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Abstract In this work, we study the generalized Klein–
Gordon oscillator with interactions on a curved background
within the Kaluza–Klein theory. We solve the generalized
Klein–Gordon oscillator in the cosmic string space-time with
a linear scalar potential and obtain the energy eigenvalue
and corresponding eigenfunction. We show that the energy
spectrum depends on the global parameters characterizing
the space-time and the confining potential parameter. We also
solve the generalized Klein–Gordon oscillator in a magnetic
cosmic string background in the Kaluza–Klein theory with a
linear scalar potential and analyze the analogue effect to the
Aharonov–Bohm effect for bound states.

1 Introduction

The relativistic quantum dynamics of scalar and spin- 1
2 par-

ticles on curved background space-time geometries as well
as Gödel, and Gödel-type metrics have been investigated by
various authors (see [1] and references therein). The Klein–
Gordon and Dirac equations in a Gödel-type space-times with
positive, zero and negative curvatures were first studied in
[2]. The close relationship between the quantum dynamics
of the scalar particle in the background of general relativity
with the Gödel solutions and the Landau levels in flat, spher-
ical and hyperbolic spaces were investigated in [3,4]. Later,
the same problem was studied by solving the Klein–Gordon
equation in the Som–Raychaudhuri space-time in [5]. The
authors in [6] solved the Klein–Gordon equation in a family
of Gödel-type solutions with the cosmic string and analyzed
the similarity of the energy eigenvalue with the Landau levels
in flat, spherical and hyperbolic spaces. Quantum influence
of topological defects in a Gödel-type space-times in flat,
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spherical and hyperbolic cases, were investigated in [7]. The
relativistic quantum dynamics of a Dirac particle with topo-
logical defects in a Gödel-type space-times with torsion have
been investigated in [8]. The relativistic quantum dynamics
of an electrically charged particle described by the Klein–
Gordon oscillator subject to a Coulomb-type potential was
investigated in [9]. Weyl fermions in a family of Gödel-type
geometries with topological defects were investigated in [10].
The relativistic quantum dynamics of a scalar particle in 4D
curved space-time with the cosmic string was investigated in
[11]. The relativistic quantum dynamics of scalar and spin-
1
2 particles subject to various kind of potentials have been
investigated in several areas of physics (e.g., [12–26]). Lin-
ear confinement of quantum particle by introducing a linear
scalar potential into the relativistic system by modifying the
mass term has great importance for models of confinement
of quarks [27]. It is worth mentioning that the linear scalar
potential has attracted a great interest in atomic and molecular
physics [28–33], and in the relativistic quantum mechanics
[9,34–50].

Interactions of the Dirac oscillator with the gravitational
fields produced by topological defects were investigated in
[51]. The influence of Aharonov–Casher effect on the Dirac
oscillator in three different scenarios of general relativity:
the Minkowski space-time, the cosmic string and the cosmic
dislocation space-time were studied in [52]. The influence
of non-inertial effects on the Dirac oscillator in the cosmic
string space-time was investigated in [53]. The Dirac equa-
tion in a class of topologically trivial flat Gödel-type space-
time was investigated in [54]. Dirac fermions in the Som–
Raychaudhuri space-time with a linear scalar and vector
potentials were investigated in [36]. A new model for study
the confinement of spin-half particles in a two-dimensional
quantum ring systems described by the Dirac equation with
a new coupling were studied in [55]. The Dirac oscillator in
the context of Doubly General Relativity was investigated in
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[56]. Effects of gravitational fields produced by topological
defects on the Dirac field and oscillator in a spinning cos-
mic string was examined in [57]. The dynamics of 2D Dirac
oscillator in the space-time of a magnetic cosmic string were
investigated in [58]. The generalized Dirac oscillator in the
cosmic string space-time replacing the momentum pμ with
its alternative pμ +m ω β fμ(xμ) was studied in [59]. In par-
ticular, the quantum dynamics was considered for the func-
tion fμ(xμ) to be taken as Cornell-type, exponential-type
and singular potentials form. The generalized Dirac oscilla-
tor was introduced in (2 + 1)-dimensional the world [60]. The
Dirac oscillator under the influence of non-inertial effects in
a rotating frame in the cosmic string space-time were inves-
tigated in [61]. The Dirac oscillator has also been analyzed
in various physical systems, such as in the presence of exter-
nal fields [62], and in the presence of a magnetic quantum
flux [63–66]. Investigation of magnetization and persistent
current of mass-less Dirac fermions confined in a quantum
dot in a graphene layer with topological defects were done in
[67]. Non-inertial effects on the Dirac oscillator in the back-
ground space-time generated by a cosmic string have been
investigated [68–70]. The (1 + 2)-dimensional Dirac oscil-
lator in the presence of a homogeneous magnetic field in an
Aharonov–Casher system were investigated in [71]. The rel-
ativistic quantum dynamics of spin-half particle by solving
the Dirac equation in (1 + 2)-dimensional Gürses space-time
was investigated in [72].

