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ON THE STRUCTURE OF GRADED LIE TRIPLE SYSTEMS

Antonio Jesús Calderón Mart́ın

Abstract. We study the structure of an arbitrary graded Lie triple sys-
tem T with restrictions neither on the dimension nor the base field. We
show that T is of the form T = U +

∑
j Ij with U a linear subspace of the

1-homogeneous component T1 and any Ij a well described graded ideal of
T, satisfying [Ij ,T, Ik] = 0 if j 6= k. Under mild conditions, the simplicity
of T is characterized and it is shown that an arbitrary graded Lie triple
system T is the direct sum of the family of its minimal graded ideals, each
one being a simple graded Lie triple system.

1. Introduction

The study of gradings on Lie algebras begins in the 1933 seminal Jordan’s
work [27], with the purpose of formalizing Quantum Mechanics. Since then,
many papers describing different physic models by means of graded Lie type
structures have appeared, being remarkable the interest on these objects in
the last years. For instance, in the case of Lie algebras, we can cite many
works related to theory of strings, to color supergravity, to Walsh functions, to
electroweak interactions or to gauge models [1, 4, 9, 10, 17, 18, 20, 22, 25, 29,
34]. In the case of Lie superalgebras, we can also cite several works modelling
continuous suppersymmetry transformations between bosons and fermions or
conformal field theory [3, 5, 19, 26, 31]. Finally, as it is pointed out in [24],
we note that Lie triple systems are well related to the theory of Quantum
Mechanics with PT -symmetric Hamiltonians and Krein space-related models
in general, by identifying this underlying structure in the recognizing of PT -like
involutory structures in physical models. Lie triple systems also appear in the
modelling of superconformal Cherm-Simons theories [30], being so of special
interest the graded ones (see the recent papers [6, 11, 13, 21, 23, 28]).

In the reference [9] it is studied the structure of arbitrary graded Lie algebras,
being extended to the framework of graded Lie superalgebras in [14]. Since
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graded Lie triple systems appear as the natural ternary extension of graded
Lie algebras, we are interested in the present paper in studying the structure
of graded Lie triple systems.

The paper is organized as follows. In § 2 we recall some basic results on the
theory of Lie triple systems. In §3 we extend the techniques of connections in
the support of the grading developed in [9, 14] to the framework of graded Lie
triple systems T, so as to show in §4 that T is of the form T = U +

∑
j Ij with

U a linear subspace of the 1-homogeneous space T1 and any Ij a well described
graded ideal of T, satisfying [Ij ,T, Ik] = 0 if j 6= k. We would like to note that
the works [9, 14] are developed for graded Lie algebras and superalgebras L with
a symmetric support, that is, satisfying that if the homogeneous component
Lg 6= 0, then Lg−1 6= 0. In the present paper we also extend the connection in
the support techniques introduced in the above papers to the non-necessarily
symmetric support case. Hence, we are also extending the results of [9] to the
case in which the support of the grading is non-symmetric.

In §5, and under mild conditions, the (graded) simplicity of T is characterized
and it is shown that an arbitrary graded Lie triple system T is the direct sum
of the family of its minimal graded ideals, each one being a simple graded Lie
triple system.

Since any split Lie triple system T , that is, a Lie triple system which de-
composes as T = T0 ⊕ (

⊕
α∈Λ Tα) where Tα is the root space associated to the

nonzero root α : H → K, is a G-graded Lie triple system, G being the abelian
free group generated by the set of nonzero roots Λ, we have that any split Lie
triple system is a particular case of a graded Lie triple system. Hence, the
present paper extends the results in [8, 12].

Finally, we note that throughout this paper, graded Lie triple systems T are
considered of arbitrary dimension and over an arbitrary base field K.

2. Preliminaries and basic definitions

Let T be a linear space over an arbitrary base field K. We say that T is a
triple system if it is endowed with a trilinear map

〈·, ·, ·〉 : T× T× T → T,

called the triple product of T.

Definition 1. A triple system T is called a Lie triple system if its triple prod-
uct, denoted by [·, ·, ·], satisfies

(1) [x, x, y] = 0,
(2) [x, y, z] + [y, z, x] + [z, x, y] = 0 (Jacobi identity),
(3) [x, y, [a, b, c]]− [a, b, [x, y, c]] = [[x, y, a], b, c] + [a, [x, y, b], c]

for any x, y, z, a, b, c ∈ T.

Observe that last identity means that for any x, y ∈ T, the left multiplication
operator

L(x, y) : T → T, z 7→ [x, y, z]
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acts as a derivation on T.
We recall that the Annihilator of a Lie triple system T, denoted by Ann(T),

is defined as the set of elements x ∈ T such that [x,T,T] = 0.
A two-graded K-algebra A is a K-algebra which splits into the direct sum

A = A0⊕A1 of linear subspaces (called the even and the odd part respectively)
satisfying AαAβ ⊂ Aα+β for any α, β in Z2. The standard embedding algebra

of a Lie triple system T is the two-graded Lie algebra L = L0 ⊕ L1 where L0

is the K-span of {L(x, y) : x, y ∈ T }, where L1 := T and where the product is
given by

[(L(x, y), z), (L(u, v), w)]

:= (L([u, v, y], x) − L([u, v, x], y) + L(z, w), [x, y, w]− [u, v, z]).

Let us observe that L0 with the product induced by the one in L = L0 ⊕L1

becomes a Lie algebra and that the fact [x, L1] = 0 for some x ∈ L0 implies
x = 0.

Definition 2. Let T be a Lie triple system. It is said that T is graded by means
of an abelian group G if it decomposes as the direct sum of linear subspaces

T =
⊕

g∈G

Tg

where the homogeneous components satisfy [Tg,Th,Tk] ⊂ Tghk for any g, h, k ∈
G (denoting by juxtaposition the product in G). We call the support of the
grading the set Σ1 := {g ∈ G \ {1} : Tg 6= 0}.

The usual regularity conditions will be understood in the graded sense. That
is, a subtriple of T is a linear subspace S satisfying [S, S, S] ⊂ S and such that
splits as S =

⊕
g∈G Sg with any Sg = S ∩ Tg. A subtriple I of T is an ideal if

[I,T,T] ⊆ I, (which implies [T, I,T] + [T,T, I] ⊆ I). As an example, Ann(T)
is an ideal of T.

