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Recently the new model for the generation of strong large scale magnetic fields in neutron stars, driven 
by the parity violating interaction, was proposed. In this model, the magnetic field instability results 
from the modification of the chiral magnetic effect in presence of the electroweak interaction between 
ultrarelativistic electrons and nucleons. In the present work we study how a nonzero mass of charged 
particles, which are degenerate relativistic electrons and nonrelativistic protons, influences the generation 
of the magnetic field in frames of this approach. For this purpose we calculate the induced electric 
current of these charged particles, electroweakly interacting with background neutrons and an external 
magnetic field, exactly accounting for the particle mass. This current is calculated by two methods: 
using the exact solution of the Dirac equation for a charged particle in external fields and computing 
the polarization operator of a photon in matter composed of background neutrons. We show that the 
induced current is vanishing in both approaches leading to the zero contribution of massive particles to 
the generated magnetic field. We discuss the implication of our results for the problem of the magnetic 
field generation in compact stars.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The origin of extremely strong magnetic fields B � 1015 G
in some neutron stars, called magnetars, is a puzzle for modern 
physics and astrophysics. Some models accounting for the genera-
tion of such magnetic fields based on, e.g., the turbulent dynamo 
and strong fossil fields, are reviewed in Ref. [1]. However none 
of these models adequately describes all the observed character-
istics of magnetars. Recently, several models for the explanation of 
magnetic fields in magnetars, involving elementary particle physics 
approaches, such as the chiral magnetic effect (CME) [2] and the 
parity violating electroweak interaction [3], were put forward in 
Refs. [4,5].

In Refs. [6–9] we proposed the model for the magnetic field 
generation in magnetars based on the instability of the magnetic 
field in matter of a neutron star (NS) composed of electrons and 
neutrons interacting by the electroweak forces. We could predict 
the growth of the seed magnetic field B0 ∼ 1012 G, typical for a 
pulsar, to values expected in magnetars during the time intervals 
comparable with magnetars ages. As shown in Refs. [8,9], the mag-
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netic field growth can be powered by the energy of the thermal 
motion of background fermions in the NS matter.

In Refs. [6–9] we accounted for the interaction between ultra-
relativistic electrons and nonrelativistic neutrons, which are both 
highly degenerate, inside NS. It should be mentioned that the fact 
that electrons are ultrarelativistic allowed us to neglect the elec-
tron mass and approximately consider the separate evolution of 
right and left chiral components of the electron–positron field. 
Such an approximation was also used in Refs. [10,11] where the 
generation of toroidal magnetic fields in NSs was discussed.

Despite an electron in NS is ultrarelativistic, it has a nonzero 
mass. Any nonzero electron mass will diminish the manifestation 
of CME. The helicity flip rate � f of relativistic electrons in NS mat-
ter was recently computed in Refs. [9,13]. The computed � f ∼ m2

e , 
where me is the electron mass, mixes the chiral projections of ul-
trarelativistic electrons reducing the initial chiral imbalance. More-
over, as mentioned in Ref. [12], any nonzero mass of charged par-
ticle can make vanishing the induced anomalous electric current 
resulting in CME.

The main feature of the model in Refs. [6–9] is the existence 
of a nonzero electric current along the magnetic field direction: 
J = �B. Such a current is effective, i.e. it exists only in matter. 
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As shown in Ref. [14], the Maxwell equations, modified by adding 
this current, have an unstable solution leading to the exponen-
tial growth of a seed magnetic field. In the present Letter we will 
carefully analyze the role the mass of charged particles on the gen-
eration of the induced anomalous current in the presence of the 
parity violating electroweak interaction. It should be mentioned 
that, besides ultrarelativistic electrons, the NS matter should also 
contain the same amount of degenerate and nonrelativistic pro-
tons for the whole NS to be electrically neutral. The contribution 
of these protons to the electric current should be also analyzed.

In this Letter we shall study the generation of an electric cur-
rent of charged particles (electrons or protons) electroweakly inter-
acting with background neutrons under the influence of an exter-
nal magnetic field. We shall account for the particle mass exactly. 
For instance, as was mentioned above, unlike electrons, protons 
are nonrelativistic in NS. To compute the current we shall use 
two methods: the exact solution of the Dirac equation in external 
fields [6,7,12,15] and the calculation of the antisymmetric contri-
bution to the photon polarization operator in matter [4,14]. In both 
cases we will show that the induced current along the magnetic 
field is vanishing provided a nonzero particle mass is accounted 
for. Then we discuss the implication of the obtained result for the 
generation of magnetic fields in NS.

