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The possibility of generating fermion masses in chiral-symmetric gauge theories has been 

examined with the help of renormalization group equations. 

1. Renormalization Group Equations 

In discussing dynamical generation of fermion masses the most useful tool is the renor­

malization group (RG) method, and we shall briefly recapitulate essential features of this 

method. 

Green's functions in ga.uge theories with exponentiated mass-insertion l) a.re defined by 

a(n,m)(x, ... , y, ... , z, ... : I<) 

=< O!T[1fa(x) ... '.ifj'(y) ... q)A(z) ... exp (iI{m J d4uS(u))]IO >, 
(1.1) 

where the scalar density Sis bilinear in the fermion fields and is normalized by 

< plSlp >= u(p)u(p). (1.2) 

u(p) and u(p) denote the Dirac spinors of the fermion fields corresponding to a single fermion 

state IP > of momentum p. Also, for a. given loca.l opera.tor A( w) we can define Green's 

functions of the form: 

A(n,m)(w; x, .. ., y, ... , z, ... : K) 

=< OIT[A(w)1/J(x) ... ~(y) ... q)A(z) ... exp(iKm J d4uS(u))] IO>. 
(1.3) 
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These Green's functions satisfy homogeneous Callan-Symanzik (CS) equations of the form: l) 

('D + n''/F + mJv)G(n,m)( ... ;g, m, a: K) = 0, (1.4) 

where n and m denote the numbers of the fermion fields and of the gauge fields in the 

T-product, respectively, and 

a a a a 
'D = m-+ /3- - 2aJv- - (1 + (l - Js)K)-. om og oa 8K 

(1.5) 

JF• Jv and JS denote, respectively, the anomalous dimensions of the operators ,,P, q,,. and S. 

For practical purposes it is convenient to change the set of parameters from g, m, a and 

K tog, m, a and mn, where mR is called the effective mass and is defined b/) 

(1.6) 

where B(g) is characterized by the following equation: 

dB 
/3 dg + (l - Js)B = l. (1.7) 

In terms of the new set of parameters the differential operator 1J assumes the following 

form: 3
) 

(1.8) 

where JS is related to B through 

1 +JS= B-1. (1.9) 

2. Chiral Symmetry 
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In classical gauge theories the concept of chiral symmetry is equivalent to the vanishing 

of the bare fermion mass mo. The classical Dirac equation for the fermion 

(2.1) 

is invariant under the chiral transformation 

(2.2) 

provided that the bare mass mo vanishes, 

m 0 =0. (2.3) 

The equivalence ceases to be valid in quantum theory, however, because of the divergent 

character of the theory. Indeed, in quantum field theory we often encounter a tricky relation: 

0 x oo = finite, (2.4) 

which is reminiscent of anomalies characteristic of quantum field theory. We shall elucidate 

on this point in Q CD. 

Let us decompose the quark propagator as 

(2.5) 

and let us assume a spectral representation of .6.i(X) as 

(2.6) 

where .6.p(x, µ 2
) denotes the free propagator for massµ. Then the physical mass mis related 

to the bare mass m 0 through 2) 

(2.7) 

provided that < </>~ >= 0. In the Landau gauge the RG analysis leads us to the following 

relationships 2) in QCD: 

(2.8) 



(2.9) 

Then we can deduce on the basis of Eqs.(2.7), (2.8) and (2.9) that 

mo/m=O. (2.10) 

This result poses a serious doubt on the equivalence between chiral symmetry and the van-

ishing bare mass. Suppose that the physical mass mis finite, then Eq.(2.10) implies mo= 0, 

and consequently the resulting theory should be chiral-symmetric no m< tter how we choose 

the physical mass if we should insist on the classical equivalence. This sounds very unlikely, 

however. We must admit, therefore, that the classical equivalence should be broken by quan-

tum corrections, and we must look for a proper definition of chiral symmetry expressed in 

terms of renormalized quantities alone. 

3. Dynamical Breakdown of Chiral Symmetry 

In an attempt to define chiral symmetry we propose to define it by the existence of an 

axial-vector current X>. satisfying the following two conditions: 

fJ>.X>. = 0, 

and the equal-time commutation relations (ETCR): 

8(xo - Yo)[Xo(x), 7/i(y)] = -/s1/i(y)84 (x - y), 

8(xo - Yo)[Xo(x), ~(y)] = ~~(Yhs84 (x - y). 