The graded Lie triple system T will be called simple if [T,T,T] 6= 0 and its
only ideals are {0} and T. Finally, T will be said prime if [I,T, J ]+ [J,T, I] = 0
with I, J ideals implies either I = 0 or J = 0.

Let L be an arbitrary Lie algebra over K. As usual, the term grading will
always mean abelian group grading, that is, a decomposition in linear subspaces
L =

⊕
g∈G Lg where G is an abelian group and the homogeneous spaces satisfy

[Lg,Lh] ⊂ Lgh. We also call the support of the grading the set {g ∈ G \ {1} :
Lg 6= 0}.

Proposition 2.1. Let T be a G-graded Lie triple system and let L = L0 ⊕ L1

be its standard embedding algebra. Then L0 is a G-graded Lie algebra.

Proof. Define L0
1 :=

∑
g∈G[Tg,Tg−1 ] and L0

g :=
∑

h∈G[Th,Th−1g] for any g ∈

G \ {1}.
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Clearly L0
1 +

∑
g∈G\{1} L

0
g ⊆ L0. Conversely, since

L0 = [T,T] = [
⊕

g∈G

Tg,
⊕

h∈G

Th]

⊆
∑

g∈G

[Tg,Tg−1 ] +
∑

g,h∈G,h 6=g−1

[Tg,Th]

⊆ L0
1 +

∑

g,h∈G,h 6=g−1

L0
gh

⊆ L0
1 +

∑

g∈G\{1}

L0
g

we get L0 = L0
1 +

∑
g∈G\{1} L

0
g.

The direct character of the sum can be checked as follows. If x ∈ L0
g ∩

(
∑

h∈G\{g} L
0
h), then for any q ∈ G and y ∈ Tq we have [x, y] ∈ Tgq ∩

(
∑

h∈G\{g} Thq) and so [x, y] = 0. From here [x,T] = 0 and so x = 0. Hence
we can write

L0 = L0
1 ⊕ (

⊕

g∈G\{1}

L0
g).

Finally, we have

[L0
g, L

0
h] ⊆ L0

gh

for any g, h ∈ G. Indeed,

[L0
g, L

0
h] =

∑

k,l∈G

[[Tk,Tk−1g], [Tl,Tl−1h]]

⊆ [[Tk,Tk−1g,Tl],Tl−1h] + [Tl, [Tk,Tk−1g,Tl−1h]]

⊆ [Tgl,Tl−1h] + [Tl,Tl−1gh]

⊆ L0
gh. �

Observe that for any g, h ∈ G we have

[Tg,Th] ⊂ L0
gh.

In the following, we shall denote by Σ0 the support of the graded Lie algebra
L0.

Example 1. Consider L =
⊕

g∈G Lg a simple graded Lie algebra with sup-

port Σ, and the Lie triple system T (L), where T (L) agrees with L as linear
spaces, and the triple product is defined by [x, y, z] := [[x, y], z]. The stan-
dard embedding algebra of T (L) is L ⊕ L with the product [(x, y), (z, t)] =
([x, z] + [y, t], [x, t] + [y, z]). It is straightforward to verify that T (L) = (0,L)
is a graded Lie triple system with support Σ1 = Σ and that its homogeneous
spaces are T (L)g = (0,Lg) for any g ∈ Σ, and T (L)1 = (0,L1). Observe that
the supports of the graded Lie algebra L0 = (L, 0) and of the graded Lie triple
system T (L) = (0,L) agree.



ON THE STRUCTURE OF GRADED LIE TRIPLE SYSTEMS 167

3. Connections and gradings

From now on, T denotes a graded Lie triple system with support Σ1, and

T =
⊕

g∈G

Tg = T1 ⊕ (
⊕

g∈Σ1

Tg)

the corresponding grading. Denote by −Σi = {−g : g ∈ Σi}, i = 0, 1.

Definition 3.1. Let g and h be two elements in Σ1. We say that g is connected
to h if there exist g1, g2, . . . , g2n+1 ∈ ±Σ1 ∪ {1} such that

1. {g1, g1g2g3, . . . , g1g2g3 · · · g2ng2n+1} ⊂ ±Σ1,
2. {g1g2, g1g2g3g4, . . . , g1g2g3 · · · g2n} ⊂ ±Σ0,
3. g1 = g and g1g2g3 · · · g2ng2n+1 ∈ {h, h−1}.

We also say that {g1, . . . , g2n+1} is a connection from g to h.

Proposition 3.1. The relation ∼ in Σ1, defined by g ∼ h if and only if g is

connected to h is an equivalence relation.

Proof. {g} is a connection from g to itself and therefore g ∼ g.
If g ∼ h and {g1, . . . , g2n+1} is a connection from g to h, then

{g1 · · · g2n+1, g
−1
2n+1, g

−1
2n , . . . , g

−1
2 }

is a connection from h to g in case g1 · · · g2n+1 = h, and

{g−1
1 · · · g−1

2n+1, g2n+1, g2n, . . . , g2}

in case g1 · · · g2n+1 = h−1. Therefore h ∼ g.
Finally, suppose g ∼ h and h ∼ k, and write {g1, . . . , g2n+1} for a connection

from g to h and {h1, . . . , h2m+1} for a connection from h to k. If m > 0, then
{g1, . . . , g2n+1, h2, . . . , h2m+1} is a connection from g to k in case g1 · · · g2n+1 =
h, and {g1, . . . , g2n+1, h

−1
2 , . . . , h−1

2m+1} in case g1 · · · g2n+1 = h−1. If m = 0,

then k ∈ {h, h−1} and so {g1, . . . , g2n+1} is a connection from g to k. Therefore
g ∼ k and ∼ is an equivalence relation. �

By Proposition 3.1 the connection relation is an equivalence relation in Σ1

and so we can consider the quotient set

Σ1/ ∼= {[g] : g ∈ Σ1},

becoming [g] the set of elements in the support of the grading which are con-
nected to g. By the definition of ∼, it is clear that if h ∈ [g] and h−1 ∈ Σ1,
then h−1 ∈ [g].

Our goal in this section is to associate an adequate subtriple I[g] to any [g].