We start with the brief discussion of the electroweak inter-
action between a charged particle, a proton or an electron, and 
neutrons. This interaction is accounted for in the elastic forward 
scattering approximation based on the Fermi model. We consider 
the background matter of NS composed mainly of neutrons, which 
are taken to be unpolarized and nonmoving macroscopically. Ac-
counting for both neutral and charged currents contributions [16], 
we derive the effective Lagrangian for the interaction of a test 
charged particle, described by the bispinor ψ , with this nuclear 
matter,

Lint = −ψ̄γ 0 (V L PL + V R PR)ψ, (1)

where PL,R = (1 ∓γ 5)/2 are the chiral projectors, γ 5 =iγ 0γ 1γ 2γ 3, 
and γ μ = (γ 0, γ ) are the Dirac matrices. The effective potentials 
V L,R in Eq. (1) are

V L = √
2GFnn

(
1

2
− sin2 θW

)
, V R = −√

2GFnn sin2 θW, (2)

for electrons and

V L = √
2GFnn

(
2|V ud|2 + sin2 θW − 1

2

)
, V R = √

2GFnn sin2 θW,

(3)

for protons. In Eqs. (2) and (3), GF = 1.17 × 10−5 GeV−2 is the 
Fermi constant, nn is the neutron density, V ud ≈ 0.97 is the el-
ement of the Cabibbo–Kobayashi–Maskawa matrix, and sin2 θW ≈
0.23 is the Weinberg parameter.

Now we compute the induced electric current with help of the 
exact solution of the Dirac equation in external fields. The Dirac 
equation for a charged particle, accounting for the electroweak in-
teraction with nuclear matter in Eqs. (1)–(3) under the influence 
of the external magnetic field B = (0, 0, B), has the form,[
γ μ

(
i∂μ − e Aμ

) − m − γ 0 (V L PL + V R PR)
]
ψ = 0, (4)

where Aμ = (0, 0, Bx, 0) is the four vector potential in the Landau 
gauge, e is the electric charge (e < 0 for an electron and e > 0 for 
a proton), and m is the particle mass.

We start solving Eq. (4) for positively charged particles with 
e > 0, i.e. for protons. We separate the variables in Eq. (4) in the 
usual way: ψ = exp(−iEt + ip y y + ipz z)ψx , where ψx = ψx(x) is 
the bispinor depending on x coordinate only. It is convenient to 
choose the Dirac matrices in the chiral representation [17]

γ 0 =
(

0 −1
−1 0

)
, γ =

(
0 σ

−σ 0

)
, γ 5 =

(
1 0
0 −1

)
, (5)

where σ are the Pauli matrices. The bispinor ψx can be also repre-
sented using the two component chiral projections as ψT

x = (ξ, η). 
On the basis of Eqs. (4) and (5), one gets the equations for ξ and η,(

P0 + V 5 − pz i
√

eB D−
i
√

eB D+ P0 + V 5 + pz

)
ξ = −mη,

(
P0 − V 5 + pz −i

√
eB D−

−i
√

eB D+ P0 − V 5 − pz

)
η = −mξ, (6)

where P0 = E − V̄ , V̄ = (V L + V R) /2, V 5 = (V L − V R) /2, D± =
∂χ ± χ , and χ = √

eBx − p y/
√

eB . Assuming that ψx → 0 at 
|x| → ∞, we shall look for the solution of Eq. (6) in the form,

ξ =
(

C1un
−iC2un−1

)
, η =

(
C3un

−iC4un−1

)
, (7)

where un = un(χ) is the Hermite function, n = 0, 1, 2, . . . , and Ci , 
i = 1, . . . , 4, are the spin coefficients. The explicit form of un can 
be found, e.g., in Ref. [6].

