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Abstract. Verlinde’s proposal on the entropic origin of gravity is based strongly on the
assumption that the equipartition law of energy holds on the holographic screen induced by
the mass distribution of the system. However, from the theory of statistical mechanics we
know that the equipartition law of energy does not hold in the limit of very low temperature.
Inspired by the Debye model for the equipartition law of energy in statistical thermodynamics
and adopting the viewpoint that gravitational systems can be regarded as a thermodynamical
system, we modify Einstein field equations. We also perform the study for Poisson equation
and modified Newtonian dynamics (MOND). Interestingly enough, we find that the origin
of the MOND theory can be understood from Debye entropic gravity perspective. Thus
our study may fill in the gap existing in the literature understanding the theoretical origin
of MOND theory. In the limit of high temperature our results reduce to their respective
standard gravitational equations.
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1 Introduction

Thermodynamics of black holes reveals that geometrical quantities such as horizon area and
surface gravity are related to the thermodynamic quantities such as entropy and temperature.
The first law of black hole thermodynamics implies that the entropy and the temperature
together with the energy (mass) of the black hole satisfy dE = TdS [1]. In 1995 Jacobson [2]
put forwarded a new step and suggested that the hyperbolic second order partial differential
Einstein equation for the spacetime metric has a predisposition to thermodynamic behavior.
He disclosed that the Einstein field equation is just an equation of state for the spacetime and
in particular it can be derived from the proportionality of entropy and the horizon area to-
gether with the fundamental relation δQ = TdS. Following Jacobson, however, several recent
investigations have shown that there is indeed a deeper connection between gravitational dy-
namics and horizon thermodynamics. The deep connection between horizon thermodynamics
and gravitational dynamics, help to understand why the field equations should encode in-
formation about horizon thermodynamics. These results prompt people to take a statistical
physics point of view on gravity.

A next great step put forwarded by Verlinde [3] who claimed that the laws of gravity are
not fundamental and in particular they emerge as an entropic force caused by the changes
in the information associated with the positions of material bodies. According to Verlinde
proposal when a test particle with mass m approaches a holographic screen from a distance
△x, the change of entropy on the holographic screen is

△S = 2π
m

~
△x, (1.1)

where we have set kB = c = 1 for simplicity, through this paper. The entropic force can arise
in the direction of increasing entropy and is proportional to the temperature,

F = T
△S

△x
. (1.2)

Verlinde’s derivation of Newton’s law of gravitation at the very least offers a strong analogy
with a well understood statistical mechanism. Therefore, this derivation opens a new window
to understand gravity from the first principles. The study on the entropic force has raised a
lot of attention recently (see [4–10] and references therein).

Verlinde’s proposal on the entropic origin of gravity is based strongly on the assumption
that the equipartition law of energy holds on the holographic screen induced by the mass
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distribution of the system, namely, E = 1
2
NT . However, from the theory of statistical

mechanics we know that the equipartition law of energy does not hold in the limit of very
low temperature. By low temperature, we mean that the temperature of the system is much
smaller than Debye temperature, i.e. T ≪ TD. It was demonstrated that the Debye model is
very successful in interpreting the physics at the very low temperature. Hence, it is expected
that the equipartition law of energy for the gravitational systems should be modified in the
limit of very low temperature (or very weak gravitational field).

It is important to note that Verlinde got the Newton’s law of gravitation, Einstein
equations and Poisson equation with the assumption that each bit on holographic screen is
free of interaction. It should be more general that the bits on holographic screen interact
each others. In such case, one could anticipate that the Newton’s law of gravitation, Einstein
equation and Poisson equation must be modified. For example, Gao [11] studied three dimen-
sional Debye model and modified the entropic force and henece Friedmann equations. Such
modification can interpret the current acceleration of the universe without invoking any kind
of dark energy [11]. In this paper we use the Debye model to modify the entropic gravity.
We find that this modified entropic force affects on the law of gravitations and modify them
accordingly.

This paper is structured as follows. In the next section we derive Einstein field equations
from Debye entropic gravity. The theoretical origin of MOND theory is discussed in the
framework of Debye entropic gravity in section III. Section IV is devoted to the derivation of
the Poisson equation from Debye entropic force scenario. We finish our paper with conclusions
which appear in section V.

