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ABSTPACT 

The elastic nucleon-nucleon scattering, due to the exchange 

of 9-t 7 rlt Pt a, cp and an effective I = 0 scalar c3 -meson is 

calculated using unsubtracted rartfsl ;rare dispersion relations 

with a cutoff. 'The p, u) and cc, vector coupling constants are 

related by SU to a single constant assuming pure F coupling. 
3 

The ratio of the vector to tensor coupling of the p -meson is 

determined by the I = 1 charge and anomalous magnetic ratio 

and the tensor couplings of (u and cp are neglected. The II- 

nucleon axial-vector coupling constant is related to that of the 

pion by SU with a D/F ratio of 3/2. The I= 0 and I 
3 

phase shifts are calculated using a total of four adjustable 

parameters: the mass and coupling constant of the effective 

= 1 

cs - 

meson, the octet vector coupling constant and the cutoff parameter. 

For each of the cutoff values corresponding to laboratory kinetic 

energies of 600, 700 and 800 MeV, the remaining three parameters 

are adjusted to fit the I = 1, lso, ?Po7 ?Pl 3, and 2 and 

the I = 0, 3 Sl phase shifts at 25, 50, 95, 142, 210 and 310 MeV. 

In each of the three cases, a goodness-to-fit parameter is obtained 

corresponding to a theory with approximately 10s inherent uncer- 

tainty. A deuteron pole appears in the solution for the 3s1 

amplitude corresponding to a binding energy of w 10 MeV. All of 

the calculated higher partial wave phase shifts are in good agree.- 

ment with results of phase shift analyses. 
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Xaving obtained a fit to the nucleon-nucleon phase shifts, - 

the r;icleon-antinucleon scattering amplitudes are calculated 

after changing the signs of the odd G-parity exchange terms 

( fit UJ and cp ) but keeping the same values for the four param- 

. >Lers.. For-each of the C.rte cutoff ene~<i~;, L: bound state pole 

I- 3 is found in the I = 0, So, Sl, and 3 
pO and the I =l, 

ISO and 3 
sl amplitudes. These bound states have the same quantum 

numbers as the 11, u), 6, fi and p respectively. Although the 

masses of the bound states are not near to those of the physical 

mesons, it is argued that if the important meson channels (anni- 

hilation) were included, the bound state poles will move toward 

the physical values. These results lend strong support to the 

conjecture that the observed mesons are composite particles. 
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I. INTRODUCTION 

The nucleon-antinucleon interaction due to the exchange of 

mesons is related by crossing symmetry to similar interactions 

in -Ihe NN system. In prin\3iple, i:ufcrw,tCx~ about the e scatter- 

ing amplitudes can be deducea from the known ampiitudes for IQ? 

scattering. 

The major difference between the NN and N'!!? systems is that 

inelastic channels are closed for low energy NN scattering whereas 

multimeson channels coupled to the 26 system are opened even at 

the physical @ threshold. Nevertheless, it is possible to sep- 

arate in an approximate fashion the absorptive effects from the 

two-body potential in both cases. For the G problem, the first 

attempt along this line was that of Ball and Chew, 1 in which 

they made use of the fact that the one-pion exchange potential in 

the Y$ system is the negative of the same potential in the NN 

interaction. The absorption (annihilation) in their model was 

approximated by a black sphere with a radius small compared to 

the range of the one-pion force. Although the fit to low energy 

I@ scattering with the Ball-Chew theory was quite satisfactory, 

it would be desirable to improve the black sphere approximation 

by making use of our present knowledge of NN and J!6 interactions. 

In particular, it would be of some interest to separately in- 

vestigate the effects of short range (shorter than xll ) two- 

body potentials and those of annihilation processes. The present 

paper is a study of the short range e forces due to the exchange 

of various mesons. 
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Recent theoretical treatments of nucleon-nucleon scattering, ' 

such as that of Scotti and Wong, 3 have been quantitatively suc- 

cessful in fitting experimental data solely in terms of an NN 

interaction which arises from the exchange of pseudoscalar ( a, 7 ), 

vector ( p, 0+ cp ), arlri an effeLtive SCLL 112son ( c ). 4 Because 

the source of this interaction is meson exchange, the Ni% interaction 

can be deduced directly from that for NN by simply changing the sign 

of the odd G-parity exchange terms. The most significant feature 

is that the short range repulsion in the .YN system which is pro- 

duced by the exchange of I = 0, G = -1 vector mesons ( cu and tp ) 

becomes a strongly attractive short range force in the I!6 system. 

As we shall show in the main text: the net attraction in all four 

S-wave amplitudes ( I and J = 0,l ) are sufficiently strong to pro- 

duce bound states. These bound states have exactly the quantum 

numbers of the 7, fl, p, and w or cp. 5 From this observation 

it seems likely that in any dynamical model of these mesons, the 

ti interaction will play an important role. This is particularly 

true for the 11 since %he only low mass states that are coupled 

strongly to the rj contain at least four pions. In fact, we find 

that the energy of the bound state in the I = 0, amplitude 

is in the neighborhood of the 7 mass while the remaining three 

S-wave bound states correspond to masses in the neighborhood of 

1.5 BeV. In addition to the S-states, the 3po amplitude for 

I = 0 has the property that all of the exchange terms add co- 

herently producing a very strong attraction which can overcome 
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the centrifugal barrier to produce binding. Such a bound state 

has the quantum numbers of the exchanged (T. While no attempt is 

made to include the multimeson continuum in this work it is clear 

that these inelastic contributions are additional attractive inter- 

actions L>f?_ich will serx'e to inc: fast ir,te 3iJ.d.iz?g energies of the 

fi bound states. This would be an improvement over the present 

result which gives too high a mass for the fi,p,and cp (or cu). 

In the present work, we will use relativistic dispersion rela- 

tions to produce unitary scattering amp.:.itud+s starting from the 

sum of single meson exchange terms. OX 'ireatment will be similar 

to that of Scotti and Wong, except for several important differences 

stated below. Since we are interested in the calculation of the 

NN and fi S-wave scattering amplitudes in terms of the interaction 

without additional parameters, we cannot employ the subtraction 

technique used by SW to produce the S-wave scattering lengths. 

