
PERFORMANCE OPTIMIZATION OF MULTI-PARTICLE BEAM
DYNAMICS CODE IMPACT-Z ON NVIDIA GPGPU
Z. He∗, G. Shen, Y. Yamazaki. FRIB, Michigan State University, USA

X. Wang, ICER, Michigan State University, USA

Abstract
Facility for Rare Isotope Beams is designed using a multi-

particle tracking code IMPACT-Z. IMPACT-Z is originally
for the purpose of accelerator design, so it is precise, how-
ever, quite time consuming, therefore usually not suitable
for on-line beam tuning applications. IMPACT-Z is origi-
nally boosted using Message Passing Interface (MPI) tech-
nology. For single node mode, performance of IMPACT-Z
is usually bounded by CPU performance, and for multi-
node mode, communication between MPI processes would
become bottleneck. However, new emerging High Perfor-
mance Computing (HPC) technology, like general-purpose
graphics processing unit (GPGPU), brings new possibility
in accelerating IMPACT-Z, so that the speed of IMPACT-Z
satisfies for on-line beam tuning applications. This paper
presents the efforts in exploring the capability of Nvidia
GPGPU and the results of speed up of IMPACT-Z.

INTRODUCTION
Modern accelerator facility, Facility for Rare Isotope

Beams (FRIB) [1] for example, usually has complicated
lattice structures, so that it usually needs an online model
for beam commissioning. The linac segment of FRIB is
designed by a multi-particle tracking code IMPACT-Z [2].
IMPACT-Z is originally written for the purpose of acceler-
ator design, so it is precise, but too time consuming when
applying to online beam tuning, even though its speed has
already been boosted by MPI-based HPC technology.

A newFRIB-specific envelope tracking based light-weight
linear surrogate model is under development [3, 4] to cover
most of the challenges in FRIB on-line beam tuning task
such as cavity tuning and orbit correction during low power
beam commissioning. However, because the limitation of
the linear model, its ability to guide FRIB all the way up to
full power operation is questionable. As a result, a boosted
version of IMPACT-Z for high power beam commissioning
is proposed.
IMPACT-Z is using MPI technology to boost its perfor-

mance on both single-node multi-cores and multi-nodes in-
frastructure. Previous study has pointed out that new emerg-
ing HPC technology, like GPGPU, would possibly add more
computing power with reasonable cost [5]. This paper aims
at searching for optimized performance boost of IMPACT-
Z provided by NVidia GPGPU. First, The performance of
IMPACT-Z is baselined with FRIB lattice. Then, the strategy
of rewriting IMPACT-Z into a GPU code is described. Af-
ter that, the performance and precision of IMPACT-Z GPU
version is discussed and compared with original version.
∗ hez@frib.msu.edu

BASELINE OF IMPACT-Z ON CPU
In order to compare the performance of IMPACT-Z on

CPU and GPU, we first need to set up a baseline case and use
it as standard test case for our following study. Linac segment
1 plus folding segment 1 of FRIB is used as the test lattice,
and the input particle number is 50K. 20 integration steps for
RF cavities and 4 integration steps for the rest elements are
used. The GNU mpif90 compiler with optimization level
O3 is used to compile the code and the code is run on an
Intel Xeon CPU E5-2640 v2 @ 2.00GHz with number of
MPI worker set to 1. And the running time of this standard
test case is 446.35 s.

DESIGN STRATEGY FOR IMPACT-Z GPU
VERSION

After tens of years of development, GPU has become a
standard tool in scientific HPC technology. Previous work
reported that GPU is high performance, cost effective, and
its parallelization model is applicable to accelerator sim-
ulation [5]. The possibility of boosting the performance
of IMPACT-Z using GPU to benefit FRIB commissioning
is worth investigation. The following study is performed
on NVidia Tesla K20 GPU card provided by Institute for
Cyber-Enabled Research (ICER), MSU. The configuration
of NVidia Tesla K20 GPU card can be seen in Table 1 [6].

Table 1: The Configuration of NVidia Tesla K20 GPU Card

Item Value
Tesla Products K20

Core clock (GHz) 0.706
Number of multiprocessors 13

Single-precision cores per multiprocessor 192
Total single-precision cores 2496

Total single-precision (Gflops) 3524
Total global memory (GB) 5

Parallelization Model of IMPACT-Z on GPU
GPU is using a fine-grain parallel model: create many

threads at the same time with each piece of thread executes
exactly the same piece of code. In order to make full uti-
lization of GPU computing power, it is preferable to create
as many threads as reasonable. For a particle tracking code
like IMPACT-Z, it is straight forward to utilize GPU parallel
mode by assigning a thread to each particle just by replacing
the particle tracking sudo-code:

Do n=1, Ntot; Track(particle(n)); End do

WEPOY051 Proceedings of IPAC2016, Busan, Korea

ISBN 978-3-95450-147-2

3110C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

05 Beam Dynamics and Electromagnetic Fields

D11 Code Developments and Simulation Techniques



Into GPU kernel call:

Call TrackKernel<<<NumB, tpB>>>(*particle)

where Ntot means total number of particles, NumB means
number of block, tpB means threads per block where
NumB ∗ tpB ≥ Ntot is satisfied.
The original MPI-based parallel model used by IMPACT-

Z is known as coarse grain parallel model. For each coarse
grain, we can still divide workload into finer pieces and
utilize GPU fine-grain parallel model. As a result, the origi-
nal parallel model used by IMPACT-Z doesn’t conflict with
GPU model, so we can keep the basic structure of IMPACT-
Z code. For our following work, we mainly focus on GPU
parallelization by setting number of MPI worker equals one.

