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1. Introduction 

The purpose of this contribution is to provide a. pedagogical i11t.roduction to a formu­
l<1.tion of (complex) general relativity that uses a trio of 2-forms a.s basic gravitational 
va.riables. 

This formalism can be 11nderstood as a close relative of the first order tetra.cl 
formalism for gcncrnl relativit.y. A trio of 2-forrns is used as metric variable, replacing 
the tetra.cl. Moreover, ra.t.her t.han using the full spin co1u1t-~ction, one uses only its 
self-dua.I pa.rt. 

The 2-forms forma.lism has the advantage of being entirely 'chiral'. The meaning 
of chiral is in the sense that the local Lorentz representations involve only SL(2, C), 
and not its conjugate S L(2, C). Therefore, it involves only 'one half' of the Lorentz 
group, reducing all red11nda.11t information. It has the disadvantage of being valid only 
in four dimensions, sinn· t.lw 2-forms a.re self'-d11al, and this is possible only in four 
dimensions. Self-duality also implies that, for a. space-time of lorentzian signature we 
are using complex variables . 

In this introduction, I begin with the fa.mi liar first order tetrad, or moving frame, 
formalism. To establish my notation, and in order to start from well known material, 
I review briefly the Cartan structme equations. Next, l disc11ss the first order tetra.die 
variational principle for vacuum general relativity. 

Exploiting the isomorphism between the Lorentz group and the direct product 
8 L(2, C) x S L(2, C), I reformulak first order tetra.cl gravity in terms of two-component 
spinors. I also describe a. first order variational principle t.hat involves only the self­
d11a.l pa.rt of the spin connection 1 ·2 • I call this forma.lism 's<~rni-chiral', since the tetra.cl 
is kept as metric varia.ble. ft is worth noting t.liat. it. was introduced as a. covariant 
version of Asbteka.r's canonical formula.t.ion of genera.I relativit,i3. 

From this semi-chiral variational principle I show how one can arrive to an en­
tirely chiral formulation. The self-dual pa.rt of the spin connection remains as a field 
variable, but in the role of primary metric va.ria.ble the tetra.cl is replaced by a trio of 
self-dual 2-forms. 
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The usefulness of 2-forms a.s variables for general relativity was recognized already 
in the early sixties, perhaps as a by-product of the Petrov algebraic classification of the 
Wey] tensor. The Einstein equations were writt.en in terms of 2-forms by Debever4• 

Since then, this language has been used extensively, see e.g. Refs. [5]. In the seventies, 
Jerzy Plebanski added an important new contribution, a variational principle for 
(complex) general relativity6 • This was rediscovered in Ref. [7] (and in Refs. [8]). 
The formalism was further developed in Ref. [9], where, among other things, it is 
shown how to couple matter matter fields (including N = 1 super-gravity!), and how 
its canonical analysis produces the Ashtekar formulation in a very straigh~forward 
way. Furthermore, it was used in the derivation of a formulation of gravity purely in 
terms of a connection10•11 (see also Ref. (12]). 

The 2-form formalism displa.ys the Einstein- Hilbert action in a new form. Simple 
modifications lea.cl to a class of 4-dimensiona.l topological field theories13 , that have 
come to be know11 as BF-theories. A different modification leads to a dynamical 
theory proposed by Husain and Kuchar in the context of the loop quantization of 
gra.vity14 • 

These observations indicate what may be the most interesting application of this 
formalism: the possibility of considering theories intermediate between topological 
field theories and general relativity, of which tl1e Husain-Kuchar model is a prime 
example. One would be considering theories with local degrees of freedom, but, 
hopefully, simpler than genera.I relativity. This would be the logirnl next step in an 
avenue towards quantum gravity that takes topological field theories as its starting 
point. 

II.BACKGROUND 

In this section, I review briefly Riemannia11 geometry in the tetra.cl formalism, 
and the first order variational principle for vacuum general relativity. Next, I present 
a translation into the two-component spinor formalism, and the Samuel-Jacobson­
Smolin semi-chiral va.ria.tiona.l principle. No attempt is ma.de at completeness in the 
discussion of these subjects, only the strictly necessary 'nuts and bolts' a.re introduced. 
All considerations a.re local. 