Therefore, we must return to the NN problem, determine what inter- 

action is necessary to fit the NN data and the S-wave scattering 

lengths without using the subtraction method, and then apply 

crossing to obtain the N$ interaction. 

Since our treatment of the I!$ system will have considerable 

uncertainty due to the neglect of the multimeson continuum, it 

seems unwarranted to attempt to obtain an NN interaction which 

contains a large number of parameters all delicately fitted to the 

experimental data. For this reason, we have minimized the number 

of parameters used to describe the NN interaction to the extent 

that a reasonably good fit to the NN phase shifts can still be 
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obtained. This simplification is achieved by (i) employing a single 

sharp cutoff in all dispersion integrals instead of the three Regge- 

slope parameters in SW; (ii) using SU3 to relate the coupling 

constant of the p to that of the cp, w mixture; and (iii) fixing 

the ratio of the vector coupling of the p to the tensor coupling 

b;- usLlg the ratio of +.he ,ha;gc to magnet: c -1om:eit. isovector form 

factors. The resulting NN interaction then depends on only four 

parameters: the cutoff energy sc, the coupling constant of the 

nucleon to vector mesons gv, the coupling constant of the scalar 

meson ( p -meson ) to the nucleon g and the effective mass 
(3 

, 

of the scalar meson m . u The four free parameters are sufficient 

to produce a good fit to the NN phase shifts obtained by phase 

shift analysis of the data. ' The only remaining assumption nec- 

essary to obtain the G interaction from the NN interaction given 

this type of parameterization is to relate the cutoff in the NN 

case to that in the G. For simplicity, we use the same cutoff 

in both cases. 

In the following section we formulate the partial wave dis- 

persion relations and the ND-l equations with special attention 

given to removing a kinematical singularity at zero total energy. 

In Section III the C, 7, 6, p, u), and cp exchange contributions 

to the partial wave amplitudes are calculated. Section IV con- 

tains the application of the ND-l equations to the NN problem 

together with the resulting fit of the NN phase shifts. The in- 

teraction obtained is then converted to the fi interaction and the 

integral equations are solved to obtain the e scattering amplitudes 

and the masses of the bound states. The last section contains a 
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discussion of the results and possible extensions and improvements 

of the present calculation. Some remarks are made in support of 

the composite particle interpretation of mesons. 7 Explicit 

formulas for the single meson exchange contributions to the par- 

tial .ave amp1.l tude+ are givcrl ii, e.1 ~op~~3iix. 

II. PARTIAL WAVE DISPERSIGN RF-GATIONS 

Tne usual scalar variables s, t, and u are the following 

functions of the center of mass energy, momentum and scattering 

angle: 

s = 43 z 4(p2 + m2) 

t = -2pq1 - z) 

u = -2p2(: + 7J 

where z = cos 8. 

Following the notation of SW, the partial wave amplitudes 

are defined in terms of Stapp's nuclear bar phase shifts: a 

Singlet 

[exp(2iSJ) - 11 , (1) 

Uncoupled Triplet 

[ed2i6JJ) - 11 f (2) 

I 
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Coupled Triplet 

&OS 2EJ) ed2i6J 
-,)-I 1 J 1 f (3) 

hJ+l,J = 
E ‘1 

2imp/ [(cos 2eJ) exp(2i5J+1 J) - l] , (4) 9 

hJ = 
( 1 

& sin 2cJ exp[i(bJ 1 J + bJcl J (5) - , , >I. 

These expressions hold for I = 0,l e ab well as NN amplitudes. 

In the NIV problem, the h's are related to the invariant helicity 

scattering amplitudes cp cp rp CP 
1' 2' 3' 4' 

and cp 5 by: ' 

$1 

hJ =G s dz ‘J h - q21 , (6) 
1 

-1 

+1 

E 
hJJ = G s 

dz[dJ cp -dJ 
11 3 -11 (p4l ' 

(7) 

-1 

fl 

hJ-l,J = 
1 E 

2J+l4m s { dz JpJ(ql + (P,) 

-1 (8) 

+ (J + l)(dTlCp3 + dfx1T4) + 4[J(J + I)+ dro T5 , 
> 

-8- 
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hJ+l,J 
1 E 

=25+14m s I dz (J + 1) ‘J((P1 + 9,) 

-1 

(9) 

+ J(dJ 11 (P3 + df11(P4) - b[J(J+l) I+ d5, cp 
5 

1 , 

hJ = [J(J + l)+ E 
+1 

2J+l, z PJ bl + tp2) 

(10) 
- (dfl (P3 + dJ Cp ) + 2/[J(J + l)]' 

-11 4 

For NN scattering, similar expressions hold except that a factor 

of 2 should be multiplied into the right hand side of Eqs. (6) - (10) 

because the Pauli principle does not apply to NlTj scattering. 

It was shown by Goldberger, Grisaru, MacDowell, and Wong ' that 

the amplitudes Ecp 
1' 

Eq2, Ecp , Ev4, and cp have no kinematical 
3 5 

singularity in the complex s-plane (s = 4E2). Therefore, it 

follows from Eqs. (6) - (10) that hJ and hJJ have no kinematical 

singularities, but the coupled triplet amplitudes hJ 1 J, 
- > hJ+l,J 

and hJ 
1 

all have a (s)? type singularity at s = 0. In the 

work of SW, no attempt was made to remove this kinematical singu- 

larity in the formulation of dispersion relations because the point 

s = 0 is far removed from the region of interest s ,> 4m2. On the 

other hand, if we consider now the s problem with the expectation 

of finding strongly bound states, this singularity should no longer 

be ignored. In our present treatment of partial wave amplitudes, 

proper account of this kinematical singularity will be given. 

-9- 
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A. Singlet Amplitudes 

-- - !I 

Let us first examine the singlet amplitudes and give a brief 

review of the formulation of dispersion relations and the ND-l 

method. From the phase shift exnressien given by Eq. (l), one 

obtains the u,ual unik:ity con? tion: 

Im hJ =(F) IhJ12 ; s > km2 . 

