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In this paper, we investigate properties of rainbow BTZ black holes in the scenario with the free-fall (FF) 
orthonormal frame. After the FF rainbow BTZ metric is obtained, the Hawking temperature is calculated 
via the Hamilton-Jacobi method, and the thermodynamic properties are discussed. For radiated particles 
with a subluminal modified dispersion relation, we find that the effects of rainbow gravity tend to 
increase the Hawking temperature but decrease the black hole entropy. However, it shows that the FF 
rainbow BTZ black hole possesses an infinite effective Hawking temperature for radiated particles with a 
superluminal modified dispersion relation.
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1. Introduction

Shortly after Einstein proposed general relativity in 1915, 
Schwarzschild derived the first black hole solution (Schwarzschild 
metric) from Einstein’s equations [1]. From then on, the study of 
black holes has become an important field of modern physics. Due 
to the strong gravitational pull from a black hole, the classical the-
ory of a black hole predicts that anything, including light, cannot 
escape from the black hole. However, considering quantum effects, 
Stephen Hawking demonstrated that black holes radiate a thermal 
flux of quantum particles [2].

After this discovery, it was realized that there is the trans-
Planckian problem in Hawking’s calculations [3]. Hawking radiation 
appears to originate from a mode with a large initial frequency, far 
beyond the Planck mass mp , which experiences an exponentially 
high gravitational redshift near the horizon. Therefore, Hawking’s 
prediction relies on the validity of quantum field theory for arbi-
trary high energy in curved spacetime. On the other hand, quan-
tum field theory is considered to be more of an effective field 
theory whose nature remains unknown. This observation raises 
the question whether any unknown physics at the Planck scale 
could strongly influence Hawking radiation. It is widely believed 
that trans-Planckian physics can be expressed in certain modifica-
tions of existing models.

Although a full theory of quantum gravity is not yet available, 
various theories of quantum gravity, such as loop quantum gravity, 
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string theory and quantum geometry, predict that the transforma-
tion laws of special relativity are modified at very high energies. 
In particular, the Deformed Special Relativity (DSR) theory makes 
the Planck length a new invariant scale and guarantees the non-
linear Lorentz transformation in the momentum spacetime [4–7]. 
Specifically, the modified energy-momentum dispersion relation of 
a particle of energy E and momentum p in DSR can take the form 
of

E2 f 2 (E/mp
)− p2 g2 (E/mp

)= m2, (1)

where mp is the Planck mass, and f (x) and g (x) are two general 
functions with the following properties:

lim
x→0

f (x) = 1 and lim
x→0

g (x) = 1. (2)

The modified dispersion relation (MDR) might play an important 
role in astronomical and cosmological observations, such as the 
threshold anomalies of ultra high energy cosmic rays and TeV pho-
tons [8–13]. In phenomenological physics, ground observations and 
astrophysical experiments have tested the predictions of MDR the-
ory [14–17]. One of the most popular choices for the functions 
f (x) and g(x) has been proposed by Amelino-Camelia et al.[18,
19], which gives

f (x) = 1 and g (x) =√1 − ηxn. (3)

As shown in [19], this formula is compatible with some of the 
results obtained in the Loop-Quantum-Gravity approach and re-
flects the results obtained in κ-Minkowski and other noncommu-
tative spacetimes. Phenomenological implications of this “Amelino-
Camelia (AC) dispersion relation” are also reviewed in [19].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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To incorporate DSR into the framework of general relativity, 
Magueijo and Smolin [20] proposed the “Gravity’s rainbow”, where 
the spacetime background felt by a test particle would depend on 
its energy. Consequently, the energy of the test particle deforms 
the background geometry and hence the dispersion relation. As 
regards the metric, it would be replaced by a one-parameter fam-
ily of metrics which depends on the energy of the test particle, 
forming a “rainbow metric”. Specifically, for a BTZ black hole, the 
corresponding “rainbow metric” solution to the rainbow Einstein’s 
Field equations in a stationary orthonormal frame is given in [20]:

ds2 = −h (r)

g2
(

E/mp
)dt2 +

dr2

h(r) + r2
[
Nφ (r)dt + dφ

]2
g2
(

E/mp
) . (4)

