̃ ≤
1

2

�
6 − 3

ffiffiffi
6

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
98þ 40

ffiffiffi
6

pq �
≈ −0.746;

ðiiÞ 1

2

�
6 − 3

ffiffiffi
6

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
98þ 40

ffiffiffi
6

pq �
≈ −0.603 ≤ β̃

≤
1

2

�
6þ 3

ffiffiffi
6

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
98þ 40

ffiffiffi
6

pq �
≈ −0.325;

ðiiiÞ 1

2

�
6þ 3

ffiffiffi
6

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
98þ 40

ffiffiffi
6

pq �
≈ 13.67 ≤ β̃: ð5:9Þ

We further restrict μ to be real. (Reality of α and ν then
follows.) For solution (5.7), this reduces the acceptable
regions in β̃ to

ði0Þ − 3.414≲ β̃ ≲ −0.746;

ðii0Þ − 0.603≲ β̃ ≲ −0.586;

ðiii0Þ 13.67≲ β̃: ð5:10Þ

When β̃ ¼ −0.6, we recover the undeformed case μ¼ν¼1
(along with α ¼ 0.8). Therefore, matrix solutions in the
range ðii0Þ can be regarded as continuous deformations of
the undeformed solutions, while those in the ranges ði0Þ and
(iii) cannot be continuously connected to the undeformed
solutions.
In addition to the family of solutions given in (5.7) and

(5.8), Eq. (5.6) have the simple solution:

α ¼ ν ¼ 0; β̃ ¼ −
3

5
; μ2 ¼ 2

5
: ð5:11Þ

It is a solution for the case where the cubic term in the
matrix model action (5.1) is absent. From (5.5), ν ¼ 0
implies that the projection of the solution along the eighth
direction vanishes, x8 ¼ 0. This solution is not contained in
(5.7) and (5.8).
The ansatz (5.5) for μ and ν not both equal to one leads to

two types of solutions:
(1) Deformed CP1;1, where the complex coordinates zi

satisfy the constraint (4.4), and
(2) Deformed CP0;2, where the complex coordinates

zi satisfy (4.5).
We next compute the induced metric for these two types of
solutions.

1. Induced metric

The induced metric is again computed by projecting the
eight-dimensional flat metric (4.9) onto the surface. From
the ansatz (5.5) we get
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ds2 ¼ dxadxa ¼ 4ðjz1j2 þ jz2j2 − jz3j2Þðjdz1j2 þ jdz2j2 − jdz3j2Þ − 4jz�1dz1 þ z�2dz2 − z�3dz3j2
þ 4ðμ2 − 1Þðjz1j2 þ jz2j2Þðjdz1j2 þ jdz2j2Þ þ ðμ2 − 1Þðz�1dz1 þ z�2dz2 − z1dz�1 − z2dz�2Þ2

þ 1

3
ðν2 − 1Þðz�1dz1 þ z�2dz2 þ 2z�3dz3 þ z1dz�1 þ z2dz�2 þ 2z3dz�3Þ2: ð5:12Þ

We have not yet specialized to the two cases 1. and 2.
The result (5.12) can be rewritten in terms of the local coordinates ðζ1; ζ2Þ, defined in (4.18), according to

ds2 ¼ 4jz3j2ð−jz3j2jΞj2 � ðjdζ1j2 þ jdζ2j2ÞÞ
þ 4ðμ2 − 1Þðjz3j2 � 1Þðð1� jz3j−2Þjdz3j2 þ jz3j2ðjdζ1j2 þ jdζ2j2Þ þ Ξz3dz�3 þ Ξ�z�3dz3Þ
þ ðμ2 − 1Þðjz3j2ðΞ − Ξ�Þ þ ð1� jz3j−2Þðz�3dz3 − z3dz�3ÞÞ2 þ ðν2 − 1Þðdjz3j2Þ2; ð5:13Þ

whereΞ ¼ ζ�1dζ1 þ ζ�2dζ2 andwe have used jζ1j2 þ jζ2j2 ¼
1� jz3j−2. The upper [lower] sign applies for deformed
CP1;1 [CP0;2]. The expression (5.13) simplifies after making
the gauge choice that z3 is real, which we shall do below.
The signature of the induced metric becomes more

evident after expressing it in terms of the three Euler-like
angles θ;ϕ;ψ , along with parameter τ spanning Rþ, as we
did in Sec. IV for the undeformed metrics. For this we
now specialize to the two cases: 1. deformed CP1;1 and 2.
deformed CP0;2.
(1) Deformed CP1;1.

For this case we can apply coordinate transforma-
tion (4.22). Uponmaking the phase choice z3¼sinhτ,
Eq. (5.13) can be written in the Taub-NUT form
(4.23), where the metric components are now

gττ ¼ 4ððμ2 þ ν2 − 2Þcosh2τsinh2τ − 1Þ;
gθθ ¼ cosh2τðμ2cosh2τ − sinh2τÞ;
gψψ ¼ −cosh2τsinh2τ: ð5:14Þ

The remaining nonvanishing components of the
induced metric are again obtained from gϕϕ ¼
gψψ cos2 θ þ gθθ sin2 θ and gψϕ ¼ gψψ cos θ. The un-
deformed CP1;1 induced metric tensor in (4.24) is
recovered from (5.14) upon setting μ ¼ ν ¼ 1. This
limit thus corresponds to there being two spacelike
directions and two timelike directions, with
signðgττ; gθθÞ ¼ ð−;þÞ and det g > 0 (away from
coordinate singularities). The same two spacelike
directions and two timelike directions appear in the
limit jτj → 0. Signature change can occurwhenwego
away from either of these two limits, as we describe
below.
For the solutions given by (5.7) and (5.8), given

some value of β̃ ð≠ −1;−0.6Þ in the regions ði0Þ, ðii0Þ,
and (iii), the sign of either gττ or gθθ changes at some
value of jτj. We plot the values of jτj versus β̃ for
which this occurs in Fig. 4. gττ changes sign when
ðμ2 þ ν2 − 2Þ sinh2 τ cosh2 τ ¼ 1 (indicated by the
solid curves in Fig. 4). gθθ changes sign when