The Klein–Gordon oscillator [73,74] was inspired by
the Dirac oscillator [75] applied to half-integer spin parti-
cles. The spectral distribution of energy levels and eigen-
function describing the state of a particle by solving the
Klein–Gordon equation in one-dimensional version of the
Minkowski space-time were studied in [76]. The Klein–
Gordon oscillator in the cosmic string space-time in the
presence of external fields were studied in [77]. The Klein–
Gordon oscillator in the presence of a Coulomb-type poten-
tial was investigated by two ways: (1) by modifying the mass
term m → m + S(r) [78] and (2) via the minimal coupling
[9] besides a linear scalar potential. The relativistic quan-
tum effects on the Klein–Gordon oscillator with linear scalar
and Coulomb-type potentials were investigated in [49]. The
Klein–Gordon oscillator has also been investigated in vari-
ous physical system, such as in the background space-time
generated by the cosmic string [79], in the background of a
Gödel-type space-time under the influence of gravitational
fields produced by topological defects [80], in the back-
ground of the Som–Raychaudhuri space-time with a disclina-
tion parameter [6], Aharonov–Bohm effect for bound states
on a scalar particle in a space-time with a spacelike disloca-
tion [81], in non-commutative (NC) phase space [82], in (1 +
2)-dimensional Gürses space-time background [83], and in
(1 + 2)-dimensional Gürses space-time background subject
to Coulomb-type potential [84].

Our intention now is to extend the above studies not only
to two-, three-, and four-dimensions but to consider this
dynamics in general background space-time produced by
topological defects using the Kaluza–Klein theory [85–87].
This new proposal establishes that the electromagnetism can
be introduced through an extra (compactified) dimension in
the space-time where, the spatial dimension becomes five-
dimensional. These sources of gravitational fields play an
important role in condensed matter physics systems [88–91].
Besides, the topological defects like the cosmic strings [92],
domain walls [93], and global mono-pole [94] provides a tiny
relation between the effects in cosmology and gravitation. In
condensed matter physics systems where, topological defects
analogue to the cosmic strings appear in phase transitions in
liquid crystals [95,96]. In addition, the Kaluza–Klein the-
ory has found wide applications in string theory [97], in the
presence of torsion [98,99], fermions [100–102], and in the
studies of Lorentz symmetry violation (LSV) in [103–105].
Based on these generalizations of topological defects space-
time within the Kaluza–Klein theory, analogue effects to the
Aharonov–Bohm effect for bound states were investigated in
[7,106–109]. The Klein–Gordon oscillator on curved back-
ground within the Kaluza–Klein theory were investigated in
[7]. Some other physical systems in the Kaluza–Klein theory
were studied in [100,110–113].

The relativistic quantum dynamics of scalar particle of
mass m is described by the Klein–Gordon equation:

1√−g
∂μ(

√−g gμν ∂ν �) = m2 �, (1)

with g is the determinant of metric tensor with gμν its inverse.
If one introduces a scalar potential into the Klein–Gordon
equation by modifying the mass term: m → m + S(r) [114]
where, S(r) is the scalar potential. The KG-equation becomes

1√−g
∂μ(

√−g gμν ∂ν �) = (m + S(r))2 �. (2)

To couple the Klein–Gordon field with the oscillator [73,74],
the following change in the momentum operator is consid-
ered [115]:

pμ → pμ + i m ω Xμ, (3)

where ω is the frequency of oscillatory particle and the vector
Xμ = (0, r, 0, 0, 0) = r r̂ where, r being the distance of
the particle from the string. To generalize the Klein–Gordon
oscillator we have replaced r by the function f (r) into Xμ

as:

Xμ = (0, f (r), 0, 0, 0) = f (r) r̂ . (4)

Therefore, we have the following generalized Klein–Gordon
oscillator equation:
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1√−g
(∂μ + m ω Xμ)

√−g gμν (∂ν − m ω Xν)�

= (m + S(r))2 �. (5)

This paper comprises as follow: in Sect. 2, we study
the generalized Klein–Gordon oscillator in the cosmic string
space-time in the Kaluza–Klein theory subject to a linear
scalar potential; in Sect. 3, the generalized Klein–Gordon
oscillator in the background of a magnetic cosmic string in
the Kaluza–Klein theory subject to a linear scalar potential,
and finally the conclusion in Sect. 4.

2 Generalized Klein–Gordon oscillator in the cosmic
string space-time with a linear scalar potential in the
Kaluza–Klein theory

The purpose of this section is to study the Klein–Gordon
equation in the background space-time generated by the cos-
mic string within the Kaluza–Klein theory subject to a linear
scalar potential. Linear scalar potential is introduced into the
relativistic system by modifying the mass term discussed ear-
lier and this kind of potential has great importance in different
branch of physics mentioned in the introduction.

The first study of topological defects in the Kaluza–Klein
theory was carried out in [110] where, a series of cylindrically
symmetric solutions of Einstein and Einstein–Gauss–Bonet
equations, were investigated. Various solutions of the cos-
mic string form in five-dimensions, such as: neutral cosmic
string, cosmic dislocation, superconducting cosmic, multi-
cosmic string space-time were studied there. The metric cor-
responding to this geometry can be written as,

ds2 = −dt2 + dr2 + α2 r2 dφ2 + dz2 + dx2, (6)

where t is the time coordinate, x is the coordinate associated
with the fifth additional dimensions and (r, φ, z) are cylin-
drical coordinates. These coordinates assumed the ranges
−∞ < (t, z) < ∞, 0 ≤ r < ∞, 0 ≤ φ ≤ 2 π , and
0 < x < 2 π a where, a is the radius of the compact dimen-
sion x . The α parameter characterizing the cosmic string and
in terms of linear mass density μ is α = 1 − 4 μ [92], where
G = 1 = c = h̄. Cosmology and gravitation imposes limits
of α parameter which is restricted to α < 1 [92]. Moreover,
in condensed matter physics systems, this restriction is free
and the opposite case α > 1, the known negative disclination
[113] can occur in several systems as those described by [96].