2 Einstein equations from Debye entropic gravity

Following Verlinde’s scenario, gravity may have a statistical thermodynamics origin. Thus,
any modification of statistical mechanics should modify the laws of gravity accordingly. In
this section we use the modified equipartition law of energy to obtain the modified Einstein
equations.

We consider a system that its boundary is not infinitely extended and forms a closed
surface. We can take the boundary as a storage device for information, i.e. a holographic
screen. Assuming that the holographic principle holds, the maximal storage space, or total
number of bits N , is proportional to the area A,

N =
A

G~
. (2.1)

Suppose there is a total energy E present in the system. Let us now just make the simple
assumption that the energy is divided evenly over the bits. Each bit on the holographic screen
has one dimensional degree of freedom, hence we can use the one dimensional equipartition
law of energy. The equipartition law of energy which is valid in all range of temperatures is

E =
1

2
NTD(x), (2.2)

where T is the temperature of the screen and D(x) is the one dimensional Debye function
defined as

D(x) ≡
1

x

∫ x

0

y

ey − 1
dy, (2.3)
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and x is related to the temperature

x ≡
TD

T
, (2.4)

where TD is the Debye temperature. Using the equivalence between mass and energy, E = M ,
as well as eq. (2.1), we can rewrite eq. (2.2) in a more general form,

M =
1

2G~

∮

S
TD(x)dA, (2.5)

where the integration is over the holographic screen. For temperature, we use the Unruh
temperature formula on the holographic screen,

T =
~a

2π
, (2.6)

where a denotes the acceleration. The acceleration has relation with the Newton’s potential
and in general relativity it may be written as

ab = −∇bφ, (2.7)

where φ is the natural generalization of Newton’s potential in general relativity and for it we
have [12],

φ =
1

2
Ln(−ξaξa), (2.8)

where ξa is a global time like Killing vector. The exponent eφ represents the redshift factor
that relates the local time coordinate to that at a reference point with φ = 0, which we will
take to be at infinity. We choose the holographic screen S as a closed equipotential surface
or in other words, a closed surface of constant redshit φ. Therefore eq. (2.6) may be written
as [3]

T =
~

2π
eφNa∇aφ, (2.9)

where Na is the unit outward pointing vector that is normal to the equipotential holographic
screen S and time like Killing vector ξb. We inserted a redshift factor eφ, because the
temperature T is measured with respect to the reference point at infinity. Because Na is
normal to the equipotential holographic screen, for it we have

Na =
∇aφ

(∇bφ∇bφ)1/2
. (2.10)

Therefore we can rewrite eq. (2.9) as

T =
~

2π
eφ(∇aφ∇aφ)

1/2. (2.11)

Substituting eq. (2.9) in eq. (2.5), we get

M =
1

4πG

∮

S
eφNa∇aφD(x)dA. (2.12)

Following the same logic of [12], we can obtain

M = −
1

8πG

∮

S
∇aξbD(x)dSab, (2.13)
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where dSab is the two-surface element [13]. On the other hand, according to the Stokes
theorem, we have [13]

∮

S
BabdSab = 2

∫

Σ

∇bB
abdΣa, (2.14)

where Bab is an antisymmetric tensor field and S is the two dimensional boundary of the
hypersurface Σ. dΣa is a directed surface element on Σ and for it we have

dΣa = εnadΣ, (2.15)

where na is the unit normal of the hypersurface Σ and ε is equal to -1 or 1 if the hypersurface
is spacelike or timelike, respectively. Now we apply the Stokes theorem (2.14) for eq. (2.13)
and get

M = −
1

4πG

∫

Σ

∇b[∇
aξbD(x)]dΣa

= −
1

4πG

∫

Σ

[D(x)∇b∇
aξb +∇aξb∇bD(x)]dΣa

= −
1

4πG

∫

Σ

[−D(x)∇b∇
bξa +∇aξb∇bD(x)]dΣa, (2.16)

where in the last step we have used the Killing equation,

∇aξb +∇bξa = 0. (2.17)