Later, Alsaleh specifically studied the thermodynamic properties of 
the rainbow BTZ black hole in a stationary orthonormal frame [21]. 
Since the rainbow metric is the metric that the radiated particles 
“see”, a more natural orthonormal frame is the one anchored to 
the particles. Actually, in section 3 we will show that the rainbow 
BTZ black hole in the free-fall orthonormal frame is given by

ds2 =
[

1

g2
(

E/mp
) − 1

f 2
(

E/mp
)
]

h (r)dt2

+ −h(r)dt2 + dr2

h(r) + r2
[
Nφ (r)dt + dφ

]2
g2
(

E/mp
) . (5)

In the remainder of this paper, we dub the rainbow BTZ black holes 
(4) and (5) as stationary frame (SF) and free-fall frame (FF) rain-
bow BTZ black holes, respectively. In this paper, we aim to explore 
the thermodynamic properties of the FF Rainbow BTZ black hole.

There are some methods proposed to obtain Hawking radiation 
[22–27]. Recently, a semi-classical method of modeling Hawking 
radiation as a tunneling process has been developed and attracted 
much attention. This method was first proposed by Kraus and 
Wilczek [28,29], which is known as the null geodesic method. 
Later, the tunneling behaviors of particles were investigated us-
ing the Hamilton-Jacobi method [30–32]. Furthermore, taking the 
effects of quantum gravity into account, the Hamilton-Jacobi equa-
tion was modified, and the modified Hawking temperature was 
derived [33–38]. These motivate us to use the Hamilton-Jacobi 
method to study the gravity rainbow effect of Hawking radiation 
[39,40]. The cases with the stationary orthonormal frame have 
been extensively studied by many authors [41–59].

The BTZ black hole is a solution of Einstein field equations in 
three dimensional curved space, which describes a rotating AdS 
geometry [60]. It plays an important role in quantum field the-
ory and string theory. In this paper, we will study the quantum 
gravity effect on BTZ black hole in the framework of gravity rain-
bow theory with the free-fall orthonormal frame. The remainder of 
our paper is organized as follows. In section 2, the thermodynamic 
properties of BTZ black holes are briefly reviewed. In section 3, the 
metric of a FF rainbow BTZ black hole is derived, and its Hawk-
ing temperature is obtained using the Hamilton-Jacobi method. 
The temperature and entropy of a FF rainbow BTZ black hole are 
computed. Finally, the thermodynamic properties of the FF static 
rainbow BTZ black hole will be studied. Section 4 is devoted to 
our discussion and conclusion. Throughout the paper we take ge-
ometrized units c = 8G = kb = 1, where the Planck constant h̄ is 
square of the Planck mass mp .
2. BTZ black hole

The BTZ black hole is an important solution to Einstein field 
equation in a (2 + 1) dimensional space with a negative cosmolog-
ical constant. The action is

S = 1

2π

∫ √−g [R + 2�] , (6)

where � = −l2 is the cosmological constant, and l is AdS radius. 
The BTZ black hole solution to the action (6) is [60]

ds2 = −h (r)dt2 + 1

h (r)
dr2 + r2 [Nφ (r)dt + dφ

]2
, (7)

where

h (r) = −M + r2

l2
+ J 2

4r2
,

Nφ (r) = − J

2r2
. (8)

The parameters M and J can be interpreted as the mass and the 
angular momentum of the BTZ black hole. The BTZ black hole has 
two horizons located at r = r± , which are determined by h (r±) =
0:

r2± = Ml2 ±√M2l4 − l2 J 2

2
. (9)

In terms of r± , we can rewrite h (r), M and J as

h (r) = 1

l2r2

(
r2 − r2+

)(
r2 − r2−

)
, M = r2+ + r2−

l2
and J = 2r+r−

l
.

(10)

The surface gravity κ of the BTZ black hole at the outer horizon 
r = r+ is

κ = r2+ − r2−
l2r+

. (11)

So the Hawking temperature Th of the BTZ black hole is [61–64]

Th = h̄κ

2π
= h̄

(
r2+ − r2−

)
2π l2r+

. (12)

The first law of thermodynamics for the BTZ black hole was ob-
tained in [65], which reads

dM = ThdS + �H d J , (13)

where S and �H = J
2r2+

= r−
lr+ are the entropy and the angular ve-

locity of the BTZ black hole, respectively. The eqn. (13) can be 
rewritten in the form:

dS = dM − �Hd J

Th
= 4πdr+

h̄
, (14)

which, by integration, leads to

S = 4πr+
h̄

. (15)

Note that the BTZ black hole entropy S was also computed using 
the Euclidean action method [60,62,64,66,67]. The heat capacity of 
the BTZ black hole is

C J = Th

(
∂ S

∂Th

)
J
= 4πr+	

2 − 	
, (16)

where 	 =
√

1 − l2 J 2

M2l4
. Since 0 ≤ 	 ≤ 1, the BTZ black hole always 

has a positive heat capacity, which implies the thermodynamic 
system for the BTZ black hole is stable.
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3. Free-fall rainbow BTZ black hole

In this section, we obtain the Free-fall (FF) rainbow BTZ black 
hole and then calculate its Hawking temperature via the Hamilton-
Jacobi method. Finally, we discuss the rainbow corrections to the 
entropy of the black hole.