By considering the line element (6) into Eq. (5), we obtain
the following differential equation:

[
−∂2

t + ∂2
z + ∂2

x + ∂2
r + 1

r
∂r + 1

α2 r2 ∂2
φ

−m ω

(
f ′(r) + f (r)

r

)
− m2 ω2 f 2(r)

−(m + S(r))2
]

� = 0. (7)

The above equation is independent of t, φ, z, x , so we choose
the following ansatz for the function �

�(t, r, φ, z, x) = ei (−E t+l φ+k z+q x) ψ(r), (8)

where E is the total energy, l = 0,± 1,± 2 . . . ∈ Z are the
eigenvalue of the z-component of the angular momentum
operator, and k, q are constants.

Substituting the above ansatz into Eq. (7), we get the fol-
lowing radial wave-equation for ψ(r):

ψ ′′(r) + 1

r
ψ ′(r) +

[
E2 − k2 − q2 − l2

α2 r2 q

−m ω

(
f ′(r) + f (r)

r

)

−m2 ω2 f 2(r) − (m + S(r))2
]

ψ(r) = 0. (9)

In this work, we consider a special kind of potential which
has many applications including the linear confinement of
quarks which we discussed in the introduction is given by

S(r) = kL r. (10)

where kL is the linear confining parameter.
We choose the function f (r) as Cornell-type potential

form given by [59,116]

f (r) = a r + b

r
, a, b > 0. (11)

Substituting the function Eq. (11) into Eq. (9) and using
the potential (10), we obtain the following equation:

ψ ′′(r)+ 1

r
ψ ′(r)+

[
λ − ω̃2 r2 − ξ2

s

r2 − 2m kL r

]
ψ(r) = 0,

(12)

where

λ = E2 − k2 − q2 − m2 − 2m ω a − 2m2 ω2 a b,

ω̃ =
√
m2 ω2 a2 + k2

L ,

ξs =
√

l2

α2 + m2 ω2 b2. (13)
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Transforming ρ = √
ω̃ r into Eq. (12), we obtain

ψ ′′(ρ)+ 1

ρ
ψ ′(ρ)+

[
λ0 − ρ2 − ξ2

s

ρ2 − θ ρ

]
ψ(ρ) = 0, (14)

where

λ0 = λ

ω̃
, θ = 2m kL

ω̃
3
2

. (15)

Now, we use the appropriate boundary conditions to inves-
tigate the bound states solution in this problem. It is require
that the regularity of wave-function at the origin and the nor-
malizability at infinity. Then we proceed with the analysis of
the asymptotic behaviour of the radial eigenfunction at ori-
gin and in the infinite. These conditions are necessary since
the wave-function must be well-behaved in these limit, and
thus, bound states of the energy eigenvalue for the confine-
ment can be obtained. With these conditions, we obtain the
convergence of the wave-function at the origin (ρ → 0) and
at infinity (ρ → ∞). Let us impose the requirement that
ψ(ρ) → 0 both at ρ → 0 and ρ → ∞. Suppose the possi-
ble solution to Eq. (14) is

ψ(ρ) = ρ|ξs | e− 1
2 (θ+ρ) ρ H(ρ), (16)

where H(ρ) is an unknown function. Substituting the solu-
tion Eq. (16) into Eq. (14), we obtain

H ′′(ρ) +
[
γ

ρ
− θ − 2 ρ

]
H ′(ρ) +

[
−Q

ρ
+ �

]
H(ρ) = 0,

(17)

where

γ = 1 + 2 ξs,

� = λ0 + θ2

4
− 2 (1 + ξs),

Q = θ

2
(1 + 2 ξs). (18)

Equation (17) is the biconfluent Heun differential equation
[9,33,49,116–119] with H(ρ) is the Heun polynomials func-
tion.

The above Eq. (17) can be solved by the power series
method [120]

H(ρ) =
∞∑
i=0

ci ρ
i . (19)

Substituting Eq. (19) into Eq. (17), we get the following
recurrernce relation for the coefficients:

cn+2 = 1

(n + 2)(n + 1 + γ )

×[{Q + θ (n + 1)} cn+1 − (� − 2 n) cn]. (20)

And the various coefficients are

c1 = Q

γ
c0, c2 = 1

2 (1 + γ )
[(Q + θ) c1 − � c0]. (21)

The bound states solution to Eq. (17) can be obtained because
there is no divergence of the wave-function both atρ → 0 and
ρ → ∞. As we have written the function H(ρ) as a power
series expansion around the origin in Eq. (19). Thereby, the
bound states solution can be achieved by imposing that the
power series expansion becomes a polynomial of degree n.
Through the recurrence relation Eq. (20), we can see that the
power series expansion becomes a polynomial of degree n
by imposing two conditions [9,33,116,118,119,121–124]:

� = 2 n. (22)

And

cn+1 = 0, (n = 1, 2, 3, 4, . . .). (23)

Using the condition � = 2 n, we get the following eigenvalue
En,l :

λ0 + θ2

4
− 2 (1 + ξs) = 2 n

⇒ E2
n,l = k2 + q2 + m2 + 2m ω a + 2m2 ω2 a b

+2 ω̃

⎛
⎝n + 1 +

√
l2

α2 + m2 ω2 b2

⎞
⎠ − m2 k2

L

ω̃2 . (24)

Equation (24) is the bound states energy eigenvalue of a scalar
particle associated with nth radial modes.