(a) (b) (c)

FIG. 4. Signature changes in the induced metric gμν and effective metric γμν for deformed CP1;1 are given in plots of jτj versus β̃ in the
three disconnected regions: (a) ði0Þ − 3.414≲ β̃ ≲ −0.746, (b) ðii0Þ − 0.603≲ β̃ ≲ −0.586, and (c) (iii) 13.67 ≲ β̃. A sign change in gθθ
or γθθ is indicated by the dashed curves. A sign change in gττ or γψψ is indicated by the solid curves.
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tanh2 τ ¼ μ2 (indicated by the dashed curves in
Fig. 4). Above the solid curves, signðgττ; gθθÞ ¼
ðþ;þÞ and det g < 0 and so the induced metric has
a Lorentzian signature in this region. In this case, the
timelike direction corresponds to dψ þ cos θdϕ. It
corresponds to a spacetime with closed timelike
curves. Above the dashed curves, signðgττ; gθθÞ ¼
ð−;−Þ, while det g > 0. In this case, the induced
metric space has a Euclidean signature.
For the solution (5.11), a sign change in gθθ occurs

at tanh2 τ ¼ 2
5
, and the inducedmetric has a Euclidean

signature for tanh2 τ > 2
5
.

(2) Deformed CP0;2.
Here we apply the coordinate transformation

(4.26) to (5.13), along with the phase choice
z3 ¼ cosh τ. The induced invariant interval again
takes the Taub-NUT form (4.23), with the matrix
elements now being

gττ ¼ 4ððμ2 þ ν2 − 2Þcosh2τsinh2τ − 1Þ;
gθθ ¼ sinh2τðμ2sinh2τ − cosh2τÞ;
gψψ ¼ −cosh2τsinh2τ; ð5:15Þ

gϕϕ ¼ gψψ cos2 θ þ gθθ sin2 θ, and gψϕ ¼ gψψ cos θ.
Only the results for gθθ differ in expressions (5.14)
and (5.15). The latter reduce to that of undeformed
CP0;2, Eq. (4.27), when μ ¼ ν ¼ 1. For that limit, as
well as for jτj → 0, signðgττ; gθθÞ ¼ ð−;−Þ and
det g > 0 (away from coordinate singularities). In
this case, the induced metric has a Euclidean
signature. As with deformedCP1;1, signature change
can occur when we go away from these limits, as we
describe below.

For the solutions given by (5.7) and (5.8), we find
that for any fixed value of β̃ in the regions ði0Þ, ðii0Þ,
and (iii), either a sign change occurs for both gττ and
gθθ, or there is no signature change. We plot the
signature changes for deformed CP0;2 in Fig. 5. gθθ
changes sign when coth2 τ ¼ μ2 (indicated by the
dashed curves in Fig. 5). gττ changes sign when
ðμ2 þ ν2 − 2Þ sinh2 τ cosh2 τ ¼ 1 (indicated by the
solid curves in Fig. 5). We find that there are no sign
changes in the induced metric for −1 < β̃ ≲ −0.746
and −0.603≲ β̃ ≤ −0.6. So for these subregions, the
signature of the induced metric remains Euclidean
for all τ. For the complementary subregions, a sign
change occurs in gττ, say at jτj ¼ jτ1j, and gθθ, at a
later jτj, say jτ2j, i.e., jτ2j > jτ1j. For jτj > jτ2j,
signðgττ; gθθÞ ¼ ðþ;þÞ, and so the induced metric
has a Lorentzian signature in this case. The timelike
direction corresponds to dψ þ cos θdϕ, once again
corresponding to a spacetime with closed timelike
curves. For the intermediate interval in jτj where
jτ1j < jτj < jτ2j, we get signðgττ; gθθÞ ¼ ðþ;−Þ. In
this case, the induced metric has a Lorentzian
signature, with τ defining the timelike direction.
Any τ slice is topologically a three-sphere, since
from (4.26),

jζ1j2 þ jζ2j2 ¼ tanh2 τ: ð5:16Þ

Restricting to positive τ, the interval τ1 < τ < τ2 has
an initial singularity at τ1 and a final singularity at τ2.
Therefore, although not very realistic, it describes a
closed spacetime cosmology.

(a) (b) (c)

FIG. 5. Signature changes in the induced metric gμν and effective metric γμν for deformed CP0;2 are given in plots of jτj versus β̃ for in
the three disconnected regions: (a) ði0Þ − 3.414≲ β̃ ≲ −0.746, (b) ðii0Þ − 0.603≲ β̃ ≲ −0.586, and (c) (iii) 13.67≲ β̃. A sign change in
gθθ or γθθ is indicated by the dashed curves. A sign change in gττ or γψψ is indicated by the solid curves. No sign changes occur in either
the induced metric or the effective metric for −1 < β̃ ≲ −0.746 and −0.603≲ β̃ ≤ −0.6.
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No signature change in the induced metric results
from the solution (5.11).

We remark that while the induced metrics for the two
solutions 1. and 2. are modified from their undeformed
counterparts, their Poisson brackets, and corresponding
symplectic two-forms, are unchanged. That is, for
deformed CP1;1 the symplectic two-form is (4.25) and
for deformed CP0;2 the symplectic two-form is (4.28). This
is relevant for the computation of the effective metric,
which we do in the following subsection.

