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We study the direct CP-violating asymmetries (CPAs) in the two-body Λb decays. We explain the

observed decay branching ratios of Λb → (pK−, pπ−), and find that their corresponding direct

CPAs are (5.8±0.2,−3.9±0.2)%. For Λb → (pK∗−, pρ−), the decay branching ratios and CPAs

in the Standard Model are predicted to be (2.5± 0.5,11.4± 2.1)×10−6 and (19.6± 1.6,−3.7±
0.3)%, respectively. We point out that the large CPA for Λb → pK∗− is promising to be measured

by the CDF and LHCb experiments.
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1. Introduction

Recently, we have pointed out that the direct CP-violating asymmetries (CPAs) in the two-body

baryonic Λb decays can be used to confirm the weak CP phase in the Standard Model (SM) [1].

Since the flavor conservation causes the Λb decays of Λb → pK(∗)− and Λb → pπ−(ρ−) to have

neither color-suppressed nor annihilation contribution, providing the controllable non-factorizable

effects and traceable strong phases, their direct CPAs can be predictable with small hadronic and

other uncertainties.

In this report, we will first explain the branching ratios of Λb → pK− and Λb → pπ−, recently

observed to be [2, 3, 4]

B(Λb → pK−) = (4.9±0.9)×10−6 ,

B(Λb → pπ−) = (4.1±0.8)×10−6 ,

RπK ≡ B(Λb → pπ−)
B(Λb → pK−)

= 0.84±0.22 , (1.1)

with RπK the combined experimental value by CDF and LHCb. As the theoretical approach based

on the generalized factorization can explain the data well, it is demonstrated to be reliable to study

the direct CPAs in Λb → pK−, pπ− and Λb → pK∗−, pρ−.

2. Formalism

In the generalized factorization approach [5], the amplitudes of Λb → pM(V ) with M(V ) =

K−(K∗−) and π−(ρ−) can be derived as

A (Λb → pM) = i
GF√

2
mb fM

[

αM〈p|ūb|Λb〉+βM〈p|ūγ5b|Λb〉
]

,

A (Λb → pV ) =
GF√

2
mV fV ε µ∗αV 〈p|ūγµ(1− γ5)b|Λb〉 , (2.1)

where GF is the Fermi constant, fM(V ) are the meson decay constants, and ε∗
µ is the polarization

for the vector meson. The constants αM (βM) and αV in Eq. (2.1) are related to the (pseudo)scalar

and V −A quark currents, given by αM(βM) =VubV ∗
uqa1 −VtbV ∗

tq(a4 ± rMa6) and αV =VubV ∗
uqa1 −

VtbV ∗
tqa4, where rM ≡ 2m2

M/[mb(mq +mu)], Vi j are the CKM matrix elements, q = s or d, and the

parameters a1,4,6 can be found in Ref. [1]. The matrix elements of the Λb → p baryon transition in

Eq. (2.1) have the general forms:

〈p|ūγµb|Λb〉= ūp

[

f1γµ +
f2

mΛb

iσµνqν +
f3

mΛb

qµ

]

uΛb
,

〈p|ūγµγ5b|Λb〉= ūp

[

g1γµ +
g2

mΛb

iσµνqν +
g3

mΛb

qµ

]

γ5uΛb
,

〈p|ūb|Λb〉= fSūpuΛb
,〈p|ūγ5b|Λb〉= fPūpγ5uΛb

, (2.2)

where f j (g j) ( j = 1,2,3,S and P) are the form factors. For the Λb → p transition, f j and g j from

different currents can be related by the SU(3) flavor and SU(2) spin symmetries [6, 7], giving rise

to f1 = g1 and f2,3 = g2,3 = 0. These relations are also in accordance with the derivations from the
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heavy-quark and large-energy symmetries in Ref. [8]. Note that the helicity-flip terms of f2,3 and

g2,3 vanish due to the symmetries. Moreover, as shown in Refs. [8, 9, 10], f2,3 (g2,3) can only be

contributed from the loops, resulting in that they are smaller than f1(g1) by one order of magnitude,

and can be safely ignored. By equation of motion, we get fS = [(mΛb
−mp)/(mb −mu)] f1 and

fP = [(mΛb
+mp)/(mb +mu)]g1. In the double-pole momentum dependences, f1 and g1 are in the

forms of f1(q
2) =CF/(1−q2/m2

Λb
)2 and g1(q

2) =CF/(1−q2/m2
Λb
)2, with CF ≡ f1(0) = g1(0). To

calculate the branching ratio of Λb → pM or pV , we take the averaged decay width Γ ≡ (ΓM(V )+

ΓM̄(V̄ ))/2 with ΓM(V ) (ΓM̄(V̄)) for Λb → pM(V ) (Λ̄b → p̄M̄(V̄ )). The direct CP asymmetry is defined

by ACP = (ΓM(V )−ΓM̄(V̄ ))/(ΓM(V )+ΓM̄(V̄)).