A dispersion relation for hJ can be written in the form 

hJ(d = bJb) + ; Jmds‘ (%) & 

(11) 

(12) 

where bJ(S) 
is a real analytic function containing all the singu- 

lari'ties of hJ below s = km2 . As in SW, bJ(s) will be 

approximated by contributions coming from single-meson exchange 

diagrams. One obvious defect of this approximation is that 

solutions of (12) will certainly not have the required thresheld 

behavior hJ(s) = (s - 4m2)J for J > 0 , because bJ(s) itself 

has this behavior while the dispersion integral is positive definite 

at threshold. Therefore, some rescattering correction to bJb) 

must be included. We shall modify Eq. (12) by using a similar 

equation for defined by 

J 

hJ(S) (13) 

where s 
C 

is a real parameter. 

- 10 - 
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For this amplitude, the analogue of Eq. (12) becomes 

‘Jb) = iTJ(S) + + 
i ds’ (i+) (;I ; =;! J iFJ”;‘$i, (14) 

where gJ(s) is given by 

GJ(S, = (1 1 $)I bJ(s) + $+--); (hJ(0) - bJ(0)) (l-5) 

Now, the threshold behavior of La from the single-meson exchange 

contribution will be like a constant. The solution of (14), if 

it exists, will also produce a constant threshold behavior for ‘J, 

thus the partial wave amplitude hJ(s) given by the inverse of 

Eq. (13) will have the proper threshold behavior. However, hJ(s) 

will now have a J-th order pole at s = -se. This singularity 

is interpreted as an approximate replacement for the singularities 

produced by rescattering corrections. 

Aside from the J-th order pole at s =-se, we have also in- 

troduced a (l/s) f t ac or in the definition of E J' Of course, 

if bJ(s) and hJ(0) were known exactly, there would be no point 

in considering the amplitude ;J instead of hJ. However, with 

a given approximation for bJ(s), the solution of Eq. (12) for the par- 

tial wave amplitude may be improved by using the above manipulation in 

(13) - (15) provided hJ(0) can be obtained by an independent method. 

- 11 - 
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It was shown in GGMW that hJ(0) is in fact related to a combination 

of other partial wave amplitudes at s = 0. Namely 

hJ = hJ+2 + (&)(&) [cJ+l) hJ-l,J + J hJ+l,J - 2 d/ hJ] 

25 -I- 3 
+ (J+l) (J+2) hJ+l,J+l - (3) (&) [(J+3) hJ+1,J+2 

(16) 

+ (J+2) hJ+3 J+2 - 
2de) hJ+2 

2 1 
For J = 0, the second term in Ed. (16) vl;nishes and we obtain 

a relation between the singlet S-wave amplitude and a combination 

of P and higher partial waves. Since our single-meson exchange 

model of NN and fi interaction will be more reliable for higher 

partial waves, Eq. (16) will probably yield a better determination 

of ho(O) than the corresponding quantity obtained through the 

dispersion relation without the (l/s) factor in (13). In practice, 

it is sufficient to approximate the right hand side of (16) by 

using dispersion relations analogous to Eq. (14) but with 

replaced by I'Jb') 12* For J > 0 in Eq. (15), we 

shall simply approximate hJ(0) by bJ(0). 

Once gJ(s) is given, Eq. (14) can be solved by the familiar 

N/D method provided cJ(s) vanishes faster than (log s)-' as 

Is+ +w. This asymptotic behavior is in fact not satisfied due 

to the logarithmatic divergence produced by the exchange of vector 

mesons. On the other hand, if a cut off is imposed on the dispersion 

- 12 - 
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integral, then a solution can be obtained. For simplicity, we will 

impose the cut off at s=s 
C’ 

where s 
C 

is the same parameter which 

enters into the J-th order pole at s = -se. This cutoff pro- 

cedure is consjderably sZmp!.er than the Rcgge pole approximation 

of SW and reduces the -t&lee Reggo--cls.>z paramettrs to a single 

cut off parameter for the present calculation. 

The N/D equations are obtained as follows. First, we express 

in the form of a quotient 

gJ(s) z NJ(s)/DJis) (17) 

and impose the condition that NJ is real above s = 4m2 and 

DJ is real below s = 4m2. From the unitarity condition (ll), 

we obtain 

231 DJ(s) = -(:;ifr(y) NJ(s); s>4m2 

and the dispersion relation 

(18) 

o,(s) = 1 - ;; 1 ic ds' (;: ; t2 )J (%$) & ' (") 

- 13 - 



For the N-function, it must contain all the singularities of 

LJ(s) O,(s) below s = 4m2 but must be pure real above the 

threshold. Hence the expression for NJ reads 

NJ(s) = i;,(s) DJ(s) - $ ds' 
Cp) Td i.J( 2 : j 

s' - s 

After substituting Eq. (19) into Eq. m, we obtain the integral 

equation 

(20) 

NJ(s) = GJ(s) + $ CJ(Sf) - 
b"jb)] 

(21) 

NJ(s' > 
(s'- 

Equation (21) is a regular Fredholm equation of the second kind 

which possesses a unique solution for a given iTJ(s). This 

equation can be solved by straightforward numerical methods. 

Having solved Eq. (21) for the N-functions, the D-functions can be 

evaluated by using Eq. (19). For a c,(s) corresponding to a 

strong attractive interaction, the D-function will pass through 

zero at a point below the threshold. This zero corresponds to 

a bound state pole in the partial wave amplitude. The square of 

the mass of the bound state is equal to the value of s at the pole, 

- 14 - 



B. Uncoupled Triplet Amplitudes 

For the partial wave amplitudes hJJ(s), the orbital angular 

momentum is equal to J and is greater than zero. Therefore no 

advantage will bl> gained by makkg 'lse of relations at s = 0 such 

as those given by Eq. (16;. The pioblem of threshold behavior is, 

however, handled in the same way as in the singlet case. We define 

'JJb) = 

'JJ(") = 

s - lcm2 

scs 
C 

s - km2 

J 
hJd-( s) , (22) 

J 

bJ&d (23) 

and use the same N/D equations as (19) and (21) except that the 

(mp's'b') factors are now replaced by (mp'/E'). Here again 

bJJ denotes the meson-exchange contribution to hJJ. 