2. Effective metric

In Sec. IV we found that the induced metric gμν and the
effective metric γμν for undeformed CP1;1 and CP0;2 are
identical. The same result does not hold for the corre-
sponding deformed solutions, as we show below.
Furthermore, more realistic cosmologies follow from the
effective metric of the deformed CP1;1 and CP0;2 solutions.
(1) Deformed CP1;1. To compute the effective metric we

need the symplectic matrix, as well as the induced
metric. For the deformed, as well as undeformed,
CP1;1 solutions, the nonvanishing components of the
inverse symplectic matrix are given in (B4), while
the induced metric for deformed CP1;1 is given by
(5.14). In addition, j detΘj is given in (B5), while
j det γj gets deformed, such that

jdetγjjdetΘj ¼ 4jgττjðμ2 cosh2 τ− sinh2 τÞ2; ð5:17Þ
with gττ given in (5.14). As a result, the nonvanish-
ing components of the effective metric tensor are
given by

γττffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetγjjdetΘjp ¼−1;

γθθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetγjjdetΘjp ¼ 1

4ðμ2− tanh2 τÞ ;

γψψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijdetγjjdetΘjp ¼−
1

4ðsech2τcsch2τþ2−μ2−ν2Þ ;

ð5:18Þ

in addition to γϕϕ ¼ γψψ cos2 θ þ γθθ sin2 θ and
γψϕ ¼ γψψ cos θ. The results again agree with the
undeformed induced metric (4.24) in the μ ¼ ν ¼ 1
limit. This limit has two spacelike directions and two
timelike directions, with signðγψψ ; γθθÞ ¼ ð−;þÞ
and det γ > 0 (away from coordinate singularities).
Signature changes occur in the effective metric for
the same values of the parameters at which the
signature changes occur for the induced metric.
For the solutions given by (5.7) and (5.8),

signature changes are again given in Fig. 4. A sign
change in γθθ (as with gθθ) appears when tanh2 τ ¼ μ2

(indicated by the dashed curves in Fig. 4). The
effective metric has a Euclidean signature above the
dashed curves. A sign change in γψψ (as with gττ)
appears when ðμ2 þ ν2 − 2Þ sinh2 τ cosh2 τ ¼ 1 (in-
dicated by the solid curves in Fig. 4). Above the solid
curves, the signature of the effective metric is Lor-
entzian, det γ < 0, and τ is the timelike direction. A τ
slice again defines a three-sphere, since from (4.22),

jζ1j2 þ jζ2j2 ¼ coth2 τ: ð5:19Þ
Restricting to positive τ, this region with a Lorentzian
signature has an initial singularity, and therefore, it
describes an open spacetime. We shall see in the
next subsection that it corresponds to an expanding
cosmology.
For the solution (5.11), a sign change in γθθ occurs

at tanh2 τ ¼ 2
5
, and the effectivemetric has a Euclidean

signature for tanh2 τ > 2
5
. There are no regions with a

Lorentzian signature in this case.
(2) Deformed CP0;2. We repeat the above calculation to

get the effective metric γμν for deformed CP0;2. The
inverse symplectic matrix is the same as for un-
deformed CP0;2, with nonvanishing components
(B7). The induced metric for deformed CP0;2 is
given in (5.15). Using the result for j detΘj in (B8),
we now get

jdetγjjdetΘj ¼ 4jgττjðμ2 sinh2 τ− cosh2 τÞ2; ð5:20Þ

with gττ given in (5.15). Now the nonvanishing
components of the effective metric tensor are found
to be

γττffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det γjj detΘjp ¼ −1;

γθθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det γjj detΘjp ¼ 1

4ðμ2 − coth2τÞ ;

γψψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det γjj detΘjp ¼ 1

4ðμ2 þ ν2 − 2 − 4csch22τÞ ;

ð5:21Þ
again with γϕϕ ¼ γψψ cos2 θ þ γθθ sin2 θ and γψϕ ¼
γψψ cos θ. The results reduce to the undeformed
induced metric (4.27) in the limit μ ¼ ν ¼ 1, de-
scribing a space with a Euclidean signature.
For the solution given by (5.7) and (5.8), signature

changes in the effective metric occur at the same
values of the parameters as the signature changes for
the induced metric, which are indicated in Fig. 5. γθθ
(like gθθ) changes sign when coth2τ ¼ μ2 (indicated
by the dashed curves in Fig. 5). γψψ (like gττ)
changes sign when ðμ2þν2−2Þsinh2τcosh2τ¼1
(indicated by the solid curves in Fig. 5). As seen
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in Fig. 5, given any fixed value of β̃ in the regions ði0Þ,
ðii0Þ, and (iii), either a sign change occurs in both γψψ
and γθθ or there is no signature change. No sign
changes in the effective metric for −1 < β̃ ≲ −0.746
and −0.603≲ β̃ ≤ −0.6. So for these subregions
the signature of the induced metric remains
Euclidean. For the complementary regions, a sign
change occurs in γψψ at jτj ¼ jτ1j and γθθ at jτj ¼ jτ2j,
with jτ2j > jτ1j. In the intermediate region
jτ1j < jτj < jτ2j, signðγψψ ; γθθÞ ¼ ðþ;−Þ. Here the
effective metric has a Lorentzian signature, but unlike
what happens with the induced metric, dψ þ cos θdϕ
is associated with the timelike direction, yielding
closed timelike curves. For jτj > jτ2j, i.e., above the
dashed curves, signðγψψ ; γθθÞ ¼ ðþ;þÞ, and so the
effective metric picks up a Lorentzian signature, with
τ being the timelike direction. From (5.16), a τ slice is
a three-sphere. Restricting to positive τ, this region
with a Lorentzian signature has an initial singularity,
and so describes an open spacetime cosmology,which
we next show, is expanding.
No signature change in the effective metric results

from the solution (5.11).