The corresponding wave-function is given by

ψn,l(ρ) = ρ|ξs | e
− 1

2

[
2m kL

ω̃
3
2

+ρ

]
ρ

H(ρ). (25)

Now, we impose the additional condition cn+1 = 0 to find
the individual energy levels and corresponding wave function
one by one as done in [9,33,121,122]. As example, for n = 1,
we have c2 = 0 which implies

c1 = 2

Q + θ
c0 ⇒ Q

γ
= 2

Q + θ

⇒ ω̃1,l =
⎡
⎣m2 k2

L1

⎛
⎝3

2
+

√
l2

α2 + m2 ω2 b2

⎞
⎠

⎤
⎦

1
3

, (26)
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where we have adjusted the parameter kL such that the first
degree polynomial solution for n = 1 can be obtained [116].
Therefore, the ground state energy eigenvalue for n = 1 is
given by

E2
1,l = k2 + q2 + m2 + 2m ω a + 2m2 ω2 a b

+2 ω̃1,l

⎛
⎝n + 1 +

√
l2

α2 + m2 ω2 b2

⎞
⎠ − m2 k2

L1

ω̃2
1,l

, (27)

where ω̃1,l is given by Eq. (26). The corresponding wave-
function is given by

ψ1,l(ρ) = ρ

√
l2

α2 +m2 ω2 b2

e− 1
2 (2 c1+ρ) ρ (c0 + c1 ρ), (28)

where

c1 = 1√
3
2 +

√
l2

α2 + m2 ω2 b2

. (29)

We discuss below few case of the above relativistic energy
eigenvalue Eq. (24) of the relativistic system.

Case 1: If one choose b → 0, a → 1, that is, the Klein–
Gordon oscillator subject to a linear scalar potential in the
cosmic string space-time in the Kaluza–Klein theory.

The energy eigenvalue Eq. (24) becomes

E2
n,l = k2+q2+m2+2m ω+2 ω̃n,l

(
n + 1 + |l|

α

)
−m2 k2

L

ω̃2
n,l

.

(30)

Equation (30) is the energy eigenvalue of the Klein–Gordon
oscillator field in the cosmic string background within the
Kaluza–Klein theory subject to a linear scalar potential. Note
that for k = 0 = q, the energy eigenvalue Eq. (30) reduces to
the result obtained in [49]. Thus the relativistic energy eigen-
value Eq. (30) is the generalised result in five-dimensions in
comparison to those obtained in (1 + 2)-dimensional case in
[49].

Therefore, the bound state energy eigenvalue for n = 1 is
given by

E2
1,l = k2 + q2 + m2 + 2m ω + 2 ω̃1,l

(
n + 1 + |l|

α

)

−m2 k2
L1

ω̃2
1,l

. (31)

And the corresponding wave function is

ψ1,l(ρ) = ρ
|l|
α e− 1

2 (2 c1+ρ) ρ (c0 + c1 ρ), (32)

where

c1 = 1√
3
2 + |l|

α

,

ω̃1,l =
[
m2 k2

L1

(
3

2
+ |l|

α

)] 1
3

. (33)

Case 2: If one choose kL → 0, that is, without any scalar
potential in the relativistic system.

From Eq. (12), we obtain the following equation

ψ ′′(r)+1

r
ψ ′(r)+

[
λ − m2 ω2 a2 r2 − ξ2

s

r2

]
ψ(r) = 0, (34)

Introducing a new variable s = m ω a r2 into the above equa-
tion, we obtain [125]

ψ ′′(s) + 1

s
ψ ′(s) + 1

s2 (−ξ1 s
2 + ξ2 s − ξ3) ψ(s) = 0, (35)

where

ξ1 = 1

4
, ξ2 = λ

4m ω a
, ξ3 = ξ2

s

4
. (36)

Compairing the above Eq. (35) with (A.1) in appendix A, we
get

α1 = 1, α2 = 0, α3 = 0, α4 = 0, α5 = 0,

α6 = ξ1, α7 = −ξ2, α8 = ξ3, α9 = ξ1,

α10 = 1 + 2
√

ξ3, α11 = 2
√

ξ1, α12 = √
ξ3,

α13 = −√
ξ1. (37)

The energy eigenvalue using (36)–(37) into the Eq. (A.8) in
appendix A is given by

(2 n + 1)
√

ξ1 − ξ2 + 2
√

ξ1 ξ3 = 0

⇒ E2
n,l = k2 + q2 + m2 + 2m2 ω2 a b

+2m ω a

⎛
⎝2 n + 2 +

√
l2

α2 + m2 ω2 b2

⎞
⎠ , (38)

where n = 0, 1, 2, 3, . . ..
If one choose b → 0, a → 1, that is, the Klein–

Gordon oscillator in the cosmic string without potential in
the Kaluza–Klein theory. Then, the energy eigenvalue (38)
becomes

E2
n,l = k2 + q2 + m2 + 4m ω

(
n + 1 + |l|

2 α

)
(39)

which is similar to the result obtained in [7] (see Eq. (12) in
[7]). We can see that Eq. (38) is the extended energy eigen-
value of the generalized Klein–Gordon oscillator in the cos-
mic string space-time without potential in the Kaluza–Klein
theory.
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Case 3: If one choose b → 0, a → 0, the Klein–Gordon
particle subject to linear scalar potential in a cosmic string
background in a Kaluza–Klein theory.