C. Coupled Triplet Amplitudes 

For any given total angular momentum J, let us define h to be 

the 2 x 2 matrix 

h= (24) 

- 15 - 



The unitarity condition can then be expressed as 

(25) 

If it were not for the (s)* kinematical singularity, we could 

immediately write down ND-l equations in the matrix form" 

as long as Im h-l is a known function in the physical region 

s > 4m2. 

As we shall see below, the (ss)~ sin@crity appears in a 

simple form in the helicity partial wave amplitudes given by 

where 

HJ HJ 
11 12 

HJ HJ 
21 22 

(26) 

(27) 

- 16 - 



Explicitly, the relation is 

$ =L J hJ-l,J + cJ+l) hJ+l,J + 2[J(J+l)+ hJ} ' (28) 
11 2J+l 

HJ = HJ 
12 21 

= & jrj(~+l)]~ (hJDl J - nJ+l,J) -:- hJ 1 , 
9 f 

HJ 
22 

= & {(J+l) hJ-l,J + JhJ+l,J - 2[J(J+l)+ hJ } . 

(29) 

(30) 

By making use of (28) - (30) and the relation between partial 

wave amplitudes and invariant scattering amplitudes given by Eqs. (6) - 

(1O)J one can easily verify that HJ and HJ are given in terms 
11 22 

of Ey, Erp , Ecp , and ETJ while HJ (HJ) involves only Q . 
2 

Therefore, the 7s)' 
4 12 21 5 

singularity only appears in f2(H;,,, thus 

this kinematical singularity can be removed by simply dividing 

Hf2 (H;1) by Unfortunately, the task of formulating the 

ND-l equations is a somewhat complicated matter. Not only do we 

want to remove the kinematic singularity from the partial wave 

amplitudes but we must also perform a transformation similar to 

Eq. (22) to produce the proper threshold behavior. Since the helic- 

ity amplitudes J H J , H ,and HJ are each a combination of 
11 22 12 

h J-1,J' hJ+l,J and h ' J there are three algebraic relations at the 

threshold which must be maintained in the ND-l type equations. 

For this reason we introduce a new set of amplitudes 

- 17 - 
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where 

given by 

AE =YTHY 
(31) 

(J-1)/2 

y-@= 
P2 (32) 

For the individual elements of the 2 x 2 matrix, the above trans- 

formation gives 
, - 

Arl =(y)'(T) J-1{ (J+l)m2 Hz1 + JE2 Hz, - 2[J(J+l)]' mE Htz}, 
(33) 

AZ2 = AZ1 =(y)(?)" {(J+l)mH~L + Jm Hz2 - [J(J+l)]*(E2+m2)Ht2/E}, 
(34) 

J+l 

Ai = (2J+l) (:) { (J+l)Hfl + Jm2 Hi2/E2 - 2[J(J+l)]* mHt2b}, (35) 

- 18 - 
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It is easily seen that these amplitudes have no kinematical 

singularity at s = 0 and all behave like a constant near the 

threshold. The inverse transformation from A to h will give the 

proper threshold behavior for each element of h. 

At This point, we can ieri;: tLe NT--l quations for the 

2 x 2 matrix A. First, the unitarity condition is given by 

P E & A-l = Ih (YTXT h X Y)-l 

= (Y-l) (X-l) (Imh) (xTjml(Y’jml 

J-l 

f'J+l);",+; Jm' 

j ( 

X 

(36) 

, s > 4m2 

1 - 2 

E ( 1 s+s 
C 

- 19 - 
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Expressing A in the form 

and making the usual requlremeyt that the II-matrix js real on the 

right s > 4m2 and the D-matrix is real on Uhe left s < 4m2, 

we obtain 

S 

s 

C 

D(s) = I - $ 
4m2 

ds' p&$$$ 
r (37) 

where the product pN is of course understood as a matrix product. 

Finally, we denote the meson-exchange contribution to AJ by BJ 

and obtain the integral equation for N as before: 

S 

s 

C 

N(s) = BJ(s) + + ds' 1 
4m2 s'-s BJ(s') - BJ(s) 1 PW NsW38) 

Returning now to the definition of AJ AJ 
11' 12’ 

and AJ 
22 

given by Eqs. (33) - (35)) we see that in general has a 

pole at s = 0 given by 

AZ2 = 4J(2J+l) m2 (-sc/m2) J+l Hz2(0) )/s (39) 

- 20 - 
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In order to take proper account of this pole, the Bz2(s) element 

appearing in Eq. (38) must be replaced by 

B;2(s) +B;2(~) + (40) 

+ /4J(2J+l) m2 (-sc/m2) 
Jtil 

Hz2(0) - d2(6) 1 11 S s. * 0 

For J = 1, we make use of Eq. (16) to obtain the following 

expression for Hz2(0) in terms of P and higher partial waves: 

Hi = 2h - 2h - + . 22 1 3 2 h2 , 2 ; H& (41) 

As in the case of the singlet S amplitude we approximate the right 

hand side of (41) by the meson-exchange contribution plus a dis- 

persion integral obtained from the first iteration of the meson- 

exchange terms. For J > 1, the quantity appearing in the bracket 

of Eq. (40) will be neglected. 

Now we proceed to the calculation of the meson-exchange contri- 

bution to bJ(s), bJJ(s) and BJ(s)* 

- 21 - 



III. SINGLE MESON EXCHANGE CONTRIBUTION 

In the following, we write down explicitly the t-channel meson 

exchange contribution to the NN helicity amplitudes (pi , . ..I. 'p, in 

the I = C state. The L-channel contyibu-Lion @vee r! se to a factor 

of 2 which must be supplied to the right hand side of Eqs. (6) - (10) 

for all partial wave amplitudes that are not excluded by the Pauli 

principle. For the G partial waves, there is only one crossed 

channel having baryon number zero. Therefore, one needs not supply 

a factor of two in the calculation of meson-exchange contribution. 

