
 

Thermodynamic geometry of black holes in the canonical ensemble
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We investigate the phase structure and critical phenomena for four dimensional Reissner-Nordström-
AdS and Kerr-AdS black holes in the canonical ensemble, both for the normal and the extended phase
space employing the framework of thermodynamic geometry. The thermodynamic scalar curvatures for
these black holes characterize the liquid-gas-like first order phase transition analogous to the van der Waals
fluids, through the R-Crossing method. It is also shown that the thermodynamic scalar curvatures diverge as
a function of the temperature at the second order critical point.
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I. INTRODUCTION

Over the last several decades, the area of black hole
thermodynamics has witnessed significant developments,
making it an important testing ground for candidate
theories of quantum gravity [1–3]. In the absence of a
complete microscopic statistical description which remains
an open issue, the semiclassical thermodynamic approach
has led to significant insights into the phase transitions and
critical phenomena for black holes. In this context the
investigation of the thermodynamics of asymptotically
anti–de Sitter (AdS) black holes have assumed a central
role owing to the well known AdS/CFT correspondence
[4]. Unlike asymptotically flat black holes, the latter are
thermodynamically stable and exhibit a rich variety of
phase transitions and critical phenomena. In particular, the
Hawking-Page phase transition in such asymptotically AdS
black holes are related to the confinement/deconfinement
transition in the boundary field theory through the AdS/
CFT correspondence [5]. For these reasons the study of the
phase transitions and critical phenomena of asymptotically
AdS black holes has received significant attention over the
last two decades (see [6–11] for comprehensive references).
Unlike conventional thermodynamic systems, the

phase structure of black holes is ensemble dependent as
they are locally gravitating configurations. Their entropy is
nonextensive and conventional thermodynamic stability

arguments are not valid. In spite of this important
distinction, asymptotically AdS black holes closely resem-
ble conventional thermodynamic systems. For example,
the charged Reissner-Nordstrom-AdS (RN-AdS) black
holes in a canonical ensemble (fixed charge) exhibit a first
order liquid-gas-like phase transition (analogous to the
van der Waals fluids) culminating in a second order
critical point [7,8]. In the grand canonical ensemble (fixed
electric potential), however, these black holes undergo a
Hawking-Page phase transition [12] to a thermal AdS space
time illustrating the ensemble dependence of their phase
structure.
In the recent past investigations in this area have

involved an extended thermodynamic phase (state) space
through the identification of the cosmological constantΛ as
a thermodynamic pressure with a corresponding conjugate
thermodynamic volume [13–17]. This led to a modification
of the Smarr formula and the first law requiring the
identification of the Arnowitt-Deser-Misner (ADM) mass
of the black hole with the enthalpy [13]. Remarkably, this
approach renders the phase structure of RN-AdS and Kerr-
AdS black holes in the canonical ensemble, to be identical
to that of the van der Waals fluids with an exact match for
the corresponding critical exponents [18–20].
In a related development, over the last two decades a

consistent geometrical framework for studying phase tran-
sitions and critical phenomena for thermodynamic systems
has received considerable attention. Starting from the
pioneering work of Weinhold [21] and Ruppeiner [22],
an intrinsic geometrical framework to study thermodynam-
ics and phase transitions has been systematically devel-
oped. This approach involves a Euclidean signature
Riemannian geometry of thermodynamic fluctuations in
the equilibrium state space of the system. Interestingly, the
positive definite line interval (with the dimensions of
volume), connecting two equilibrium states in this
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geometry, may be related to the probability distribution of
thermodynamic fluctuations in a Gaussian approximation.
Subsequently, from standard scaling and hyperscaling
arguments it could be shown that the interactions in the
underlying microscopic statistical basis are encoded in the
thermodynamic scalar curvature arising from this geometry.
Consequently, the thermodynamic scalar curvature scales
like the correlation volume of the system and diverges at
the critical point [22] (for a direct illustration see [23,24]).
Notice that although this geometrical approach is thermo-
dynamic and involves the macroscopic description of the
system, it serves as a bridge to the microscopic description
through the consideration of the Gaussian fluctuations in
the analysis. This renders the geometrical framework
described above a convenient method for the description
of the thermodynamics of black holes, where a clear idea of
the microscopic structure is an open issue. In this context,
the sign of the thermodynamic scalar curvature R provides
information about the nature of the microscopic inter-
actions as described in [25,26]. Over the last decade or so
this geometrical framework has provided significant
insights into the phase structure and critical phenomena
for black holes [27–39]. Furthermore,the thermodynamic
scalar curvature R also provides a measure for the stability
of the system as described in [26,40,41].
Following the above developments, one of the authors