(3.2a.) 

(3.2b) 

In what follows we shall look for the condition for the existence c f such a current in 

QCD. For this purpose we introduce some unrenormalized expressions f rst. 

A(O) _ .~O) .J,(0) 
).. -Z'I' /~/s'f' ' 

p(O) =i~O)/s?/i(O), (3.3) 

S(O) =~O) 1/J(O). 
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Then we have 

(3.4) 

A flavor-changing current xi0
) can be identified with A~o), but for a flavor-conserving current 

as (3.3) we have. to identify xi0
) with the following combination: 

4
) 

X <o) _ A<o) _ c<o> 
,\ - ,\ ,\' (3.5) 

where ci0) denotes the Chern-Simons term whose explicit form is irrelevant in what follows. 

The current satisfies the ETCR (3.2) so that we may assume non-renormalization of xi0
), 

and it may be identified with the renormalized one: 

(3.6) 

The scalar density is renormalized as in Eq.(1.2), but the pseudoscalar density will be renor­

malized by 

moP(o) = mP, (3.7) 

in conformity with the renormalization prescription adopted by Adler and Bardeen~) ,Then 

we have 

(3.8) 

Here we have assumed that all flavors of quarks carry the same physical mass for simplic­

ity. This is not the only way of renormalizing p(O), and we shall introduce an alternative 

prescription in what follows. 

The unrenormalized currents satisfy the following ETCR: 

(3.9) 

so that its renormalized version is given by 

5(xo - yo)[Xo(x ), S(y)] = 2ibP(y)84 (x - y), (3.10) 
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where 

(3.11) 

Now we introduce P by 

P = bP, p(o) = ZsF. (3.12) 

The RG equation for b in the Landau gauge reads as 

(3.13) 

and the renormalization prescription (3.7) gives 4 ) 

b = 1- JP• (3.14) 

We can easily find that this bis related to B, with the help of Eq.(1.7), through 

(3.15) 

and 

(3.16) 

Combining these relationships we finally arrive at 

(3.17) 

A relationship indicating the anomalous character of the theory is illustrated by 

mB(g) = moZs. (3.18) 

The bare mass mo is zero and Zs is divergent, whereas the /.h.s. is finite in general, so that 

this relationship is an avatar of the anomalous relation (2.4). 
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Thus, in order for the theory to be chiral-symmetric Eq.(3.1) must be satisfied. This in 

turn implies 

mB(g) = 0. (3.19) 

There a.re two ways of satisfying Eq.(3.19), namely, either m = 0 or B(g) = 0. In the former 

case the fermion is massless and the theory is trivially chiral-symmetric, but in the latter 

case chiral symmetry is dynamically broken thereby generating the NG boson. 

Next, by starting from Eq.(3.8) and the ETCR (3.2) we can derive the Ward-Takahashi 

identity in an obvious notation: 

(3.20) 

where p and q are outgoing and incoming momenta, respectively. In the lowest order pertur­

bation theory, rs,..(p,q),rs(p,q) and s;1(p) reduce to />.%,/a and (ip·1+m), respectively. 

Let us assume that m-:/:- 0 and B(g) = 0, corresponding to Eq.(3.1), so that r 5 = 0 in 

Eq.(3.20), and then let us take the limit g ._.. p to find 

(3.21) 

The non-vanishing of the r.h.s. for m -:/:- 0 implies the existence of a massless pole, in the 

vertex rs,..(p, q), of the form 

(3.22) 

indicating generation of a massless NG boson. 

4. The Schwinger-Dyson Equation 

When mB(g) -:/:- 0, the theory is not chiral-symmetric. First, we shall study the 

Schwinger-Dyson (SD) equation in this case. Then the massless NG boson is absent, and 
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Eq.(3.20) reduces, in the limit q--> p, to 

{f&,S_F1(p)} = 2mrs(p,p). (4.1) 

The vertex function rs (p, p) satisfies a Bethe-Sal peter (BS) equation of the following form: 

(4.2) 

where spinor indices have been suppressed. By combining Eqs.(4.1) and (4.2) we also have 

a BS equation for the l.h.s of Eq.(4.1): 

(4.3) 

Because of the divergent character of the theory we find 2) 

z;1 = o, mo = O, Z2 = finite, (4.4) 

and both Eqs.(4.2) and (4.3) reduce to homogeneous ones. 