However, a factor of two is already present in the relation between 

partial wave amplitudes and the invariant scattering amplitudes as we 

noted earlier. The net result is that the magnitude of each meson- 

exchange contribution is the same for a given fi and N!J partial wave 

provided that the NN state is not excluded by the Pauli principle. 

As one can verify by general arguments, the odd G-parity meson ex- 

changes (7[, co, cp) have the opposite sign in NN compared to G, and 

the even G-parity mesons have the same sign. Hence, all of the meson- 

exchange contributions to the e partial wave amplitudes can be in- 

ferred directly from those of the IVN partial wave amplitudes. 

To avoid ambiguities in the definition of coupling constants, 

we shall write down the conventional Lagrangians which will give 

rise to the following invariant amplitudes in the first order per- 

turbation expansion. 

- 22 - 
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A. n-Meson 

The Lagrangian is given by 

(42) 

The I = 0 helici-l; smTlitr!es Lxr~s~?niing t.2 tk t-channel single- 

pion exchange diagram are 

E (0) = o 
iii y 

E (0) = o 
m Q3 

(43) 

(44) 

(45) 

(47) 

We shall use 

g: 
= 13 

in agreement with the coupling constant determined by most nucleon- 

nucleon phase shift analysis. 6 

B. I-j-Meson 

The Lagrangian is 

- 23 - 
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The I = 0 amplitudes can be obtained from x-exchange terms by re- 

placing gz by (-g%/3) and IJ-, by prl . The coupling constant g: 

can be obtained from gz assuming SU, symmetry provided the (D/F) 

ratio is given. The relation is 

In the work of Martin and Wali, l1 they find that 

F ( 1 D-I-F = 0.25 

(49) 

(50) 

would give a good fit to the masses and coupling constants of the 

baryon decuplet members N*, YF, E* and R . This would yield a very 

small value for * 
g7 - 

On the other hand, if one assumes the ap- 

proximate SU symmetry, then one finds 
6 

F ( 1 53 =0.4 . (51) 

However, Eq. (49) should now be applied to the axial-vector coupling 

constants rather than the pseudoscalar coupling constants. One 

obtains then 

mFi g;- -g- t 1 (1 - 1.6)' g; 21 O.? . 

mll 

(52) 

We note that our final solutions for the NN and a amplitudes 

are quite insensitive to the value of 

2 

gP 
= 12 as in SW will require a small 

and vector coupling constants, but has 
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g9 * 
For example, setting 

modification of the scalar 

a rather insignificant effect 
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on the fit to the nucleon-nucleon data. The bound state energies 

in the NN problem are also insensitive to the variation in g 2 . 
7 

C. p-Meson 

The Lagra&an includes tl,e v.:ctQr ~:ou?ling n.onstant gpl and 

the tensor coupling constant g : 
P2 

The I = 0 NN helicity amplitudes corresponding to the t-channel 

diagram are 

+ $33(1+2) 

rnz - t 

(54) 

E (0 
m v3 

(53) 

[ 

1 - z 

m* - t. 
P I ( -i- 

3&z&P2 

4m3 

- ( 3gfp2) (a;- t) 
I[ -3p*-m2+2p2z+(p2+m2)Z2 

rnz - t 

) ( )F 4- m2tt ] +(3y2) ‘g;l (l+z)(p2+ -$m*> 
= 

m 
P 

(l+z)(z-1) 

F I m 2 -t P 

J 

(55) 

(56) 
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_ 3gp~gP2 ( u - 
Cl-Z?P21 
-- I 

in /! > I ,;I.- - t 1 
CP d 

(57) 

(58) 

We shall assume that the electromagnetic form factors of the 

nucleon are domi.nated by the contribution of the vector meson pole. 

We then have 

(59) 

(60) 

where p v = 1.83 is the gyromagnetic ratio 02' the isovector anoma- 

lous moment. From (59) and (60), we obtain 

2 

gE2 = 4Pv g;l = 13.4 g” Pl l 

(61) 
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D. w and cp Mesons 

The Lagrangians for the w and cp interactions are the same 

as that for p except for the replacement of (2 * 2) by cp . As 

in SW, we omit the g Qz ami 4 
Y* 

coupling in view of the extremely 

small isoscalar anomalous magnetlr 9omen-t. In the present work, we 

also assume that the.vector-baryon coupling is primarily in the form 

of a pure F-type octet. We can then obtain all the coupling constants 

in terms of one parameter gv : 

g* P* = 13.4 g ) is@ = Qv2 = 0 

Here we also use the 03-q mixing hypothesis to obtain the ratio 

between gU1 and g 
01 ' 

In the actual calculation, we will set 

all the vector meson masses equal to an average value, hence the 

results are independent of the w-cp mixing ratio. 

E. I = 0 Scalar Meson (a) 

Following SW, we approximate the contribution of the I = 0, 

J = 0, P = + multi-meson continuum by an effective scalar particle 

of mass m (3 and coupling constant gc . The Lagrangian reads: 
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The I = 0, NN amplitudes are 

m*(l+z) 

I 1 
L 

rns - t 
1 

E (0) = 
iii (p2 

(63) 

(64) 

(65) 

(67) 

Iv. NUMERICAL RESULTS 

A. Nucleon-Nucleon Scattering 

Having obtained the formulas for the single-meson exchange con- 

tribution to the helicity amplitudes as given in the previous section, 

one can apply Eqs. (6) - (10) t o evaluate the partial wave projection 

of these amplitudes. These results are explicitly given in the ap- 

pendix. Some of the parameters appearing in the single-meson ex- 

change terms are measurable quantities which will be taken with 
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fixed values, namely 

m = 938 MeV , 

ma = 140 MeV T 4. 

g;=13 . 

For simplicity we will use an average mass for the vector mesons 

p,ti,and cp: 

m* v = t Cm; + mz+ CA?') 1: (6.45 m5[)* . 