3. Expansion

From the deformed CP1;1 and CP0;2 solutions we found
regions in parameter space where the effective metric has a
Lorentzian signature, and possessed an initial singularity.

Any time (τ) slice is a three-sphere, or more precisely, a
Berger sphere. These examples correspond to spacetime
cosmologies with a big bang. To show that they are
expanding we introduce a spatial scale aðjτjÞ. We define
it as the cubed root of the three-volume at any τ slice

aðjτjÞ3 ¼
Z
S3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det γð3Þj

q
dθdϕdψ ; ð5:22Þ

where γð3Þ denotes the effective metric on the τ slice. From
the form of the metric tensor, det γð3Þ ¼ γψψðγθθ sin θÞ2, and
since γψψ and γθθ only depend on τ. Then

aðjτjÞ3 ¼ ð4πÞ2
ffiffiffiffiffiffiffiffiffiffi
jγψψ j

q
jγθθj: ð5:23Þ

We wish to determine how the spatial scale evolves with
respect to the proper time t in the comoving frame

tðτÞ ¼
Z

τ

τ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−γττðτ0Þ

p
dτ0

¼
Z

τ

τ0

j det γðτ0Þj14j detΘðτ0Þj14dτ0: ð5:24Þ

The lower integration limit τ0 corresponds to the value of τ
at the big bang, i.e., the signature change.
We next compute and plot aðjτjÞ versus tðτÞ for the two

cases, deformed CP1;1 and deformed CP0;2, in the regions
of a Lorentzian signature:

(1) Deformed CP1;1. For the spatial volume, we get

aðjτjÞ3 ¼ ð4πÞ2 cosh3 τj sinh τjjμ2 cosh2 τ − sinh2 τj12jðμ2 þ ν2 − 2Þ cosh2 τ sinh2 τ − 1j14; ð5:25Þ

after substituting (5.14) and (5.17) into (5.23). For the proper time tðjτjÞ in the comoving frame we get

tðτÞ ¼ 2

Z
τ

τ0

jμ2 cosh2 τ0 − sinh2 τ0j12jðμ2 þ ν2 − 2Þ cosh2 τ0 sinh2 τ0 − 1j14dτ0; ð5:26Þ

and τ0 is associated with the signature change, given by sinh2 2τ0 ¼ 4
ðμ2þν2−2Þ. It corresponds to the value of τ at the

initial singularity, where from (5.25), the spatial scale vanishes. In Fig. 6(a) we plot aðjτjÞ versus tðτÞ for regions of
deformed CP1;1 where the effective metric has a Lorentzian signature, using three values of β̃. It shows a very rapid
expansion near the origin. For τ close to τ0, Eqs. (5.25) and (5.26) give a ∼ ðτ − τ0Þ 1

12 and t ∼ ðτ − τ0Þ54. Hence,
a ∼ t

1
15. For large τ, a is linear in t. The same large distance behavior was found for solutions in [13].

(2) For deformed CP0;2, Eq. (5.23) gives

aðjτjÞ3 ¼ ð4πÞ2j sinh τj3 cosh τjμ2 sinh2 τ − cosh2 τj12jðμ2 þ ν2 − 2Þ cosh2 τ sinh2 τ − 1j14; ð5:27Þ

after using (5.15) and from (5.20). Equation (5.24) gives

tðτÞ ¼ 2

Z
τ

τ0

jμ2 sinh2 τ0 − cosh2 τ0j12jðμ2 þ ν2 − 2Þ cosh2 τ0 sinh2 τ0 − 1j14dτ0: ð5:28Þ
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Again, the initial value τ0 for τ is associated with a
signature change, now satisfying coth2 τ0 ¼ μ2. It
corresponds to a big-bang singularity, and from
(5.27), aðjτ0jÞ ¼ 0. In Fig. 6(b) we plot aðjτjÞ versus
tðτÞ for regions of deformed CP0;2 where the
effective metric has a Lorentzian signature, using
three values of β̃. It too shows a rapid expansion near
the origin. For τ close to τ0, Eqs. (5.27) and (5.28)
give a ∼ ðτ − τ0Þ16 and t ∼ ðτ − τ0Þ32. Hence, a ∼ t

1
9.

As with the case of deformed CP1;1 and [13], a ∼ t
for large τ.

B. Deformed CP2

We now look for solutions to the previous eight-
dimensional matrix model that are deformations of
noncommutative CP2. CP2 is a solution to an eight-
dimensional matrix model in a Euclidean background. In
[12], such solutions were found when the background
metric is changed to diagðþ þ þþþþþ−Þ. Here we
show that deformations of noncommutative CP2 solve the
matrix model with the indefinite metric (4.9), and that they
may be associated with multiple signature changes.
We once again assume that the three complex coordi-

nates zi satisfy the constraint (4.4), but now that the indices
are raised and lowered with the three-dimensional
Euclidean metric. The Poisson brackets that arise from
the commutative limit of fuzzy CP2 are (4.6) (now,
assuming the Euclidean metric) [12]. We replace the
suð2; 1Þ Gell-Mann matrices λ̃a in (5.5) by suð3Þ Gell-
Mann matrices λa, i.e.,

x1–3 ¼ μz�i ½λ1−3�ijzj; x4–7 ¼ z�i ½λ4−7�ijzj;
x8 ¼ νz�i ½λ8�ijzj: ð5:29Þ

Now substitute this ansatz into the equations of motion
(5.3) to get the following conditions on the parameters:

ð2μ − αÞ
�
μ2 −

1

2

�
þ 3μβ̃ ¼ 0;

μ2 þ ν2 − 2 − αðμþ νÞ þ 4β̃ ¼ 0;