Fix g ∈ Σ1, we start by defining

T1,[g] := spanK
{
[Th,Tk,T(hk)−1 ] : h ∈ [g], k ∈ [g] ∪ {1}

}
⊂ T1

and
V[g] :=

⊕

h∈[g]

Th.
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Finally, we denote by T[g] the direct sum of the two subspaces above, that is,

T[g] := T1,[g] ⊕ V[g].

Proposition 3.2. For any g ∈ Σ1, the graded linear subspace T[g] is a subtriple

of T.

Proof. We have to check that T[g] satisfies

[T[g],T[g],T[g]] = [T1,[g] ⊕ V[g],T1,[g] ⊕ V[g],T1,[g] ⊕ V[g]] ⊂ T[g].

Since T1,[g] ⊂ T1 we clearly have

[T1,[g],T1,[g], V[g]] + [T1,[g], V[g],T1,[g]] + [V[g],T1,[g],T1,[g]] ⊂ V[g].

Now, observe that if h ∈ [g] and h−1 ∈ Σ1, then

(1) [Th,T1,Th−1 ] + [Th−1 ,T1,Th] ⊂ T1,[g]

and so

(2) [T1,Th,Th−1 ] + [Th,Th−1 ,T1] ⊂ T1,[g].

Moreover, we also have

(3) [[Th,Th−1 ,T1],T1,T1] ⊂ T1,[g].

Indeed, since

[[Th,Th−1 ,T1],T1,T1] ⊆ [[Th−1 ,T1,Th],T1,T1] + [[T1,Th,Th−1],T1,T1],

we can apply now identities in Definition 1 to get

[[Th,Th−1 ,T1],T1,T1] ⊆ [Th−1 ,T1,Th] + [Th,Th−1 ,T1] ⊂ T1,[g].

Taking into account Equations (2) and (3), it is straightforward to verify that

[T1,[g],T1,[g],T1,[g]] ⊂ T1,[g].

We also have
[T1,[g], V[g], V[g]] ⊂ T[g].

In fact, if [T1,Th,Tk] 6= 0 for some h, k ∈ [g], then h ∈ Σ0 and hk ∈ Σ1 ∪ {1}.
From here, if hk 6= 1 and {g1, . . . , g2n+1} is a connection from g to h, then
{g1, . . . , g2n+1, 1, k} is a connection from g to hk in case g1 · · · g2n+1 = h and
{g1 · · · g2n+1, 1, k

−1} in case g1 · · · g2n+1 = h−1 being so hk ∈ [g]. If hk = 1
clearly [T1,Th,Th−1 ] ⊂ T1,[g]. We have showed [T1,Th,Tk] ⊂ T[g] and so
[T1,[g], V[g], V[g]] ⊂ T[g]. Consequently

[V[g],T1,[g], V[g]] + [V[g], V[g],T1,[g]] ⊂ T[g].

Finally, let us show
[V[g], V[g], V[g]] ⊂ T[g].

Suppose then [Th,Tk,Tl] 6= 0 for some h, k, l ∈ [g] being so hk ∈ Σ0 ∪ {1}
and hkl ∈ Σ1 ∪ {1}. If either hk = 1 or hkl = 1, then [Th,Tk,Tl] = Tl ⊂
V[g] or [Th,Tk,Tl] ⊂ T1,[g] respectively. Hence let us consider hk ∈ Σ0 and

hkl ∈ Σ1, and take a connection {g1, . . . , g2n+1} from g to h. We clearly have
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{g1, . . . , g2n+1, k, l} is a connection from g to hkl in case g1 · · · g2n+1 = h and
{g1 · · ·g2n+1, k

−1, l−1} it is in case g1 · · ·g2n+1 = h−1. We have showed hkl ∈ [g]
and so [Th,Tk,Tl] ⊂ V[g], which concludes the proof. �

We call T[g] the subtriple of T associated to [g].

4. Decompositions

We begin this section by showing that for any g ∈ Σ1, the subtriple I[g] is
actually an ideal of T. We need to state some preliminary results.

Lemma 4.1. The following assertions hold.

1. If g, h ∈ Σ1 with gh ∈ ±Σ0 ∪ {1}, then h ∈ [g].
2. If g, h ∈ Σ1 and g ∈ ±Σ0 with gh ∈ ±Σ1 ∪ {1}, then h ∈ [g].

3. If g, h ∈ Σ1 such that h /∈ [g], then [Tg,Th] = [L0
g,Th] = [L0

g, L
0
h
] = 0.

Proof. 1. If gh = 1, then h = g−1 and so h ∼ g. Suppose gh 6= 1. Since
gh ∈ ±Σ0, we have {g, h, g−1} is a connection from g to h.

2 We can argue similarly with the connection {g, 1, (gh)−1}.
3. Consequence of 1 and 2. �

Lemma 4.2. If g, h ∈ Σ1 are not connected, then [Tg,Tg−1 ,Th] = 0.

Proof. If [Tg,Tg−1 ] = 0 it is clear. Suppose then [Tg,Tg−1 ] 6= 0 and

[Tg,Tg−1 ,Th] 6= 0.

We have either [Tg−1 ,Th,Tg] 6= 0 or [Th,Tg,Tg−1 ] 6= 0 what contradicts in any
case Lemma 4.1-3. From here [Tg,Tg−1 ,Th] = 0. �

Lemma 4.3. For any g0 ∈ Σ1, if g ∈ [g0] and h, k ∈ Σ1 ∪ {1} the following

assertions hold.

1. If [Tg,Th,Tk] 6= 0, then h, k, ghk ∈ [g0] ∪ {1}.
2. If [Th,Tg,Tk] 6= 0, then h, k, hgk ∈ [g0] ∪ {1}.
3. If [Th,Tk,Tg] 6= 0, then h, k, hgk ∈ [g0] ∪ {1}.

Proof. 1. The fact [Tg,Th] 6= 0 implies by Lemma 4.1 that h ∼ g in case h 6= 1.
From here, h ∈ [g0] ∪ {1}. To show k, ghk ∈ [g0] ∪ {1} we will distinguish two
possibilities. In the first one, suppose that ghk = 1 and so ghk ∈ [g0] ∪ {1}.
If we had k 6= 1, then gh ∈ Σ0. As (gh)−1 = k, then {g, h, 1} would be a
connection from g to k and we conclude k ∈ [g0] ∪ {1}.