Let M be an oriented 4-dimensional Riema.nnia.n manifold. An ortho-normal 
ha.sis for the space of 1-forms at one point of !11, o,,a can be ta.ken a.s the primary 
gra.vita.tiona.I variable 1 

(1) 

I nreek indices run from 1 to 4 and denote space-time indices. The SO( 3, 1) indices a, b, ... take the 
value 0, J, 2, 3. They a.re lowered and raised using the Minkowski met.ric 1]ab = dia.g(-1, +1, +1, + J) 
and its inverse 17ab. The S0(3,1) valued Levi-Civita tensor density is denoted by €abed, with € 0123 = 
+l. 
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The first Cartan structure equation introduces the spin connection, Wab, 

(2) 

where Ta is the torsion 2-form, and D the S0(3,l) covariant derivative. In the 
following, I specia.lize to the ca.se of Riemannian geometry, i.e. the torsion is assumed 
to vanish, Ta = 0, and the spin connection to be compatible with the 'group metric' 
17,.b, i.e. d1]ub + WncT/cb + Wbc11ac = Wab + Wba = 0. Under these assumptions, equation 
(2) can be solved uniquely for the spin connection in terms of the tetrad, and its first 
derivative. 

The curvatme 2-form, nab, of the connection wab is defined by the second Cartan 
structure equation 

nab = dwab +Wac/\ Web· 

In addition, the following consistency conditions hold (Bianchi identities) 

dTa +wab /\Tb= nab/\ Ob, 

d nab + wa c /\ nc b - WC b /\ na c = 0. 

(3) 

(4) 

(5) 

The equations (2) through (5) provide an elega.nt reforrnula.tion of the basic equa­
tions of Riernannian geometry. They rnn be easily translated to space-time ten­
sor language using the tetrad and its inverse, e.g. nab = ( J /2)n"bcd()C /\ Od' and 
R 1'vpa = 01'a0,}0/0crbnabcd, where R 1'vpcr is the Riemann tensor of M. 

Consider now the first order action for vacuum genera.I relativity 

(6) 

where the dna.lity opera.tor* acts on S0(3,1) hived.ors as *\l"b = (l/2)t:"bcdvcd and 
satisfies *2 = -1. The action (6) agrees witli the second order vacuum Einstein­
Hilbert action J d4xFfj R for the metric lhiv := 0/0}11ab· The equation of motion 
for the connection is D * ( oa /\ Ob) = O This equation can be shown to be equivalent 
to DO" = 0. When it is solved for the spin connection with respect to the tetra.cl 0" 
and its derivatives, and the solution is substitut<-~d ha.ck into the action, one recovers 
the vacuum Einstein-Hilbert action. 

I turn now to the two-component spinor formalism. This formalism exploits the 
1-2 isomorphism between the Lorentz group S0(3,1) and the direct product SL(2,C) 
® SL(2, C) 15

• 

A limited description consists in the replacement of the ortho-normal basis 0µ", 
with an equivalent basis of 1-forms at a point x of the manifold M, 01/A' 2

• In 

2 Upper case lat.in letters represent two component. spinor indices. They are raised and lowered 
with the antisymmetric spinor fAR. wit.h <oi = +l, t.oget.her with it.s inverse and their conjugates 
according to the conventions AA := fAB AB, JIB := JtA <,HJ, et.c. 
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this fixed basis o,,AA' is rela.ted to Oµa by the constant matrices O'aAA'' i.e. OµAA' = 
aaAA'oµa· These may be given explicitly by 

AA',_ i AA' 
O'a ·- J2Ta (7) 

where r0 AA' is the identity matrix and TjAA', with i = 
matrices. 

1, 2, 3 denote the usual Pauli 

The matrices O'a AA' satisfy the identities 

O'aAA'O'bAA1 - T/ab1 (8) 
T/abO'aAA'O'bBB' _ fABfA'B', (9) 

C:abcdO'aAA'abBB'O'cCC'O'clDD' _ i(fABfCDfA'C'f.B'D' _ fACfBDfA'B'fC'D'). (10) 

The usefulness of the spinorial formalism, for om purposes, is given by the simplifica­
tions it introduces in the decomposition of an arbitrary S0(3,1) bivector yab = y(abJ 

in its self-dual and anti self-dual parts. yab can be uniquely decomposed it in its 
self-dual a.nd anti self-dual pa.rt as 

where 

V"b=~(Vob_i*Vab)+~(Vab+i*V"b)=: (+lvab+ (-)yab, (ll) 

* <+>vab 

*(-)yob 

= i <+lvab 

-i (-)yab. 