The so-called SD equation is then given by 

(4.5) 

Although mo has been put equal to zero, the system described by this equation is not chiral­

symmetric. In wha.t follows we shall study the behavior of {1'5 ,Sj;1 (p)} for large values of 

p2 with the help of the RG equation: 

The anomalous dimensions are given in QCD by 

b 3 
/3(g)=-2g + .. . 

/s(g) = - cg2 + .. . 

/8(g) = - /p(g), 

/F(g) "'0(g4
), 

. b = - 1
-(33 - 2i'l1) 

' 241r2 ' 

. c = 1/21r2 

' ' 

(4.6) 

(4.7) 

in the Landau gauge. By solving Eq.( 4.6) we find the asymptotic form of rs for large values 
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of p2 as 

( 
p2 )-c/b 

f 5(p,p;g, m, mR),...., /aB(g)Z2(g)C(g) ln m 2 , (4.8) 

and consequently 

(4.9) 

This corresponds to Lane's G+ solution~) 

Next we shall study what will become of the NG boson when mB(g) -:/= 0. The operator 

Pis BRS invariant, and we expect 

< OjF(x)F(y)jO >-:/= 0. (4.10) 

When color confinement is realized, composite hadron states saturate the intermediate 

states.
7

) In particular, we pick out a single particle state Irr > satisfying 

< OIF(x)lrr >-:/= 0. (4.11) 

Then Eq.(3.17) implies< OIXA(x)lrr >-:/= 0 and we may put 

(4.12) 

which defines the proportionality constant M(g). Combination of Eqs.(3.17) and (4.12) 

yields 

(D- µ 2
) < OIF(x)lrr >= 0, (4.13) 

where 

µ 2 = mM(g)B(g). (4.14) 

Thus, in genera.I, we have a massive pseudoscala.r bound state instead of the massless NG 
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boson unless B(g) = 0. We shall study the high p2 behavior of the BS amplitude 

(4.15) 

For this purpose we introduce the operator product expansion and assume that it is domi-

nated by the pseudoscalar term: 

so that we have 

The RG equation for f(x) is given by 

('D + 2/F - /s)f(x) = 0, 

and the high p2 behavior of f(p), Fourier transform of f(x), is given by 

The amputated BS amplitude r(p) for p2 - oo is related to f(p) through 

so that we have for p2 - oo the asymptotic form of r(p) as 

1 ( p2 )c/b 
r(p) rv p2 ln m2 

This corresponds to Lane's G _ solution.6) 

(4.16) 

(4.18) 

(4.19) 

(4:20) 

(4.21) 
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So far we have assumed mB(g) =f 0 and have obtained massive pseudoscalar bound 

state, but what will happen when m =f 0 and B(g) = O? Let us assume that B(g) vanishes 

for g = 9x, 

B(gx) = 0, (4.22) 

then Eq.( 4.14) indicates that the massive pseudoscalar boson reduces to the massless NG 

boson. Causality implies 

µ 2 = mB(g)M(g);::: 0. (4.23) 

Since B(g) changes its sign at g = 9x, so does M(g), too, by causality. Namely, we have 

M(gx) = 0, (4.24) 

and hence Eq.(4.12) leads us to 

< OIP(x )I'll" >= 0, for g = 9x· (4.25) 

In this case we are aware that the r.h.s. of Eq.(4.17) vanishes, and Eq.(4.17) must be 

modified as 

Non-renormalization of X>.., expressed by Eq.(3.6), implies 

Ix= O, (4.27) 

and the RG equation for h(x) is given by 

(1J + 2/F)h(x) = 0. (4.28) 

The high p2 behavior of h(p) is then given by 

(4.29) 

The amputated BS amplitude u(p) defined by an equation similar to Eq.(4.20) behaves for 



large p2 as 

( ) 
const 

up ""·-2-· 
p 

u(p) is proportional to Eq.(3.21) so that we find 

_ 1 const 
bs, SF (p)}"" - 2-, for g =Ox· 

p 

This is quite distinct from Eq.( 4.9). 
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