(G. S.) in the collaborations [25,42–44] established a
unified geometrical framework for the characterization of
subcritical, critical, and supercritical phenomena for
thermodynamic systems including black holes. The geo-
metrical characterization of the subcritical first order phase
transitions involved the extension of Widom’s microscopic
approach to phase transitions based on the correlation
length [45–47]. It was proposed that the phase coexistence
at a first order phase transition implied the equality of the
correlation lengths for phase coexistence at a first order
phase transition. For the geometrical framework described
above, this proposal translated to the crossing of the
branches for the multiple valued thermodynamic scalar
curvature as a function of its arguments. This was referred
to as the R-Crossing Method and described the equality of
the thermodynamic scalar curvature at a first order phase
transition, and the results for disparate fluid systems
exhibited a remarkable correspondence with experimental
data [43,48–52]. This characterization has also been
demonstrated for the first order phase transition in a dyonic
charged AdS black hole in a mixed canonical/grand
canonical ensemble with a fixed magnetic charge and a
varying electric charge of the black hole by two of the
authors (P. C. and G. S.) in the collaboration [53]. Despite
this progress, the characterization of the phase structure of
black holes in the canonical ensemble through the frame-
work of thermodynamic geometry has remained an unre-
solved issue. As outlined in [22] the form of the
thermodynamic metric is crucially dependent on the choice

of the correct thermodynamic potential as a function of the
thermodynamic variables. This in turn is determined by the
choice of the ensemble being considered.
In this article we critically examine this unresolved issue

and propose a construction for the thermodynamic geom-
etry of four dimensional RN-AdS and Kerr-AdS black
holes in the canonical ensemble for both the extended and
the normal phase space. The appropriate thermodynamic
potential in this case is the Helmholtz free energy as a
function of the corresponding relevant thermodynamic
variables. The thermodynamic metric appropriate to the
canonical ensemble may then be obtained as the Hessian of
the corresponding thermodynamic potential with respect to
its arguments. Interestingly, the thermodynamic scalar
curvature arising from our proposed geometrical construc-
tion correctly characterizes the phase structure and critical
phenomena for these black holes in the canonical ensemble
and matches well with the results from the conventional
free energy approach. This naturally serves as an important
application of the unified geometrical description described
earlier, for the case of black holes [25,42–44]. In particular,
it is a significant additional confirmation of the R-Crossing
Method for the characterization of first order phase tran-
sitions described in [43,53].
This article is organized as follows: In the next two

sections, II and III, we briefly review the thermodynamics
and phase structure of four dimensional RN-AdS and Kerr-
AdS black holes, both in the normal and the extended phase
space, respectively. In Sec. IV we describe the essential
elements of the framework of thermodynamic geometry. In
the subsequent sections, V and VI, we describe the
construction of the thermodynamic geometry for
RN-AdS and Kerr-AdS black holes in the canonical
ensemble and the characterization of their phase structures
through the thermodynamic scalar curvature. In the con-
cluding section, VII, we present a summary of our results
and future issues.

II. THERMODYNAMICS OF FOUR
DIMENSIONAL RN-AdS BLACK HOLES

In this section, we briefly review some of the basic
thermodynamic properties of four dimensional RN-AdS
(charged) black holes, both in the normal and the extended
thermodynamic phase space. The metric for the RN-AdS
black hole is described as follows:

ds2 ¼ −fdt2 þ f−1dr2 þ r2dΩ2
2: ð2:1Þ

Here, the lapse function fðrÞ in the above metric is given as

f ¼ 1 −
2M
r

þQ2

r2
þ r2

l2
; ð2:2Þ

where the AdS length scale l is related to the cosmological

constant Λ as l ¼ −
ffiffiffi
6
Λ

q
. The larger root of the equation

CHATURVEDI, MONDAL, and SENGUPTA PHYS. REV. D 98, 086016 (2018)

086016-2



fðrÞ ¼ 0 determines the black hole horizon at r ¼ rþ. The
field strength for the Uð1Þ Maxwell gauge field A for the
charged black hole is given as

F ¼ dA; A ¼ −
Q
r
dt; Φ ¼ Q

r
: ð2:3Þ

The parameters M and Q are the ADM mass and the
electric charge of the black hole, respectively, and Φ is the
electric potential between the horizon and the asymptotic
infinity. The Hawking temperature of the black hole is
described as

T ¼ 1

4π
f0ðrÞ ¼ 1

4πr

�
1þ 3r2

l2
−
Q2

r2

�
: ð2:4Þ

.