(12) 

(13) 

In turn, the spinorial components of yab, VAA' BB' = O'a AA' af B'yab, ca.n be uniquely 
decomposed as 

l/AA'BB' _ yAB A'B' vA'B' AB 
- f + f , ( 14) 

where yAB = y(AB) = (l/2)VA A'BA' and vA'B' = v<A'B') = (1/2)VAA'AB'. In the 
general complex case VAB and VA'B' are independent and not related by complex con­
jugation. This is the spinoria.1 version of the decomposition (11) a.hove, i.e. VABtA'B' 

represents the anti self-dual part of vab, and VA' B' fA' B' its self-dual pa.rt, as one can 
verify directly using the identities (10). 

These considerations can now be applied to the decomposition in self-dual a.nd anti 
self-dual pa.rt of the space-time quantities of interest: the basis of 2-forms ()" /\ (Jb, the 
spin connection 1-form wab, and its curvature nab, a.II considered as S0(3,1) bivectors. 

The anti self-dual and the self-dual parts of oa /\Ob are represented spinorially by 
L;AB tA' B' and EA' 81 tAB respectively, where 

"AB !oA , " oBA' ( 15) 1....1 .- 2 A ' 

EA'B' . - Io A' oAa' - A /\ . 
2 

(16) 
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EAB is also anti-self-dual as a spacetime 2-forrn with respect to the duality operator 
* constructed from the space-time metric 9iw = OµAA' Ov AA•, 

E AB ·- 1 PO'E AB - 'E AB * /lV .- 2Tµv pa - -z /W (17) 

The spin connection wab can be decomposed in a.n anti self-<lua.I part wAB t:A' B' and a 
self-dual part wA'B' €AB. Similarly, the curvature 2-form nab decomposes in RABt:A'B' 

and RA' B' cAB. An important fact is that there a.re no cross terms, i.e. one can verify 
that the second Cartan 's structure equation (3) gives 

dwAB +WAC /\ WcB' 

dwA' B' + wA'C' /\ Wc•B'. 

The Bianchi identities (4), (5), become 

C C' RA /\ OcA' +RA' /\ OAc' = 0, 

DRAB:= dwAB + 2w(Ac /\ WB)C = 0, 

0. 

( 18) 

(19) 

(20) 

(21) 

(22) 

Using this language, the decomposition of the Riemann curvature in its irreducible 
parts is also simplified. Expanding tl1e curvatnres RAB and RA'B' with respect to the 
basis for the space of 2-forms {EAR, I:;A'B'}, one rinds 

1T1 }'_CD ) V\--, <f >';\' R' 
"'ARCD.:..J + 3''\ "-'AB+ > ABA'B''--' , (23) 

1T1 "C'D' 1 V\-, n.. '\'AB 
"'A'B 1C 1D 1 LJ + 3''\ .._,A'B 1 + '!' ABA 1B 1 LJ • (24) 

The totally symmetric spinor \JI ABCD = \JJ(ABCD) corresponds to the self-dual part of 
the Wey] tensor, and \JI A'B'C'D' = \Jl(A'B'C'D') to its anti self-dual part. The spinor 
<I> ABA'B' = <I>(AB)A'B' = <I> AB(A'B') corresponds to the trace free part of the Ricci 
tensor, a.ncl X to its trace part. Note that RAB and RA'B' have the same Ricci pa.rt 
because of the Bianchi identities (20). 

'The condition of Ricci flatness, i.e. X = 0, 4> ABA'B' = 0, can be written as an 
expression involving only the anti self-dual pa.rt of the curvature in one of the two 
equivalent ways 

RAa A oAA' = o, 
R ,y, ,.,cD 

AB '!' ABCD,_, , 

as can be verified from (23). 

(25) 

(26) 

Consider now the following "semi-chiral" first order action for complex vacuum 
general relativity1•2 

[ AA' . I A . BA' S 0 ,WAB] = -2i 0 A'/\ 0 /\ RAa(w) (27) 
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In order to see that this action reproduces the Einstein field equations, consider the 
WAB equation of motion 

This equation can be solved uniquely for WA 8 with respect to the tetrad, and de­
termines WABEA'B' as the self-dual pa.rt of the spin connection compatible with OAA'. 

Thus, RABlA'B' is identified with the self-dua.I pa.rt of the curvature 2-form nab of the 
spin co11ned.ion compatible with the tetrad. Thr OAA' field equation, OBA'/\ RAB = 0, 
then states tlrnt the spacetirne metric 9iw = 01, AA' OvAA' is Ricci fla.t. 

The action (27) is complex. When (28) is satisfied and the tetra.cl is real, i.e. OAA' = 

7JAA', one can check tha.t the imaginary part of (27) vanishes identically. This follows 
from the Bianchi identities. 

