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Abstract. We discuss an explicit realization of the dissipative dynamics anticipated in the
proof of ’t Hooft’s existence theorem, which states that “For any quantum system there exists at
least one deterministic model that reproduces all its dynamics after prequantization”. – There is
an energy-parity symmetry hidden in the Liouville equation, which mimics the Kaplan-Sundrum
protective symmetry for the cosmological constant. This symmetry may be broken by the coarse-
graining inherent in physics at scales much larger than the Planck length. We correspondingly
modify classical ensemble theory by incorporating dissipative fluctuations (information loss) –
which are caused by discrete spacetime continually “measuring” matter. In this way, aspects
of quantum mechanics, such as the von Neumann equation, including a Lindblad term, arise
dynamically and expectations of observables agree with the Born rule. However, the resulting
quantum coherence is accompanied by an intrinsic decoherence and continuous localization
mechanism. Our proposal leads towards a theory that is linear and local at the quantum
mechanical level, but the relation to the underlying classical degrees of freedom is nonlocal.

1. Introduction
There is a growing number of deterministic models of quantum mechanical objects which are
based on conjectured fundamental information loss or dissipation mechanisms [1–7], see also
Refs. [8–10].

Such studies are largely motivated by unresolved issues surrounding “quantum gravity”,
i.e., by the conflict between quantum mechanics necessitating an external time and time
reparametrization invariance in general relativity which defies its existence. Furthermore,
despite its great success in describing statistical aspects of experiments, quantum theory itself
is problematic. This arises foremost from its indeterministic features and is clearly seen, for
example, in the unresolved measurement problem (also “wave function collapse” or “objective
reduction”). Therefore, there is ample motivation for reconsidering the foundations and trying
to understand the emergence of quantum mechanics from possibly simpler structures beneath.

The construction of models, so far, proceeded mostly case by case, however, guided by the
idea that quantum states may actually represent equivalence classes of deterministically evolving
“classical” states – which become indistinguishable when affected by the conjectured information
loss or dissipative process [1]. The existence theorem by ’t Hooft shows that the evolution of all
quantum mechanical objects that are characterized by a finite dimensional Hilbert space can be
captured by a dissipative process [11]. The generalization for objects described by a finite set of
beables [12] is given in Ref. [13].

However, it has not been shown before how to complement such existence theorem by a
dynamical theory. In order to describe the quantum mechanical world, such a theory has to deal
with interacting as well as approximately isolated objects that exist throughout a large range
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of length and energy scales. Stepping forward, we show here that essential aspects of quantum
mechanics can be generated by a generalization of the Liouville equation incorporating suitable
fluctuations. Their effect is quite similar to dissipation caused by measurements and described
by a Lindblad equation in quantum mechanics. However, the present approach is based on
classical statistical mechanics. This is motivated by considerations of a fundamentally atomistic
spacetime structure, the evolution of which results in information loss affecting all matter.

The approach presented here has been initiated in Ref. [2]. It leads us to the emergence of
quantum states in a classical ensemble theory which evolve according to the Schrödinger picture
embodied in the von Neumann equation, it reproduces aspects of the Born rule, and, curiously, it
may be connected to the breaking of the Kaplan-Sundrum energy-parity symmetry, which could
protect the cosmological constant against the far too large corrections determined by particle
physics scales [14,15].

2. A quantum-like formulation of classical Hamiltonian dynamics
We consider objects with a single continuous degree of freedom, in order to keep the notation
as simple as possible. Everything that follows in this section, however, is easily repeated for
interacting few-body systems and fields.

To begin with, we assume that all forces are conservative and that Hamilton’s equations are
determined by a generic Hamiltonian function:

H(x, p) :=
1
2
p2 + v(x) , (1)

in terms of generalized coordinate x and momentum p, and where v(x) denotes the “true”
potential. In Section 4, we will come back to the notion of the true potential and distinguish it
from a related coarse-grained potential V (x).

An ensemble of such objects, for example, following trajectories with different initial
conditions, is described by a distribution function f in phase space, i.e., by the probability
f(x, p; t)dxdp to find a member of the ensemble in an infinitesimal volume at point (x, p). This
distribution evolves according to the Liouville equation:

−∂tf =
∂H

∂p
· ∂f
∂x
− ∂H

∂x
· ∂f
∂p

= {p∂x − v′(x)∂p}f , (2)

with v′(x) := dv(x)/dx. – We recall that the relative minus sign in the Poisson bracket, or
between terms here, reflects a symplectic phase space symmetry. This will translate into the
familiar commutator structure in Eq. (5).