Now we use the relation [12]
∇a∇aξ

b = −Rb
aξ

a, (2.18)

which is implied by the Killing equation for ξa, and get

M = −
1

4πG

∫

Σ

[Rabξ
bD(x) +∇aξ

c∇cD(x)]dΣa

= −
1

4πG

∫

Σ

[Rabξ
bD(x) + e−2φ(−ξbξb)∇aξ

c∇cD(x)]dΣa

=
1

4πG

∫

Σ

[RabD(x)− e−2φξb∇aξ
c∇cD(x)]naξbdΣ, (2.19)

where in the second line we have used eq. (2.8). In the last line we have used dΣa = −nadΣ,
because the hypersurface Σ is spacelike.

On the other hand, M can be expressed as an integral over the enclosed volume of
certain components of stress energy tensor Tab [12],

M = 2

∫
(

Tab −
1

2
T gab

)

naξbdΣ. (2.20)

Equating eqs. (2.19) and (2.20), we find

D(x)Rab − e−2φξb∇aξ
c∇cD(x) = 8πG

(

Tab −
1

2
T gab

)

. (2.21)

The above equation is the modified Einstein equations resulting from considering the Debye
correction to the equipartition law of energy in the framework of entropic gravity scenario.
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This equation is now valid for all range of temperature, since we have assumed the general
equipartition law of energy. Therefore, we see that in Verlinde’s approach, any modification of
first principles such as equipartition law of energy will modify the gravitational field equations.
The question whether the modified term in Einstein equation can be detectable practically
or not needs more investigations in the future. One needs to first specify the Debye function
D(x) and then try to solve the field equations (2.21). The resulting solutions should be
checked with experiments or observations. It is clear that the correction term only plays role
in very low temperature, in which the curvature of spacetime tends to zero and it becomes
flat.

It is instructive to examine the modified Einstein equations in the high temperatures
limit. According to the Unruh temperature formula we have

g =
2π

~
T, (2.22)

where g is the norm of the gravitational acceleration. Therefore, the strength of the gravi-
tational field is proportional to the temperature. Also, we can define the Debye acceleration
relating to the Debye temperature as

gD =
2π

~
TD. (2.23)

Therefore, if the temperature is larger than the Debye temperature, i.e. T > TD, then
the norm of the gravitational acceleration is larger than the Debye acceleration, i.e. g >
gD. In other words, the limit of high temperatures compared to the Debye temperature, is
corresponding to the strong gravitational fields. In this case we have T ≫ TD, thus for x
and y in the definition of the Debye function (2.3), we have x ≪ 1 and consequently y ≪ 1.
Therefore we can use the approximation ey ≈ 1+y in the integral of eq. (2.3) and as a result,
the one dimensional Debye function reduces to

D(x) ≈
1

x

∫ x

0

dy = 1. (2.24)

Substituting this result (D(x) = 1) in the modified Einstein equations (2.21), leads to

Rab = 8πG

(

Tab −
1

2
T gab

)

. (2.25)

Therefore, in the temperatures extremely larger than the Debye temperature (very strong
gravitational fields), one obtains the standard Einstein field equations as expected.

3 MOND theory from Debye entropic gravity

Modified Newtonian dynamics (MOND) was proposed to explain the flat rotational curves
of spiral galaxies. A great variety of observations indicate that the rotational velocity curves
of all spiral galaxies tend to some constant value [14]. Among them are the Oort discrepancy
in the disk of Milky Way [15], the velocity dispersions of dwarf Spheroidal galaxies [16] and
the flat rotation curves of spiral galaxies [17]. These observations are in contradiction with
the prediction of Newtonian theory because Newtonian theory predicts that objects that are
far from the galaxy center have lower velocities.
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The most widely adopted way to resolve these difficulties is the dark matter hypothesis.
It is assumed that all visible stars are surrounded by massive nonluminous matters. Another
approach is the MOND theory which was suggested by M. Milgrom in 1983 [18]. This
theory appears to be highly successful for explaining the observed anomalous rotational-
velocity. In fact, the MOND theory is (empirical) modification of Newtonian dynamics
through modification in the kinematical acceleration term ‘a’ (which is normally taken as
a = v2/r ) as effective kinematic acceleration aeff = aµ( a

a0
),

aµ

(

a

a0

)

