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We investigate the type of dual superconductivity responsible for quark confinement. For this

purpose, we solve the field equations of theU(1) Abelian–Higgs model to obtain the static vor-

tex solution in the whole range without restricting to the long-distance region. Then we use the

resulting magnetic field of the vortex to fit the gauge-invariant chromoelectric field connecting a

pair of quark and antiquark which was measured by numerical simulations forSU(2) andSU(3)

Yang–Mills theories on a lattice. This result improves the accuracy of the fitted value for the

Ginzburg–Landau parameter to reconfirm the type I dual superconductivity for quark confine-

ment, which was claimed by preceding works based on an approximate method based on the

Clem ansatz. Moreover, we calculate the Maxwell stress tensor for the fitted model to obtain the

distribution of the force around the flux tube. This suggests that the attractive force acts on the

surface perpendicular to the chromoelectric flux tube, in agreement with the type I dual supercon-

ductivity.

XIII Quark Confinement and the Hadron Spectrum - Confinement2018
31 July - 6 August 2018
Maynooth University, Ireland

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:Akihiro.shibata@kek.jp
mailto:kondok@faculty.chiba-u.jp
mailto:shogo.nishino@chiba-u.jp
mailto:skato@oyama-ct.ac.jp


P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
2
6
9

Type of dual superconductivity Akihiro Shibata

z

W[U]

y

L[U]

Up

k

q-

q

E

x

y
z

Figure 1: (Left panel) The setup of the operatorW[V]LVVPL†
V in (2.3). z is a position of the Schwinger line

L, andy is the distance from the Wilson loopW[V] to the plaquetteVP. (Right panel) The relation among the
chromoelectric fieldEEE, the induced magnetic currentkkk, and the quark-antiquark pairqq̄.

1. Introduction

From the viewpoint of the dual superconductivity picture, the type of dual superconductor
characterizes a property of the vacuum of the Yang–Mills theory or QCD for quark confinement.
In the context of the usual superconductor, intype II the repulsive force works among the vortices,
while in type I the attractive force works among them. The boundary of the type I and type I
I is called theBogomol’nyi–Prasad–Sommerfield (BPS) limitand no forces work among the
vortices.

The type of dual superconductor has been investigated for a long time by fitting the chromo-
electric flux obtained by lattice simulations to the magnetic field of the ANO vortex. The preceding
studies [1] done in 1990’s concluded that the vacuum of the Yang–Mills theory is of type II or the
border of type I and type II as a dual superconductor. The improved studies [5] conclude that the
vacuum of the Yang–Mills theory is weakly of type I. In these studies, however, the fitting range
was restricted to a long-distance region from the flux tube. Recent studies [3, 4, 6] show that the
vacuum of QCD is the type I dual superconductor. In these papers, they modify the preceding
method by adopting theClem ansatz[7] for incorporating the short distance behavior of the flux
tube. The Clem ansatz assumes the behavior of the complex scalar field (as the order parameter
of a condensation of the Cooper pairs), which means that it still uses an approximation. In this
work, we shall fit the chromoelectric flux tube to the magnetic field of the ANO vortex in theU(1)
Abelian–Higgs model without any approximations to examine the type of dual superconductor.

In addition, in order to estimate the interaction between the flux tubes, we consider the Maxwell
stress carried by a single vortex configuration. Recently, the Maxwell stress distribution around
the quark-antiquark pair was directly observed on a lattice via the gradient flow method [8]. Our
results should be compared with their observation. In order to do this, we shall consider the energy-
momentum tensor of a single vortex solution [10] and obtain the Maxwell stress distribution around
the vortex with the fitted values of the Ginzburg–Landau parameter.