A. Normal phase space

For the normal phase space, the cosmological constant Λ
is held fixed, and, hence, the AdS length scale may be set to
unity (l ¼ 1). The Helmholtz free energy F and the
temperature T in the canonical ensemble may be described
as in [7,8]

F ¼ M − TS ¼ 1

12

�
9Q2

r
þ 3r − r3

�
; ð2:5Þ

and

T ¼ 1

4πr

�
1þ 3r2 −

Q2

r2

�
: ð2:6Þ

The behavior of the free energy F with the temperature T
is illustrated in Fig. 1 as described in [7,8]. The free energy
curves for different charges exhibit a characteristic
swallowtail structure indicating a first order small-black-
hole/large-black-hole (SBH/LBH) phase transition for

Q < Qc, where Qc is the value of the charge at the critical
point. This is analogous to the liquid-gas phase transition for
the van derWaals fluids. It may be observed from Fig. 1 that
the blue curve (Q ¼ 0.10) and the green curve (Q ¼ 0.13)
correspond to Q < Qc. These describe three distinct
branches that constitute the swallowtail structure in the
phase diagram. The red curve in Fig. 1 corresponds to the
value of the critical chargeQ ¼ Qc ¼ 0.17, which indicates
a second order phase transition at the critical point with the
corresponding critical temperature Tc ¼ 0.257.

B. Extended phase space

In the extended phase space, the cosmological constant
Λ is identified as the thermodynamic pressure P, and its
variation is included in the first law of thermodynamics
[13–16]. Thus, we have

P ¼ −
1

8π
Λ ¼ 3

8π

1

l2
: ð2:7Þ

The conjugate variable to the pressure is the thermody-
namic volume V ¼ ð∂M∂PÞS;Q, which for the four dimensional
RN-AdS black hole may be given as

V ¼ 4

3
πr3; ð2:8Þ

where r is the radius of the horizon. In the extended phase
space, the mass M of the black hole is identified with the
enthalpy rather than the internal energy [13], and may be
expressed as

M ¼ 3Q2 þ 3r2 þ 8Pπr4

6r
: ð2:9Þ

The Helmholtz free energy F and the temperature T for the
RN-AdS black hole in the canonical ensemble may then be
expressed as [18]

F ¼ 1

4

�
r −

8π

3
Pr3 þ 3Q2

r

�
;

T ¼ −Q2 þ r2 þ 8Pπr4

4πr3
: ð2:10Þ

The behavior of the free energy F with the temperature T
for different values of the pressure P and fixed values of the
charge Q are shown in Fig. 2 [18]. As described earlier
these curves exhibit a branched swallowtail structure
characterizing first order SBH/LBH phase transition analo-
gous to the liquid-gas phase transition for van der Waals
fluids, depicted by the blue ðP ¼ 0.060; Q ¼ 0.22Þ and the
green ðP ¼ 0.065; Q ¼ 0.22Þ curves. It is observed that the
(red curve) for the pressure P ¼ Pc ¼ 0.068, where Pc is
the value of the pressure at the critical point and for a fixed
charge Q ¼ 0.220, culminates in a second order critical
point with the corresponding critical temperature as
Tc ¼ 0.196.

FIG. 1. Free energy: RN-AdS black holes in the normal phase
space. F is plotted against T for different values of Q. Character-
istic swallowtail behavior is obtained for Q < Qc ¼ 0.17, cor-
responding to SBH/LBH first order phase transition. At Q ¼ Qc,
first order transition culminates in a second order critical point.
The corresponding values of the charge Q for the curves are as
follows:Q ¼ 0.150 (blue),Q ¼ 0.130 (green),Qc ¼ 0.170 (red),
and Q ¼ 0.175 (black).
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III. THERMODYNAMICS OF FOUR
DIMENSIONAL KERR-AdS BLACK HOLES

In this section, we briefly review the basic thermody-
namic properties of four dimensional Kerr-AdS black holes
and discuss their phase structures in the canonical ensem-
ble, for both the normal and the extended phase space. The
Kerr-AdS metric in the Boyer-Lindquist coordinates is
given as [54]

ds2 ¼ −
Δ
ρ2

�
dt −

a sin2θ
Ξ

dϕ

�
2

þ ρ2

Δ
dr2 þ ρ2

Δθ
dθ2

þ Δθsin2θ
ρ2

�
a dt −

ðr2 þ a2Þ
Ξ

dϕ

�
2

; ð3:1Þ

where

ρ2 ¼ r2 þ a2cos2θ; Ξ ¼ 1 −
a2

l2
;

Δ ¼ ðr2 þ a2Þ
�
1þ r2

l2

�
− 2mr; Δθ ¼ 1 −

a2

l2
cos2θ:

ð3:2Þ
The corresponding thermodynamic parameters for this
black hole are as follows:

M ¼ m
Ξ2

¼ l2ða2 þ r2Þðl2 þ r2Þ
2ða2 − l2Þ2r ; J ¼ ma

Ξ2
;