3.1. Free-fall rainbow BTZ metric

First, we generalize the energy-independent BTZ metric (7) to 
the energy-dependent BTZ rainbow metric. Generally, the energy-
independent metric is given by

ds2 = gμνdxμ ⊗ dxv , (17)

can be rewritten in terms of a set of energy-independent orthonor-
mal frame fields ea:

ds2 = ηabea ⊗ eb, (18)

where a = (0, i) and i is the spatial index. For the MDR (1), the 
energy-dependent rainbow counterpart for the energy-independent 
metric (17) can be obtained using equivalence principle [20], 
which gives

ds̃2 = g̃μνdxμ ⊗ dxv = ηabẽa ⊗ ẽb

=
(

1

g2
(

E/mp
) − 1

f 2
(

E/mp
)
)

e0 ⊗ e0 + ds2

g2
(

E/mp
) , (19)

where the energy-dependent orthonormal frame fields are

ẽ0 = e0

f
(

E/mp
) and ẽi = ei

g
(

E/mp
) . (20)

Note that a tilde is used for an energy-dependent quantity.
Obviously, different choices of the orthonormal frame can give 

different rainbow metrics. In fact, the form of the rainbow met-
ric crucially depends on the time component of the orthonormal 
frame, e0. For the BTZ metric (7), e0 in the literature [21,68,69] is 
usually chosen to be

e0 =√h (r)dt, (21)

where this orthonormal frame basis is hovering above the black 
hole. On the other hand, the particles radiated from the black hole 
travel along the geodesics. Since the rainbow metric is the metric 
that the radiated particles “see”, a more natural orthonormal frame 
is the one anchored to the particles.

For massive particles moving along the geodesics, (e0)
μ is 

just the 3-velocity vector uμ of the geodesics. To compute the 
3-velocity vector, we consider pt and pφ , which are conserved 
along geodesics (since the metric does not depend explicitly on 
t and φ). It leads immediately to the first integrals of the t- and 
φ- equations, which are given by

ut = gtt ut + gtφuφ =
[
−h (r) + r2N2

φ (r)
]

ṫ + r2Nφφ̇ = −E/m,

(22)

uφ = gφt ut + gφφuφ = r2Nφ ṫ + r2φ̇ = L/m.

Here, m, E and L are the mass, the energy and the angular mo-
mentum of the particles. Solving eqns. (22) for ṫ and φ̇ gives

ut = ṫ = Nφ (r) L + E

mh (r)
,

uφ = φ̇ = L

mr2
− Nφ (r)

[
Nφ (r) L + E

]
mh (r)

. (23)
We then use gμνuμuν = −1 to find ur . So the 3-velocity vector of 
the radiated particle is

uμ =
⎛
⎝Nφ (r) L + E

mh (r)
,

√[
E + Nφ (r) L

]2
m2

− h (r)

(
1 + L2

m2r2

)
,

L

mr2
− Nφ (r)

[
Nφ (r) L + E

]
mh (r)

)
. (24)

Therefore, the time component of the orthonormal frame anchored 
to the radiated particles is then given by

e0 = uμdxμ = − E + Nφ (r) L

m
dt

+

√[
E+Nφ(r)L

]2
m2 − h (r)

(
1 + L2

m2r2

)
h (r)

dr. (25)

From eqn. (19), the rainbow BTZ metric is

ds2 =
[

1

g2
(

E/mp
) − 1

f 2
(

E/mp
)
]

e0 ⊗ e0

+ −h (r)dt2 + dr2

h(r) + r2
[
Nφ (r)dt + dφ

]2
g2
(

E/mp
) , (26)

where e0 is given by eqn. (25). The rainbow BTZ metric (26) is 
dubbed as “Free-fall (FF) rainbow BTZ black hole.”