2. Operator on a lattice to measure the flux tube

We have exploited the gauge-invariant operator of Di Giacomo et al. [9] to measure chromo-
electric and chromomagnetic fields:

ρU :=

⟨
tr
(
W[U ]LUUPL†

U

)⟩
⟨tr(W[U ])⟩

− 1
tr(111)

⟨tr(UP)tr(W[U ])⟩
⟨tr(W[U ])⟩

, (2.1)

1
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Figure 2: (Left panel) The gauge-invariant chromofields measured by using the operatorρV in (2.3) at
the midpoint of theqq̄ pair (z= 4) for the 8× 8 Wilson loop on the244 lattice with the lattice spacing
ε = 0.08320 fmat β = 2.5. (Right panel) The induced magnetic currentkµ obtained by (2.4) using the
chromofieldFµν [V] for the restricted fieldV.

which is shown in the top left panel of Figure1. In the continuum limitε → 0, ρU reduces to

ρU =igε2

⟨
tr(Fµν [A ]L†

UW[U ]LU)
⟩

⟨tr(W[U ])⟩
+O(ε4). (2.2)

This was identified with the chromofield strength generated by a pair of quark and antiquark,ρU ≃
gε2⟨Fµν [A ]⟩qq̄.

In this paper, we deploy the same operator for the restricted field, which was used to show the
restricted field dominance for the string tension in [3,4]. We replace the full link variableU by the
restricted variableV to define

ρV :=

⟨
tr
(
W[V]LVVPL†

V

)⟩
⟨tr(W[V])⟩

− 1
tr(111)

⟨tr(VP)tr(W[V])⟩
⟨tr(W[V])⟩

. (2.3)

It should be noticed that we can define the magnetic currentkµ induced by the chromofieldFµν [V]

as

kµ :=
1
2

εµνρσ ∇νFρσ [V], (2.4)

with the lattice derivative∇ν so that the conservation law∇µkµ = 0 holds [3, 4]. Figure2 shows
the result of measurement for theSU(2) case [3].

3. Fitting method and results

First of all, we give a brief review of theU(1) Abelian–Higgs model, whose Lagrangian
density is given by

L =−1
4

FµνFµν +
(
Dµφ

)∗
Dµφ − λ 2

2

(
φ ∗φ −v2)2

, (3.1)

whereλ is the scalar coupling constant andv is the value of the magnitude|φ(x)| of the complex
scalar fieldφ(x) in the vacuum. The asterisk(∗) denotes the complex conjugation. The field

2
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strengthFµν of theU(1) gauge fieldAµ and the covariant derivativeDµφ of the scalar fieldφ are
defined by

Fµν(x) := ∂µAν(x)−∂νAµ(x), Dµφ(x) := ∂µφ(x)− iqAµ(x)φ(x), (3.2)

whereq is the charge of the scalar fieldφ(x). The Euler–Lagrange equations are given by

∂ µFµν = jν , jν := iq
[
φ (Dνφ)∗− (Dνφ)φ ∗], DµDµφ = λ 2(v2−φ ∗φ

)
φ . (3.3)

In order to obtain the vortex solution, we adopt a static and axisymmetric ansatz:

A0(x) = 0, AAA(x) =
n

qρ
a(ρ)eeeϕ , φ(x) = v f(ρ)einϕ , (3.4)

where we have used the cylindrical coordinate system(ρ ,ϕ ,z) for the spatial coordinates andn is
the winding number. Notice that the magnetic fieldBBB can be computed by

BBB(x) = ∇×AAA(x) =
n

qρ
da(ρ)

dρ
eeez =: b(ρ)eeez. (3.5)

We introduce the dimensionless variableR by R= qvρ and then the functions are reparametrized
by f (ρ) = f (R), a(ρ) = a(R), b(ρ) = q2v2b(R), jϕ(ρ) = q3v3 j(R). Under this ansatz, the field
equations are cast into

b′(R)+ j(R) = 0, (3.6)

na′(R) = Rb(R), (3.7)

j(R) =
2n
R

(1−a(R)) f 2(R), (3.8)

f ′′(R)+
1
R

f ′(R)− n2

R2 (1−a(R))2 f (R)+2κ2(1− f 2(R)) f (R) = 0, (3.9)

whereκ := λ√
2q

is the Ginzburg–Landau (GL) parameter and the prime (′) denotes the derivative
with respect toR. We solve these equations numerically under the following boundary conditions:

f (0) = 0, b′(0) = 0, j(0) = 0, f (∞) = 1, a(∞) = 1. (3.10)

