
Work supported in part by Department of Energy contract DE-AC02-76SF00515

Evolution of the Configuration Database Design∗

A. Salnikova†

aStanford Linear Accelerator Center,
2575 Sand Hill Road, Menlo Park, CA 94025, USA

The BABAR experiment at SLAC successfully collects physics data since 1999. One of the major parts of its
on-line system is the configuration database which provides other parts of the system with the configuration
data necessary for data taking. Originally the configuration database was implemented in the Objectivity/DB
ODBMS. Recently BABAR performed a successful migration of its event store from Objectivity/DB to ROOT
and this prompted a complete phase-out of the Objectivity/DB in all other BABAR databases. It required the
complete redesign of the configuration database to hide any implementation details and to support multiple
storage technologies. In this paper we describe the process of the migration of the configuration database, its new
design, implementation strategy and details.

1. INTRODUCTION

During the first years of the data taking the
BABAR experiment [1] used the object database
management system (ODBMS) Objectivity/DB
[2] for most of its data storage needs. All
main databases, which include event store, con-
ditions, configuration, calibrations, and ambi-
ent databases, were implemented initially using
this technology. Over the years of experience
with these initial implementations some signifi-
cant limitations had been discovered, which led
BABAR to re-evaluation of the chosen technol-
ogy. Experience with the alternative partial im-
plementation of the event data store proved that
ROOT [3] can be used as a replacement data stor-
age technology [4]. In 2003 BABAR implemented
a new event store based on two technologies –
ROOT file I/O for event data, and relational
databases for bookkeeping information [5].

After the successful re-implementation of the
event store using an alternative technology, a
new project was started for the migration of the
remaining databases [6]. In this paper we de-
scribe the process of migration of the configura-
tion database, its new design, and some imple-
mentation details.

∗SLAC-PUB-11396
†For BABAR Computing group

2. CONFIGURATION DATABASE

The configuration database is an important
part of the BABAR on-line system, and it has
worked sufficiently well since the beginning of the
BABAR data taking in 1999. Details of its initial
design and implementation may be found in [7].

Currently, the Objectivity implementation
of the configuration database holds about
60 MBytes of the configuration data. The data
are represented by about 30 persistent classes.
This makes it the most compact and simple
database compared to other BABAR databases.
It also makes it a perfect candidate for the pi-
lot project within the whole migration effort.

The initial implementation of the configura-
tion database contained several problems which
had to be resolved during this migration. The
main problem was that the database API exposed
many details of the chosen implementation tech-
nology, such as persistent types, object handles,
class names, etc. Additionally the database expe-
rienced a few evolutionary changes in the design
during its lifetime which were not always consis-
tent with the initial ideas.

The first phase of the database migration con-
sisted in designing the new abstract interface to
the configuration database that does not depend
on any implementation technology and consis-

1

SLAC-PUB-11396

September 2005

Presented at X International Workshop on Advanced Computing and Analysis Techniques in Physics Research, 
5/22/2005-5/27/2005, Zeuthen, Germany



2 A. Salnikov

tently incorporates all changes in the design since
the original implementation.

3. NEW DATABASE API

A new configuration database API was first
prototyped in the Python high-level program-
ming language [8]. The prototype allowed us
to better understand and test all details of the
new API. One particular implementation based
on a relational database was built as a part
of the prototype, and some important studies
were performed with this implementation. The
test showed that performance and scalability of
the implementation based on relational database
were the same or better than those of the initial
implementation based on Objectivity/DB. The
prototyping helped us to test quickly several dif-
ferent ideas for the implementation and optimize
the structure of the SQL tables.

Because of the differences between the dynam-
ically typed Python and statically typed C++,
expressing the same API in C++ terms needed
some additional work. One particular problem is
passing non-polymorphic types through the ab-
stract interfaces. The data classes which could
be stored in the database are unrelated, they do
not have a common base class. In C++ genericity
for non-polymorphic (unrelated) types is achieved
through the use of the template features. But ab-
stract interfaces and template code do not mix
well, there cannot be template virtual methods
in C++. A solution for this problem was found
through the use of the custom smart pointer class,
which is analogous to a type-less pointer (pointer
to void) but keeps additional run-time type infor-
mation (RTTI). The smart pointer can be used
with the virtual methods of the abstract API be-
cause it hides the type of the specific class used
with this pointer. Database implementations use
the RTTI stored inside the pointer to reconstruct
exact type of the data class. Details of this solu-
tion are hidden from the client code, so the users
only see an interface working with any arbitrary
kind of user data.