2νðβ̃ − 1Þ þ α ¼ 0; ð5:30Þ

which differs from (5.6) in various signs. We can
obtain (5.30) by making the replacement ðα; β̃; μ; νÞ →
ðiα;−β̃; iμ; iνÞ in (5.6). To obtain a solution to (5.30), we
can then make the same replacement in the solution (5.7).
The result is

α ¼ 2μ
β̃2 þ β̃ − 1 − γ½−β̃�

−2β̃ þ 1
;

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̃3 þ 4β̃2 − 6β̃ þ β̃γ½−β̃� þ 2

2ðβ̃2 − 4β̃ þ 2Þ

s
;

ν ¼ α

2ð1 − β̃Þ ; ð5:31Þ

where γ½β̃� was defined in (5.8). The parameters μ, ν, and α
(and necessarily, γ½−β̃�) are all real only for the following
two disconnected intervals in β̃:

ðiÞ 0.325≲ β̃ ≲ 0.586; ðiiÞ 3.41≲ β̃: ð5:32Þ

1. Induced metric

The metric induced from the flat background metric (4.9)
onto the surface spanned by (5.29) is

ds2 ¼ dxadxa

¼ −ds2FS þ
�
1þ 1

μ2

�
ðdx21 þ dx22 þ dx23Þ

þ
�
1þ 1

ν2

�
dx28; ð5:33Þ

where ds2FS denotes the Fubini-Study metric

ds2FS ¼
X8
a¼1

ðdðz†λazÞÞ2 ¼ 4ðjdzj2 − jz†dzj2Þ: ð5:34Þ

Here we introduce the notation jdzj2 ¼ dz�i dz
i,

z†dz ¼ z�i dz
i, and z†λaz ¼ z�i ½λa�ijzj. Then (5.33) becomes

0.0 0.2 0.4 0.6 0.8 1.0
0
1
2
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8
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(a) (b)

FIG. 6. aðjτjÞ versus tðτÞ for regions of (a) deformed CP1;1 and
(b) deformed CP0;2 where the effective metric has a Lorentzian
signature (and τ is the timelike direction) for β̃ ¼ −3 (solid
curve), −0.595 (dashed curve), and 14 (dot-dashed curve).

A. STERN and CHUANG XU PHYS. REV. D 98, 086015 (2018)

086015-14



ds2 ¼ −4ðjdzj2 − jz†dzj2Þ
þ 4ðμ2 þ 1Þðjz1j2 þ jz2j2Þðjdz1j2 þ jdz2j2Þ þ ðμ2 þ 1Þðz�1dz1 þ z�2dz2 − z1dz�1 − z2dz�2Þ2

þ 1

3
ðν2 þ 1Þðz�1dz1 þ z�2dz2 − 2z�3dz3 þ z1dz�1 þ z2dz�2 − 2z3dz�3Þ2: ð5:35Þ

Next introduce local coordinates ðζ1; ζ2Þ defined in (4.18), now satisfying jζ1j2 þ jζ2j2 þ 1 ¼ jz3j−2. Then

ds2 ¼ −4ðz3Þ2ðjdζ1j2 þ jdζ2j2 − ðz3Þ2jΞj2Þ

þ 4ðμ2 þ 1Þð1 − ðz3Þ2Þ
�
ðdz3Þ2

�
1

ðz3Þ2
− 1

�
þ ðz3Þ2ðjdζ1j2 þ jdζ2j2Þ þ z3dz3ðΞ� þ ΞÞ

�
þ ðμ2 þ 1Þððz3Þ2ðΞ − Ξ�ÞÞ2 − ðν2 þ 1Þð2z3dz3Þ2; ð5:36Þ

where we again chose z3 to be real and defined
Ξ ¼ ζ�1dζ1 þ ζ�2dζ2. We introduce Euler-like angles
ðθ;ϕ;ψÞ, along with τ, which now is an angular variable,
0 ≤ τ < π

2
, using

ζ1 ¼ e
i
2
ðψþϕÞ cos

θ

2
tan τ;

ζ2 ¼ e
i
2
ðψ−ϕÞ sin

θ

2
tan τ: ð5:37Þ

It then follows that ðz3Þ2 ¼ cos2 τ. The induced invariant
interval again takes the Taub-NUT form (4.23), with the
nonvanishing matrix elements

gττ ¼ 4ð−1þ ðμ2 − ν2Þsin2τcos2τÞ;
gθθ ¼ sin2τð−cos2τ þ μ2sin2τÞ;
gψψ ¼ −sin2τcos2τ; ð5:38Þ

along with gϕϕ ¼ gψψ cos2 θ þ gθθ sin2 θ and
gψϕ ¼ gψψ cos θ. The induced metric has a Euclidean
signature for τ close to zero. A sign change in gθθ occurs
for tan τ ¼ 1

jμj. If μ2 − ν2 > 1
4
, two additional signature

changes occur in the induced metric for the domain
0 < τ < π

2
. Specifically, gττ changes sign when

sin 2τ ¼ 2ffiffiffiffiffiffiffiffiffi
μ2−ν2

p . We find numerically that μ2 < ν2 for

solutions (5.31) with β̃ in the region (i) in (5.32), and that
μ2 > ν2 in the region (ii). So only one signature change
occurs when β̃ has the values in (i). It is a change from the
Euclidean signature to one where the induced metric has
two spacelike directions and two timelike directions.
On the other hand, three signature changes can occur

when β̃ has values in (ii). They are plotted as a function of β̃
in Fig. 7. A sign change in gθθ is indicated by the solid
curve, and sign changes in gττ are indicated by the dashed
and dot-dashed curves. The induced metric has a Euclidean
signature below the solid curve. In the tiny intermediate
region between the dashed and the solid curves, the induced
metric has two spacelike directions and two timelike
directions. It has a Lorentzian signature in the other

intermediate region between the dashed and dot-dashed
curves, with dψ þ cos θdϕ timelike. Above the dot-dashed
curve, the induced metric again has two spacelike direc-
tions and two timelike directions.