3.2. Effective Hawking temperature

We now use the Hamilton-Jacobi method to calculate the 
Hawking temperature of the FF rainbow black hole (26). In the 
Hamilton-Jacobi method, one ignores the self-gravitation of emit-
ted particles and assumes that their action satisfies the relativis-
tic Hamilton-Jacobi equation. The tunneling probability for the 
classically forbidden trajectory from inside to outside the hori-
zon is obtained by using the Hamilton-Jacobi equation to calcu-
late the imaginary part of the action for the tunneling process. 
In [39], it showed that, in the rainbow metric ds2 = g̃μνdxμdxν , 
the Hamilton-Jacobi equations for massive particles can simply be 
written as

g̃μν∂μ I∂ν I = m2, (27)

where I is the radiated particle’s classical action. Since the FF rain-
bow black hole (26) is independent of t and φ, we can employ the 
following ansatz for the action I

I = −Et + W (r) + Lφ, (28)

where, as above defined, E and L are the radiated particle’s energy 
and angular momentum, respectively. Defining pr (r) ≡ W ′ (r), we 
can use the FF rainbow black hole (26) to rewrite the Hamilton-
Jacobi equation (27) as the equation in terms of pr , which is too 
long to put here. Solving the Hamilton-Jacobi equation for pr , we 
obtain

p±
r (r) = A±

r (r)

h (r) H̃ (r)
(29)

where +/− denotes the outgoing/ingoing solutions. Here, A±
r (r)

are regular functions of r without poles, the detailed forms of 
which are rather complicated and not relevant. In the denominator 
of p±

r (r), we define
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H̃ (r) ≡ h (r) − ε
(

E/mp
) [E + LNφ (r)

]2
m2

,

ε
(

E/mp
)≡ 1 − g2

(
E/mp

)
f 2
(

E/mp
) . (30)

The corresponding action is

I± = −Et +
∫

p±
r (r)dr + Lφ, (31)

where the imaginary part of I± comes from the integral of p±
r (r).

According to the Hamilton-Jacobi method, the residues of p±
r (r)

lead to the Hawking temperature of the radiation. So the poles of 
p±

r (r) correspond to the locations of the horizons of the FF rain-
bow black hole (26). Eqn. (29) shows that the poles of p±

r (r) are at 
the location where h (r) = 0 or H̃ (r) = 0. For h (r) = 0, one simply 
has r = r± . Moreover, it can show that there are also two solu-
tions to H̃ (r) = 0, namely r = r̃± with r̃+ ≥ r̃− . The ordering of 
r± and r̃± depends on the sign of ε

(
E/mp

)
. Since h′ (r) > 0 for 

r ≥ r+ and h′ (r) < 0 for r ≤ r− , we then have r̃+ ≥ r+ ≥ r− ≥ r̃−
when ε

(
E/mp

)
> 0. In this case, r̃+ is the radius of the outermost 

horizon. Similarly, in the case with ε
(

E/mp
)
< 0, the radius of the 

outermost horizon is r+ .
To find the Hawking temperature on the outermost horizon, we 

need to calculate the imaginary part of I± by integrating p±
r (r)

along the semicircle around the outermost horizon. As shown in 
[70,71], the probability of a particle tunneling from inside to out-
side the horizon is

Pemit ∝ exp

[
−2

h̄
(Im I+ − Im I−)

]
. (32)

For a particle of energy E and angular momentum L residing in a 
system with temperature T and angular velocity ω, the Maxwell–
Boltzmann distribution is [72]

P ∝ exp

[
− E − ωL

T

]
. (33)

From eqn. (33), the effective Hawking temperature can be read off 
from the Boltzmann factor in Pemit :

T̃h = h̄
[

E + Nφ (rh) L
]

2 (Im I+ − Im I−)
, (34)

where −Nφ (rh) = −g̃tφ/g̃φφ = −gtφ/gφφ is the angular velocity of 
the FF rainbow BTZ black hole, and rh = r+ or r̃+ is the outermost 
horizon. For the ε

(
E/mp

)
< 0 and ε

(
E/mp

)
> 0 cases, we find

• ε
(

E/mp
)
< 0: The outermost horizon is at r = r+ . Using the 

residue theory for the semi circle around r = r+ , we get

Im I+ = Im I− = π
[

E + Nφ (r+) L
]

h′ (r+)
, (35)

which gives the effective Hawking temperature

T̃h = ∞. (36)

• ε
(

E/mp
)
> 0: The outermost horizon is at r = r̃+ . Using the 

residue theory for the semi circle around r = r̃+ , we get

Im I+ = 0 (37)