ΩH ¼ aΞ
ðr2 þ a2Þ ; S ¼ πðr2 þ a2Þ

Ξ
;

T ¼ 1

2π

�
r

�
r2

l2
þ 1

��
1

a2 þ r2
þ 1

2r

�
−
1

r

�
: ð3:3Þ

A. Normal phase space

In the normal phase space the Helmholtz free energy F
and the Hawking temperature T of the Kerr-AdS black
holes in the canonical ensemble are as given below [9]
(where once again the AdS length scale l has been set to
unity l ¼ 1):

F ¼ r
4Ξ2

½3a2 þ r2 − ðr2 − a2Þ2 þ 3a2r4 þ a4r2�;

T ¼ 1

2π

�
rðr2 þ 1Þ

�
1

a2 þ r2
þ 1

2r

�
−
1

r

�
: ð3:4Þ

The behavior of the Helmholtz free energy F with the
temperature T for different values of the angular momen-
tum J is shown in the Fig. 3 [9]. As earlier, these
curves exhibit branched swallowtail structure character-
izing a first order SBH/LBH phase transition for
J < Jc ¼ 0.0236, where Jc is the value of the angular
momentum at the critical point. These are illustrated by
the blue (J ¼ 0.01) and the green (J ¼ 0.005) curves in
Fig. 3. The red curve in Fig. 3 corresponds to the value
of the critical angular momentum J ¼ Jc ¼ 0.0236,
which indicates a second order phase transition at the
critical point with the corresponding critical temperature
as Tc ¼ 0.270.

B. Extended phase space

In the extended phase space, the corresponding free
energy F and the temperature T in the canonical ensemble
are as follows [55]:

FIG. 2. Free energy: RN-AdS black hole in the extended phase
space. F is plotted against T for a fixed Q ¼ 0.22 and different
pressures P. Characteristic swallowtail behavior is obtained
below critical pressure P < Pc ¼ 0.068, indicating SBH/LBH
first order phase transition. The corresponding values of the
pressure P are as follows: P ¼ 0.060 (blue), P ¼ 0.065 (green),
Pc ¼ 0.068 (red), and P ¼ 0.075 (black).

FIG. 3. Free energy: Kerr-AdS black holes in the normal phase
space. F is plotted against T for different values of angular
momentum J. Characteristic swallowtail behavior is obtained for
J < Jc ¼ 0.236, corresponding to SBH/LBH first order phase
transition. The corresponding values of the angular momentum J
are as follows: J ¼ 0.01 (blue), J ¼ 0.005 (green), Jc ¼ 0.0236
(red), and J ¼ 0.05 (black).
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F ¼ r
4Ξ2

�
3a2 þ r2 −

8

3
πPðr2 − a2Þ2

þ
�
8

3
πP

�
2

ð3a2r4 þ a4r2Þ
�
;

T ¼ 1

2π

�
r

�
8πPr2

3
þ 1

��
1

a2 þ r2
þ 1

2r

�
−
1

r

�
: ð3:5Þ

The behavior of the free energy F with the temperature T
for different values of the pressure P and a fixed angular
momentum J is depicted in Fig. 4 [54]. The free energy F
curves depicted by blue ðP ¼ 0.0005; J ¼ 1Þ and the green
ðP ¼ 0.01; J ¼ 1Þ in Fig. 4, as earlier, illustrates the
characteristic swallowtail structure indicating a first order
phase transition for P < Pc ¼ 0.027, between SBH/LBH
phases analogous to the liquid-gas phase transition for
van der Waals fluids. The red curve in Fig. 4 corresponds
to the value of the critical pressure P ¼ Pc ¼ 0.027,
which indicates the second order phase transition at the
critical point with the corresponding critical temperature
Tc ¼ 0.040.

IV. THERMODYNAMIC GEOMETRY IN THE
CANONICAL ENSEMBLE

In this section, we briefly summarize some essential
elements of the framework of thermodynamic geometry
and its application to the study of thermodynamics and
phase structure of black holes. The intrinsic geometrical
description of equilibrium thermodynamics was first intro-
duced by Weinhold [21] in the energy representation.
Subsequently, Ruppenier[22], using the entropy represen-
tation and the elements of thermodynamic fluctuation
theory, proposed a Riemannian metric (with Euclidean

signature) given by the Hessian of the specific entropy
(s ¼ S=V) with respect to the extensive variables xμ as,

gμν ¼ −
∂2s

∂xμ∂xν : ð4:1Þ

As mentioned earlier in the introduction, the probability
distribution of thermodynamic fluctuations between two
equilibrium states in the thermodynamic state space could
then be related to the invariant line element for this metric
in a Gaussian approximation. The thermodynamic scalar
curvature R for this geometry encoded the interactions in
the underlying microscopic statistical system and was zero
for a noninteracting system like the ideal gas. Through
standard scaling and hyperscaling arguments it could be
shown that the thermodynamic scalar curvature R scaled as
the correlation volume of the system