A Fourier transformation, f(x, p; t) =
∫

dy e−ipyf(x, y; t), replaces the Liouville equation by:

i∂tf = { − ∂y∂x + yv′(x)}f , (3)

without changing the notation for the distribution function, whenever changing variables.
Thus, momentum is eliminated and a doubled number of coordinates results. Finally, with
the transformation:

Q := x+ y/2 , q := x− y/2 , (4)

we obtain the Liouville equation in the form:

i∂tf = {ĤQ − Ĥq + E(Q, q)}f , (5)

Ĥχ := −1
2
∂ 2
χ + v(χ) , for χ = Q, q , (6)

E(Q, q) := (Q− q)v′(Q+ q

2
)− v(Q) + v(q) = −E(q,Q) . (7)

Several comments are in order here:
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• The present reformulation of classical dynamics in phase space can be carried out rather
independently of the number of degrees of freedom and is applicable to matrix or Grass-
mann valued variables as well; see, for example, Refs. [3, 15]. Gauge theories or, generally,
theories with constraints have to be examined carefully.

• Most importantly, the Eq. (5) closely resembles the von Neumann equation for a density
operator f̂(t), considering f(Q, q; t) as its matrix elements. We automatically recover the
Hamiltonian operator Ĥ related to the Hamiltonian function, Eq. (1), as in quantum theory.
However, an essential difference consists in the interaction Ê between bra- and ket- states. 1

The Hilbert space and its dual here are coupled, unlike the case of quantum mechanics.

• Alternatively, the Eq. (5) might be read as the Schrödinger equation for two identical (sets
of) degrees of freedom. However, their respective Hamilton operators, ĤQ,q, contribute with
opposite sign, which must be traced to the classical symplectic symmetry. Since their inter-
action Ê is antisymmetric under Q↔ q, the complete (Liouville) operator on the right-hand
side of Eq. (5) has a symmetric spectrum with respect to zero and, in general, will not be
bounded below. This Kaplan-Sundrum energy-parity symmetry has been invoked before to
protect a (near) zero cosmological constant which, otherwise, is threatened by many orders
of magnitude too large zeropoint energies [14,15].

• Finally, the following observation will turn out to be crucial:

Ê ≡ 0 ⇐⇒ true potential v(x) is piecewise constant, linear, or harmonic . (8)

The analogous vanishing of Ê in a field theory is equivalent with having massive or massless
free fields, with or without external sources, and with or without bilinear couplings.

However, with a coupling of the Hilbert space and its dual and without a stable ground state,
in the general case with anharmonic interactions, our reformulation of Hamiltonian dynamics
does not qualify as a quantum theory yet.

The problem of the missing ground state has been a stumbling block for previous attempts
to build deterministic models for quantum objects and has been overcome in some particular
examples [1, 3, 4, 7, 8]. While it has gone unnoticed in approaches based on classical ensemble
theories [5,6,10]. The present work belongs to the latter group and proposes a general solution
of the problem.

3. Are quantum features induced by the “atomistic” spacetime?
We have seen that classical ensemble theory with its Liouville equation implies the absence of
a stable ground state, when rewritten in the form of a Schrödinger equation. Correspondingly,
the analogue of the von Neumann equation obtains the unusual superoperator Ê which couples
the Hilbert space and its dual. – On the other hand, dissipation was of great importance in the
proof of existence of deterministic models for quantum mechanical objects [11,13].

In view of these findings, we depart from two working hypotheses, trying to understand the
transition from classical to quantum behaviour dynamically:
(A) The emergence of quantum states with their dynamics originates from a microscopic
dissipative process beneath which affects all physical objects.
(B) The statistical interpretation of quantum states (Born rule) originates from classical
mechanics in an ensemble theory.

1 We will call this a superoperator, following the terminology of open quantum systems [16].
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The second hypothesis has been illustrated in Ref. [2], to some extent – including some remarks
concerning the issue of negative probabilities, which needs further attention. However, in the
following, we continue to explore the first hypothesis.