In that case, Eq. (12) becomes

ψ ′′(r) + 1

r
ψ ′(r) +

[
E2 − m2 − k2 − q2

−k2
L r

2 − l2

α2 r2

]
ψ(r) = 0. (40)

Transforming s = KL r2 into the above equation, we obtain
the following differential equation [125]

ψ ′′(s) + 1

s
ψ ′(s) + 1

s2

[
E2 − m2 − k2 − q2

4 kL
s

−1

4
s2 − l2

4 α2

]
ψ(s) = 0. (41)

As done earlier, we obtain the following energy eigenvalue
of the system

En,l = ±
√
k2 + q2 + m2 + 2 kL

(
2 n + 1 + |l|

α

)
. (42)

Equation (42) is the relativistic energy eigenvalue of a scalar
particle in the cosmic string space-time in the Kaluza–Klein
theory with a linear scalar potential.

3 Generalized Klein–Gordon oscillator in the magnetic
cosmic string space-time with a linear scalar potential
in the Kaluza–Klein theory

In this section, we investigate analogue effect to the
Aharonov–Bohm effect for bound states [7,81,106–109]
solution of a scalar particle. By using the Kaluza–Klein the-
ory, we introduce a magnetic flux through the line element
of the cosmic string and thus write the generalized Klein–
Gordon oscillator equation in five-dimensional space-time
subject to a linear scalar potential. This kind of potential
has great reserach interested and used for the confinement
of quark models and in other branches of physics discussed
earlier.

Let us consider the quantum dynamics of a scalar particle
moving in the magnetic cosmic string background. In the
Kaluza–Klein theory [113], the corresponding metric with
the magnetic quantum flux � passing along the symmetry
axis of the string assumes the following form

ds2 = −dt2 + dr2 + α2 r2 dφ2 + dz2 +
(
dx + �

2 π
dφ

)2

(43)

with cylindrical coordinates are used. The quantum dynam-
ics is described by Eq. (2) with the following change in the
inverse matrix tensor gμν ,

gμν =

⎛
⎜⎜⎜⎜⎜⎝

−1 0 0 0 0
0 1 0 0 0
0 0 1

α2 r2 0 − �
2 π α2 r2

0 0 0 1 0

0 0 − �
2 π α2 r2 0 1 + �2

4 π2 α2 r2

⎞
⎟⎟⎟⎟⎟⎠

. (44)

By considering the line element (43) into Eq. (5), we obtain
the following differential equation:[

−∂2
t + ∂2

r + 1

r
∂r + 1

α2 r2

(
∂φ − �

2 π
∂x

)2

+ ∂2
z + ∂2

x − m ω

(
f ′(r) + f (r)

r

)

−m2 ω2 f 2(r) − (m + S(r))2

]
�(r) = 0. (45)

Since the space-time is independent of t, φ, z, x , substituting
the ansatz Eq. (8) into Eq. (45), we get the following equation:

ψ ′′(r) + 1

r
ψ ′(r) +

[
E2 − k2 − q2 − l2e f f

r2

−m ω

(
f ′(r) + f (r)

r

)

−m2 ω2 f 2(r) − (m + S(r))2

]
ψ(r) = 0, (46)

where

le f f = 1

α

(
l − q �

2 π

)
(47)

is called the effective angular quantum number which
depends on the cosmic string parameter as well as the mag-
netic quantum flux.

Substituting the function Eq. (11) into Eq. (46) and using
the scalar potential Eq. (10), we obtain the following equa-
tion:

ψ ′′(r)+1

r
ψ ′(r)+

[
λ − ω̃2 r2 − χ2

e f f

r2 − 2m kL r

]
ψ(r) = 0,

(48)

where

λ = E2 − k2 − q2 − m2 − 2m ω a − 2m2 ω2 a b,

ω̃ =
√
m2 ω2 a2 + k2

L ,

χe f f =
√
l2e f f + m2 ω2 b2. (49)
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Transforming ρ = √
ω̃ r into Eq. (48), we get

ψ ′′(ρ) + 1

ρ
ψ ′(ρ) +

[
λ0 − ρ2 − χ2

e f f

ρ2 − θ ρ

]
ψ(ρ) = 0,

(50)

where λ0, θ are in Eq. (15).
As similar to the technique done earlier, suppose the solu-

tion to Eq. (50) is

ψ(ρ) = ρχe f f e− 1
2 (θ+ρ) ρ H(ρ). (51)

Substituting Eq. (51) into Eq. (50), we get the biconfluent
Heun’s differential equation [9,33,49,116–119] form:

H ′′(ρ) +
[
γ̄

ρ
− θ − 2 ρ

]
H ′(ρ) +

[
− Q̄

r
+ �̄

]
H(ρ) = 0,

(52)

where

γ̄ = (1 + 2 χe f f ),

�̄ = λ0 + θ2

4
− 2 (1 + χe f f ),

Q̄ = θ

2
(1 + 2 χe f f ). (53)

Substituting Eq. (19) into Eq. (52), we get the following
recurrernce relation for the coefficients:

cn+2 = 1

(n + 2)(n + 1 + γ )
[{Q̄+θ (n+1)} cn+1 −(�̄−2 n) cn].