R ∼ ξd; ð4:2Þ

where ξ and d are correlation length and the physical
dimensionality of the system, respectively.
From the invariance of the line element under general

coordinate transformations, it could be established that any
Masieu function obtained through Legendre transforma-
tions could serve as a thermodynamic potential for the
corresponding thermodynamic metric [22]. At the critical
point, the correlation length is infinite leading to the
divergence of the thermodynamic scalar curvature. It could
be further shown in [23–25,42] that the thermodynamic
scalar curvature R was a multiple valued function of its
arguments at a first order phase transition, which could be
characterized by the crossing of the branches correspond-
ing to the coexisting phases. This was termed as the
R-Crossing Method and provided an alternative geometri-
cal characterization to the usual free energy based condition
for first order phase transitions and phase coexistence.
Moreover the locus of the maxima of R beyond the critical
point provided a direct theoretical scheme to compute the
Widom line in the supercritical region leading to a complete
unified geometrical characterization of subcritical, critical,
and supercritical phenomena. The R-Crossing Method was
successfully implemented to describe the first order phase
transitions for dyonic charged black holes in mixed
canonical/grand canonical ensembles [53]. In the next
section, we apply this geometrical characterization to study
the liquid-gas-like phase behavior of RN-AdS and Kerr-
AdS black holes in the canonical ensemble, both in the
normal and the extended phase space described earlier.

V. THERMODYNAMIC GEOMETRY
OF RN-AdS BLACK HOLES

In this section, we construct the thermodynamic geom-
etry of four dimensional RN-AdS black holes in the
canonical ensemble, for both normal and extended phase

FIG. 4. Free energy: Kerr-AdS black hole in the extended phase
space. F is plotted for fixed J ¼ 1. Characteristic swallowtail
behavior is obtained for P < Pc ¼ 0.236, corresponding to SBH/
LBH first order phase transition. The corresponding values of the
pressure P are as follows: P ¼ 0.0005 (blue), P ¼ 0.01 (green),
Pc ¼ 0.027 (red), and P ¼ 0.0035 (black).
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space. To this end, we use the Helmholtz free energy F as
the thermodynamic potential to obtain the thermodynamic
metric which may be expressed as [22]1

gμν ¼
1

T
∂2F

∂xμ∂xν : ð5:1Þ

Note that in the canonical ensemble, the charge Q is held
fixed, and, hence, appropriate derivatives with respect to
the arguments of the Helmholtz free energy F must be
considered.2 In this case these are the electric potential ϕ
and the temperature T. The scalar curvature R computed
from this thermodynamic metric may then be examined as a
function of the relevant thermodynamic variable to char-
acterize the first order phase transition through the
R-Crossing Method described earlier.

A. Normal phase space

In the normal phase space, the thermodynamic scalar
curvature R is obtained from the metric defined by Eq. (5.1)
with the extensive variables xμ ¼ ðT;ϕÞ, where T and ϕ are
the temperature and the electric potential, respectively. The
thermodynamic scalar curvature R may then be obtained
from this metric as R ¼ N=D, where

N ¼ 2½36Q6 − 3Q4r2ð21þ 32r2ÞþQ2r4ð19þ 64r2 þ 4r4Þ
− r6ð−4þ r2þ r4þ 8r6Þ�;

D¼ 3ð−Q2þ r2þ r4Þð3Q2r− r3þ r5Þ2: ð5:2Þ

The behavior of the thermodynamic scalar curvature R
with the temperature T is plotted in the Fig. 5 parametri-
cally with the radius of the horizon r as a parameter. It is
observed that the thermodynamic scalar curvature R is a
multiple valued function of the thermodynamic variables in
the neighborhood of the first order phase transition similar
to the free energy F as shown in Fig. 1. As mentioned
earlier, a first order phase transition is characterized
through the R-crossing Method in [43,48–51] through
the intersection of the branches of R representing the
coexisting phases. This may be understood from
Fig. 5(a) for the value of the charge Q less than the critical
charge Qc (Q < Qc ¼ 0.17). The branches of the thermo-
dynamic scalar curvature R marked I and II in Fig. 5(a)
describe the coexisting SBH/LBH phases at the first order
phase transition, respectively. The intersection point P of
these two branches of R in Fig. 5(b), where they cross,
characterizes the first order phase transition at which these
two phases coexist. The branches, collectively denoted as
III, on the other hand, correspond to the metastable and
unstable phases which are unphysical.
Comparing with the free energy plot in Fig. 1, we

observe that the branches I and II correspond to the two
arms of the swallowtail structure for the blue and the green
curves, whereas the branches collectively denoted as III
correspond to the swallowtail portion of the free energy plot
in Fig. 5(b).3 The transition temperature for the first order