III. 2-FORMALISM FOR GRAVITY 

In order to obtain a.n entirely chiral formulation, one would like to replace the 
tetra.d with an SL(2,C) valued field variable. 

The key observation is tha.t the tetra.cl appears in (27) only in the combination 

1 oA /\ oBA' -· "AB 2 A' -. LJ ' 
(29) 

where the 2-fonn L;AB is symmetric, i.e. L;AB = I;(AB). One can therefore think of 
adopting this symmetric SL(2,C) valued 2-form as tl1e primary metric variable. 

An obvio11s candida.tc a.ct.ion is 

S[E, w] = -4 i J ::;AB /\ RAB· (30) 

However, the L;AB equation of motion would then imply tha.t. the whole RAB vanishes, 
not only its Ricci part. (This would be a. sort of 4-dirnensiona.I a.1rn.log of 3-climensiona.l 
gravity, see Sect. VI below.) What is needed is a. constraint wl1ich enforces the fact 
that L;AB must 'have come from some tetra.cl', i.e. take tlie form (29) for some tetrad 
OAA'. Since a. chiral formulation is sought, the constraint should be invariant under 
SL(2,C) transformations. A constraint which satisfies thesf~ requirements is given by 

L;(AB /\ ~CD) = 0. (31) 

Th. (A .B OC) is constraint is a necessary condition. The expression 0 A' /\ 0 B' /\ ' C' = 0 is 
totally antisymmetric in (A'B'C'J, and hence vanishes since spin space is 2-dimensional. 
A dimension counting argument shows that it. is a.Isa sufficient. (See e.g. Ref [9] for 
an explicit proof.) 
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Hence, in order to have a.n action equivalent to (27), in which the primary metric 
variable is a trio of 2-forms I:;AB, one can append the constraint (31) to the action 
(30) via. an arbitrary Lagrange multiplier. As shown by Pleba11ski6 , a chiral action 
for (complex) vacuum general relativity is then given by 

where \II ABCD is a totally symmetric spinor field, \II ABCD = \ll(ABCD)· 

The variation of this action gives the following equations of motion. 

r.,(AB /\ ECD) 

D"f..AB 

RAB 

0, 

dEAB + 2wC(A /\ I:;B) C = 0, 

\II ABCDECD. 

(33) 

(34) 

(35) 

The first eqnation (33) is just the constraint (31) above. The preceeding discussion 
shows that it implies that r.,AB has the form (29) for some OAA'. If the solution of the 
constraint is substituted back in the action, one recovers the action (27), which was 
already shown to be equivalent to (complex) vacuum general relativity. 

From (2G), it follows that the equations of motion identify the Lagrange multiplier 
\II ARCD wit.Ii t.lw Weyl spinor, so (35) states that t.he curvature is pure Wey I. 

Ju tlw presc·11ce of a. cosmological constant A, the action (32) is modified to 

The only modifica.tion in the field equations is in the EA 8 field equation, which 
becomes 

(37) 

When the constraint (31) is satisfied, r.,AB is determined by the tetra.cl only up 
to SL(2, C) transformations on the primed indices. However, the metric is uniquely 
determined 9

•
16

, (see also Ref. [17]). The metric density can be expressed directly in 
terms of L;AB with 

;;; _ I 0tf3-yo" AB~ c" 
VY9µv-3f LJµ.a "-'fi-yB LJSvCA, (38) 

where the 2-forms r.,AB appear as a 'cubic root' of the metric density. 

IV. REALITY CONDITIONS 

The signatme of the metric g can be fixed by imposing certain conditions on r.,AB. 

Signature ( + + - - ) corresponds simply to real L;AB. Euclidean signature is selected 
by imposing the condition that L;AB be hermitian with respect to some hermitian 
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inner product on the 2-dirnensional spin space. This can be achieved by expanding 
EAB as EAR = EiriAB with real coefficients Ei in a fixed basis of hermitian symmetric 
spinors TiAB. Note that these conditions do not fix the overall sign of the metric, since 
under EAB -t -EAB one has 9iw -t -g1,,,. For these signatures, the factor of i should 
be dropped from the action (32), if it is to be real. 

Conditions for lorentzian signature a.re not linear reality conditions on the 2-form 
EA 8 . One option is to impose the condition, cubic in the E's, that the expression (38) 
be i times a lorentzian signature metric. Alternatively, one can impose the following 
quadratic conditions 

EAB /\ EA'B' 

(EMN /\ EMN) + (EM'N' /\ EwN 1 ) 

0, 

0. 