=
GM

R2
, (3.1)

where µ = 1 for usual-values of accelerations and µ = a
a0
(≪ 1) if the acceleration ‘a’ is

extremely low, lower than a critical value a0 = 10−10 m/s2. At large distance, at the galaxy
out skirt, the kinematical acceleration ‘a’ is extremely small, smaller than 10−10 m/s2 , i.e.,
a ≪ a0, hence the function µ( a

a0
) = a

a0
. Consequently, the velocity of star on circular orbit

from the galaxy-center is constant and does not depend on the distance; the rotational-curve
is flat, as it observed.

Although MOND theory can explain the flat rotational curve, however its theoretical
origin remains un-known. Thus, it is well motivated to establish a gravitational theory which
can results MOND theory naturally. In this section, we are able to show that the MOND
theory can be extracted completely from the Debye entropic gravity. This derivation further
support the viability of Debye entropic gravity formalism.

Again, we consider a spherical holographic screen with radius R as the boundary of the
system. Combining eqs. (3) and (4), and using the equivalence between mass and energy as
well as relation A = 4πR2, we obtain

2π

~
TD(x) =

GM

R2
. (3.2)

Using the Unruh temperature formula (2.6), the above equation may be written as

aD(x) =
GM

R2
. (3.3)

Also, if we use the Unruh temperature formula in the definition of x, i.e. eq. (2.4), and define
a0 as

a0 ≡
12TD

π~
, (3.4)

then we obtain

x =
π2a0
6a

. (3.5)

Using the above result in eq. (3.3) gives

aD

(

π2a0
6a

)

=
GM

R2
. (3.6)

This is the MOND theory resulting from Debye entropic gravity. If we compare this equation
with well-known eq. (3.1), we see that we can define µ function as

µ

(

a

a0

)

≡ D

(

π2a0
6a

)

. (3.7)
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In what follows we show that this function satisfies the conditions similar to those of µ
function in eq. (3.1). Let us examine eq. (3.6) in two limits of temperatures. First, we
consider the limit corresponding to the temperatures large relative to the Debye temperature.
In this case x ≪ 1 (a ≫ a0) we have D(x) = 1. Thus eq. (3.6) reduces to

a =
GM

R2
. (3.8)

Therefore, for strong gravitational fields, eq. (3.6) turns into the standard Newtonian dy-
namics. As we discussed, for a ≫ a0 we have also µ( a

a0
) = 1. We conclude that in the limit

of a ≫ a0 both D(x) and µ(x) have the same behavior and become equal to 1.

The second limit corresponds to the temperatures extremely smaller than the Debye
temperature, T ≪ TD, that is to say in the weak gravitational fields. In this limit, we have
x ≫ 1 (a ≪ a0), and the Debye function can be expanded as

D(x) =
1

x

∫ ∞

0

y

ey − 1
dy ≈

π2

6x
. (3.9)

If we use the approximation (3.9) in eq. (3.6), we obtain

a

(

a

a0

)

=
GM

R2
. (3.10)

Therefore, the Newtonian dynamics is modified for weak gravitational fields, e.g. at large
distance from the galaxy center, namely at the galaxy out skirt. Thus the origin of the
MOND theory can be understood completely in the framework of Debye entropic gravity. In
this way we fill in the gap existing in the literature understanding the theoretical origin of
MOND theory.

