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ExcLus1ve NonNLEPTONIC DEcCAYS

M. Gorn
Theoretische Physik, Universitdt Minchen, Germany

Abstract:

Constraints on quark diagrams for exclusive decays from group theory are inves-
tigated. In contrast to previous statements, we find a one-to-one correspondence
between reduced matrix elements of flavor symmetry (SUs) and the "naive" quark
diagrams of the spectator and annihilation type. In Cagibbo suppressed decays
however, group theory relates penguin and annihilation (W-exchange) diagrams,
consequently ruling out models with spectator dominance and large penguins.
These results are expected to be more general, having as yet been illustrated
for two-body decays of charmed mesons.
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Motivation: An open problem in particle physics is the calculation of nonleptonic
decay rates from the weak Hamiltonian

* - -
Vi VCS(uLyudL)(sLy”cL) + h.c. (Cabibbo allowed)
Ac _ G * - -
Hw :/5 +Vus VCS(ULYUSL)(SLYUCL) + h.c. (1)
* - - .
+Vud Vcd(uLYudL)(dLYucL) + h.c. (Cabibbo suppressed)

and QCD. The practical use of the latter seems for the moment to be T1imited to
the asymptotic region of a large scale involved, being not the case in K and
hyperon decays and most probably also not in charm decays.

What can we do?
Remember the good old rather successful phenomenological approaches, under names
like "al = 1/2 rule", "spurion", "Lee-Sugawara" and "octet-enhancement"l). They
were all based on group theory using flavor symmetry (SU2 or SU3) and the domi-
nance of some irreducible tensor operator in the weak Hamiltonian, many of its
predictions being beautifully borne out by experiment. This motivated many
peop1ez) to generalize this idea to "20-plet enhancement" in H for charm decays,
because in terms of SU, tensors: Hw = OQBO:4((EQ)32 + (§£)gg) + h.c., where the
matrices Oas etc. in front contain the Cabibbo 1ike couplings Vud etc. (see
refs. 2). If ?ow transition rates, e.g. of the form (|cag> = charmed meson;
£ =1,2,3; Pz = SU3 octet, e.g. t etc.)

p'ne’ S .
<Pp P¢ |Hw}cq€> = ? C1<j|01|\> (2)

are decomposed by a straightforward procedure into reduced matrix elements
("RME") <||011J> and Clebsch-Gordan coefficients C., the assumption that the 20
tensor in Hw dominates, will yield certain predictions on exclusive branching
fractions.

This group theoretical procedure has a great advantage: Even if the multiplet
enhancement were not exact (as the al = 1/2 rule is not; note also that perturba-
tive QCD predicts3) only C84/C20 = 0.3) this decomposition is the most general
one and independent of any details of strong dynamics, besides flavor symmetry.
It tells us how many parameters we need in order to parametrize a decay.

But this leads us to the main question: Why do certain tensors dominate and

why do certain RME's have certain values (which cannot be calculated from the

flavor symmetry). Therefore we are confronted with the problem of calculating
RME's from strong interaction dynamics. Somebody might object: Why consider RME's
at all, calculate transition rates!

So what one usually does, is to draw all possible diagrams for valence quarks

(assuming at most only them to participate in the weak interaction) to flow from
the initial to the final state. However, the number of such diagrams is infinite,
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because of strong interaction corrections. Nevertheless, if we assume that we
could sum up all these corrections, we would end up with a certain class of
diagrams which do not show all the details of strong interactions, indicating only
the flavor flow of the valence quarks (or the "flavor topo]ogy"4)). In the PP-case
(charmed mes. -~ two pseudoscalars) there are four such generic diagrams (called

KOO

"spectator" and "annihilation") whereas in the VP-case (e.g. 0% -~ there are

-+—<Q::ii}v -——1;;;Efi}v
S ye >y >”< Fig. 1

Sl 52 a

eight of them, etc., using flavor SU3 (its breaking could be considered by taking
more diagrams). Now the decomposition of all octet-octet amplitudes is a simple
exercise, in terms of the above generic graphs, given below on the 1.h.s. in
eqs. 3. With either of the assumptions: (a) spectator dominance (b) annihilation
dom., one can fit one or the other exp. result or get predictions. As to be learnt
from the VP-case, no universal simple picture seems to exist for the moment
howevers).

Now recalling group theory we ask ourselves: Are there some different predic-

tions or are some of the diagrams constrained? The answer of the usual procedure,
to- be extracted from the 1iterature2)5), in terms of RME's, is written on the
r.h.s. in eqs. 3:

<K+w_]DO>= Coszec(sl+ a)= coszec (<8,20> + % <27,84> + % <8,84>)

+70) nt 2 2
< K°|D >= C0S ec(sl+52)= cos 6, <27,84> (3)

0+ -+ 2 . 2 4 1
K“K"|F'>= cos ec(sz+a )= cos ec(—<8,20> + §'<27’84> ty <8,84>)

etc. (simularly for the VP case, see ref. 5)

But this is very strange and appears to be a big problem! Four diagrams but only
three RME's (eight and seven resp. in the VP-case); is therefore one of the dia-
grams redundant? The answer of a more careful investigation %) is: No! This is
because one RME, called <0,20>, drops out in the decay amplitudes. In order to
understand this, look at the group theoretical decomposition (eq. 2) in more
detail, where there appear several lines of simular structure: RME's with expres-
sions in Kronecker deltas in front.