The weight is taken according to the coupling strength 

(68 > 

The tensor coupling constants gW and gcp2 are set equal to zero 

and g is determined by the isovector anomalous magnetic moment 
P2 

to charge ratio: 

$2 
= 13.4 g2 

Pl 
=13.4$ . 

The q coupling constant given by Eq. (52) is 

2 
gll 

=0.3 . 

The only additional parameter is the cutoff sc which enters 

into the ND-l equations. 
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To summarize, we have a total of four adjustable parameters: 

%J mu9 guJ and sc . For a given value of sc , we vary q, ma, 

gu to obtain a best fit to the pp 'So , 3po 9 3,1 > 3p2 and np 3Sl 

phase shifts at 25, 50, 95, 142, 210, and 310 MeV. 6 Results for the 

cutoff SC correspondinq to laboratory kinetic energies of 600, 700, 

and 800 MeV are presented in Table I. It is apparent that the fit is 

not very sensitive to the value of the cutoff in this region. In 

terms of the "goodness to fit" parameter, all of these fits are con- 

sistent with a four-parameter theory having an inherent uncertainty 

of approximately 10%. The best val:ea of 'c;;e three physical parsm- 

eters gz , rnz , $ for each value of the cutoff are given in 

Table II. 

By calculating the D-function (the determinant of the D-matrix 

in the coupled triplet case), we find that a bound state pole ap- 

pears in the I = 0 coupled triplet J = 1 amplitude. This pole cor- 

responds to a deuteron with binding energy in the neighborhood of 

10 Mev. The amount of discrepancy between this value and the true 

binding energy of N 2.2 MeV is not surprising in view of the simpli- 

city of our four-parameter theoretical model. 

We note that it is not possible to obtain a reasonably good fit 

with a cutoff below 400 MeV or above 1200 MeV. 

For each set of parameters corresponding to Table II, we also 

calculated the D and higher partial wave phase shifts. These 

results are comparable to those obtained by SW and they are in 

fairly good agreement with those given by phase shift analyses. ' 
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B. Nucleon-Antinucleon Bound States 

I 

After fitting the NN scattering phase shifts with the four 

adjustable parameters, we solve the ND-l equations for NN scatter- 

ing without changing the values of the parameters. The only modi- 

ficati& needed is ta ch,nge bhe si,n >f t_'le (fi,~,cp) exchange con- 

tributions as required by crossing symmetry. Here, we also calculate 

all of the amplitudes excluded by the Pauli principle in the NN 

problem. For each of the three sets of parameters given above, we 

find that there are five and only five bound state poles in the 

partial wave amplitudes. They are the four S-wave amplitudes having 

the quantum number of q, fl[, u (or cp), and p, and the I = 0 3Po 

amplitude having the quantum number of the (5 . Numerical results 

are tabulated in Table III. 

v. REMARKS 

As we have stated before, the main objective of the present 

work in regard to NN scattering is to use a minimum number of phe- 

nomenological parameters in as much as an overall fit to all the 

I = 0, 1 phase shifts is possible. The results given above indicate 

that the two-body nuclear forces are, to a good approximation, 

dominated by 5, u, 7, p, o, cp exchange. 

Although a reasonable fit to the 3 Sl phase shift will guarantee 

theoccurrence of the deuteron pole, it is rather encouraging that 

our calculation yields a binding energy within 10 MeV of the physical 

deuteron in spite of the fact that the potentials due to an indi- 

vidual meson is typically several hundred MeV in strength. 
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From a pragmatic stand point, the question of whether a particle 

is composite can be answered by an S-matrix calculation using our 

knowledge of the strong interaction at any given stage. If the cal- 

culated S-matrix agrees with the scattering data to the expected ac- 

curacy and contains a pole with the proper mass and the proper sign 

cf the residlie, then +his .3ole corrfis&nd:. tl a L,om$osf.te particle. 

A physical particle must be found with the same quantum numbers and 

approximately the same mass and coupling constant, otherwise, the 

fit to the scattering data would have to be invalidated. In the case 

of the deuteron, experience has strongly su?gortad the composite par- 

ticle interpretation and we have only added o;le more claim along that 

line. Presumably, nuclei with baryon number greater than two are also 

composite in the same sense. The more interesting questions concern 

particles of baryon number one and zero. 

For the baryon number one, many authors l2 have contributed 

works showing that the baryons and the baryon resonances are composite 

particles consisting of mesons and baryons. However, the knowledge 

of the forces, the S-matrix method, and the scattering data are all 

less reliable than those in the NN problem. Nevertheless, from the 

point of view discussed above, it is fair to say that the accumulated 

evidence is in favor of all baryon and baryon resonances being 

composite. 

When one examines particles with baryon number zero (mesons), 

the question of compositeness is still more dubious. The most fre- 

quently discussed problem is that of the p-meson.13 In all of the 

works without the m channel, a very short range force of phenomeno- 

logical nature either in the form of a cutoff or in the form of a 
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distant unphysical singularity has to be included in order to pro- 

duce the physical p-meson as a composite particle. On the other 

hand, our present work shows that the 5 channel alone is capable 

of producing a bound ;particle in the I = 1, triplet J = 1 state 

without -zing a di:tan~. cutoff. y':;F: <act t93t the same nuclear 

forces used in the IYN problem does produce the bound state in the 

lY% system can be taken to be a strong evidence that this composite 

state is associated with a physical particle. Due to the ommission 

of the low lying TUT, E channels, it is tc be expected that the 

bound state we produced is substantially more massive than the 

physical p-meson. It seems rather likely that the combination of 

these meson channels together with the m system can yield a fairly 

realistic picture of the p-meson. 