4 Poisson equation from Debye entropic force

Finally, we obtain the modified Poisson equation by taking into account the Debye correction
to the equipartition law of energy. We choose a holographic screen S corresponding to an
equipotential surface with fixed Newtonian potential φ0. We assume that the entire mass
distribution given by ρ(~x) is contained inside the volume enclosed by the screen and there are
some test particles outside this volume. To identify the temperature of the holographic screen,
we take a test particle and move it close to the screen and measure its local acceleration.
The local acceleration is related to the Newton potential as

~a = −~∇φ. (4.1)

Substituting this relation into Unruh temperature formula, we get

T =
~|~∇φ|

2π
. (4.2)

Using the above equation in the definition of x, we have

x ≡
TD

T
=

2πTD

~|~∇φ|
. (4.3)
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Inserting (4.2) in eq. (2.5), after using eq. (2.1) for the number of bits on the holographic
screen, we obtain

M =
1

4πG

∮

S
D(x)~∇φ.d ~A. (4.4)

Using the divergence theorem we can rewrite eq. (4.4) as

M =
1

4πG

∫

V

~∇.[D(x)~∇φ]dV. (4.5)

On the other hand, for the mass distribution M inside the closed surface S, we have the
relation

M =

∫

V
ρ(~x)dV. (4.6)

Equating eqs. (4.5) and (4.6), we get

~∇.[D(x)~∇φ] = 4πGρ(~x). (4.7)

This is the modified Poisson equation which is valid in all range of temperatures. For high
temperatures. i.e. strong gravitational field (x ≪ 1) and hence D(x) = 1. In this case
eq. (4.7) reduces to the standard Poisson equation,

∇2φ = 4πGρ(~x). (4.8)

Thus, considering the gravitational system as a thermodynamical system and taking into
account the Debye model for the modified equipartition law of energy, we see that not only
Einstein equation and MOND theory but also the Poisson equation is modified accordingly.
Clearly the modification of Poisson equation leads to modified Newton’s law of gravitation.

5 Conclusions

In his work, Verlinde applied the equipartition law of energy as E = 1
2
NT on the holographic

screen induced by the mass distribution of the system, and obtained the Einstein equations,
Newton’s law of gravitation and the Poisson equation. But we know from statistical mechan-
ics that the equipartition law of energy does not hold at very low temperatures and it should
be corrected. In this paper, we considered the Debye correction to the equipartition law of
energy as E = 1

2
NTD(x), where D(x) is the Debye function. Following Verlinde’s strategy

on the entropic origin of gravity, we obtained the modified form of the Einstein equations,
MOND theory and the modified Poisson equation. Interestingly enough, we found that the
origin of MOND theory can be understood from the Debye entropic gravity scenario. Since
the MOND theory is an acceptable theory for explanation of the galaxy flat rotation curves,
thus the studies on its theoretical origin is of great importance. This result is impressive
and show that the approach here is powerful enough for deriving the modified gravitational
field equations from Debye model. We also showed that in the temperatures extremely larger
than the Debye temperature (very strong gravitational fields), the obtained modified equa-
tions turn into their respective well-known standard equations. The results obtained here
further support the viability of Verlinde’s formalism.
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deformed Hořava-Lifshitz gravity from entropic force, Commun. Theor. Phys. 56 (2011) 455
[arXiv:1001.5238] [INSPIRE];
Y.-X. Liu, Y.-Q. Wang and S.-W. Wei, A Note on Temperature and Energy of 4-dimensional
Black Holes from Entropic Force, Class. Quant. Grav. 27 (2010) 185002 [arXiv:1002.1062]
[INSPIRE]. R. Konoplya, Entropic force, holography and thermodynamics for static space-times,
Eur. Phys. J. C 69 (2010) 555 [arXiv:1002.2818] [INSPIRE];
H. Wei, Cosmological Constraints on the Modified Entropic Force Model,
Phys. Lett. B 692 (2010) 167 [arXiv:1005.1445] [INSPIRE].

[6] A. Sheykhi, Entropic Corrections to Friedmann Equations, Phys. Rev. D 81 (2010) 104011
[arXiv:1004.0627] [INSPIRE].

[7] Y. Ling and J.-P. Wu, A note on entropic force and brane cosmology, JCAP 08 (2010) 017
[arXiv:1001.5324] [INSPIRE].

[8] L. Modesto and A. Randono, Entropic Corrections to Newton’s Law, arXiv:1003.1998
[INSPIRE];
L. Smolin, Newtonian gravity in loop quantum gravity, arXiv:1001.3668 [INSPIRE];
X. Li and Z. Chang, Debye entropic force and modified Newtonian dynamics,
Commun. Theor. Phys. 55 (2011) 733 [arXiv:1005.1169] [INSPIRE].