(54)

And the various coefficients are

c1 = Q̄

γ̄
c0, c2 = 1

2 (1 + γ )
[(Q̄ + θ) c1 − �̄ c0]. (55)

A polynomial form of degree n for the function H(r) is
achieved when we impose requirement that the series solu-
tion terminates. For this, we must have [9,33,116,118,119,
121–124]

�̄ = 2 n. (56)

And

cn+1 = 0, (n = 1, 2, 3, 4, . . .). (57)

Using the condition �̄ = 2 n, we obtain the following energy
eigenvalue En,l :

E2
n,l = k2 + q2 + m2 + 2m ω a + 2m2 ω2 a b − m2 k2

L

ω̃2

+2 ω̃

⎛
⎝n + 1 +

√
1

α2

(
l − q �

2 π

)2

+ m2 ω2 b2

⎞
⎠ .

(58)

Equation (58) is the energy eigenvalue associated with nth
radial modes for the generalized Klein–Gordon oscillator in
the magnetic cosmic string with a linear scalar potential in
the Kaluza–Klein theory. We can see in comparision to the
case without magnetic flux as obtained earlier by Eq. (24), the
angular quantum number l is shifted, l → le f f = 1

α
(l− q �

2 π
),

an effective angular quantum number. We see that the rela-
tivistic energy eigenvalue Eq. (58) depends on the Aharonov–
Bohm geometric quantum phase [109]. Thus, we have that
En,l̄(� + �0) = En,l̄±τ (�) where, �0 = ∓ 2 π α

q τ with

τ = 1, 2, 3, . . . and l̄ = l
α

. This dependence of the relativis-
tic energy eigenvalue on the geometric quantum phase gives
rise to the analogoue effects to the Aharonov–Bohm effect
for bound states [81,106–109].

The corresponding wave-function is given by

ψn,l(ρ) = ρ

√ (
l− q �

2 π

)2

α2 +m2 ω2 b2

e− 1
2 (θ+ρ) ρ H(ρ). (59)

Now, we impose the additional condition cn+1 = 0 in the
above eigenvalue problem to obtain the individual energy
levels and corresponding wave-function one by one as done
in [9,33,121,122]. As example, for n = 1, we have c2 = 0
which implies

c1 = 2

Q̄ + β̄
c0 ⇒ Q̄

γ̄
= 2

Q̄ + β̄

⇒ B2
2 = 1

1 + A2
⇒ ω̃1,l

=

⎡
⎢⎢⎣m2 k2

L1

⎛
⎜⎜⎝3

2
+

√√√√
(
l − q �

2 π

)2

α2 + m2 ω2 b2

⎞
⎟⎟⎠

⎤
⎥⎥⎦

1
3

.(60)

Therefore, the ground state energy level for n = 1 is given
by

E2
1,l = k2 + q2 + m2 + 2m ω a + 2m2 ω2 a b

+2 ω̃1,l

⎛
⎜⎜⎝n + 1 +

√√√√
(
l − q �

2 π

)2

α2 + m2 ω2 b2

⎞
⎟⎟⎠

−m2 k2
L1

ω̃2
1,l

, (61)
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where ω̃1,l is given by Eq. (60). The corresponding wave-
function is

ψ1,l(ρ) = ρ

√ (
l− q �

2 π

)2

α2 +m2 ω2 b2

e− 1
2 (2 c1+ρ) ρ (c0 + c1 ρ),

(62)

where

c1 = 1√
3
2 +

√(
l− q �

2 π

)2

α2 + m2 ω2 b2

. (63)

Below we discuss few cases of the above energy eigen-
value of the relativistic system considered in this section.

Case 1: If one choose b → 0, a → 1.
In that case, the energy eigenvalue Eq. (58) becomes

E2
n,l = k2 + q2 + m2 + 2m ω + 2 ω̃n,l

(
n + 1 + |l − q �

2 π
|

α

)

−m2 k2
L

ω̃2
n,l

. (64)

Equation (64) is the energy eigenvalue associated with nth

radial modes for the Klein–Gordon oscillator in the magnetic
cosmic string background with a linear scalar potential in the
Kaluza–Klein theory.

The bound state energy level for n = 1 is given by
E2

1,l = k2 + q2 + m2 + 2m ω a

+2 ω̃1,l

(
n + 1 + |l − q �

2 π
|

α

)
− m2 k2

L1

ω̃2
1,l

. (65)

And the corresponding wave-function is

ψ1,l(ρ) = ρ
|l− q �

2 π
|

α e− 1
2 (2 c1+ρ) ρ (c0 + c1 ρ), (66)

where

c1 = 1√
3
2 + |l− q �

2 π
|

α

,

ω̃1,l =
[
m2 k2

L1

(
3

2
+ |l − q �

2 π
|

α

)] 1
3

. (67)

Case 2: If one choose kL → 0, that is, without any linear
scalar potential into the considered system.