2. Effective metric

We next use (4.29) to compute the effective metric γμν for
deformed CP2. Starting with the canonical Poisson brack-
ets (4.6), we now obtain the following results for the
nonvanishing components of the symplectic matrix ½Θμν�:

Θτψ ¼ 1

sinτcosτ
; Θθψ ¼ 2cotθ

sin2τ
; Θθϕ ¼−

2cscθ
sin2τ

:

ð5:39Þ

Computing determinants, we get

FIG. 7. Signature changes in the induced metric gμν and
effective metric γμν for deformed CP2 are given in the plot of
τ versus β̃ in the region (ii) 3.41≲ β̃. A sign change in gθθ or γθθ is
indicated by the solid curve. Sign changes in gττ or γψψ are
indicated by the dashed and dot-dashed curves.
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detΘ ¼ 4 csc2 θ
cos2 τ sin6 τ

;

j det γjj detΘj ¼ j det gjj detΘj¼ 4jgττjðcos2 τ − μ2 sin2 τÞ2:
ð5:40Þ

As a result, the nonvanishing components of the effective
metric tensor are

γττffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det γjj detΘjp ¼ −1;

γθθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det γjj detΘjp ¼ 1

4ðμ2 − cot2 τÞ ;

γψψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det γjj detΘjp ¼ 1

4ðμ2 − ν2 − sec2 τ csc2 τÞ ; ð5:41Þ

in addition to γϕϕ ¼ γψψ cos2 θ þ γθθ sin2 θ and γψϕ ¼
γψψ cos θ. As with the deformed CP1;1 and CP0;2 solutions,
signature changes in the effective metric coincide with
signature changes in the induced metric. So as with the
induced metric, the effective metric undergoes only one
signature change when β̃ has the values in (i). It is a change
from theEuclidean signature toonewhere the effectivemetric
has two spacelike directions and two timelike directions.
Also as with the induced metric, the effective metric

undergoes three signature changes when β̃ has the values in
(ii), which are indicated in Fig. 7. A sign change in γθθ
occurs for tan τ ¼ 1

jμj (indicated by the solid curve in Fig. 7),
and sign changes in γψψ occur at sin 2τ ¼ 2ffiffiffiffiffiffiffiffiffi

μ2−ν2
p (indicated

by the dashed and dot-dashed curves in Fig. 7). The
effective metric has a Euclidean signature below the solid
curve. In the tiny intermediate region between the solid and
the dashed curves, the effective metric, like the induced
metric, has two spacelike directions and two timelike
directions. The effective metric has a Lorentzian signature
in the intermediate region between the dashed and dot-
dashed curves, with τ being timelike. Above the dot-dashed
curve, the induced metric has two spacelike directions and
two timelike directions.
For the Lorentzian region, which we found between the

dashed and dot-dashed curves in Fig. 7, the effective metric
describes a closed spacetime cosmology. For a fixed β̃ with
values in (ii), the sign changes in γψψ , depicted as red and
blue curves in Fig. 7, correspond to spacetime singularities.
We denote the values of τ at these singularities by τ0 and τ1,
with τ0 < τ1. Which one of these is the initial singularity,
and which one is the final singularity, of course, depends on
the direction of time. We obtain the time evolution of the
spatial scale for this region in the next subsection.

3. Expansion and contraction

In the previous section, we saw that the effective metric
for deformed CP2 can have a Lorentzian signature when β̃

has the values in (ii). In this case, τ is the timelike
coordinate, and it evolves from one signature change to
another. From (5.37), jζ1j2 þ jζ2j2 ¼ tan2 τ, and so, as with
the deformed CP1;1 and CP0;2 solutions, a τ slice of the
four-dimensional manifold away from singularities is a
three-sphere, or more precisely, a Berger sphere. We can
compute the spatial scale aðjτjÞ at any τ slice and proper
time t in the comoving frame for the deformed CP2

solution, using (5.23) and (5.24), respectively. For the
former, we get

aðjτjÞ3 ¼ ð4πÞ2j sin4 τ cos τjj cot2 τ − μ2j12jðμ2 − ν2Þ
× sin2 τ cos2 τ − 1j14: ð5:42Þ

It follows that the spatial scale vanishes at the signature
changes, which are associated with the cosmological
singularities. For the latter, Eq. (5.24) gives

tðτÞ ¼ 2

Z
τ

τ0

dτ0j cos2 τ0 − μ2 sin2 τ0j12jðμ2 − ν2Þ

× sin2 τ0 cos2 τ0 − 1j14: ð5:43Þ

The lower integration limit τ0 corresponds to the value of τ
at the coordinate singularity defined by sin 2τ0 ¼ 2ffiffiffiffiffiffiffiffiffi

μ2−ν2
p ,

τ0 < π
4
, corresponding to the sign change in γψψ . In Fig. 8,

we plot aðτÞ versus tðτÞ for three values of β̃ in region (ii).
For τ close to τ0, we get a ∼ ðτ − τ0Þ 1

12, t ∼ ðτ − τ0Þ54, and
hence, a ∼ t

1
15. We find identical behavior near the other

singularity at τ ¼ τ1. We thus get a very rapid initial
expansion and a very rapid final contraction.