For the w and cp mesons, we have also found a bound state 

in the fi system having the proper quantum numbers. Again, the in- 

clusion of meson channels such as s will lower the mass of the 

bound state. However, it is very unlikely that the meson channels 

will produce an additional composite particle to account for the 

physically distinct u) and cp . Since the physical u) and rp are 

commonly believed to be mixtures of a singlet and an octet in the 

su scheme, one should naturally take strangeness into considera- 
3 

tion. As one can easily see, the baryon-antibaryon system can 

couple to the singlet as well as the octet states. Generally speak- 

ing, the potentials in the singlet state tend to add coherently and 

is therefore stronger than those in the octet. On the other hand, 

the existence of the bound state with the quantum number of the p 

, - 
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indicates that the potential in the octet is already strong and at- 

tractive. Hence one might find that the addition of the fi, E 

and EZ channels will yeild two bound states of I = 0 and J = 1 

with the singlet particle more tight?/ bound thsn the octet. Further 

addition of the twc &zeudcscal:r cLnne1 ~511 -tbe_n. lo-per the mass of 

the octet particle without affecting the singlet since the latter is 

forbidden by Bose statistics. Of course, the foregoing arguments are 

speculative and can be substantiated only by calculations. Neverthe- 

less, this seems to constitute a feasibie dynamical model of the o-cp 

mixing. 

For the singlet J = 0 systems, our result for the mass of the 

I = 1 bound state is approximately a factor of 10 heavier than the 

pion mass. Clearly the fl system is not the dominant channel in 

making the physical pion. Among the available meson channels, the 

totally symmetric three pion system seems to be the most likely candi- 

date to produce a low lying bound state.i4 It would be of some 

interest to combine the m channel with the three pion system and. 

investigate the migration of the bound state pole. In particular, 

one can observe whether there is one or more composite particles in 

the combined system. 

As we have shown in the previous section, the bound state in 

the I = 0, J = 0 amplitude is considerably more tightly bound than 

all of the others. It is also the only bound state that is sensitive 

to the cutoff parameter. The square of the mass varies from 71 rnz 

at 600 MeV cutoff to the unphysical value of -75 mz at 800 MeV 

cutoff. Although these results undoubtedly indicate the inadequacy 
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of the present S-matrix calculation, nevertheless, they also show 

that the attractive force in this state is clearly stronger than that 

in the other states. There seems to be no compelling reason to be- 

lieve that other channels will be important in a realistic calcula- 

tion of the n-r-?son. Among +h~ E~.X-J ~hz.xr-1efs, the lowest lying 

ones are the K?? channel and the uncorrelated four pion channel. 

It is not surprising that the fi channel is indeed the dominant one. 

For the 'PO amplitude, the correspondence of the M bound state 

to any physical particle is somewhat dubious because of the lack of 

clear cut experimental evidence for an I = 0, J = 0, P = + particle 

Theoretically, it till be of some interest to examine the behavior 

of this bound state under the coupling to the JCJ( channel, particu- 

larly in regard to the question of whether there should be a threshold 

enhancement or an actual peak in the 7tfl cross section. 

Finally, among the other P-wave states, we find that the 

strongest attraction appears in the I = 1, 3 Pl amplitude. Although 

no resonance is found, the phase shift is sufficiently large (- 40') 

that a resonance can easily be produced when an additional attractive 

channel is turned on. This might be a relevant consideration in a 

dynamical model of the B-mes0n.l' 

, - 
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APPENDIX 

We now present explicit formulas for the contribution of each type 

of meson exchange to the amplitudes hJ, hcTJ, hJ 1 JJ hJ+l J and hJ . 
- I J 

These contributions are denoted bJ, b,I, -tiJ 1 Jz bJtl J and bJ and ti * * > 3 
are the results of performing the appropriate angular projection oper- 

ations on the 'p's as given in Section III. Each meson exchange term 

is to be multiplied by the isotopic spin crossing matrix. For the 

t-channel contribution, 

where I is the I-spin of the meson and is the I-spin state m INN 
of the NN. The u-channel contribution gives rise to a factor of two 

for all nonvanishing partial wave amplitudes. This is included in 

the expressions below. 

A. PSEUDO SCALAR 

The contribution of a-exchange and T-exchange has the following 

form: 

EXCJ3ANGE 

QJ-1 (Z,) - QJ (Zp) +(z) 'J+l ('p)\ 

QJ-1 (Zp > -t QJ (Z,, - t&)9,+1 ('p)} 
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gz 
bJ-l,J = ; QJsl (z,, - QJ czp) 1 

2 
gP 

bJ+l,J = ; QJ (z,) - QJ+l cz,, 
I 

bJ = 
5 ; JW--. / 

2m 1 2J+l I\ 
- QJel (zp, + =l”lJ (z,) - QJ+l czp) 

where 
gP 

is the pseudoscalar coupling constant, the Q's are 

Legendre functions of the second kind and 
2 

Z i-LP =1+- 
P 2P2 

? 

cLP 
being the mass of the exchanged meson. 

B. SCALAR MESON EXCHANGE 

The scalar meson exchange contribution, i.e., the a-meson, is as 

follows: 

P2QJ,1 CZS 
) + (P2 + a2) QJ czs) 

J+l -( ) 23;i p2QJ+l ('s 

p2QJ,1 (zs) + (P2 + h2) QJ czs) 

p2QJ+l (Zs) 
J 

, -- 
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(2J2 I- 25 +l)(p2 + 2rn") + bJ(J+l)mE QJml (zs 1 ) 

+ 2J(J+1)(p2 + 2m2 - 2mE) QJ+l (zs) - (2J+1)2 P2 QJ (zs) 

b 2J(J+l)(p2 + 2m2 - 2mE) QJml (Zs) - (2J+1)2 P%J(zs) 

I- + 2~ + l)(p2 + a2) + 4J(J+l) a 

bJ =- 
2mp2 (2J+1)2 i 

- P2 - 2m2 -t 2mE 'J-1 l's) - 'J+l ('& i 
c 

where g 
S 

is the scalar meson coupling constant and Zs = 1 + - 
a2 

., 

I-1, 
is the mass of the scalar meson. 

C. VECTOR MESON EXCHANGE 

We will first present the results for the vector meson-nucleon 

charge coupling, which is applicable to the p, u1, and cp exchange. 