In the second one, suppose ghk 6= 1. If gh 6= 1, then gh ∈ Σ0 and so {g, h, k}
is a connection from g to ghk. Hence ghk ∈ [g0]. In the case k 6= 1, we have
{g, h, (ghk)−1}, is a connection from g to k. So k ∈ [g0]. Finally, if gh = 1,
then necessarily k ∈ [g0]. Indeed, if k is not connected to g, we would have by
Lemma 4.2 that [Tg,Th,Tk] = [Tg,Tg−1 ,Tk] = 0, a contradiction. From here
ghk = k ∈ [g0].

2. and 3. are direct consequences of item 1. �
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Lemma 4.4. For any g0 ∈ Σ1, if g, k ∈ [g0], h ∈ [g0] ∪ {1} with ghk = 1 and

l,m ∈ Σ1 ∪ {1} the following assertions hold.

1. If [[Tg,Th,Tk],Tl,Tm] 6= 0, then l,m, lm ∈ [g0] ∪ {1}.
2. If [Tl, [Tg,Th,Tk],Tm] 6= 0, then l,m, lm ∈ [g0] ∪ {1}.
3. If [Tl,Tm, [Tg,Th,Tk]] 6= 0, then l,m, lm ∈ [g0] ∪ {1}.

Proof. 1. Since
0 6= [[Tg,Th,Tk],Tl,Tm]

⊂ [Tg,Th, [Tk,Tl,Tm]] + [Tk, [Tg,Th,Tl],Tm] + [Tk,Tl, [Tg,Th,Tm]],

some of the above three summands is nonzero.
Suppose [Tg,Th, [Tk,Tl,Tm]] 6= 0. Since k 6= 1 and [Tk,Tl,Tm] 6= 0, Lemma

4.3-1 shows l,m, klm ∈ [g0] ∪ {1}. Now, if klm = 1, then lm = k−1 ∈ [g0].
If klm 6= 1, taking into account 0 6= [Tg,Th, [Tk,Tl,Tm]] ⊂ [Tg,Th,Tklm],
Lemma 4.3-3 and the fact that g ∈ [g0] give us that ghklm = lm ∈ [g0] ∪ {1}.
Therefore l,m, lm ∈ [g0] ∪ {1}.

We can argue similarly if either [Tk, [Tg,Th,Tl],Tm] 6= 0 or

[Tk,Tl, [Tg,Th,Tm]] 6= 0

to get l,m, lm ∈ [g0] ∪ {1}.
2. and 3. are direct consequences of item 1. �

Lemma 4.5. For any g0 ∈ Σ1, if g, k ∈ [g0], h ∈ [g0] ∪ {1} with ghk = 1 and

h /∈ [g0] the following assertions hold.

1. [[Tg,Th,Tk],Th] = 0.
2. [[Tg,Th,Tk], L

0
h
] = 0.

3. [[Tg,Th,Tk],T1,Th] = 0.

Proof. 1. We have
[[Tg,Th,Tk],Th,T]

(4) ⊂ [Tg,Th, [Tk,Th,T]] + [Tk, [Tg,Th,Th],T] + [Tk,Th, [Tg,Th,T]].

Consider the first and third summands in (4). Since k 6= 1, then Lemma 4.1-
3 gives us [Tg,Th, [Tk,Th,T]] = [Tk,Th, [Tg,Th,T]] = 0. Consider now the
second summand in (4). As gh 6= 1, then

[Tk, [Tg,Th,Th],T] = 0

by Lemma 4.1-3.
We have showed [[Tg,Th,Tk],Th,T] = 0 and consequently

[[Tg,Th,Tk],Th] = 0.

2. By applying Lemma 4.1-3 we have

[[Tg,Th,Tk], L
0
h
] ⊆ [L0

h
, [Tg,Th,Tk]]

⊆ [[L0
h
,Tg],Th,Tk] + [Tg, [L

0
h
,Th],Tk] + [Tg,Th, [L

0
h
,Tk]] = 0.

3. Suppose [[Tg,Th,Tk],T1,Th] 6= 0. By Lemma 4.4-1 we would have h ∈ [g0],
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a contradiction. From here [[Tg,Th,Tk],T1,Th] = 0. �

Theorem 4.1. The following assertions hold.

1. For any g0 ∈ Σ1, the subtriple T[g0] = T1,[g0] ⊕ V[g0] of T associated to

[g0] is an ideal of T.

2. If T is simple, then Σ1 has all of its elements connected and

T1 =
∑

g∈Σ1,h∈Σ1∪{1}

[Tg,Th,T(gh)−1 ].

Proof. 1. Taking into account

(5) T1,[g0] := spanK{[Tg,Th,T(gh)−1 ] : g ∈ [g0], h ∈ [g0] ∪ {1}} ⊆ T1

we have by Equations (1), (2) and (3) that [T1,[g0],T1,T1] ⊆ T1,[g0]. Equa-
tion (5) together with Lemma 4.4 imply [T1,[g0],T1,Tg] + [T1,[g0],Tg,T1] +

[T1,[g0],Tg,Th] ⊂ T[g0] for any g, h ∈ Σ1. From here,

(6) [T1,[g0],T,T] = [T1,[g0],T1 ⊕ (
⊕

g∈Σ1
G

Tg),T1 ⊕ (
⊕

h∈Σ1

Th)] ⊂ T[g0].

Since V[g0] :=
⊕

g∈[g0]
Tg, we have by Lemma 4.3 and Equation (5) that

[
⊕

g∈[g0]

Tg,T1,T1]+[
⊕

g∈[g0]

Tg,T1,Th]+[
⊕

g∈[g0]

Tg,Th,T1]+[
⊕

g∈[g0]

Tg,Th,Tk] ⊂ T[g0]

for any h, k ∈ Σ1. So

(7) [V[g0],T,T] = [
⊕

g∈[g0]

Tg,T1 ⊕ (
⊕

h∈Σ1
G

Th),T1 ⊕ (
⊕

k∈Σ1
G

Tk)] ⊂ T[g0].

From Equations (6) and (7) we have

[T[g0],T,T] = [T1,[g0] ⊕ V[g0],T,T] ⊂ T[g0]

and soT[g0] is an ideal of T.