Using the following properties of un: D+un = √
2nun−1 and 

D−un−1 = −√
2nun, as well as Eq. (7) we get the relations be-

tween Ci ,

mC1,3 + (P0 ∓ V 5 ± pz) C3,1 ± √
2eBnC4,2 = 0,

mC2,4 + (P0 ∓ V 5 ∓ pz) C4,2 ± √
2eBnC3,1 = 0. (8)

We shall normalize the total proton wave function by the condi-
tion∫

d3xψ†
n,p y ,pz ψn′,p′

y ,p′
z
= δnn′δ

(
p y − p′

y

)
δ
(

pz − p′
z

)
. (9)

Therefore, Ci obey the relation

4∑
i=1

|Ci |2 = 1

(2π)2
. (10)

The energy levels can be obtained from Eq. (8) in the form,

(
E − V̄

)2 = (E0 + sV 5)
2 + m2, (11)

where E0 =
√

2eBn + p2
z is the energy of a massless charged parti-

cle in the constant uniform magnetic field and s = ±1. The energy 
levels in Eq. (11) coincide with those found in Ref. [15], where an 
electron interacting with neutrons and an external magnetic field 
was considered. The symmetric gauge for the vector potential A
was used in Ref. [15].

First, let us study the case n > 0. The explicit form of Ci can be 
found if we use the following expressions:

C3,4 (P0 − V 5 − sE0) + mC1,2 = 0,

C2,4 (sE0 − pz) + √
2eBnC1,3 = 0, (12)

which result from Eq. (8). Note that Eq. (12) is a consequence of 
the existence of the additional spin integral of Eq. (4) found in 
Ref. [15]. Using Eqs. (10)–(12), we get Ci as

|C1|2 = s

(2π)24E0 P0
(sE0 − pz) (P0 − V 5 − sE0) ,

|C2|2 = s
2

2eBn (P0 − V 5 − sE0)
,

(2π) 4E0 P0 (sE0 − pz)
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|C3|2 = s

(2π)24E0 P0

m2 (sE0 − pz)

(P0 − V 5 − sE0)
,

|C4|2 = s

(2π)24E0 P0

m22eBn

(sE0 − pz) (P0 − V 5 − sE0)
. (13)

If n = 0, we can use Eq. (8) directly. In this case we get that s = −1, 
C2 = C4 = 0, and

|C1|2 = 1

(2π)2

(P0 − V 5 + pz)
2

(P0 − V 5 + pz)
2 + m2

,

|C3|2 = 1

(2π)2

m2

(P0 − V 5 + pz)
2 + m2

. (14)

The energy of the lowest Landau level can be found from (E −
V̄ )2 = m2 + (pz − V 5)

2.
Now, when we have the proton wave function in the explicit 

form, we are ready to compute the averaged electric current of 
these particles along the magnetic field. It has the form,

J z = e
∞∑

n=0

∑
s

+∞∫
−∞

dp ydpzψ
†γ 0γ 3ψ f (E − μ) , (15)

where f (E) = [exp(E/T ) + 1]−1 is the Fermi–Dirac distribution 
function, T is the temperature, and μ is the chemical potential. 
Using Eqs. (5) and (7), we obtain the quantum mechanical average

j(n)
z =e

+∞∫
−∞

dp yψ
†γ 0γ 3ψ

= e2 B
(
|C2|2 + |C3|2 − |C1|2 − |C4|2

)
. (16)

On the basis of Eqs. (13) and (14) we get that

j(n>0)
z = − e2 B

(2π)2

spz(V 5 + sE0)

E0 P0
, (17)

for n > 0, and

j(0)
z = − e2 B

(2π)2

pz − V 5

P0
, (18)

for n = 0. Using Eqs. (11), (17) and (18), one obtains that after the 
statistical averaging,

J z =
∞∑

n=0

∑
s

〈 j(n)
z 〉 = 0, 〈 j(n)

z 〉 =
+∞∫

−∞
dpz j(n)

z f (E − μ) = 0, (19)

for any n.
The fact that 〈 j(n>0)

z 〉 = 0 is obvious. Indeed one can see in 
Eq. (11) that, at n > 0, both P0 and E0 are even in pz mak-
ing j(n>0)

z in Eq. (17) odd in pz . Thus the integration over pz in 
Eq. (19) gives 〈 j(n>0)

z 〉 = 0. To demonstrate that 〈 j(0)
z 〉 = 0 we re-

call that, at n = 0, E = V̄ +
√

m2 + (pz − V 5)
2 for particles. Then, 

changing the integration variable pz → p′
z = pz − V 5, one obtains 

that j(0)
z in Eq. (18) is odd in p′

z . Integrating over p′
z in Eq. (19)

from −∞ to +∞ (see below), one gets that 〈 j(0)
z 〉 = 0. Restoring 

vector notations in Eq. (19), we obtain that the electric current 
along magnetic field is vanishing: J = �B = 0. Analogously one can 
show the absence of the contribution of massive antiparticles to 
this electric current.