(39) 

( 40) 

For all signatures, these conditions in turn imply reality conditions on the con­
nection WAB, via the compatibility equation DEAB = 0. 

Now, is it possible to avoid the use of self-dual variables, and thus the need for 
reality conditions, while retaining the essential features of 2-form formalism? The 
answer is yes. A real formalism which mimics the chiral formalism presented here 
which uses a collection of six 2-forms as primary metric variables is introduced in 
Ref. [9]. 

V. SELF-DUAL GRAVITY 

In a Syrnposium in honor of Jerzy Pleba/1ski, 01w should not miss the chance to 
talk about self-dual gravity. 

In the special case of self-dual solutions, the field equations (33), (34), (35) for 
vacuum genera.I relativity simplify considerably. For vanishing cosmological constant, 
the equations reduce to 

E(AB /\ ECD) 

dEAB 

0, 

0. 

( 41) 

( 42) 

This formulation of the self-dual vacuum equations was employed by Plebanski to 
reduce the self-d11al case to the 'heavenly equations'1 8

. Gindikin used this formulation 
to generate self-dual solutions19 • It is also directly related to the canonical version of 
Ashteka.r, Jacobson and Smolin 20 , 

In the case of non-vanishing cosmological constant, when the Weyl spinor '11 ABCD 

vanishes, (37) reduces to RAB = ~A:EAB· Given this, (34) is satisfied by virtue 
of the Bianchi identity DRAB = 021 , so all that remains of the field equations is 
the quadratic constraint ( 41 ). Thus self-dual solutions with cosmological constant 
ca.n be cha.ra.ct<~rized by the condition that the spin connection satifies the metric­
independen t equation 22 •23 , 

R(AB /\ Rco) = 0. ( 43) 
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The 2-form defined by EAB := f RAB determines via (29) a metric which is a self-dual 
solution with cosmological constant, and all such solutions arise in this manner, at 
least locally. 

VI. MODIFICATIONS OF THE CHIRAL ACTION 

From the vantage point of the chiral formalism for gravity, formal similarities 
between general relativity and other field theories appear. Here I consider some field 
theories which result from natural modifications of the actions (32) and (36). 

First, some 'truncated' versions of (32) and (36) correspond to some of the 4-
dimensional topological field theories considered by Horowitz13• 

A topological field theory is obtained hy simply dropping the W term in (32). The 
action takes a form analogous to the one for :3-dimensiona.1 gravity 

S[E, w] = j .EAR /\RAB· ( 44) 

The equation of motion for EAB implies that the connection is (locally) flat. The 
analogy with :3-dimensiona.l gravity goes a. step further. Because of the Bianchi iden­
tities, the action possesses a.n extra. symmetry 8EAB = DrAB, bWAB = 0, for some 
I-form TAB. If then=~ are no topological obstructions, this symmetry can be used to 
set the 2-form EAR equal to a.11yt.hing, in particular it can be set equal to zero. 

A sc~cond type of topological field tlic'ory is obtained by dropping the W term in 
(32) hut a.ddi11g a cosmological constant t.erm, i.e. 

L'[\,_, J J ,,_,AB /\ /:J 1 A'5~AB /\ " ,J .:..J' W = ...., 1AB - 2 ~ L.JAB· ( 45) 

The equations of motion a.re then D"£,AB = 0 a.nd EAB = A- 1 RAB, which a.re satisfied 
by any connection. The action ha.s now a.n 'extra' symmetry under 8EAB = D7rAB, 

8wAB = A7rAB. If this is treated as a. ga.11ge symmetry, all connections can be gauged 
to zero, so although a.11 connections a.re solutions, they a.re all gauge-equivalent. 

An interesting type of field theory, introduced by Husain and Kucha.f14 in the con­
text of the loop representation for quantum gravity, is derived from a. rather innocent 
looking modification of the a.ction (32): If the cosmological constant is promoted to a. 
Lagrange multiplier, then we have the action (32) without the condition that W ABCD 

be totally symmetric (tracefree). Its variational equation thus imposes a stronger al­
gebraic constraint, EAB /\ ECD = 0. This constraint implies that there exists a trio of 
I-forms OAB = O(AB) such that EAB = OAc/\080 .(or equivalently that EAB = a/\OAB, 

for some I-form a). When this is substituted ha.ck in the action one obtains the action 
considered in Rd. [14], 

( 46) 
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This theory is itself a 'truncated' version of vacuum genera.I relativity. As shown by 
Husain and Kuchar, in its canonical form it can be obtained from vacuum general 
relativity in the form proposed by Ashtekar by dropping the scalar constraint. 
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