2. The simplicity of T implies T[g0] = T. From here [g0] = Σ1 and T1 =∑
g∈Σ1,h∈Σ1∪{1}

[Tg,Th,T(gh)−1 ]. �

Theorem 4.2. For a linear complement U of spanK{[Tg,Th,T(gh)−1 ] : g ∈

Σ1, h ∈ Σ1 ∪ {1}} in T1, we have

T = U +
∑

[g]∈Σ1/∼

I[g],

where any I[g] is one of the ideals described in Theorem 4.1, which also satisfy

[I[g],T, I[h]] = 0 if [g] 6= [h].
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Proof. By Proposition 3.1, we can consider the quotient set Σ1/ ∼:= {[g] : g ∈
Σ1}. We have I[g] is well defined and by Theorem 4.1-1 an ideal of T. Therefore

T = U +
∑

[g]∈Σ1/∼

I[g].

The assertion [I[g],T, I[h]] = 0 if [g] 6= [h] is consequence of writing [I[g],T, I[h]] =
[T1,[g]⊕V[g],T1⊕(

⊕
k∈Σ1 Tk),T1,[h]⊕V[h]] and applying Lemma 4.3 and Lemma

4.4 taking into account [g] 6= [h]. �

Observe that the fact [I[g],T, I[h]] = 0 if [g] 6= [h] implies

[I[g], I[h],T] = [[I[g], I[h]],T] = 0.

As any element in [I[g], I[h]] ⊂ L0 is a linear mapping from T onto itself we
conclude

[I[g], I[h]] = 0

if [g] 6= [h].

Definition 3. We will say that T1 is tight if T1 = spanK{[Tg,Th,T(gh)−1 ] :

g ∈ Σ1, h ∈ Σ1 ∪ {1}}.

Corollary 4.1. If Ann(T) = 0 and T1 is tight, then T is the direct sum of the

ideals given in Theorem 4.1-1,

T =
⊕

[g]∈Σ1/∼

I[g].

Proof. From the fact T1 is tight we clearly have

T =
∑

[g]∈Σ1/∼

I[g].

To finish, we show the direct character of the sum. Given

x ∈ I[g] ∩ (
∑

[h]∈(Σ1/∼)\[g]

I[h])

we have from the fact [I[g],T, I[h]] = 0 that

[x,T, I[g]] +
[
x,T,

∑

[h]∈(Σ1/∼)\[g]

I[h]
]
= 0.

It implies [x,T,T] = 0, that is, x ∈ Ann(T) = 0. Thus x = 0. �
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5. The simple components

The study of the structure of graded Lie triple systems has been reduced to
consider those satisfying the property saying that the support of the grading
has all of its elements connected. Knowing whether or not such systems are
simple is a natural question. Under mild conditions we give an affirmative
answer to this question. We recall that Σi, i = 0, 1, is called symmetric if
g ∈ Σi implies g−1 ∈ Σi. From now on we will suppose Σi is symmetric for
i = 0, 1.

We begin by introducing the concepts of Σ1-multiplicativity and maximal
length for graded Lie triple systems in a similar way than for graded Lie alge-
bras, graded Lie superalgebras, graded Leibniz algebras, split Leibniz superal-
gebras, split Lie triple systems and split 3-Lie algebras (see [9, 12, 13, 14, 15,
16]).

Definition 5.1. It is said that a graded Lie triple system T is Σ1-multiplicative

if given g, h, k ∈ Σ1∪{1}, such that gh ∈ Σ0 and ghk ∈ Σ1, then [Tg,Th,Tk] 6=
0.

Definition 5.2. A graded Lie triple system T is called of maximal length if
dimTg = 1 for any g ∈ Σ1.

Let us see some examples of Σ1-multiplicative and of maximal length graded
Lie triple systems:

Recall that a graded Lie algebra L gives rise in a natural way to a graded
Lie triple system (see Example 1). Now, if we take as L a simple separable
L∗-algebra [32], or a simple locally finite split Lie algebra over a field of charac-
teristic zero, [2, 32], it is well known that any of such an algebras satisfies that if
α, β, α+β ∈ Λ, where Λ denotes the set of nonzero roots, then [Lα,Lβ ] = Lα+β ,
(see [33, Proposition I.7 (v) and Theorem III.19]), and that dimLα = 1. From
here, we obtain that the Lie triple system T (L) is Σ1-multiplicative and of
maximal length (see §1). We also can take as L the split Lie algebras consid-
ered in [7] and the graded Lie algebras studied in [9], which also give rise to a
Σ-multiplicative and of maximal length graded Lie triple system T (L). Further
examples are the Lie triple systems considered in [11, 30].

Since our next goal is to characterize the simplicity of a graded Lie triple
system T in terms of connections in its support, and taking into account Ann(T)
is an ideal of T and Theorem 4.1-2, we are going to center on graded Lie triple
systems satisfying Ann(T) = 0 and with T1 tight.

Lemma 5.1. Let T be a Σ1-multiplicative graded Lie triple system with Ann(T)
= 0 and T1 tight. If for any g ∈ Σ1 we have dimL0

g ≤ 1, then any ideal I of T

such that I ⊂ T1 satisfies I = {0}.

Proof. Suppose there exists a nonzero ideal I of T such that I ⊂ T1. Given
g ∈ Σ1, as [I,T1,Tg] + [I,Tg,T1] ⊂ Tg ∩ T1 then [I,T1,Tg] = [I,Tg,T1] = 0.
If we take h ∈ Σ1 with gh 6= 1 we also have [I,Tg,Th] ⊂ Tgh ∩ T1 = 0. Now,
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if [I,Tg,Tg−1 ] 6= 0 for some g ∈ Σ1, then there exist tg ∈ Tg, tg−1 ∈ Tg−1 and
t1 ∈ I such that [t1, tg, tg−1 ] 6= 0. Hence 0 6= [t1, tg] ∈ L0

g and so necessarily

dimL0
g = 1. The Σ1-multiplicativity of T (consider 1, g, 1 ∈ Σ1 ∪ {1}) and the

fact dimL0
g = 1 give us the existence of 0 6= t′1 ∈ T1 such that 0 6= [t1, tg, t

′
1] ∈

Tg. As t1 ∈ I, we conclude 0 6= t′g := [t1, tg, t
′
1] ∈ I ⊂ T1, a contradiction.