VI. CONCLUSIONS

Wehave obtained a number of new solutions to IKKT-type
matrix models, which exhibit signature change in the
commutative limit. All such examples found so far, including
the noncommutativeH4 solution of [13], require including a
mass term in the matrix action. Since mass terms result from
an IR regularization [16], it is interesting to speculatewhether
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FIG. 8. aðτÞ versus tðτÞ for the region of deformed CP2 where
the effective metric has a Lorentzian signature, for β̃ ¼ 3.5 (solid
curve), 3.75 (dashed curve), and 5 (dot-dashed curve).
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signature change on the brane is connected to the regulari-
zation.5 On the other hand, we remark that the mass term
resulting from the regularization does not necessarily lead to
a signature change, since we have obtained solutions to the
massive matrix model that exhibit no signature change in the
commutative limit. For example, no sign changes occur in
either the inducedmetric or the effectivemetric for deformed
CP0;2 when −1 < β̃ ≲ −0.746 and −0.603≲ β̃ ≤ −0.6.
Moreover, our work does not rule out the possibility of
solutions to a massless matrix model that exhibit signature
change in the commutative limit.
The four-dimensional solutions of Sec. V are deforma-

tions of noncommutative complex projective spaces, spe-
cifically noncommutative CP2, CP1;1, and CP0;2. The
manifolds that emerge from these solutions can havemultiple
signature changes. The manifolds resulting from a deformed
noncommutative CP0;2 solution can undergo two signature
changes, while those resulting from a deformed noncommu-
tative CP2 solution can have up to three signature changes.
The regions where the effective metric of these manifolds
have a Lorentzian signature serve as crude models of closed
(in the case of noncommutativeCP2) and open (in the case of
noncommutativeCP1;1 andCP0;2) cosmological spacetimes.
They contain cosmological singularities that are resolved
away from the commutative limit. The evolution of the
spatial scale a as a function of the proper time t in the
comoving frame was computed for these examples. For all
examples (and also the example of noncommutative H4 in
[13]) an extremely rapid expansion (or contraction, in the
case of the big crunch singularity of the closed cosmology)
was found for the spatial scale a near the cosmological
singularities. Rather than following an exponential behavior,
we obtained a ∼ t

1
15 near t ¼ 0 for noncommutativeCP2 and

CP1;1, and a ∼ t
1
9 for noncommutative CP0;2. Also like

noncommutative H4 [13], the spacetimes emerging from
the deformed noncommutative CP1;1 and CP0;2 solutions
expand linearly at late times, a ∼ t.
Unlike the spacetime manifold that emerges from non-

commutative H4 [13], the manifolds that emerge from
noncommutative CP2, CP1;1, and CP0;2 are not maximally
symmetric. For the latter manifolds, any time slice of the
spacetime is a Berger sphere. Although being, perhaps, less
realistic than noncommutative H4 with regards to cosmol-
ogy, the examples of noncommutative CP2, CP1;1, and
CP0;2 are considerably simpler spaces than noncommuta-
tive H4, with evidently similar outcomes for the evolution
of the spatial scale. Noncommutative H4 carries an addi-
tional bundle structure that is not present for the solutions
of Sec. V. In order to close the algebra on noncommutative
H4, one must extend it to a larger noncommutative space.
That space is noncommutative CP1;2. In the commutative

limit, one recovers the CP1;2 manifold, an S2 bundle
over AdS4.
The eight-dimensional matrix model considered in

Secs. IV and V utilized a particular indefinite background
metric η, the suð2; 1Þ Cartan-Killing metric. Other indefinite
background metrics can be considered. η ¼ diagðþ þ þþ
þþþ−Þ was used in [12], to obtain noncommutative CP2

solutions. We can preserve SOð3Þ rotational symmetry
with a generalization of the background metric to
η ¼ diagðκ3; κ3; κ3;−;−;−;−; κ8Þ, κ3, κ8 ¼ �. (We exclude
κ3 ¼ κ8 ¼ −, since this will only produce a Euclidean
induced and effectivemetric.) If, e.g.,we search for deformed
CP1;1 andCP0;2 solutions to the matrix equations (5.3) with
this metric, then the conditions (5.6) generalize to

ð2μ − αÞ
�
μ2κ3 þ

1

2

�
þ 3μβ̃ ¼ 0;

μ2κ3 þ ν2κ8 þ 2 − αðμκ3 þ νκ8Þ þ 4β̃ ¼ 0;

2ν − αþ 2νβ̃ ¼ 0; ð6:1Þ
where we again assumed the ansatz (5.5). Solutions for
different choices of κ3 and κ8 may be found, although they
may be quite nontrivial, and many more four-dimensional
signature changing manifolds are expected to emerge in the
commutative limit.
In this article we have neglected stability issues and the

addition of fermions. The question of stable solutions to
matrix models is highly nontrivial. For two-dimensional
solutions it was found previously that longitudinal and
transverse fluctuations contribute with opposite signs to the
kinetic energy. It is unclear how the extension to a fully
supersymmetric theory can resolve this issue. We hope to
address such questions in the future.
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APPENDIX A: SOME PROPERTIES OF suð2;1Þ IN
THE DEFINING REPRESENTATION

In terms of suð3Þ Gell-Mann matrices λa, the suð2; 1Þ
Gell-Mann matrices λ̃a are given by

λ̃a ¼ λa; a ¼ 1; 2; 3; 8;