(a) (b)

FIG. 5. Thermodynamic scalar curvatures R of the RN-AdS black hole in the normal phase space for different values of Q: Figure
(a) is plotted for Q ¼ 0.155, which exhibits first order phase transition between SBH/LBH. Figure (b) is plotted at the critical charge
Q ¼ Qc ¼ 0.17, which illustrates the divergence of R for the second order critical point.

1Note that black holes have no notion of physical volume;
hence, it is conventional to use the normal thermodynamic
potential instead of the specific one in the definition of the
thermodynamic metric.

2See also Ref. [44] for an alternate approach in the case of the
extended phase space.

3Note, however, that in contrast to the free energy approach
which is macroscopic, the framework of thermodynamic geom-
etry constitutes a microscopic approach to phase transitions due
to its connection with the thermodynamic fluctuation theory and
the correlation volume. So, the correspondence between Fig. 5
and Fig. 1, described here is only approximate and not exact. We
emphasize here that the geometrical approach described here is
more accurate as it is directly connected to the underlying
microscopic structure.
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phase transition is then the temperature corresponding to
the intersection point P in Fig. 5.
For Q ¼ Qc the thermodynamic scalar curvature R

diverges, characterizing a critical point of second order
phase transition as shown in Fig. 5(b) with the correspond-
ing critical temperature as Tc ¼ 0.257. This approximately
corresponds to the kink in the red curve for the free energy
plot described in Fig. 1. Note once again that the critical
temperatures obtained from the two plots in Figs. 5(b) and 1
are distinct but comparable.

B. Extended phase space

In the extended phase space the thermodynamic
scalar curvature R is obtained from the metric Eq. (5.1)
with the free energy F and the temperature T as given by
the Eq. (2.10). The variables which serve as the coordi-
nates in this case are xμ ¼ ðT;ϕÞ. The thermodynamic
scalar curvature R may then be expressed as R ¼ N=D,
where

N ¼ 36Q6 − 3Q4r2ð21þ 256Pπr2Þ
þQ2r4ð19þ 512Pπr2 þ 256P2π2r4Þ
− 4r6ð−1þ 2Pπr2 þ 16P2π2r4 þ 1024P3π3r6Þ;

D ¼ 3πð−Q2 þ r2 þ 8Pπr4Þð−3Q2rþ r3 − 8Pπr5Þ2:
ð5:3Þ

As in the previous case, the behavior of the thermo-
dynamic scalar curvature R with the temperature T for
different values of pressure P and a fixed value of the
charge Q ¼ 0.22 are plotted in Fig. 6 parametrically with
the radius of the horizon r as a parameter. It is observed
from Fig. 6(a) that for P < Pc, where Pc is the critical
pressure, the two different branches I and II of the

thermodynamic scalar curvature R cross each other,
indicating a first order phase transition between the
SBH/LBH phases. The curves denoted as III once again
represent unphysical phases. For the pressure P equal to
the critical pressure Pc (P ¼ Pc ¼ 0.68), the R curve in
Fig. 6(b) exhibits a divergence which describes a critical
point of second order phase transition with the corre-
sponding critical temperature as Tc ¼ 0.196. As earlier,
this approximately corresponds to the kink in the red
curve in Fig. 2 for the free energy plot. Note that once
more the critical temperatures obtained from Figs. 6(b)
and 2 are distinct but comparable.

VI. THERMODYNAMIC GEOMETRY OF
KERR-AdS BLACK HOLES

In this section,we construct the thermodynamic geom-
etry for the four dimensional Kerr-AdS black holes in
the canonical ensemble for both the normal and the
extended phase space. As earlier, we utilize the
Helmholtz free energy F to compute the thermodynamic
scalar curvature R from the metric Eq. (5.1). In the
canonical ensemble the angular momentum J is held
fixed, so the appropriate thermodynamic variables are
the temperature T and the angular velocity Ω for the
thermodynamic state space.