From here [I,Tg,Tg−1 ] = 0. Finally, we can see that [I,T1,T1] = 0. Indeed,
we have by the above

[I,T1, [Tg,Th,T(gh)−1 ]] ⊆ [[I,T1,Tg],Th,T(gh)−1 ] + [Tg, [I,T1,Th],T(gh)−1 ]

+[Tg,Th, [I,T1,T(gh)−1 ]] = 0.

We have showed I ⊂ Ann(T) = 0, a contradiction. Hence I = {0}. �

From now on T will be a graded Lie triple system of maximal length satis-
fying the hypothesis of Lemma 5.1 and with all of the elements in its support
connected. If we consider a nonzero ideal I of T, then we can find 0 6= x ∈ I
such that x = t1 +

∑m
j=1 tgj ∈ I, with t1 ∈ T1 ∩ I, any tgj ∈ Tgj ∩ I with

gj 6= 1, gj 6= gk if j 6= k and satisfying some tgj 6= 0 by the above lemma. Let
us choose such an x ∈ I, and fix any gj0 , j0 ∈ {1, . . . ,m}, such that tgj0 6= 0.
Since 0 6= tgj0 ∈ I and dimTgj0

= 1, we get

(8) 0 6= Tgj0
⊂ I.

Given any h ∈ Σ1 with h /∈ {gj0 , g
−1
j0

}, as gj0 and h are connected, the Σ1-

multiplicativity and maximal length of T give us a connection {g1, . . . ., g2r+1}
from gj0 to h such that

g1 = gj0 , g1g2g3, . . . , g1g2 · · · g2r+1 ∈ Σ1,

g1g2, g1g2g3g4, . . . , g1g2 · · · g2r ∈ Σ0,

and

g1g2 · · · g2r+1 ∈ {h, h−1},

with

[Tg1 ,Tg2 ,Tg3 ] = Tg1g2g3 , [[Tg1 ,Tg2 ,Tg3 ],Tg4 ,Tg5 ] = Tg1g2g3g4g5 ,

...

[[. . . [[Tg1 ,Tg2 ,Tg3 ],Tg4 ,Tg5 ], . . .],Tg2r ,Tg2r+1 ] ∈ {Th,Th−1}.

From here, Equation (8) allows us to assert that

(9) either 0 6= Th ⊂ I or 0 6= Th−1 ⊂ I for any h ∈ Σ1

and so [Th,T,Th−1] ⊂ I. Observe that if [Tg,Th,T(gh)−1 ] 6= 0 with h /∈

{1, g−1}, then

0 6= Th = [Tg,Th,Tg−1 ] ⊂ I
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by Σ1-multiplicativity, Equation (9) and the fact dimTh = 1. Therefore, we
have as a consequence of T1 =

∑
g∈Σ1,h∈Σ1∪{1}

[Tg,Th,T(gh)−1 ] and Equation (9)

that

(10) T1 ⊂ I.

Let us denote by
Σ1

I := {g ∈ Σ1 : Tg ⊂ I}

and by

(11) J :=
⊕

h∈Σ1\Σ1
I

Th.

By the above, we can assert that given any g ∈ Σ1 either g or g−1 belongs to
Σ1

I . We also have that in case g, g−1 ∈ Σ1
I for some g ∈ Σ1, then Σ1

I = Σ1.
Indeed, given any h ∈ Σ1, h /∈ {g, g−1}, there exists a connection

{g1, . . . , g2n+1} ⊂ Σ1 ∪ {1}

such that g1 = h,
g1g2g3, . . . , g1g2 · · · g2n+1 ∈ Σ1,

g1g2, . . . , g1g2 · · · g2n ∈ Σ0

and
g1g2 · · · g2n+1 ∈ {g, g−1}.

From here, we also have the connection

{g1g2 · · · g2n+1, g
−1
2n+1, g

−1
2n , . . . , g

−1
2 } ⊂ Σ1 ∪ {1}

which satisfies

g1g2 · · · g2n+1, g1g2 · · · g2n−1, . . . , g1 ∈ Σ1,

g1g2 · · · g2n, g1g2 · · · g2n−2, . . . , g2 ∈ Σ0,

g1g2 · · · g2n+1 ∈ {g, g−1}

and g1 = h. By Σ1-multiplicativity,

[[. . . [Tg1g2···g2n+1 ,Tg−1
2n+1

,Tg−1
2n
], . . .],Tg−1

3
,Tg−1

2
] = Th.

Since Tg +Tg−1 ⊂ I we obtain Th ⊂ I and so Σ1
I = Σ1. From here, and taking

into account Equation (10), we can assert:

Lemma 5.2. If g, g−1 ∈ Σ1
I for some g ∈ Σ1, then I = T.

We also have in this framework the next result.

Lemma 5.3. If I 6= T, the following assertions hold.

(i) For any ḡ ∈ Σ1 \ Σ1
I , we have [Tḡ,T1,T] = 0.

(ii) For any ḡ ∈ Σ1 \ Σ1
I and l ∈ Σ1 ∪ {1}, we have [Tḡ,Tl,T1] = 0.

(iii) For any ḡ ∈ Σ1 \Σ1
I and g, h ∈ Σ1

I with ḡ 6= g−1, we have [Tḡ,Tg,Th] =
0.

(iv) For any ḡ ∈ Σ1 \ Σ1
I and g, h ∈ Σ1

I we have [Tg,Th,Tḡ] = 0.
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(v) For any ḡ, h̄ ∈ Σ1 \ Σ1
I and g ∈ Σ1

I , we have [Tḡ,Tg,Th̄] = 0.
(vi) For any ḡ, h̄, k̄ ∈ Σ1 \ Σ1

I , we have [Tḡ,Th̄,Tk̄] = 0 if ḡh̄k̄ = 1 and

[Tḡ,Th̄,Tk̄] ⊂ J if ḡh̄k̄ 6= 1.
(vii) For any g ∈ Σ1

I we have [Tg,T1,Tg−1 ] + [Tg−1 ,Tg,Tg] = 0.
(viii) For any g ∈ Σ1

I and h ∈ Σ1
I ∪ {1}, we have [Tg,Th,T(gh)−1 ] = 0.

(ix) For any g, h ∈ Σ1
I with h 6= g we have [Tg−1 ,Th,Tg]+[Tg,Th,Tg−1 ] = 0.