3. Numerical Results and Discussions

For the numerical analysis, the theoretical inputs of the meson decay constants and the Wolfen-

stein parameters for the CKM matrix are taken as ( fπ , fK , fρ , fK∗)= (130.4±0.2, 156.2±0.7, 210.6±
0.4, 204.7± 6.1) MeV and (λ , A, ρ , η) = (0.225, 0.814, 0.120± 0.022, 0.362± 0.013) from the

PDG [2], respectively. We note that fρ ,K∗ are extracted from the τ decays of τ− → (ρ−,K∗−)ντ ,

and Vub = Aλ 3(ρ − iη) and Vtd = Aλ 3(1− iη − ρ) are used to provide the weak phase for CP

violation. According to the adoption of Ref. [1], the parameters a1,4,6 can be used to estimate the

non-factorizable effects, which are related to the effective Wilson coefficients defined in Ref. [5],

providing the strong phases. For the Λb → p transition form factors, we use CF = 0.136±0.009 [1],

which is close to CF = 0.14±0.03 from the light-cone sum rules in Ref. [8], and agrees with those

in other QCD models [9, 10].

As a result, we obtain

RπK = 0.84±0.09 , (3.1)

where the error is from the CKM matrix elements only, which reflects that RπK as the ratio of the

branching ratios can eliminate the uncertainties from the form factors and non-factorizable effects.

For the first time, since the theoretical calculations in Eq. (3.1) can simultaneously explain the data

in Eq. (1.1), it is reliable that we extend our approach to the vector counterparts, and the direct CP

violating asymmetries, which are predicted in Table 1. Our predictions of ACP(Λb → pπ, pK−) are

around (−3.9, 5.8)% with the errors less than 0.2%, while the results from the data [11] are given

to be consistent with zero. It is worth to note that ACP(Λb → pK∗−) = (19.6± 1.6)% is another

example of the large and clean CP violating effects without hadronic uncertainties as the process

in the baryonic B decays of B± → K∗± p̄p [12].

4. Conclusions

In sum, we have simultaneously explained the recent observed decay branching ratios in Λb →
pK− and Λb → pπ− and obtained RπK = 0.84±0.09, demonstrating a reliable theoretical approach

to study the two-body Λb decays. We have also predicted that ACP(Λb → pK−) = (5.8±0.2)% and

ACP(Λb → pπ−) = (−3.9±0.2)% with well-controlled uncertainties, whereas the current data for

these CPAs are consistent with zero. Particularly, ACP(Λb → pK∗−, pρ−) = (19.6± 1.6, −3.7±
0.3)% demonstrated to have limited uncertainties would be the most promised direct CPAs to be

measured by the experiments at the CDF and LHCb to test the SM.
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Table 1: Decay branching ratios and direct CP asymmetries of Λb → pM(V ), where the errors for B(Λb →
pM(V )) arise from fM(V ) and f1(g1), the CKM matrix elements and non-factorizable effects, while those for

ACP(Λb → pM(V )) are from the CKM matrix elements and non-factorizable effects, respectively.

Λb → pM(V ) our result data

106B(Λb → pK−) 4.8±0.7±0.1±0.3 4.9±0.9 [2]

106B(Λb → pπ−) 4.2±0.6±0.4±0.2 4.1±0.8 [2]

106B(Λb → pK∗−) 2.5±0.3±0.2±0.3 —

106B(Λb → pρ−) 11.4±1.6±1.2±0.6 —

102ACP(Λb → pK−) 5.8±0.2±0.1 −10±8±4 [11]

102ACP(Λb → pπ−) −3.9±0.2±0.0 6±7±3 [11]

102ACP(Λb → pK∗−) 19.6±1.3±1.0 —

102ACP(Λb → pρ−) −3.7±0.3±0.0 —
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