To determine the type of dual superconductivity forSU(2) Yang–Mills theory, we fit the
chromoelectric field and induced magnetic current obtained by the lattice simulation [3] (see the
right panel of Figure1 and the right panel of Figure2) to the magnetic field and electric cur-
rent of then = 1 ANO vortex. In what follows, we denote the lattice data and their errors as
(yi ,EL

z (yi),δEL
z (yi)) for the chromoelectric field and(y j ,kL

ϕ(y j),δkL
ϕ(y j)) for the induced magnetic

current. We introduce the regression functions by

B(ρ̂ ; η̂ , τ̂ ,κ) := η̂b(τ̂ ρ̂ ;κ), J(ρ̂ ; η̂ , τ̂ ,κ) := η̂ τ̂ j(τ̂ ρ̂ ;κ), (3.11)

whereρ̂ := ρ/ε is a dimensionless variable,η̂ = ηε2 andτ̂ = τε are dimensionless constants with
the lattice spacingε. Here, theκ-dependence of these functions is implicit, since it is determined
once we solve the field equations.
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Figure 3: The fitting results: (left panel) the ANO vortex with a unit winding number, (right panel) the
approximated method based on the Clem ansatz.

We adopt the maximal likelihood fitting for the flux and current in (3.1), simultaneously. The
error functions of the regression with the weights are given by

εflux(yi ; η̂ , τ̂,κ) =
EL

z (yi)−B(yi ; η̂ , τ̂ ,κ)
δEL

z (yi)
, εcurrent(y j ; η̂ , τ̂ ,κ) =

kL
ϕ(y j)−J(y j ; η̂ , τ̂ ,κ)

δkL
ϕ(y j)

. (3.12)

When we assume that these error functions follow independent standard normal distributions, the
parameterŝη , τ̂ andκ can be determined by maximizing the log-likelihood functionℓ(η̂ , τ̂,κ):

ℓ(η̂ , τ̂,κ) =−1
2

n

∑
i=1

(εflux(yi ; η̂ , τ̂,κ))2− 1
2

m

∑
j=1

(εcurrent(y j ; η̂ , τ̂ ,κ))2 . (3.13)

We obtain the result for the ANO vortex with a unit winding number,n= 1:

η̂ = 0.0448±0.0050, τ̂ = 0.508±0.032, κ = 0.565±0.053,

MSRflux = 0.131, MSRcurrent= 0.0938, MSRtotal = 0.114. (3.14)

where MSR stands for the mean residual sum of squared errors for the regression of (3.12). The
fitting result is shown in the left panel of Figure3. This new result shows that the vacuum ofSU(2)
Yang–Mills theory is of type I.

This result should be compared with result by using the Clem ansatz. (For more detail, see
[11].) The new result (3.14) gives the larger value of the GL parameter than that in the previous
work [3], κ = 0.38±0.23, where only the regression ofEL

z is taken into account We also study the
improved method based on the Clem ansatz [11], where the fitting for bothEL

z andkL
ϕ is adopted

by using the regression functionJ(y j ;α,β ,κ) which is replaced by the Clem ansatz. The fitting
result is shown in the right panel of Figure3 and gives the GL parameter:

κ = 0.37±0.20, MSRflux = 0.171, MSRcurrent= 0.086, MSRtotal = 0.135. (3.15)

The inclusion ofkϕ can improve the accuracy of fitting for the flux.

4. Type of dual superconductor

In order to clarify the difference between type I and II of dual superconductors, we investigate
the Maxwell stress tensor around a vortex according to the proposal [10]. For this purpose, we

4
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Figure 4: The components of the stress tensorTρρ (left panel),Tϕϕ (middle panel), andTzz (right panel) as
functions ofR for then= 1 ANO vortex configuration in units ofq2v4 for κ = 1

5,0.565(type I), 1√
2

(BPS),
1 (type II), and∞ (London limit). The red solid curves represent the stress tensor for the fitted parameter of
the GL parameterκ = 0.565.

obtain the energy-momentum-stress tensorTµν from the Lagrangian density (3.1) as

Tµν =
1
4

gµνFρσ Fρσ −FµρFν
ρ +(Dµφ)(Dνφ)∗+(Dµφ)∗ (Dνφ)

−gµν (Dρφ
)
(Dρφ)∗+

λ 2

2
gµν (v2−φ ∗φ

)2
. (4.1)