In that case, from Eq. (48) we have the following equation

ψ ′′(r) + 1

r
ψ ′(r) +

[
λ − m2 ω2 a2 r2 − χ2

e f f

r2

]
ψ(r) = 0

(68)

which can be transformed to the following equation [125]

ψ ′′(s) + 1

s
ψ ′(s) + 1

s2 (−ξ1 s
2 + ξ2 s − ξ3) ψ(s) = 0, (69)

where

ξ1 = 1

4
, ξ2 = λ

4m ω a
, ξ3 = χ2

e f f

4
. (70)

The energy eigenvalue is given by

E2
n,l = k2 + 2m2 ω2 a b + q2 + m2 + 2m ω a

⎛
⎝2 n + 2

+
√

(l − q �
2 π

)2

α2 + m2 ω2 b2

⎞
⎠ , (71)

where n = 0, 1, 2, 3, . . .. Equation (71) is the energy eigen-
value associated with nth radial modes for the generalized
Klein–Gordon oscillator in the magnetic cosmic string with-
out potential in the Kaluza–Klein theory.

If one choose b → 0, a → 1, that is, the Klein–
Gordon oscillator in the magnetic cosmic string background
in the Kaluza–Klein theory, the energy eigenvalue Eq. (71)
becomes

E2
n,l = k2 + q2 + m2 + 4m ω

(
n + 1 + |l − q �

2 π
|

2 α

)
(72)

which is similar to the result obtained in [7] (see Eq. (25)
in [7]). Thus Eq. (71) is the extended energy eigenvalue of
the generalized Klein–Gordon oscillator in the magnetic cos-
mic string background without potential in the Kaluza–Klein
theory.

Case 3: If one choose b → 0, a → 0, the Klein–Gordon
particle subject to a linear scalar potential into the relativistic
system.

In that case, Eq. (61) becomes

ψ ′′(r) + 1

r
ψ ′(r) +

[
E2 − m2 − k2 − q2 − k2

L r
2 − l2e f f

r2

]

ψ(r) = 0. (73)

Transforming s = kL r2 into the above equation, we obtain
[125]

ψ ′′(s) + 1

s
ψ ′(s)

+ 1

s2

[
E2 − m2 − k2 − q2

4 kL
s − 1

4
s2 − l2e f f

4

]

ψ(s) = 0. (74)
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The energy eigenvalue of the system is

E2
n,l = k2 + q2 + m2 + 2 kL

(
2 n + 1 + |l − q �

2 π
|

α

)
, (75)

where n = 0, 1, 2, 3, . . .. Equation (75) is the energy eigen-
value of a scalar field in the magnetic cosmic string back-
ground in the Kaluza–Klein theory with a linear scalar poten-
tial.

In all the above cases, we can see that there is an effec-
tive angular quantum number, l → le f f = 1

α
(l − q �

2 π
).

Therefore, the above relativistic energy eigenvalue depends
on the geometric quantum phase [109]. Thus, we have that
En,l̄(� + �0) = En,l̄±τ (�) where, �0 = ∓ 2 π α

q τ with

τ = 1, 2, 3, . . . and l̄ = l
α

. This dependence of the relativis-
tic energy eigenvalue on the geometric quantum phase gives
rise to the analogoue effect to the Aharonov–Bohm effect for
bound states [7,81,106–109].

Formula (47) suggests that, when the particle circles the
string, the wave-function changes according to

� → � ′ = e2 i π le f f � = e
i 2 π

α

(
l− q �

2 π

)
�. (76)

An immediate consequence of Eq. (47) is that the angular
momentum operator may be redefined as

l̂e f f = − i

α

(
∂φ − i

q �

2 π

)
, (77)

where the additional term, − q �
2 π α

, takes into account the
Aharonov–Bohm magnetic quantum flux �.

4 Conclusions

In Ref. [7], authors studied the relativistic scalar particle in
the cosmic string, magnetic cosmic string and cosmic dispira-
tion background in the Kaluza–Klein theory. They solved the
Klein–Gordon oscillator without any potential and obtained
the relativistic energy eigenvalue and eigenfunction. In Ref.
[49], the relativistic quantum dynamics of a scalar particle
in (1 + 2)-dimensional space-time with topological defects
subject to a linear scalar potential were studied. They solved
the Klein–Gordon oscillator in the considered framework
and obtained the relativistic energy eigenvalue and wave-
function.

In this work, we have investigated the relativistic quan-
tum dynamics of a scalar particle interacting with gravita-
tional field produced by topological defects via the general-
ized Klein–Gordon oscillator in the cosmic string and mag-
netic cosmic string space-time within the Kaluza–Klein the-
ory subject to a linear scalar potential. We have determined

the manner in which the non-trivial topology due to topo-
logical defects and the magnetic quantum flux modifies the
energy spectrum and wave-function of the relativistic sys-
tem. We have studied the quantum dynamics of a scalar par-
ticle interacting with an external field sources, by using the
five-dimensional version of the General Relativity. The quan-
tum dynamics in the usual as well as magnetic cosmic string
cases allow us to obtain the energy eigenvalue and wave-
functions depending on the external parameters characteriz-
ing the background space-time, a result known by gravita-
tional analogue of the well studied Aharonov–Bohm effect.