Im I− = −2π
[

E + Nφ (r+) L
]

H̃ ′ (r̃+
)

×

√√√√√ g2
(

E/mp
)(

1 + L2

m2 r̃2+

)
f 2
(

E/mp
) − L2

m2r̃2+
, (38)
which gives the effective Hawking temperature

T̃h = h̄H̃ ′ (r̃+
)

4π

√
1 − ε

(
E/mp

)(
1 + L2

m2r̃2+

) . (39)

When g
(

E/mp
) = f

(
E/mp

) = 1, one has ε
(

E/mp
) = 0, r̃+ =

r+ and H̃ (r) = h (r), which means that, as expected, T̃h of the 
FF rainbow BTZ black hole would reduce to Th of the BTZ 
black hole, given in eqn. (12). To express T̃h in terms of E
and L, we need to solve H̃ (r) = 0 for r̃+ , whose expression is 
quite complicated. However for ε

(
E/mp

)� 1, one has that, to 
O
(
ε
(

E/mp
))

,

T̃h ≈ Th

⎧⎪⎪⎨
⎪⎪⎩1 + ε

(
E/mp

)
2

⎡
⎢⎢⎣1 + L2

m2r2+

+
h̄2
(

E − J L
2r2+

)2(
2
l2

+ 3 J 2

2r4+

)
8π2T 2

h m2
−

h̄

(
E − J L

2r2+

)
L J

π Thm2r3+

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(40)

Since the Hawking radiation spectrum is dominated by low 
angular momentum modes [73], we can set L = 0 for simplic-
ity. In this case, the effective Hawking temperature becomes

T̃h ≈ Th

⎧⎪⎪⎨
⎪⎪⎩1 + ε

(
E/mp

)
2

⎡
⎢⎢⎣1 +

h̄2 E2
(

2
l2

+ 3 J 2

2r4+

)
8π2T 2

h m2

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ , (41)

which shows that the rainbow gravity correction tends to in-
crease the Hawking temperature of the BTZ black hole.

The effective Hawking temperature of an ordinary (SF) rainbow 
BTZ black hole (4) is given by [21,39,48,49]

T̃h = Th
g
(

E/mp
)

f
(

E/mp
) = Th

√
1 − ε

(
E/mp

)
, (42)

where has a simpler expression and is quite different from that of 
a FF rainbow BTZ black hole. While the effective Hawking tempera-
ture in the FF case depends on the energy and angular momentum 
of the raidatated particles, eqn. (42) shows that the effective Hawk-
ing temperature in the SF case only depends on the energy of 
the raidatated particles. Note that the effective Hawking temper-
ature of the SF rainbow BTZ black hole is always finite even when 
ε
(

E/mp
)
< 0.

3.3. Thermodynamics of FF static rainbow BTZ black hole

For simplicity, we estimate the rainbow corrected temperature 
and entropy for a FF static rainbow BTZ black hole, which has 
J = 0. First, we can use the Heisenberg uncertainty principle to 
estimate the momentum p of an emitted particle [74,75]:

p ∼ δp ∼ h̄/δx ∼ h̄/r̃+. (43)

Using H̃
(
r̃+
) = 0 and eqns. (43) and (1), we can express the en-

ergy E in terms of the black hole mass M . The effective Hawking 
temperature (39) then can be written as a function of M , T (M), 
which can be interpreted as the rainbow corrected temperature of 
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Fig. 1. Plots of the corrected temperature T (M) and entropy S (M) of a FF rainbow BTZ black hole for various values of η.

Fig. 2. Plots of the corrected temperature T (M) and entropy S (M) of a SF rainbow BTZ black hole for various values of η.
the black hole. Using the first law of black hole thermodynamics, 
we find that the entropy of the black hole is

S (M) =
∫

dM

T (M)
. (44)

When M � h̄2

m2l2
, the corrected Hawking temperature and entropy 

are estimated as

T (M) ∼ h̄
√

M

2π l

[
1 + ε

(
m/mp

)
(M + 1)

2M

]
,

S (M) ∼ h̄M
3
2

3lπ

[
1 + ε

(
m/mp

)
(M + 3)

2M

]
, (45)

respectively.
To numerically investigate T (M) and S (M), we focus on the 

Amelino-Camelia dispersion relation (3) with n = 2 and η > 0. We 
plot T (M) and S (M) for various values of η in Fig. 1, where we 
take m = 0.01, l = 1 and h̄ = 1. The left panel of Fig. 1 shows that 
the black hole temperature increases with increasing η, which im-
plies that the rainbow effects would speed up the evaporation of 
the black hole. Moreover, the terminal temperature is zero when 
η = 0 while it is greater than zero when η > 0, which means 
the rainbow effects would lead to a more violent death of the 
black hole. On the other hand, the right panel of Fig. 1 shows 
the black hole entropy decreases with increasing η. Therefore, the 
black hole tends to store less information when the rainbow ef-
fects are turned on.