This contribution is 

bJ=-- mP2 
(2p2 + m2) QJ (Z,) 

@;: bJJ = - - 
w2 

J 

p2QJ-1 v 
(Z ) + (p2+m2) QJ(Zv) + 

(2J+l) 
p2QJ+1 (Z, > 
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(J+l)2 p2 + (2J2 + 2J+l)m2 + 2J(J+l)mE 
I 

QJ-l(Zv) 

+ (6J2 + 5J + 1) p2QJ (5, ) +J(J+l >(P2 + a2 - =) QJ+l (z,) 
i 

J(J+l)(2rn2 + p2- 2mE)QJe1(Zv) + (6J"+ 7J + 2)p2QJ(Zv) 

+ I J2p2 + (2J2 + 2J+l) m2 + 2J(Jel) mE 
L 

Q Jtl ('v) 

bJ- g’ \/J(J+l) 
- 

mp2 (2J+1)2 
(J+l) p2 - m2 + mE QJWl (Zv 

I 

(-Jp2 + m2 - d) QJ+l (Z,) + 

where 

.I + (2J+l) p2 QJ (Z,) 

g: 
is the vector meson charge coupling and in these equations 

mc 
as well as in the following Zv = 1 + - 

a2 
, where m is the mass 

V 

of the vector meson. 

For the p-meson the existence of an anomalous magnetic moment 

type coupling gives rise to two additional contributions, one in which 

both verticesare pure magnetic coupling and a mixed coupling resulting 

from charge coupling at one vertex and magnetic at the other. The 
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-pure magnetic coupling terms are 

r 2 ‘[ 
(SJ2 + 5J - 4) 22 t L(2J -1 )(Z?.T.t.j) m2 @J-1)(23+3),] 

1 
QJ (z,) 

(P2 + h2) QJil <zv) + [f63/1:,1 IQ2 ‘J+2 (‘~4 

bJJ = 5 1 [:;;;;-;;il,l p2 Q,-2 (zv) + [(z) p2m+(&)m2] 'J-l('v) 

- [;;;;; ;;;+;;I " 'J "v) + [( E)p2 - (&jm2] QJ+,(zv) _- 

+ (,2J;;;:l,,l p2 QJ+2 ('v)) 

bJ-l,J = g' 4m3(2J+1) (- [ (2J+:;;2J-ld [(2J2 
+ 2J +l)(p2 + 2m2) + kJ(J+1) mE 

I 

1 
x QJm2 tzv) + - 

(2Jil) 
(4~~ + 55 + 3)~" + 4J'm2 + 4J(J+l) mE 

1 
QJ-l(Zv) 

-[ 

1 
(- 20J3 

(2J-1)(2J+3) 
- 30J2 + 7J + 9) p2 
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- (hJ2 + 3J - 1) p2 + kJ(J+l ,) m2 - bJ(J+l)@ QJ+l(Zv 
I 

+ (8~3 + 4~~ - 6J + 6) m2 + 4J(J+l) mE 
1 

QJ <Z,) 

b J+l,J 
= 5 (2;+l) 1 -[flz;;-;;;;] (P2 + 2m2 - =) QJ-2 (',) 

v+J + 5) P2 - 4 J+l) m2 + 4(J+l) ti 1 QJwl (Z,) 

- [(2J-1;(2J+3)j [ 
(-20J3-30J2+7J-t-8)p2 + 2(kJ3+10J2+3J-4)m2-4J(J+l)d QJ(Zv) I- , -_ 

(4~~ + 35 + 2) p2 - 4(J+l)2 m2 - ti(J+l) mF: QJ+l (Z,) 
1 

- [(2J;;2J+3)][(21' 
+ 2J+l)(p2 + 2m2) + ti(J+l) ~ 1 1 QJ+2 <zv) 

bJ = 5 (z){ [,2J+;;;J-lJ] (p2 + 2m2 - ml 'J-2 (',) 

(3~” + Urn2 + 2mE) QJ-1 (Z,) 
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I P2 - 2(8J2 + 85-T) m2 - 3nE 
+ 

(2J+3)(2J-1) 

1 - QJ(z,> + 

- --_ - 

-3p2 + 4(J+l)m2 - 

(2J+l) 
'J+l('v) 

Ji2 
+ (-P2 - 

(2J+l)@J+3) 
a2 + -1 QJ+2 czv) 

1 

dlere 6 
is the mag-etic tw cou;Ying i on:,tm; 0-f *he vector meson. 

The mixed charge and magnetic couPling gives 

1 (Z,> - QJ (Z,) + (') 'J+l ('v)] 

1 <Z,> + QJ <Z,) - (&) 'J+l "v)] 

bJ-l,J = 
“e%l 

m(2J+1)2 
+ 25 + 1 + 4J(J+l) z 

I 
QJ-1 (z,) 

J 

- (2J+1)(4J+l ) QJ czv 3- 4J(J+l) (l- :) QJ+l (z,, 

ge% 
bJ+bJ = m(2J+1)2 

4J(J+l)(l - : ) 'J-1 (Z,> - (2J+l)(4J+3) QJ (Z,) 

+ 
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TABI;E I 

Comparison of Theoretical and Experimental Nuclear Bar Phase Shifts in Degrees 

95.2 76.2.' 56.4 42.2 26.7 8.1 
_ 
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TABLE II 

_- -- 
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Masses (in pion units) and coupling constants of the effective s-meson 

and coupling constants of octet vector meson obtained by fitting nucleon- 

nucleon scattering phase shifts. 

Cutoff 600 MeV / 700 MeV 800 TV 

g: 

, 

5*15 I 4.3? 1 $.rj i 

m CJ 3.90 3-95 3.85 

G 1.36 1.41 1.41 

TABLE III 

Square of the masses of the nucleon-antinucleon bound states (in pion 

units) having the quantum numbers of q, I[, w, p and CJ . 

. 
600 MeV 700 MeV 800 MeV 

I = 0, Is, 71 - 10 - 75 

I = 1, lso 171 171.6 172.8 . 

I ' = 0, ?S1 172.8 173 173.4 

I = 1, x1 155-3 150 146.4 

I = 0, 3P. 172.3 169.9 168.0 
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