[9] Y.-F. Cai, J. Liu and H. Li, Entropic cosmology: a unified model of inflation and late-time
acceleration, Phys. Lett. B 690 (2010) 213 [arXiv:1003.4526] [INSPIRE];
M. Li and Y. Wang, Quantum UV/IR Relations and Holographic Dark Energy from Entropic
Force, Phys. Lett. B 687 (2010) 243 [arXiv:1001.4466] [INSPIRE].

[10] S. Hendi and A. Sheykhi, Entropic Corrections to Einstein Equations,
Phys. Rev. D 83 (2011) 084012 [arXiv:1012.0381] [INSPIRE];
A. Sheykhi and S.H. Hendi, Power-Law Entropic Corrections to Newton’s Law and Friedmann
Equations, Phys. Rev. D 84 (2011) 044023 [arXiv:1011.0676] [INSPIRE];
S. Hendi and A. Sheykhi, Entropic Corrections to Coulomb’s Law,
Int. J. Theor. Phys. 51 (2012) 1125 [arXiv:1009.5561] [INSPIRE];
A. Sheykhi and Z. Teimoori, Modified Friedmann equations from Debye entropic gravity, Gen.
Rel. Grav. 44 (2012) 1129 [arXiv:1111.0903]. A. Sheykhi, Modified Friedmann equations on
the Brane from entropic force, Int. J. Theor. Phys. 51 (2012) 185 [INSPIRE].

[11] C. Gao, Modified Entropic Force, Phys. Rev. D 81 (2010) 087306 [arXiv:1001.4585]
[INSPIRE].

– 9 –

http://dx.doi.org/10.1103/PhysRevD.7.2333
http://inspirehep.net/search?p=find+J+Phys.Rev.,D7,2333
http://dx.doi.org/10.1038/248030a0
http://inspirehep.net/search?p=find+J+Nature,248,30
http://dx.doi.org/10.1103/PhysRevLett.75.1260
http://arxiv.org/abs/gr-qc/9504004
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,75,1260
http://dx.doi.org/10.1007/JHEP04(2011)029
http://arxiv.org/abs/1001.0785
http://inspirehep.net/search?p=find+J+JHEP,1104,029
http://dx.doi.org/10.1103/PhysRevD.81.061501
http://arxiv.org/abs/1001.3470
http://inspirehep.net/search?p=find+J+Phys.Rev.,D81,061501
http://dx.doi.org/10.1103/PhysRevD.81.084012
http://arxiv.org/abs/1002.1136
http://inspirehep.net/search?p=find+J+Phys.Rev.,D81,084012
http://dx.doi.org/10.1103/PhysRevD.81.105012
http://arxiv.org/abs/1002.2292
http://inspirehep.net/search?p=find+J+Phys.Rev.,D81,105012
http://dx.doi.org/10.1103/PhysRevD.81.124006
http://arxiv.org/abs/1003.2312
http://inspirehep.net/search?p=find+J+Phys.Rev.,D81,124006
http://dx.doi.org/10.1088/0253-6102/56/3/11
http://arxiv.org/abs/1001.5238
http://inspirehep.net/search?p=find+J+Comm.Theor.Phys.,56,455
http://dx.doi.org/10.1088/0264-9381/27/18/185002
http://arxiv.org/abs/1002.1062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1062
http://dx.doi.org/10.1140/epjc/s10052-010-1424-1
http://arxiv.org/abs/1002.2818
http://inspirehep.net/search?p=find+J+Eur.Phys.J.,C69,555
http://dx.doi.org/10.1016/j.physletb.2010.07.036
http://arxiv.org/abs/1005.1445
http://inspirehep.net/search?p=find+J+Phys.Lett.,B692,167
http://dx.doi.org/10.1103/PhysRevD.81.104011
http://arxiv.org/abs/1004.0627
http://inspirehep.net/search?p=find+J+Phys.Rev.,D81,104011
http://dx.doi.org/10.1088/1475-7516/2010/08/017
http://arxiv.org/abs/1001.5324
http://inspirehep.net/search?p=find+J+JCAP,1008,017
http://arxiv.org/abs/1003.1998
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.1998
http://arxiv.org/abs/1001.3668
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.3668
http://dx.doi.org/10.1088/0253-6102/55/4/41
http://arxiv.org/abs/1005.1169
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.1169
http://dx.doi.org/10.1016/j.physletb.2010.05.033
http://arxiv.org/abs/1003.4526
http://inspirehep.net/search?p=find+J+Phys.Lett.,B690,213
http://dx.doi.org/10.1016/j.physletb.2010.03.042
http://arxiv.org/abs/1001.4466
http://inspirehep.net/search?p=find+J+Phys.Lett.,B687,243
http://dx.doi.org/10.1103/PhysRevD.83.084012
http://arxiv.org/abs/1012.0381
http://inspirehep.net/search?p=find+J+Phys.Rev.,D83,084012
http://dx.doi.org/10.1103/PhysRevD.84.044023
http://arxiv.org/abs/1011.0676
http://inspirehep.net/search?p=find+J+Phys.Rev.,D84,044023
http://dx.doi.org/10.1007/s10773-011-0989-2
http://arxiv.org/abs/1009.5561
http://inspirehep.net/search?p=find+J+Int.J.Theor.Phys.,51,1125
http://arxiv.org/abs/1111.0903
http://dx.doi.org/10.1007/s10773-011-0892-x
http://inspirehep.net/search?p=find+J+Int.J.Theor.Phys.,51,185
http://dx.doi.org/10.1103/PhysRevD.81.087306
http://arxiv.org/abs/1001.4585
http://inspirehep.net/search?p=find+J+Phys.Rev.,D81,087306