Notice that this energy-momentum tensor is symmetric, i.e.,Tµν = Tνµ . Under the ansatz (3.4),
the components ofTµν are written into

Tρρ =q2v4
[

1
2

b2(R)+ f ′2(R)− n2

R2 (1−a(R))2 f 2(R)−κ2(1− f 2(R)
)2
]
, (4.2)

Tϕϕ =q2v4
[

1
2

b2(R)− f ′2(R)+
n2

R2 (1−a(R))2 f 2(R)−κ2(1− f 2(R)
)2
]
, (4.3)

Tzz=q2v4
[

1
2

b2(R)+ f ′2(R)+
n2

R2 (1−a(R))2 f 2(R)+κ2(1− f 2(R)
)2
]
=−T00, (4.4)

and the off-diagonal components vanish. Figure4 showsTρρ ,Tϕϕ andTzz for various GL param-
eterκ with a unit winding number. Here, we change the signature ofT jk defined in (4.1) by using
the ambiguity of the overall signature of the Noether current in order to reproduce the conventional
Maxwell stress tensor.

Next, we consider the force acting on the area element of the flux tube. By using the Maxwell
stress tensor, the stress forceFFF acting on the infinitesimal area elementdSSS is given by

FFF = T ·dSSS= T ·nnn∆S, (4.5)

wherennn is a normal vector of the area elementdSand∆Sstands for the area ofdS. Figure5 shows
elements of the stress force. The left and mid panels show the situations for the ANO vortex, while
the right panel shows the corresponding situation in the electromagnetism case, where a pair of
electric charges±q is located at∓∞ on thez-axis, respectively.

If we choosennn to be equal to the normal vector pointing theρ-direction, i.e.,nnn = eeeρ , the
corresponding stress forceFFF(ρ) reads

FFF(ρ) = Tρρ∆Seeeρ . (4.6)

5
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Figure 5: (Left and Mid panels) The Maxwell stress force acting on the flux tube originating from the ANO
vortex configuration. (Right panel) The Maxwell stress force in the electromagnetism.
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Figure 6: The chromoelectric flux obtained in [3] and distribution of the Maxwell stress for the fitted value
of the GL parameterκ = 0.564. The red line (the thick line in thez−y plane) stands for the ANO vortex.

We find thatFFF(ρ) ·eeeρ = Tρρ∆S is always positive in type I, while always negative in type II. There-
fore,FFF(ρ) represents the attractive force for type I, while the repulsive force for type II.

The other choice ofnnn is to be parallel to the ANO vortex, i.e.,nnn= eeez. The corresponding stress
forceFFF(z) can be written as

FFF(z) = Tzz∆Seeez, FFF(z) ·eeez = Tzz∆S> 0. (4.7)

Figure5 is a sketch of the Maxwell stress force acting on the flux tube originating from the ANO
vortex configuration.

Using the parameters obtained by fitting to the ANO vortex, we can show the distribution of
the Maxwell stress around the flux tube, which is shown in Figure6. This result indeed supports
the type I dual superconductor for quark confinement.

Our analysis on the Maxwell stress tensor around an ANO vortex agrees with the result ob-
tained by the preceding work [10].

5. Conclusion

We investigate the type of dual superconductivity responsible for quark confinement. For this
purpose, we have solved the field equations of theU(1) Abelian–Higgs model without any approxi-
mation in place of Clem ansatz, and have fitted the flux and magnetic current. We have reconfirmed

6
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that the vacuum of theSU(2) Yang–Mills theory is of type I as a dual superconductor with the GL
parameterκ = 0.565± 0.053. We found that inclusion of regression of the magnetic current is
important to improve the accuracy of the fitting as seen from the error of the GL parameter, or the
mean of squared residuals. We also found that the approximated method based on the Clem ansatz
is sensitive to the fitting range. In the new method, on the other hand, the effect of changing the
fitting range is negligible. This fact suggests that our new method gives more reliable results than
the previous one. For more detail, see [11].

Moreover, we have calculated the distribution of the Maxwell stress force around the flux
tube for the Abelian–Higgs model with the fitted GL parameter. It was confirmed that there exists
an attractive force among the chromoelectric flux tubes, that is consistent with the type I dual
superconductor.
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