Similarly, we can estimate the rainbow corrected temperature 
and entropy of a SF rainbow BTZ black hole with J = 0. For the 
Amelino-Camelia dispersion relation (3) with n = 2 and η > 0, 
eqns. (1), (3) and (43) give the rainbow modified temperature of 
the static SF rainbow BTZ black hole

T (M) = h̄
√

M

2π l

√
1 − η

1 + m2M

M + η
. (46)

The entropy of the SF static rainbow BTZ black hole is also given 
by

S (M) =
∫

dM

T (M)
. (47)

We plot T (M) and S (M) for various values of η in the SF rainbow 
BTZ case in Fig. 2, where we take m = 0.01, l = 1 and h̄ = 1. Con-
trary to the FF rainbow BTZ case (the left panel of Fig. 1), the left 
panel of Fig. 2 shows that, in the SF rainbow BTZ case, the black 
hole temperature decreases with increasing η, and hence the rain-
bow effects would slow down the evaporation of the black hole. 
Additionally, the terminal temperature is always zero even if η > 0. 
The right panel of Fig. 2 shows that the black hole entropy in-
creases with increasing η in the SF rainbow BTZ case, while the 
right panel of Fig. 1 shows that the black hole entropy decreases 
with increasing η in the FF rainbow BTZ case.

4. Discussion and conclusion

In this paper, we considered a FF rainbow BTZ black hole and 
analyzed the effects of rainbow gravity on the temperature and 
entropy. The metric of the FF rainbow BTZ black hole was first de-
rived. Then, we used the Hamilton-Jacobi method to obtain the ef-
fective Hawking temperature of the rainbow BTZ black hole, which 
was shown to depend on the energy and angular momentum of 
radiated particles. Note that, for a massless particle, one has
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Table 1
Results and implications for the Hawking temperature and the black hole entropy for the FF and SF rainbow BTZ black holes in the subluminal case.

FF rainbow BTZ black hole SF rainbow BTZ black hole

Temperature The rainbow effects increase the temperature, which leads to a more 
violent death with a nonzero terminal temperature.

The rainbow effects decrease the temperature, which leads to a more 
peaceful death with a zero terminal temperature.

Entropy The rainbow effects decrease the entropy, which means the black 
hole can store less information.

The rainbow effects increase the entropy, which means the black 
hole can store more information.
E

p
=
√

1 − ε
(

E/mp
)
, (48)

which means that ε
(

E/mp
)

> 0 corresponds to the subluminal 
case that has E/p < 1, and that ε

(
E/mp

)
< 0 to the superlumi-

nal case that has E/p > 1. It was found that the radiated particles 
experience an infinite effective Hawking temperature in the super-
luminal case, which might shed light on the black hole firewall 
paradox. However, the effective Hawking temperature of a SF rain-
bow BTZ black hole is always finite. In the subluminal case, the 
effective Hawking temperature was given in eqn. (39), and the cor-
rected temperature and entropy of the black hole were estimated 
using the uncertainty principle. Focusing on the Amelino-Camelia 
dispersion relation, we numerically studied the temperature and 
entropy of the SF and FF rainbow BTZ black holes. The correspond-
ing results and implications are summarized in Table 1.

We have discussed rainbow Schwarzschild black holes in the SF 
[39] and FF [40] cases. For FF and SF rainbow Schwarzschild black 
holes, we found that the effects of rainbow gravity play a similar 
role, e.g., they tend to decrease the Hawking temperature and in-
crease the black hole entropy in the subluminal case. However, our 
results showed that the Hawking temperature and entropy of SF 
and FF rainbow BTZ black holes behave rather differently. It seems 
that the effects of rainbow gravity are quite model-dependent. So 
it would be interesting to study the thermodynamic properties of 
various black holes of different theories of gravity in different rain-
bow models, which may help us explore the effects of quantum 
gravity.
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