In Sect. 2, we have studied the relativistic quantum
dynamics of a scalar particle in the background of cosmic
string space-time in the Kaluza–Klein theory with a linear
scalar potential. In this study, we have considered the Cornell-
type potential form function f (r) = a r + b

r [59,116] and
a linear scalar potential S(r) = kL r where, kL is the lin-
ear confining parameter. Then, we have solved the general-
ized Klein–Gordon oscillator subject to this potential in the
cosmic string background space-time in the Kaluza–Klein
theory. We have obtained the bound states energy eigen-
value Eq. (24) and corresponding wave-function Eq. (25).
By imposing the additional recurrence condition cn+1 = 0
in the eiegnvalue problem, for example, n = 1, we have eval-
uated the ground state energy level Eq. (27) and correspond-
ing wave-function Eqs. (28)–(29), respectively. We have seen
that gravitational field produced by topological defects and
the scalar potential modifies the energy spectrum. Further-
more, we have discussed three cases 1–3 and seen that the
energy eigenvalue in very special case reduces to the result
obtained in [49] (for case 1) and in [7] (for case 2).

In Sect. 3, we have studied the relativistic quantum
dynamics of a scalar particle in the magnetic cosmic string
within the Kaluza–Klein theory with a linear scalar potential.
We have chosen the same function f (r) = a r+ b

r considered
earlier and the linear scalar potential S(r) = kL r into the rel-
ativistic system. We have derived the radial wave-equation
of the generalized Klein–Gordon oscillator by choosing this
function f (r) subject to this potential in the magnetic cos-
mic string in the Kaluza–Klein theory. We have obtained the
bound states energy eigenvalue Eq. (58) and corresponding
wave-function Eq. (59). By imposing the additional condi-
tion cn+1 = 0, for example n = 1, we have obtained the
ground state energy level and eigenfunction. In addition, we
have discussed few cases 1–3 and obtained the relativistic
energy eigenvalue. We have seen in case 2 that the energy
eigenvalue reduces to the result obtained in [7] in very special
case. In this section, we have seen that the relativistic energy
eigenvalue obtained here depends on the geometric quantum
phase [109]. Thus, we have that En,l̄(�+�0) = En,l̄±τ (�)

where, �0 = ∓ 2 π α
q τ with τ = 1, 2, 3, . . . and l̄ = l

α
.

This dependence of the relativistic energy eigenvalue on
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the geometric quantum phase � gives rise to the analo-
goue effect to the Aharonov–Bohm effect for bound states
[81,106–109]. Besides, even though there is no direct intrac-
tions between the particle and external fields, influence on
the energy eigenvalue is due to the internal magnetic quan-
tum flux � yielding an effective angular quantum number
l → le f f = 1

α
(l − q �

2 π
). For α → 1, the change in angu-

lar quantum number 
 l = l − le f f is directly proportional
to the magnetic quantum flux �. So we have shown some
results which are in addition to the previous results obtained
in [7,49] present many interesting effects. This is the funda-
mental subject in physics and the connection between these
theories (gravitation and quantum mechanics) are not well
understood.
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Appendix A: Brief review of the Nikiforov–Uvarov (NU)
method

The Nikiforov–Uvarov method is helpful in order to find
eigenvalues and eigenfunctions of the Schrödinger like equa-
tion, as well as other second-order differential equations of
physical interest. According to this method, the eigenfunc-
tions of a second-order differential equation [125]

d2ψ(s)

ds2 + (α1 − α2 s)

s (1 − α3 s)

dψ(s)

ds

+ (−ξ1 s2 + ξ2 s − ξ3)

s2 (1 − α3 s)2 ψ(s) = 0. (A.1)

are given by

ψ(s) = sα12 (1 − α3 s)
−α12− α13

α3 P
(α10−1,

α11
α3

−α10−1)

n

×(1 − 2 α3 s). (A.2)

And that the energy eigenvalues equation

α2 n − (2 n + 1) α5 + (2 n + 1) (
√

α9 + α3
√

α8)

+n (n − 1) α3 + α7

+2 α3 α8 + 2
√

α8 α9 = 0. (A.3)

The parameters α4, . . . , α13 are obatined from the six param-
eters α1, . . . , α3 and ξ1, . . . , ξ3 as follows:

α4 = 1

2
(1 − α1), α5 = 1

2
(α2 − 2 α3),

α6 = α2
5 + ξ1, α7 = 2 α4 α5 − ξ2,

α8 = α2
4 + ξ3, α9 = α6 + α3 α7 + α2

3 α8,

α10 = α1 + 2 α4 + 2
√

α8, α11 = α2 − 2 α5

+2 (
√

α9 + α3
√

α8),

α12 = α4 + √
α8, α13 = α5 − (

√
α9 + α3

√
α8). (A.4)

A special case where α3 = 0, as in our case, we find

lim
α3→0

P
(α10−1,

α11
α3

−α10−1)

n (1 − 2 α3 s) = Lα10−1
n (α11 s),

(A.5)

and

lim
α3→0

(1 − α3 s)
−α12− α13

α3 = eα13 s . (A.6)

Therefore the wave-function from (A.2) becomes

ψ(s) = sα12 eα13 s Lα10−1
n (α11 s), (A.7)

where L(α)
n (x) denotes the generalized Laguerre polynomial.

The energy eigenvalues equation reduces to

n α2 − (2 n + 1) α5 + (2 n + 1)
√

α9 + α7 + 2
√

α8 α9 = 0.

(A.8)

Noted that the simple Laguerre polynomial is the special case
α = 0 of the generalized Laguerre polynomila:

L(0)
n (x) = Ln(x). (A.9)
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