The client code which uses configuration
database services needed a migration to the new
abstract API. This was probably the most time

consuming task for the whole project, and it
involved significant reorganization of the client
packages to separate the code into the pure tran-
sient classes and specific persistent technology-
dependent classes. This process introduced a
number of the new packages into the system, but
the net result was a better code organization with
improved dependency control.

4. DATABASE IMPLEMENTATIONS

Because the new API is defined at the abstract
level, it is possible to build and use any number of
specific implementations. One obvious choice for
the implementation was to use the existing Objec-
tivity database. This implementation, which was
built on the top of the old pre-migration database
API, serves a number of purposes:

• as a proof of principle that the new API is
sufficient and works as expected,

• as a default implementation to be used un-
til we switch completely to the alternative
implementations,

• as a source of the data from which alter-
native implementations will initialize their
data.

This bridge implementation has been built and
is currently in use in BABAR in places which have
not switched yet to new implementations.

The choice of the implementation technology
for alternative implementations depends on par-
ticular requirements for configuration data access
from the client code. In BABAR there are two
classes of clients with different requirements:

• production site needs reliable, fault-
tolerant, concurrent read-write access to the
data

• remote sites need zero-management, easy-
to-use, fast, scalable read-only access to the
data

For the second group of clients ROOT is an
obvious choice because of its many attractive fea-
tures, such as: persistent data definition using



Evolution of the configuration database design 3

C++-like syntax allows easy migration of the ex-
isting Objectivity schema. Lack of servers simpli-
fies management at small installations like per-
sonal laptops. Larger installations with many
concurrent clients could use xrootd server [9] for
performance scalability. Finally, BABAR data dis-
tribution services already know how to distribute
ROOT data files to external BABAR institutions.

The ROOT read-only implementation was built
to satisfy the requirements of read-only clients.
ROOT-persistent classes are almost exact copies
of Objectivity DDL files, except for obvious dif-
ferences in the data description languages. Due
to the low volume of the data in the configu-
ration database it is possible to keep the whole
database in one ROOT file, which avoids complex
file-allocation management. Both metadata and
object data are stored in the ROOT tree struc-
tures, making the data model analogous to the
relational model. Lack of full indexing support in
ROOT, especially for strings, required introduc-
tion of few additional data structures to make
data access sufficiently fast. Overall, thanks to
the small size and simple structure of the config-
uration database, building the ROOT implemen-
tation was straightforward.

The requirements of the first group of clients
could be satisfied only by the true database imple-
mentation with full support of ACID properties
(Atomicity, Consistency, Isolation, and Durabil-
ity). Considering that we are seeking to replace
an object-oriented database, the only remaining
viable option is a relational database. The rela-
tional database has to be augmented with some
object-relational mapping mechanism, which is
not trivial despite many existing free or commer-
cial products.

It would be beneficial if such mechanism could
reuse existing persistent schema from the differ-
ent implementation avoiding duplication of efforts
for devising a new schema. Because the Objec-
tivity schema will be phased out, the only re-
maining schema is the ROOT schema. In ROOT
it is possible to do object data serialization in
the platform-independent format using the spe-
cialized buffer classes. Serialized data can be ex-
tracted from the buffer, optionally compressed,
and stored as byte-strings. The reverse process

allows complete reconstruction of the object data
from the byte-strings stored externally. In the
case of the relational database the byte-strings
can be stored as a binary large object (BLOB) as
a part of a relational table. This works well for
the self-contained object without external refer-
ences, but configuration data objects all fall into
this category.