A. Normal phase space

In the normal phase space, the thermodynamic scalar
curvature R for four dimensional Kerr-AdS black holes is
obtained from the metric defined by Eq. (5.1), with the free
energy F and the temperature T as given by Eq. (3.4). The
thermodynamic variables in this case are xμ ¼ ðT;ΩÞ. The
corresponding thermodynamic scalar curvature R may be
expressed as R ¼ XN=D, where

(a) (b)

FIG. 6. Thermodynamic scalar curvature R of the RN-AdS black hole in the extended phase space for fixed values of P and Q: Figure
(a) is plotted for P ¼ 0.065 and Q ¼ 0.22, which exhibits a first order phase transition between SBH/LBH. Figure (b) is plotted for
P ¼ 0.068 and Q ¼ 0.22, which illustrates the divergence of R for the second order critical point.
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N ¼ Aþ Bþ C; X ¼ 6π
3
2

�
S

π þ S

�1
2

;

A ¼ 3ðπ − 2SÞS8ðπ þ SÞ7 þ 12J2π3S6ðπ þ SÞ5ð28π2 þ 44πSþ 21S2Þ;
B ¼ 16J4π6S4ðπ þ SÞ3ð66π3 þ 8π2S − 189πS2 − 126S3Þ þ 256J8π13ð3π3 − 21π2S − 70πS2 − 48S3Þ;
C ¼ 64J6π9S2ðπ þ SÞð36π4 þ 44π3 − 23π2S2 þ 12πS3 þ 48S4Þ;
D ¼ ð4J2π3 þ S2ðπ þ SÞÞ12½ðπ − 3SÞS4ðπ þ SÞ3 − 24J2π3S2ðπ þ SÞ2ðπ þ 2SÞ − 16J4π7ð3π þ 4SÞ�2: ð6:1Þ

The behavior of the thermodynamic scalar curvature R
with the temperature T for different values of the angular
momentum J are plotted in Fig. 7 parametrically with the
entropy S as a parameter for computational convenience. In
Fig. 7(a) the thermodynamic scalar curvature R is plotted
against the temperature T for the angular momentum J,
which is less than the critical angular momentum
J ¼ 0.022 < Jc. As earlier, this curve once again character-
izes a first order phase transition at the intersection of the
two branches denoted as I and II describing the coexisting
SBH/LBH phases. Figure 7(b) is plotted for the critical
value of the angular momentum J ¼ Jc ¼ 0.0236, where
the thermodynamic scalar curvature diverges, indicating a

critical point of second order phase transition with the
corresponding critical temperature as T ¼ Tc ¼ 0.270.

B. Extended phase space

In the extended phase space, the thermodynamic
scalar curvature R for the four dimensional Kerr-AdS black
holes is obtained as earlier from the metric Eq. (5.1) with
the free energy F and the temperature T as given by
Eq. (3.5). The thermodynamic variables in this case are
xμ ¼ ðT;ΩÞ, where the pressure P is held fixed. The
thermodynamic scalar curvature R may then be expressed
as R ¼ XN=D, where

N ¼ Aþ Bþ C; X ¼ −6
�
Sπ

�
3

P
þ 8S

��1
2

;

A ¼ S8ð3þ 8PSÞ7ð−3þ 16PSÞ − 144J2π2S6ð3þ 8PSÞ5ð21þ 8PSð11þ 14PSÞÞ;
B ¼ 864J4π4S4ð3þ 8PSÞ3½−99þ 32PSð−1þ 7PSð9þ 16PSÞÞ� þ 62208J8π8ð−27þ 8PSð63þ 16PSð35þ 64PSÞÞÞ;
C ¼ −6912J6π6S2ð3þ 8PSÞ243þ 8PS½99þ 2PSð−69þ 32PSð3þ 32PSÞÞ�;

D ¼ ð3þ 8PSÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12J2π2 þ S2ð3þ 8PSÞ

P

r
ðS4ð−1þ 8PSÞð3þ 8PSÞ3 þ 24J2π2S2ð3þ 8PSÞ2ð3þ 16PSÞ

þ 144J4π4ð9þ 32PSÞÞ2: ð6:2Þ

(a) (b)

FIG. 7. Thermodynamic scalar curvatures of the Kerr-AdS black hole in the normal phase space for fixed values of J: Figure (a) is
plotted for J ¼ 0.022, which exhibits a first order phase transition between SBH/LBH. Figure (b) is plotted for the critical angular
momentum J ¼ Jc ¼ 0.0236, which illustrates the divergence of R for the second order critical point.
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As in the previous case, the behavior of the thermody-
namic scalar curvature R with the temperature T for
different pressures P and a fixed angular momentum
J ¼ 1 are plotted in Fig. 8 parametrically with the entropy
S as a parameter. Figure 8(a), with the pressure P less than
the critical pressure P ¼ 0.0025 < Pc, indicates a first
order phase transition between the SBH/LBH phases
through the intersection of the two branches denoted as
I and II representing the coexisting phases as earlier.
Figure 8(b) is plotted for the critical pressure P ¼ Pc ¼
0.0027 and indicates a second order phase transition
through the divergence of R at the corresponding critical
temperature Tc ¼ 0.040.