Beam dynamics study has demonstrated that space charge
effect can be neglected in FRIB linac. Therefore, no space
charge effect is assumed for the following study.

NVidia has been working with PGI to create a compiler for
CUDA-Fortran [6, 7]. After installing PGI CUDA compiler,
just by adding -Mcuda flag when compiling IMPACT would
automatically include cuda function.

Performance Tuning of IMPACT-Z on GPU
A naïve implementation of IMPACT-Z code on GPU

would already bring great performance boost. Simply by
rewriting all particle tracking subroutine into GPU core func-
tion, around 15 s running time can be achieved. However,
further tuning of the code is needed to get better performance.
The CUDA command line profiler is used as profiling tool.

PCI Data Traffic Optimization a common bottleneck
for GPU computation is frequent data traffic between host
and GPU device. A simple solution would be putting all
particle distribution data to GPU side and eliminate back-
and-forth particle data transformation between CPU and
GPU. This simple improvement would boost the running
time of the standard test case by around 7 s.

Precision control for a NVidia Tesla K20 GPU card,
there are 2496 single-precision cores which add up to 3524
Gflops. At the same time, there are also 832 double-precision
cores which add up to 1175 Gflops. It is obvious that us-
ing single-precision calculation instead of double-precision
calculation contributes to performance boost. IMPACT-Z
code is originally using double-precision calculation, switch-
ing to single-precision calculation decreases computational
time by around 2.5 s. However, the side-effect is a decrease
in calculation precision. Benchmark of computation preci-
sion is discussed in the following section, benchmark results
suggest that using single-precision is acceptable for on-line
beam tuning purpose.

Memory access pattern tuning the global memory ac-
cess pattern needs to be tuned for better performance. Be-
cause when doing 2D memory organization, Fortran is using
column first mode. As a result, the better way to declare a 6D

phase space array of N particles should be particle(N,6) in-
stead of particle(6,N) to avoid stride memory access pattern.
This adjustment of memory access pattern results in 0.5 s
decrease in calculation time. It has also been found out that
constantly allocating and deallocating device memory would
result in severe speed decrease. Declare a piece of device
memory once and reuse it whenever possible turns out to
be a good practice, which saves 0.3 s from total calculation
time.

Thread number and block number tuning Choice of
number of threads per block (TPB) would also affect calcula-
tion speed. For NVidia Tesla K20 GPU, maximum number
of TPB is 1024. Because 32 threads are organized in a
warp as the minimum unit that gets calculated in single-
instruction, so at least 32 threads are needed in a block. Too
small TPB would result in insufficient number of warp for
work scheduling inside a block, and too large TPB would
decrease number of active block on a multi-processor which
is bounded by memory resources. After careful tuning, we
found out that for our specific case, the optimum TPB equals
128, which results in 0.4 s decrease in calculation time.

Diagnostic function optimization for each integration
step, the particle distribution data is processed and beam pa-
rameters are calculated and outputted. The naïve implemen-
tation of transferring particle distribution data from device
to host each step and processing by the host is too slow. To
optimize this process, a device-host hybrid data processing
procedure is proposed. Unlike on CPU, particle data pro-
cessing, mostly reduction operation, is not trivial on GPU,
because threads can only be synchronized within a block,
and block level synchronization can only be achieved using
separate kernel call. Data can be shared among all threads
within a block using shared on-chip memory. Because the
size of shared memory of NVidia Tesla K20 GPU is at most
48K, so a proper number of particle accommodated is 256.
Because IMPACT-Z calculates 34 different beam parameters
for output, and all of them can be calculated in parallel. We
can take advantage of this level of parallelization to increase
threads used in a block to 1024. After that, the binary tree
is used to do reduction operation [8]. After first round of
block synchronization, the remaining data for reduction is
usually too small in scale for second round GPU-based re-
duction. The best choice is to transfer the remaining data to
CPU to finish reduction. Each kernel call of this optimized
diagnostic function takes about 180 us, and total time spent
is about 1 s.

After optimization, the running time for the standard test
case is 5.2 s. Though the running time can vary according to
the situation, we can still get a general insight on the relative
importance among each step.