Proof. (i) Suppose [Tḡ,T1,T] 6= 0, then the Σ1-multiplicativity and maximal
length of T give us [Tḡ,T1,T1] = Tḡ. Equation (10) implies now 0 6= Tḡ ⊂ I
and so ḡ ∈ Σ1

I , a contradiction. Hence [Tḡ,T1,T] = 0.
(ii) By item (i) we know [Tḡ,T1,T1] = 0. Hence, we just have to verify that

[Tḡ,Tm,T1] = 0 for any m ∈ Σ1. Suppose [Tḡ,Tm,T1] 6= 0, if m−1 = ḡ we
have

0 6= [Tḡ,T(ḡ)−1 ,T1] ⊆ [T(ḡ)−1 ,T1,Tḡ] + [T1,Tḡ,T(ḡ)−1 ].

Since [T1,Tḡ,T(ḡ)−1 ] = 0 by item (i) then [T(ḡ)−1 ,T1,Tḡ] 6= 0, so (ḡ)−1 ∈ Σ0

and consequently ḡ ∈ Σ0. Hence, by the Σ1-multiplicativity and maximal
length of T we get Tḡ = [Tḡ,T1,T1] ⊂ I and ḡ ∈ Σ1

I , a contradiction. If
m−1 6= ḡ, then the Σ1-multiplicativity and maximal length of T give us now
Tḡ = [Tḡ,Tm,Tm−1 ] ⊂ I by Equation (9) and so ḡ ∈ Σ1

I , a contradiction.
Hence [Tḡ,Tm,T1] = 0 for any m ∈ Σ1.

(iii) Suppose [Tḡ,Tg,Th] 6= 0. We have by the Σ1-multiplicativity and max-
imal length of T that Tḡ = [Tḡ,Tg,Tg−1 ]. From here, Equation (9) gives us
ḡ ∈ Σ1

I , a contradiction.
(iv) By Jacobi identity, if ḡ 6= g−1 and ḡ 6= h−1, then item (iii) completes the

assertion. If ḡ = g−1 and [Tg,Th,Tḡ] 6= 0, then gh ∈ Σ0 and so (gh)−1 ∈ Σ0.
Therefore Tḡ = [Tḡ,Th−1,Th] ⊂ I by Equation (9). From here, ḡ ∈ Σ1

I a
contradiction. If ḡ = h−1 the proof is similar.

(v) If ḡ = g−1 and [Tḡ,Tg,Th̄] 6= 0, then h̄ ∈ Σ1
I a contradiction. Suppose

now ḡ 6= g−1 and [Tḡ,Tg,Th̄] 6= 0, then Tḡ = [Tḡ,Tg,Tg−1 ] ⊂ I by Equation
(9). From here, ḡ ∈ Σ1

I a contradiction.
(vi) In case ḡh̄k̄ = 1 then k̄ = (ḡh̄)−1. If h̄ = (ḡ)−1, item (ii) shows

[Tḡ,Th̄,Tk̄] = 0; and if h̄ 6= (ḡ)−1, Lemma 5.2 gives us (h̄)−1 ∈ Σ1
I and then

the Σ1-multiplicativity of T allows us to get that in case [Tḡ,Th̄,Tk̄] 6= 0 then
0 6= [T(ḡ)−1 ,T(h̄)−1 ,T1] = T(ḡh̄)−1 ⊂ I, that is k̄ ∈ Σ1

I what is a contradiction.

Hence [Tḡ,Th̄,Tk̄] = 0.
Finally, suppose ḡh̄k̄ 6= 1 with [Tḡ,Th̄,Tk̄] 6= 0 and ḡh̄k̄ ∈ Σ1

I . We have by
Σ1-multiplicativity, (taking into account that

ḡh̄ 6= 1

by Equation (9)), that [Tḡh̄k̄,T(k̄)−1 ,T(h̄)−1 ] = Tḡ ⊂ I. From here, ḡ ∈ Σ1
I , a

contradiction. We conclude that in case [Tḡ,Th̄,Tk̄] 6= 0 with ḡh̄k̄ 6= 1 then
ḡh̄k̄ ∈ Σ1 \ Σ1

I , that is, [Tḡ,Th̄,Tk̄] ⊂ J.
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(vii) Suppose [Tg,T1,Tg−1 ] 6= 0. Since I 6= T, Lemma 5.2 tells us that
g−1 ∈ Σ1\Σ1

I . Jacobi identity and items (i) and (ii) give us now a contradiction.
From here [Tg,T1,Tg−1 ] = 0.

Suppose now [Tg,Tg−1 ,Tg] 6= 0. Taking into account dimTg = 1 for any
g ∈ Σ1 we get

[[Tg,Tg−1 ], [Tg,Tg−1 ]] = 0.

From here, and taking into account that Lemma 5.2 gives us g−1 ∈ Σ1 \ Σ1
I ,

item (v) allows us to obtain

[[Tg,Tg−1 ,Tg],Tg−1 ] = 0.

However, 0 = [[Tg,Tg−1 ,Tg],Tg−1 ] = [Tg,Tg−1 ] a contradiction.
(viii) If h = 1 the assertion if consequence of the fact that Lemma 5.2 gives

us g−1 ∈ Σ1 \Σ1
I and items (i) and (ii). If h 6= 1 suppose [Tg,Th,T(gh)−1 ] 6= 0.

Since h 6= g−1 by Lemma 5.2, then 0 6= Tgh = [Tg,Th,T1] ⊂ I and so gh ∈ Σ1
I .

By Lemma 5.2 we have (gh)−1 ∈ Σ1 \ Σ1
I what contradicts item (iv).

(ix) As I 6= T, Lemma 5.2 gives us that g−1 ∈ Σ1 \Σ1
I then by item (iii) we

have [Tg−1 ,Th,Tg] = 0. If [Tg,Th,Tg−1 ] 6= 0, then gh ∈ Σ0 and so (gh)−1 ∈ Σ0.
Therefore 0 6= Tg−1 = [Tg−1 ,Th−1 ,Th] ⊂ I by Equation (9). Hence g−1 ∈ Σ1

I

a contradiction. �

As T1 =
∑

g∈Σ1,h∈Σ1∪{1}

[Tg,Th,T(gh)−1 ], the fact that for any g ∈ Σ1 either g

or g−1 belongs to Σ1
I together with Lemma 5.3-(i), (ii), (iii), (v) and (vi) allow

us to write

T1 =
∑

g∈Σ1
I
,h∈Σ1

I
∪{1}

[Tg,Th,T(gh)−1 ].