λ̃a0 ¼ iλa0 ; a0 ¼ 4; 5; 6; 7: ðA1Þ

They satisfy the Hermiticity properties (4.7).
The structure constants for suð2; 1Þ are Cab

c ¼ f̃abdηdc,
where ηab is the Cartan-Killing metric (4.9), and f̃abc are
totally antisymmetric, with the nonvanishing values5We thank the referee for this remark.
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f̃123 ¼ 1; f̃845 ¼ f̃867 ¼ −
ffiffiffi
3

p

2
;

f̃147 ¼ f̃165 ¼ f̃246 ¼ f̃257 ¼ f̃345 ¼ f̃376 ¼ −
1

2
: ðA2Þ

Except for f̃123 these structure constants are opposite in
sign from those obtained from the standard Gell-Mann
matrices of suð3Þ.
Some useful identities for the suð2; 1Þ Gell-Mann

matrices and f̃abc are

trλ̃aλ̃b ¼ ½λ̃a�ij½λ̃b�ji ¼ 2ηab; ðA3Þ

½λ̃a; λ̃b�þ ¼ 2d̃abcλ̃
c þ 4

3
ηab1; ðA4Þ

f̃abcf̃
bc

d ¼ 3ηad; ðA5Þ

½λ̃a�ij½λ̃a�kl ¼ 2δilδ
k
j −

2

3
δijδ

k
l: ðA6Þ

½; �þ denotes the anticommutator, and d̃abc are totally
symmetric, with the nonvanishing values

d̃443 ¼ d̃553 ¼ d̃146 ¼ d̃157 ¼ d̃256 ¼ −
1

2
;

d̃663 ¼ d̃773 ¼ d̃247 ¼
1

2
;

d̃118 ¼ d̃228 ¼ d̃338 ¼
1ffiffiffi
3

p ;

d̃448 ¼ d̃558 ¼ d̃668 ¼ d̃778 ¼
1

2
ffiffiffi
3

p ;

d̃888 ¼ −
1ffiffiffi
3

p : ðA7Þ

Equation (A6) is the Fierz identity, which has the same
form as that for suð3Þ.

APPENDIX B: EFFECTIVE METRIC

Here we review the derivation of (4.29), relating the
effective metric γμν to the induced metric. We use the
example of the massless scalar field [15]. We then use the
result to compute the effective metrics for (undeformed)
CP1;1 and CP0;2.
Denote the scalar field by Φ ¼ ΦðXÞ on a noncommu-

tative background spanned by matrices Xa. The standard
action is

−
1

2k2
Tr½Xa;Φ�½XaΦ�; ðB1Þ

a ¼ 1; 2;…; d. Now take the semiclassical limit ℏ → 0.
This means again replacing matrices Xa by commuting
variables xa, corresponding to embedding coordinates of
some continuous manifold. Φ is then replaced by a
function ϕ on the manifold, and commutators are replaced

by iℏ times Poisson brackets. We also need to replace
the trace by an integration

R
dμðxÞ, where dμðxÞ is an

invariant integration measure. Say that the manifold is
parametrized by σ ¼ ðσ1; σ2;…; σnÞ, n ≤ d, with symplec-
tic two-form Ω ¼ 1

2
½Θ−1�μνdσμ ∧ dσν. Then one can set

dμðxÞ ¼ dσffiffiffiffiffiffiffiffiffiffi
j detΘj

p . Taking k → ℏκ, the semiclassical limit of

(B1) is

−
1

2κ2

Z
dσffiffiffiffiffiffiffiffiffiffiffiffiffiffij detΘjp fxa;ϕgfxa;ϕg

¼ −
1

2κ2

Z
dσffiffiffiffiffiffiffiffiffiffiffiffiffiffij detΘjp Θρμ∂ρxa∂μϕΘσν∂σxa∂νϕ

¼ −
1

2κ2

Z
dσffiffiffiffiffiffiffiffiffiffiffiffiffiffij detΘjp ΘρμgρσΘσν∂μϕ∂νϕ: ðB2Þ

On the other hand, the standard action of a scalar field ϕ on
a background metric γμν is

−
1

2κ2

Z
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j det γj

p
γμν∂μϕ∂νϕ: ðB3Þ

Identifying these two actions gives (4.29).
As examples, we compute the effective metrics for

(undeformed) CP1;1 and CP0;2, and show that they are
identical to the corresponding induced metrics.
(1) Effective metric for CP1;1. Using (4.25), the non-

vanishing components Θμν for CP1;1 are

Θτψ ¼ 1

cosh τ sinh τ
; Θθψ ¼ 2 cot θ

cosh2τ
;

Θθϕ ¼ −
2 csc θ
cosh2τ

: ðB4Þ

Then

detΘ ¼ 4csc2θ
sinh2τcosh6τ

;

j det γj ¼ 4cosh6τsinh2τsin2θ: ðB5Þ
Computing ΘTgΘ we find the following nonvanish-
ing components:

½ΘTgΘ�ττ ¼ −1;

½ΘTgΘ�θθ ¼ 4

cosh2τ
;

½ΘTgΘ�ϕϕ ¼ 4csc2θ
cosh2τ

;

½ΘTgΘ�ψψ ¼ 4ðcot2θ − csch2τÞ
cosh2τ

;

½ΘTgΘ�ϕψ ¼ −
4 cot θ csc θ
cosh2τ

: ðB6Þ

Using (4.29) and (B5), we then get γμν ¼ gμν.
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(ii) Effective metric for CP0;2. Using (4.28) the non-
vanishing components Θμν for CP0;2 are

Θτψ ¼ 1

coshτsinhτ
; Θθψ ¼ 2cotθ

sinh2τ
; Θθϕ¼−

2cscθ
sinh2τ

:

ðB7Þ

Here

detΘ¼ 4csc2θ
sinh6τcosh2τ

; jdetγj¼4cosh2τsinh6τsin2θ:

ðB8Þ

The nonvanishing components of ΘTgΘ are

½ΘTgΘ�ττ ¼ −1;

½ΘTgΘ�θθ ¼ −4
sinh2τ

;

½ΘTgΘ�ϕϕ ¼ −4csc2θ
sinh2τ

;

½ΘTgΘ�ψψ ¼ −4ðcot2θ þ sech2τÞ
sinh2τ

;

½ΘTgΘ�ϕψ ¼ 4 cot θ csc θ
sinh2τ

: ðB9Þ

Using (4.29) and (B8), we once again get γμν ¼ gμν.
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