IMPACT-Z GPU VERSION PROFILING
In this section, the performance of the optimized IMPACT-

Z GPU version is profiled and compared with the original

Proceedings of IPAC2016, Busan, Korea WEPOY051

05 Beam Dynamics and Electromagnetic Fields

D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-147-2

3111 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 1: Speed up factor for IMPACTGPU andMPI version
vs. particle number. Blue, green, red line means speed up
factor for original IMPACT-Z on a 32 threads Intel Xeon
CPU with MPI processes to be 10, 20 and 30 vs. particle
number. Magenta line means speed up factor for IMPACT-Z
GPU version vs. particle number.

Figure 2: Speed up factor for IMPACT GPU version vs.
lattice element type. Rfcavity performs much better because
of its higher arithmetic intensity.

version. Figure 1 shows the result of speed up factor in re-
lation with particle number. The standard running case is
treated as the baseline. Its running time is then divided by the
running time of GPU version to get the speed up factor. Be-
cause the baseline CPU is a multicore CPU with 32 threads,
and the speed up factor using original MPI with worker num-
ber 10, 20 and 30 is also calculated. It can be easily seen
that, with particle number increasing, the speed up factor of
the original IMPACT-Z MPI version saturate quickly around
18, however, the speed up factor of the IMPACT-Z GPU
version doesn’t saturate that fast, and can arrive almost 100
for 100K particles.
Speed up factor by different kind of lattice element is

recorded in Fig. 2 with the standard testing case. It can be
seen that RF cavity, which has largest arithmetic intensity,
shows best performance boost. On the other hand, for di-
agnostics, which mostly involves reduction operation and
has the lowest arithmetic intensity, shows least performance
boost. We can arrive at the conclusion that using GPUwould
be beneficial when dealing with computational intensive
problem instead of memory-bandwidth bounded problem.

IMPACT-Z GPU VERSION BENCHMARK
Using single precision data boosts calculation speed at

the cost of calculation precision. Figure 3 shows the bench-
mark result.Calculation result shows good agreement. The

(a)

(b)

Figure 3: Benchmarked of IMPACT-Z GPU version with the
original version (a) left axis: kinetic energy error, right axis:
longitudinal rms size error (b) left axis: transverse beam
orbit error, right axis: transverse rms size error

average error is 0.013 MeV/u for kinetic energy, 0.10 mm for
transverse beam orbit, 0.028 mm for transverse rms size and
3.68e-4 rad for longitudinal rms size. The results confirms
that the precision of IMPACT-Z GPU version can meet the
precision requirement for on-line beam tuning application.

CONCLUSION
It has been confirmed that NVidia GPGPU is effective

to boost the calculation speed of particle tracking-based
accelerator simulation code IMPACT-Z. After a series of
optimization including PCI data traffic optimization, preci-
sion control, memory access pattern tuning, thread number
and block number tuning, diagnostic function optimization,
the total speed up of around 100 times is expected. Further
study reflects that GPU is more effective when handling prob-
lem with larger scale and more arithmetic intensity. Bench-
mark of IMPACT-Z GPU version against original version
ensures its precision for on-line beam tuning application.
GPU-boosted IMPACT-Z simulator can be useful as a sup-
plement for envelope-based linear model, especially under
high power beam operation scenario.

ACKNOWLEDGMENT
The work is supported by the U.S. National Science Foun-

dation under Grant No. PHY-11-02511, and the U.S. De-
partment of Energy Office of Science under Cooperative
Agreement DE-SC0000661. This work is also supported in
part by Michigan State University through computational
resources provided by the Institute for Cyber-Enabled Re-
search.

WEPOY051 Proceedings of IPAC2016, Busan, Korea

ISBN 978-3-95450-147-2

3112C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

05 Beam Dynamics and Electromagnetic Fields

D11 Code Developments and Simulation Techniques



REFERENCES
[1] Jie Wei et al. FRYBA3, NA-PAC, 13, 2013.
[2] Ji Qiang et al. In Proceedings of the 1999 ACM/IEEE confer-

ence on Supercomputing, page 55. ACM, 1999.
[3] Zhengqi He et al. Tupb058. In Proc. of LINAC, volume 12,

2012.
[4] G Shen and Z He. Development status of a thin lens model for

frib online model service. In Proc. of ICAP2015, 2015.
[5] X Pang and L Rybarcyk. Gpu accelerated online multi-particle

beam dynamics simulator for ion linear particle accelerators.

Computer Physics Communications, 185(3):744–753, 2014.
[6] Greg Ruetsch and Massimiliano Fatica. Cuda fortran for sci-

entists and engineers. NVIDIA Corporation, 2701, 2011.
[7] MWolfe et al. Cuda fortran programming guide and reference.

The Portland Group, Release, 2012.
[8] Mark Harris et al. Optimizing parallel reduction in cuda.

NVIDIA Developer Technology, 2(4), 2007.

Proceedings of IPAC2016, Busan, Korea WEPOY051

05 Beam Dynamics and Electromagnetic Fields

D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-147-2

3113 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