So Lemma 5.3-(viii) gives us that in case I 6= T we have T1 = 0. That is:

Lemma 5.4. If T1 6= 0, then I = T.

Lemma 5.5. If T1 = 0, then either I = T or T = I ⊕ J with I and J simple

ideals of T and satisfying [I,T, J ] + [J,T, I] = 0 in the second case.

Proof. If g, g−1 ∈ Σ1
I for some g ∈ Σ1, then Lemma 5.2 gives us I = T. Suppose

then that for any g ∈ Σ1
I we have g−1 ∈ Σ1 \Σ1

I and consider the graded linear
space J given by Equation (11). Let us verify that J is actually an ideal of T.
Indeed, observe that we can write

[J,T,T]

(12) = [
⊕

ḡ∈Σ1\Σ1
I

Tḡ, (
⊕

g∈Σ1
I

Tg)⊕ (
⊕

h̄∈Σ1\Σ1
I

Th̄), (
⊕

h∈Σ1
I

Th)⊕ (
⊕

k̄∈Σ1\Σ1
I

Tk̄)].

But Lemma 5.3-(iii), (vii) and (ix) give us that

(13) [
⊕

ḡ∈Σ1\Σ1
I

Tḡ,
⊕

g∈Σ1
I

Tg,
⊕

h∈Σ1
I

Th] = 0,
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Lemma 5.3-(v) that

(14) [
⊕

ḡ∈Σ1\Σ1
I

Tḡ,
⊕

g∈Σ1
I

Tg,
⊕

k̄∈Σ1\Σ1
I

Tk̄] + [
⊕

ḡ∈Σ1\Σ1
I

Tḡ,
⊕

h̄∈Σ1\Σ1
I

Th̄,
⊕

h∈Σ1
I

Th] = 0

and Lemma 5.3-(vi) that

(15) [
⊕

ḡ∈Σ1\Σ1
I

Tḡ,
⊕

h̄∈Σ1\Σ1
I

Th̄,
⊕

k̄∈Σ1\Σ1
I

Tk̄] ⊂ J.

Hence, Equations (12), (13), (14), (15) allow us to assert that J is an ideal
of T, being also [I,T, J ] = 0 as consequence of Lemma 5.3-(iv) and (v) and
[J,T, I] = 0 by Lemma 5.3-(iii), (vii), (ix) and (v).

Finally, the simplicity of I =
⊕

g∈Σ1
I
Tg is obtained by observing that the

Σ1-multiplicativity of T gives us that Σ1
I has all of its elements Σ1

I -connected,
that is, connected through connections contained in Σ1

I ∪{1}, and that I is Σ1
I -

multiplicative. We also clearly have dimTg = 1 for any g ∈ Σ1
I , and AnnI(I) =

0, (AnnI(I) := {x ∈ I : [x, I, I] = 0}), as consequence of T1 = 0, the fact
[I,T, J ] + [J,T, I] = 0 and Ann(T) = 0. So, we can argue as in the beginning
of this section with the Σ1

I -multiplicativity of I and the condition dimTg = 1
for any g ∈ Σ1

I , taking into account Lemma 5.2, to conclude that any nonzero

graded ideal Ĩ of I is necessarily Ĩ = I. Hence I is a simple ideal. The same
argument applies to show J is also a simple ideal. �

Now we can state the following main results.

Theorem 5.1. If T1 6= 0, then T is simple if and only if the support has all of

its elements connected.

Proof. The if condition is Theorem 4.1-2 and the converse is a consequence of
Lemma 5.4. �

Theorem 5.2. If T1 = 0, then T is simple if and only if the support has all of

its elements connected and T is prime.

Proof. The if condition is Theorem 4.1-2 and the converse is a consequence of
Lemma 5.5. �

Theorem 5.3. A graded Lie triple system T is the direct sum of the family of

its minimal ideals, each one being a simple graded Lie triple system Ij having

its support, Σ1
Ij
, with all of its elements connected.

Proof. By Corollary 4.1, T =
⊕

[g]∈Σ1/∼ I[g] is the direct sum of the ideals

I[g] = T1,[g] ⊕ V[g] = (
∑

h∈[g],k∈[g]∪{1}

[Th,Tk,T(hk)−1 ])⊕ (
⊕

h∈[g]

Th),

having any I[g] its support, Σ
1
I[g]

= [g], with all of its elements connected. Tak-

ing into account that Σ1
I[g]

= [g] and the Σ1-multiplicativity of T, we have that
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Σ1
I[g]

has all of its elements Σ1
I[g]

-connected. We also have that any of the I[g]

is Σ1
I[g]

-multiplicative as consequence of the Σ1-multiplicativity of T. Clearly

dimTg = 1 for any g ∈ Σ1
I[g]

, and finally AnnI[g](I[g]) = 0 as a consequence of

[I[g],T, I[h]] = 0 if [g] 6= [h] (Corollary 4.1), and Ann(T) = 0. If T1,[g] 6= 0, we
can apply Theorem 5.1 to obtain I[g] is simple. If T1,[g] = 0, Lemma 5.5 implies

either I[g] is simple (we will denote I [g] := I[g] in this case), or I[g] = Ĩ[g] ⊕ J̃[g],

where Ĩ[g], J̃[g] are simple ideals of I[g] satisfying [Ĩ[g],T, J̃[g]]+ [J̃[g],T, Ĩ[g]] = 0.

The fact [I[g],T, I[h]] = 0 if [g] 6= [h] ensures Ĩ[g], J̃[g] are also simple ideals of
T. We conclude

T = (
⊕

[g]∈Σ1/∼;
T1,[g] 6=0

I[g])⊕ (
⊕

[h]∈Σ1/∼;
T1,[h]=0

I [h])⊕ (
⊕

[k]∈Σ1/∼;
T1,[k]=0

Ĩ[k])⊕ (
⊕

[k]∈Σ1/∼;
T1,[k]=0

J̃[k]).

From the above, it is easy to verify that this decomposition satisfies the asser-
tions of the theorem. �
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