J
C
A
P
1
0
(
2
0
1
2
)
0
1
2

[12] R.M. Wald, General Relativity, Chicago University Press (1984).

[13] E. Poisson, A Relativist‘s Toolkit, Cambridge University Press (2004).

[14] V. Trimble, Existence and Nature of Dark Matter in the Universe,
Ann. Rev. Astron. Astrophys. 25 (1987) 425 [INSPIRE].

[15] J.N. Bahcall, C. Flynn and A. Gould, Local dark matter from a carefully selected sample,
Astrophys. J. 389 (1992) 234 [INSPIRE].

[16] S.S. Voget, M. Mateo, E.W. Olszewski and M.J. Keane, Internal kinematics of the Leo II dwarf
spherodial galaxy, Astorn. J. 109 (1995) 151.

[17] V. Rubin, N. Thonnard and J. Ford, W.K., Rotational properties of 21 SC galaxies with a large
range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/,
Astrophys. J. 238 (1980) 471 [INSPIRE].

[18] M. Milgrom, A Modification of the Newtonian dynamics as a possible alternative to the hidden
mass hypothesis, Astrophys. J. 270 (1983) 365 [INSPIRE]; A Modification of the Newtonian
dynamics: Implications for galaxies, Astrophys. J. 270 (1983) 371 [INSPIRE]; A modification of
the Newtonian dynamics: implications for galaxy systems, Astrophys. J. 270 (1983) 384
[INSPIRE].

– 10 –

http://dx.doi.org/10.1146/annurev.aa.25.090187.002233
http://inspirehep.net/search?p=find+J+Ann.Rev.Astron.Astrophys.,25,425
http://dx.doi.org/10.1086/171201
http://inspirehep.net/search?p=find+J+Astrophys.J.,389,234
http://dx.doi.org/10.1086/158003
http://inspirehep.net/search?p=find+J+Astrophys.J.,238,471
http://dx.doi.org/10.1086/161130
http://inspirehep.net/search?p=find+Astrophys.J,270,365
http://dx.doi.org/10.1086/161131
http://inspirehep.net/search?p=find+J+Astrophys.J.,270,371
http://inspirehep.net/search?p=find+J+Astrophys.J.,270,384

	Introduction
	Einstein equations from Debye entropic gravity
	MOND theory from Debye entropic gravity
	Poisson equation from Debye entropic force
	Conclusions