One can demonstrate that the induced anomalous current of 
electrons along the magnetic field is also vanishing. For this pur-
pose one should either find the electron wave function in the 
Landau gauge analogously to Eqs. (6)–(14), and then compute the 
current as in Eqs. (15)–(19); or use the wave function of an elec-
tron, interacting with background neutrons under the influence of 
the magnetic field, found in Ref. [15] in the symmetric gauge. We 
shall omit these computations for brevity.

The reason for the disappearance of the electric current for 
massive particles is the following. It is well known that, in case 
of massless particles, the nonzero electric current along the ex-
ternal magnetic field is due to the polarization effects of charged 
particles at zero Landau level [12]. It is actually the manifesta-
tion of CME [2]. The momentum of massless particles is correlated 
with the particle spin. The particle spin, in its turn, is correlated 
with the magnetic field direction at n = 0. Therefore, for mass-
less charged particles at zero Landau level, the particle momentum 
will have a certain direction with respect to the magnetic field, i.e. 
pz will vary either from 0 to +∞ or from −∞ to 0 depending 
on the particle charge [6,7]. Therefore, if we consider the ana-
logue of Eq. (19) for massless particles, the integration over pz

will give a nonzero result. On the contrary, for massive particles, 
pz is no longer correlated with the magnetic field, changing from 
−∞ to +∞. It happens even at n = 0 and makes J z to van-
ish.

We can also demonstrate the cancellation of the induced cur-
rent along the magnetic field direction in case of massive parti-
cles using the results of the one loop calculation of the polar-
ization operator �μν in Ref. [14]. A nonzero antisymmetric part 
�i j = iεi jnkn� of the polarization operator can induce the current 
along the magnetic field: J i = −�i j A j = �Bi or J = �B. Perform-
ing analogous one loop computation of the polarization operator 
of a photon in a medium composed of electrons, protons and neu-
trons as in Ref. [14], one gets the new form factor � in the limit 
k2 � m2 as

� = − 7

3
e2 V 5

∫
d3 p

(2π)3

1

E3
p

×
{

m2

E2
p

[
1

exp[β(Ep − μ)] + 1
+ 1

exp[β(Ep + μ)] + 1

]

+ m2β

2Ep

[
1

cosh[β(Ep − μ)] + 1
+ 1

cosh[β(Ep + μ)] + 1

]

− β2p2

6

[
tanh[β(Ep − μ)/2]

cosh[β(Ep − μ)] + 1
+ tanh[β(Ep + μ)/2]

cosh[β(Ep + μ)] + 1

]}
,

(20)

where Ep = √
p2 + m2, β = 1/T is the reciprocal temperature, and 

kμ is the photon momentum. In Eq. (20) we consider neutrons as 
background fermions.

In Refs. [6–9], we are mainly interested in the generation of 
magnetic field in NS, when it is in a thermal equilibrium, which is 
reached after ∼ 102 yr after the supernova collapse. At this stage of 
the NS evolution, charged particles, i.e. electrons and protons, are 
highly degenerate. Hence we should consider the limit μ/T 
 1 in 
Eq. (20). Taking into account the identities,

lim
β→∞

β

cosh(βx) + 1
= 2δ(x), lim

β→∞
β2 tanh(βx/2)

cosh(βx) + 1
= −2δ′(x),

(21)

which were derived in Ref. [14], and recalling that for degener-

ate fermions one has μe,p =
√(

3π2ne,p
)2/3 + m2 > 0, where ne,p

are the densities of electrons and protons, one obtains that � = 0
in Eq. (20). Thus we again get that there is no electric current of 
massive charged particles along the magnetic field.
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Note that, the main reason to get � = 0 in Eq. (20) is to 
consider kμ = 0 in the computation of the polarization tensor. 
It corresponds to the zero momentum of a photon/plasmon in 
NS matter or the static external magnetic field. It is worth to 
mention that, in contrast to the present work, in Ref. [14], we 
assumed that k2 = ω2

p > 0, where ωp is the plasma frequency, 
i.e. we considered the propagation of an electromagnetic wave 
there.