The read-write implementation was built with
this serialization mechanism using the MySQL
database [10] as a storage of the object meta-
data and the BLOBs with object data. MySQL
provides all required database properties needed
to implement reliable and dependable storage of
the configuration data. Additionally it provides
features such as data replication, load balancing,
etc., which simplify data management tasks.

5. BUILDING APPLICATIONS

As a result of this migration process there are
now three different implementations of the con-
figuration database, any of which can be used
by the client applications. The decision about
which particular implementation should be used
depends on where the application runs, and this
decision should be delayed until run time so that
the same application could run anywhere. This
means that depending on which site a given ap-
plication is going to run it must have access to
the implementations supported by that site.

Not every implementation can be linked di-
rectly into the client applications. For exam-
ple, MySQL is an “optional” software in BABAR,
which means that not all sites are required to in-
stall it. If the MySQL implementation was linked
statically or dynamically into the application, it
would not be able to run at the remote sites where
MySQL was not installed because of the missing
shared libraries. The solution for this problem is
to load optional implementations or their parts
dynamically at run time and only if a specific im-
plementation is requested by the client.

The dynamic loading of shared libraries is
rather standard and straightforward across UNIX
platforms supported by BABAR. But it requires
special care to avoid multiply defined symbols in a
mixed environment where parts of the implemen-



4 A. Salnikov

tation could appear in both static and dynamic
libraries. As a result, in BABAR we are loading dy-
namically only the shared MySQL client library
(libmysqlclient.so.) The rest of the MySQL
implementation is linked statically in all applica-
tions that need configuration database services.
The complete ROOT and Objectivity implemen-
tations are also linked into the applications, but
the Objectivity implementation will be removed
once the migration is complete. In this way any
application can work with ROOT or Objectivity
implementations anywhere because both ROOT
and Objectivity are required currently for every
site, and also with MySQL implementation where
it was installed.

6. CONCLUSION

It is worth emphasizing again how important
it is to have clear abstract interfaces in case
of complex and evolving software systems. If
BABAR had good abstract interfaces for config-
uration database from the beginning, the migra-
tion process from one technology to alternatives
would be less painful. The new design described
in this paper introduced abstract interfaces to the
BABAR configuration database. This already has
significant benefits for BABAR – the client code
is free now from the unnecessary implementation
details, and for the particular site it is possible to
choose the best suitable implementation technol-
ogy.

Early prototyping in a high-level language
played crucial role in the design of the new API
and allowed us to get quick answers to some ques-
tions. Implementation of this new API in C++
would have benefited from the features missing
currently in C++, such as reflection and intro-
spection.

While at the time of this writing BABAR is
still using the bridge Objectivity implementation
across all sites, work is in progress to distribute
the data for alternative implementations and to
start using the ROOT implementation at remote
sites and the MySQL implementation in produc-
tion.

Overall, this migration effort represents a sig-
nificant experience which will certainly be used in

the migration of the remaining BABAR databases.

7. AKNOWLEDGMENTS

This work is supported by the U.S. Depart-
ment of Energy under contract number DE-
AC02-76SF00515.

REFERENCES

1. B. Aubert et al., The BABAR Detector, NIM
A479:1-116, 2002.

2. Objectivity/DB object database management
system, www.objectivity.com.

3. ROOT – An Object-Oriented Data Analysis
Framework, root.cern.ch.

4. T.J. Adye et al., KANGA(ROO): Han-
dling the micro-DST of the BABAR Exper-
iment with ROOT, Comput.Phys.Commun.
150:197-214, 2003.

5. M. Steinke et al., How to build an event store
– the new Kanga Event Store for BABAR,
In proc. CHEP 2004, September 2004, Inter-
laken, Switzerland.

6. R. Bartoldus et al., The Future of Non-
eventstore Databases in BABAR, BABAR-
NOTE-0576, Nov. 2003.

7. R. Bartoldus et al., Configuration Database
for BABAR Online, Proc. CHEP03, March
2003, La Jolla, USA.

8. Python programming language,
www.python.org

9. A. Hanushevsky et al., The Next Genera-
tion Root File Server, In proc. CHEP 2004,
September 2004, Interlaken, Switzerland.

10. MySQL database management system,
www.mysql.com.