¥ ] s . , ,
p pd = - + ot ',op o' ap .
<PPPEIh, lcd,> = 0.y 07y L. (8gg Jep * wov 6580 608 + .o)e<| [RME||>
as 500 - 5%t sop ) (4)
*(8gy tgp e T 88 gt en) - <ll0s200]> .
(. )
~
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In the last line of eq. 4, the delta expression in brackets vanishes identically
for all a, B, ... = 1,2,3, therefore <||0,20||> not appearing in eqs. 3. But now
it is important to observe that these Kronecker deltas are of different kinds,
indicating exactly the flavor flow mentioned above in the context of diagrams:

C“pls ap’

) 1
8o £ etc. » "spectator", 606¢ §%P etc. - "annihilation"

Ep "Be

Consequently these diagrams are linear sums of RME's, and spectator or annihila-
tion graphs, if considered seperately, do depend on <0.20>, which need not be
zero by itself (this would lead to contradictions discussed in ref. 5).

Sy = <0,20> + <27,84> , Sy = - <0,20> + <27,84>

a = -<0,20> + <8,20> ~ %—<27,84> + % <8,84>
al = <0,20> - <8,20> - £ <27,80> + ¢ <8,80>
(Similarly in the VP-case).

It is also interesting to invert these relations,

1 1
<0,20>= ~ (s1 - 52) <27,84>= > (s1 + 52)

1

(6)
<8,20>= % (sg - s, +a- a') <8,84>= 5 (s; +s, +5 (a+ a'))

because we now see, for instance, how we could calculate RME's from diagrams,fig.l

1. Result: The "naive" decomposition of decay amplitudes in terms of generic
graphs is completely equivalent to the group theoretical decomposition in
terms of RME's (Wigner-Eckhardt theorem) for Cabibbo allowed transitions.

Since either approach uses the valence content of particles only, this was
to be expected somehow, though not obvious at first sight.

The usefulness of the diagrammatical language shows up also in decays of the
type: - octet - singlet (e.g. D° » ¢R°) or » singlet - singlet (e.g. n'n'sn'¢

etc.), because in principle there is a new amplitude, not related to the octet-
octet one. In group theory usually new assumptions are made (refs. 2) in order
to relate them, and again the question arises for their reason. One can find a
group theoretical decomposition of these singlet amp]itudese), again to be in-
terpreted as a sum of simple quark diagrams. The new graphs involved are of the

type
<{ -
charmed .
g ; Fig. 2
meson C} P

where a qq pair, out of the vacuum, produces a final state. Making an assumption
on the importance of these new graphs, e.g. putting them to zero (0ZI rule), we
obtain many relations to the octet-octet decays, because they depend on the
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same graphs then (Fig. 1). For reasons of space we have to dismiss further dis-
cussion here.
A real constraint from group theory follows however in the Cabibbo suppressed

decays for the so - called "penguin" diagrams7).

c W “w

Ps,d = s, Fig. 3

which, in charm decays, enter proportional to the factor in mixing angles (e.g.

vE vt , whereas most of the decays go via the larger

Kobayashi-Maskawa) &~V Vo +V Voo

* . .
parameter z ~ Vudvcd - Vusvcs' Note8§hat in four quark GIM: I ~ cosec.smec and
A =0 and in Kob.-Mask. |a/z|< 1/1577.

Looking in the group theoretical tensor decomposition we find that7)

Ps,d = a (7)

where "a" is the above annihilation (W-exchange) diagram. This surprising result
comes from some more general property of SU(N) irreducible representations,
having to be either symmetric or antisymmetric in the interchange of two parti-
cles. By construction,the tensor decomposition of the decay amplitudes is always
symmetric under the interchange of all the particles. This simple property implies
the penguin - annihilation equality (7). From the weak Hamiltonian Hw one can see
also that both of the graphs indeed lead to similar form factors. It is very in-
teresting to note that this only works, considering QCD for instance, if annihi-
lation graphs have a gluon in the initial state.

One correction has to be made. The Ps,d graph does not contain the b-quark
loop: Py For exact flavor symmetry (mb = ms,d) the GIM mechanism tells us:
ptot - Pg,d™ Pp = O O Pg g = Py By breaking effects py = pg 4. f(mm ),
with f =1 for m, = ms,d'
Therefore

pt s (1-1) - a (8)

our final result, expected to hold for other nonleptonic decays similarly, f

could be specified from QCD and probably one will find IptOt‘<|a|.

Eq. (8) also says, that the previous group theoretical treatments™’, having im-
plicitly the uncorrected equality p = a, eq. (7), are incorrect, due to the nec-
essary modification by the b-loop. Needless to say however, that SU(3) breaking
effects are probably even larger. Because of the above mentioned general property
of SU(N) representations, eqs. (7) and (8) are expected to hold similarly in K
and hyperon decays, b decays etc. They imply that one cannot neglect annihilation
graphs (spectator model) and at the same time assume large penguin contributions.
Such a picture is inconsistend with the penguin-annihilation relations (7) or
(8), which probably can also be derived directly from H_ and Q). This should
be investigated in more detail.
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Conclusions:
It turned out to be worth comparing group theory with the diagrammatical analysis
of exclusive nonleptonic decays, because

i)  nonleptonic dynamics can presumably be easier understood in terms of dia-
grams, which show up to make sense also for exclusive channels, since their
use is equivalent to the application of group theoretical methods

ii) penguin graphs are related to W-exchange graphs (inconsistency of specta-
tor dominance + large penguins).
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