In conclusion we mention that we have shown that the in-
duced electric current along the external magnetic field of massive 
charged particles, electroweakly interacting with background neu-
trons, is vanishing. We have studied one particular implementation 
of this problem: the parity violating electroweak interaction in the 
Fermi approximation; cf. Eqs. (1)–(3). We have demonstrated the 
current cancellation using two methods: the exact solution of the 
Dirac equation in external fields and the analysis of the photon 
polarization operator. The former approach is beyond the pertur-
bation theory whereas, in the later method, one demonstrates the 
washing out of the current linear in GF and the fine structure con-
stant αem = e2/4π .

Note that, for the first time, the cancellation of the induced 
current of electroweakly interacting massive particles was men-
tioned in Ref. [12], whereas for massless particles a nonzero cur-
rent may well exist [6,7,12]. However, this observation was made 
in Ref. [12] on the basis of the perturbative computation of the 
one loop contribution to the photon polarization tensor. The nov-
elty of the present work compared to the result of Ref. [12], is that 
we have demonstrated the disappearance of the current using the 
exact solution of the Dirac equation in all orders in GF and αem, 
i.e. nonperturbatively.

Such an unusual dependence of the induced current on the 
charged particle masses is related to the breaking of the chiral 
symmetry for massive particles. Massive and massless particles 
belong to different phases in which the chiral symmetry is bro-
ken and restored. The restoration of the chiral symmetry can take 
place in the presence of background matter having high tem-
perature and/or density. The size of “bubbles”, containing matter 
in the symmetric phase, will depend smoothly on the tempera-
ture T and/or the density ρ of background matter. The nonzero 
anomalous current J = �B, which results in the magnetic field 
instability, will exist only in “bubbles” with restored chiral sym-
metry. Therefore, if one studies the generation of a magnetic 
field driven by CME in a realistic cosmological/astrophysical me-
dia accounting for the chiral phase transition, the scale and the 
strength of this magnetic field will be smooth functions of T
and/or ρ .

It should be noted that, at the absence of the electroweak in-
teraction, the disappearance of CME [12], i.e. the cancellation of 
the induced current J = 2(αem/π)μ5B = 0 for massive particles 
can be foreseen. Here μ5 = (μR − μL)/2 and μR,L are the chem-
ical potentials of right and left particles. Indeed, if m �= 0, the 
decomposition to the left and right chiral projections is impossi-
ble and we should set μ5 = 0 since for massive particles there 
should be only one chemical potential μ = μR = μL. However, if 
the electroweak interaction with background fermions is present, 
the induced anomalous current for massless particles was found in 
Refs. [6,7] in the form J = 2(αem/π) (μ5 + V 5)B. The washing out 
of this current for massive particles is not obvious since V L �= 0 and 
V R �= 0 in Eqs. (1)–(3), giving one V 5 �= 0 for both massless and 
massive particles. Thus the demonstration that CME is vanishing 
for massive particles in the presence of the electroweak interac-
tion requires a special analysis which, in fact, was carried out in 
the present Letter.

The results of our work are equally applied for the currents 
of massive electrons and protons. As mentioned above, despite 
electrons are ultrarelativistic in NS they possess nonzero masses. 
Therefore, basing on our results, the generation of magnetic fields 
in magnetars driven by the electron–nucleon interaction, proposed 
in Refs. [6–9], is questionable unless there is a mechanism restor-
ing the chiral symmetry for electrons in NS. As found in Ref. [18], 
the electroweak phase transition in dense matter can happen if 
the matter density exceeds ncr ∼ M3

W ≈ 6.6 × 1046 cm−3, where 
MW ≈ 80 GeV is the W-boson mass. This value is far beyond the 
density in NS. The same disappointing arguments are valid with 
respect to the findings of Refs. [5,10].

Nevertheless we can still use the approach of Refs. [6–9] for 
the generation of magnetic fields in compact stars considering 
the quark–quark electroweak interaction [16]. The chiral symme-
try was shown in Ref. [19] to be restored for the lightest u and 
d quarks for a specific equation of state of nuclear matter in a 
hybrid star, i.e. in NS having quark matter core, or in a hypothet-
ical quark star [20]. Moreover, as shown in Ref. [21], the effective 
masses of baryons can be significantly reduced if QCD radiative 
corrections are taken into account. It is the indication to the fact 
that the chiral symmetry can be restored in dense matter. The re-
sults of Refs. [6–9] can be straightforwardly applied to describe the 
magnetic field generation in a quark/hybrid star. The consideration 
of the details of the magnetic field generation driven by the elec-
troweak quark–quark interaction will be done in our forthcoming 
work.
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