We speculate that the atomistic structure of spacetime itself is responsible for effects which
are attributed to quantum mechanics, typically operating at length scales much larger than the
Planck length. Here “atomistic” refers to a discrete set of elements with the presence, or absence,
of a certain order relation between any two elements. Furthermore, this set, in particular the
number of its elements changes according to certain dynamical rules, possibly establishing new
order relations, or erasing old ones. In this way, time “happens”.

Similar ideas about the nature of spacetime have been formulated every now and then
throughout the history of natural philosophy [17, 18]. However, only recently such general
scenario has been elaborated in considerable detail in the theory of causal sets. In mathematical
terms, these are locally finite ordered sets. Their evolution by sequential growth through random
(“sprinkling”) appearance of new set elements together with their order relations has been
studied [18–20].

In the absence of an equally elaborate theory of matter in relation to such atomistic structure
of spacetime, we can nevertheless state the following, concerning the “situation” of a typical
object. Consider an electron, for example, an object that to highest known precision behaves
according to the laws of quantum mechanics. We may term its “situation” a hypothetical
complete set of its properties that are accessible by experiments.

Now, first of all, there are interactions between such object and its environment (the “rest of
the Universe”), last not least gravitational ones. Besides more familiar aspects, however, there
must exist a continual loss of information about its “situation”, since the atomistic spacetime
beneath evolves. With respect to the latter, quantum theory at present deals with very coarse
grained phenomena, when describing the dynamics of matter. Loosely speaking, in order to
fully characterize an electron, the evolution of its causal relations with a continually changing
number of spacetime “atoms” has to come into play. Consequently, in a coarse grained picture
where this is not explicitly taken into account, information is dissipated into this omnipresent
environment of all objects.

Secondly, however, common objects are characterized by a certain persistence, which makes
them identifiable in experiments. Therefore, the information loss must be a delicate one. This
is an important aspect of the conservation of probability to be maintained in ensemble theories
– “objects don’t get lost”.

Contrary to measurement processes in quantum mechanics, where information is transferred
from microscopic to macroscopic objects 2, we propose here that microscopic matter degrees of
freedom are continually “measured” by the evolution of spacetime.

These heuristic considerations lead us to modify the classical ensemble theory in important
ways. We will incorporate dissipation into the Liouville equation, however, in such a way that
probability conservation remains intact. This will provide a mechanism which turns the evolution
of classical objects, described by an ensemble theory as in Section 2, into the Schrödinger
evolution of quantum objects, with a state space based on a stable ground state.

4. From Liouville equation to von Neumann - Lindblad equation
Given that spacetime has an atomistic structure, there must be a characteristic length scale
where the continuum description of all phenomena breaks down.

This implies, in particular, that one might overlook important traces of the atomistic structure
by employing continuum quantities which allow to arbitrarily extrapolate their functional
description to scales l ≈ lPl, where lPl denotes the Planck length.
2 In a way which is not understood in all its aspects in theory. For recent discussions, which critically review
related ideas, see Refs. [21, 22].
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Instead of having such a coarse grained potential function V (x), for example, the true potential
likely becomes a piecewise defined function v(x), when approaching the Planck scale in the
continuum picture. Thus, the function V (x) is an approximation to v(x) and the difference
between the two must give rise to local fluctuations δV (x). Therefore, we set:

v(x) = V (x) + δV (x) , (9)

in order to map behaviour at small spacetime scales to its coarse grained description.
Furthermore, we speculate that the true potential can be represented as a piecewise constant,

linear, or harmonic function. This assumption may lead away from the strategy to adapt
continuum quantities to a discrete spacetime – for example, by approximating a quartic potential
by a quartic expression with support on the elements of a causal set. Yet it seems possible to
formulate it entirely based on concepts that are innate to a causal set, such as done for free
particles in Refs. [23, 24]. 3

The fluctuations are treated as white noise with mean and correlation, respectively, given by:

〈δV (x)〉 = 0 , (10)

〈δV (x)δV (y)〉 = ν2(x)δ(x− y)/δ(0) , (11)

where ν(x) describes the width of the local distribution of fluctuations. This distribution cannot
be assessed without knowing how forces arise near the Planck scale. 4

Given these assumptions, using the true potential v(x) in Eq. (5), the troubling superoperator
Ê vanishes, in accordance with our observation (8). Next, we employ Eq. (9), to reexpress the
remaining terms by coarse grained ones. This yields a von Neumann equation incorporating
fluctuating terms:

∂tf̂ = −i[Ĥeff , f̂ ] , (12)

where the effective Hamilton operator is now given by:

Ĥeff := Ĥχ + δV (χ) , (13)

in the coordinate representation, cf. Eq. (6), and incorporates the coarse grained potential V (χ).
In order to appreciate the influence of the fluctuations, we formally solve Eq. (13) by

f̂(t) = exp(−iĤeff t)f̂(0)exp(+iĤeff t). Expanding this solution in powers of t and averaging
over the fluctuations, with the help of Eqs. (10)–(11), we obtain to first order in the correlation
function:

∂tf̂ = −i[Ĥχ, f̂ ]− t({ν̂2, f̂} − 2ν̂f̂ ν̂) , (14)

with {ν̂2, f̂}(x, y) := ν2(x)f(x, y) + f(x, y)ν2(y) and (ν̂f̂ ν̂)(x, y) := ν2(x)f(x, y)δ(x − y)/δ(0).
Thus, we arrive at a master equation with a dissipative “Lindblad term”, in addition to the
leading commutator, which is responsible for unitary quantum evolution in the absence of
dissipation.

We observe that the Lindblad term explicitly breaks the Kaplan-Sundrum energy-parity
symmetry, which we mentioned in Section 2. – However, our master equation preserves the
normalization of f̂ , say Trf̂ = 1, which expresses the conservation of probability.

Another interesting aspect of Eq. (14) is the implied decoherence and continuous localization
mechanism, which causes the decay of spacelike superpositions (“Schrödinger cat states”). While

3 The author is not aware of previous studies to what extent dynamics and, in particular, forces mediated by
some correspondent of gauge fields can originate in an atomistic picture of spacetime.
4 Depending on their origin, the fluctuations might affect also kinetic terms in the Hamiltonian and resulting
master equation.
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the diagonal matrix elements of f̂ are not affected by the Lindblad term, the off-diagonal matrix
elements decay:

f(x, y; t) = f(x, y; 0)e−
1
2
t2(ν2(x)+ν2(y)) , (15)

where we neglected the effect of Ĥχ for simplicity, since it does not influence the decay.
Since there is no theory yet to tell us about the correlation function ν2, it may suffice to

point out that the consideration of stochastic effects to modify quantum mechanics has quite a
history, see, for example, Refs. [21,22,25–28] and the literature cited there. This is motivated by
attempts to solve the infamous measurement problem and to account for the apparent absence
of superposition states of macroscopic objects, besides ideas about quantum gravity leading to
secondary stochastic effects [29–31]. In this context, various proposals for the analogue of the
“Lindblad operator” ν̂ in Eq. (14) have been made and, usually, decoherence and decay which
is exponential in t have been obtained.

While these issues have not been settled, we presently suggest a new perspective: if quantum
mechanical behaviour emerges dynamically, as surmised here, this will likely influence how the
measurement problem and the problems of “wave function collapse” or “objective reduction”
will ultimately be resolved.

Generally, the Lindblad master equations present a large class of linear Markovian master
equations, which are usually derived to describe quantum systems that interact with particular
environments [16, 32, 33]. Linearity in the density matrix is an important feature of Eq. (14).
It implies here that time evolution is related to a contraction semigroup. We have derived
this quantum mechanical master equation, beginning with classical statistical mechanics, by
incorporating a number of assumptions about the nature of atomistic spacetime, which plays
the role of the “universal environment”.

5. Conclusions
We have presented simple arguments to the effect that quantum mechanics could emerge from
classical statistics and concerns dynamics over an atomistic spacetime that is observed with
low resolution (i.e., at large distance scales). We were motivated here by the theory of causal
sets, where such a description of spacetime does not follow from a quantization of gravity but
is assumed as a primary feature.

Several topics for future study remain. First of all, generalizing the approach described here
to field theories poses the hard problem to undertand the generation of interactions from the
shortest spacetime scale upwards. Our approach, paying special attention to the observation
(8), seems to require that field theories should become noninteracting in the atomistic limit.
Secondly, as we mentioned and discussed previously in Ref. [2], the problem of potentially
negative probabilities has to be addressed. Finally, work is in progress making newly use of the
formalism adopted here, of using Hilbert space operators to describe classical statistics, which
was originally suggested in works of Koopman and von Neumann [34,35].
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