VII. SUMMARY AND DISCUSSIONS

In summary, we have investigated phase transitions and
critical phenomena for four dimensional RN-AdS and Kerr-
AdS black holes in the canonical ensemble, employing the
framework of thermodynamic geometry both for the
normal and the extended phase space. We emphasize here
that the construction of the thermodynamic geometry for
black holes in the canonical ensemble was an unresolved
issue in this area which precluded the geometrical charac-
terization of the corresponding phase structure for this
ensemble (see also [44]). Through a careful analysis of this
outstanding issue, we have determined the appropriate
thermodynamic potential and the variables for the con-
struction of the thermodynamic metric for these black
holes, specific to the canonical ensemble, both for the
normal and the extended thermodynamic phase space. It
has been shown that the thermodynamic scalar curvature R
obtained from this metric clearly characterizes the phase
structure for these black holes in the canonical ensemble,
which conforms to the established unified geometrical
characterization for phase transitions described in the
literature.

For the normal phase space where the cosmological
constant is held fixed, we have shown that the two branches
of the thermodynamic scalar curvature R describing the
coexisting phases exhibit crossing at a first order liquid-
gas-like phase transition. Interestingly, this exactly con-
forms to the R-Crossing method proposed by one of the
authors earlier as part of a unified geometrical description
of phase transitions. The sequence of first order subcritical
phase transitions culminates in a critical point describing a
second order phase transition at which the thermodynamic
scalar curvature R diverges as a function of the temperature.
The critical temperature at the above divergence matches
very well with that obtained from the conventional free
energy approach.
In the extended thermodynamic phase space, the cos-

mological constant Λ is identified as the thermodynamic
pressure with a corresponding conjugate thermodynamic
volume. This naturally leads to the modification of the first
law where the variation of the thermodynamic pressure now
needs to be included. As a consequence, the ADM mass of
the black hole must now be identified with the enthalpy
instead of the internal energy. We have shown that the
thermodynamic scalar curvature also correctly character-
izes the phase structure and the critical point both for the
RN-AdS and the Kerr-AdS black holes in the canonical
ensemble for the extended thermodynamic phase space. We
emphasize here that the present article is a further con-
firmation of the unified geometrical approach to phase
transitions and supercritical phenomena, in particular the
R-Crossing method as applied to black holes.
It is important to further elucidate the application

of this geometrical framework to study the phase structures
and critical phenomena for other black holes like the
Kerr-Newman-AdS black holes in the canonical ensemble,
both for the normal and the extended phase space.
Although our analysis in this article has been restricted
to d ¼ 4-dimensional RN-AdS and Kerr black holes there

(a) (b)

FIG. 8. Thermodynamic scalar curvatures of the Kerr-AdS black hole in the extended phase space for a fixed value of P and J: Figure
(a) is plotted for P ¼ 0.0025 and J ¼ 1, which exhibits a first order phase transition between SBH/LBH. Figure (b) is plotted for the
critical pressure P ¼ Pc ¼ 0.0027 and J ¼ 1, which illustrates the divergence of R for the second order critical point.
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are no theoretical or technical issues for its generalization
to characterize standard phase transitions for higher
dimensional black holes. In this context however, it
should be mentioned that Born-Infeld-AdS black holes
in d ¼ 4 exhibit a reentrant phase transition for
certain ranges of the black hole charge where it resembles
an AdS-Schwarzschild black hole as described in [56].
Furthermore, such reentrant phase transitions have been
observed in higher dimensions for d ≥ 6, rotating Kerr-AdS
black holes in [54]. A possible microscopic basis for such
reentrant phase transitions for d-dimensional Born-Infeld-
AdS and singly spinning Kerr-AdS black holes have been
studied in the framework of thermodynamic geometry in
higher dimensions as described in [57].
We would like to mention here that thermodynamic

geometries are examples of a larger class of information
geometries which involve statistical properties of systems
and has been applied to diverse thermodynamic systems
from fluids to black holes as described in the introduction

[40,41,43,51,52,58]. In [43,51,52], this geometrical frame-
work has been applied to the study of subcritical, critical,
and supercritical phenomena, including fluids, liquids,
magnetic, and optical systems. In this context the geomet-
rical framework has led to the first theoretical construction
for the Widom line in the supercritical regime for such
thermodynamic systems. It would be an extremely inter-
esting issue to explore the supercritical regime and under-
stand the significance of the Widom line for black holes.
Obtaining the critical exponents from the thermodynamic
scalar curvature as described in [25] for the extended
thermodynamic state space formulation would also be an
important exercise in this regard. These constitute signifi-
cant open issues for future investigations.
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