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1. Introduction

The purpose of this contribution is to provide a pedagogical introduction to a formu-
lation of (complex) general relativity that uses a trio of 2-forms as basic gravitational
variables.

This formalism can be understood as a close relative of the first order tetrad
formalism for general relativity. A trio of 2-forms is used as metric variable, replacing
the tetrad. Moreover, rather than using the full spin connection, one uses only its
self-dual part.

The 2-forms formalism has the advantage of being entirely ‘chiral’. The meaning
of chiral is in the sense that the local Lorentz representations involve only SL(2,C),
and not its conjugate SL(2,C). Therefore, it involves only ‘one half’ of the Lorentz
group, reducing all redundant information. It has the disadvantage of being valid only
in four dimensions, since the 2-forms are self-dual, and this is possible only in four
dimensions. Sell-duality also implies that, for a space-time of lorentzian signature we
are using complex variables.

In this introduction, I begin with the familiar {irst order tetrad, or moving frame,
formalism. To establish my notation, and in order to start [rom well known material,
I review briefly the Cartan structure equations. Next, [ discuss the first order tetradic
variational principle for vacuum general relativity.

Exploiting the isomorphism between the Lorentz group and the direct product
SL(2,C)xSL(2,C), I reformulate first order tetrad gravity in terms of two-component
spinors. I also describe a first order variational principle that involves only the self-
dual part of the spin connection’2, 1 call this formalism ‘semi-chiral’, since the tetrad
is kept as metric variable. It is worth noting that it was introduced as a covariant
version of Ashtekar’s canonical formulation of general relativity?.

From this semi-chiral variational principle I show how one can arrive to an en-
tirely chiral formulation. The self-dual part of the spin connection remains as a field
variable, but in the role of primary metric variable the tetrad is replaced by a trio of
self-dual 2-forms.
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The usefulness of 2-forms as variables for general relativity was recognized already
in the early sixties, perhaps as a by-product of the Petrov algebraic classification of the
Wey! tensor. The Einstein equations were written in terms of 2-forms by Debever?.
Since then, this language has been used extensively, see e.g. Refs. [5]. In the seventies,
Jerzy Plebanski added an important new contribution, a variational principle for
(complex) general relativity®, This was rediscovered in Ref. [7] (and in Refs. [8]).
The formalism was further developed in Ref. [9], where, among other things, it is
shown how to couple matter matter fields (including N = 1 super-gravity!), and how
its canonical analysis produces the Ashtekar formulation in a very straightforward
way. Furthermore, it was used in the derivation of a formulation of gravity purely in
terms of a connection!®?!? (see also Ref. [12]).

The 2-form formalism displays the Einstein- Hilbert action in a new form. Simple
modifications lead to a class of 4-dimensional topological field theories!®, that have
come to be known as BF-theories. A different modification leads to a dynamical
theory proposed by IHusain and Kuchat in the context of the loop quantization of
gravity'4,

These observations indicate what may be the most interesting application of this
formalism: the possibility of considering theories intermediate hetween topological
field theories and general relativity, of which the Husain-Kuchar model is a prime
example. One would bhe considering theories with local degrees of freedom, but,
hopefully, simpler than general relativity. This would be the logical next step in an
avenue towards quantum gravity that takes topological field theories as its starting
point.

II. BACKGROUND

In this section, I review briefly Riemannian geomnetry in the tetrad formalism,
and the first order variational principle for vacuum general relativity. Next, I present
a translation into the two-component spinor formalism, and the Samuel-Jacobson-
Smolin semi-chiral variational principle. No attempt is made at completeness in the
discussion of these subjects, only the strictly necessary ‘nuts and bolts’ are introduced.
All considerations are local.

Let M be an oriented 4-dimensional Riemannian manifold. An ortho-normal
basis for the space of 1-forms at one point of M, 0,* can be taken as the primary
gravitational variable !

Juy = ouaoubnab, nab = o;taoubg‘w' (1)

1Greek indices run from 1 to 4 and denote space-time indices. The SO(3,1) indices a, b, . .. take the
value 0,1,2,3. They are lowered and raised using the Minkowski metric 74, = diag(—1,+1,+1,+1)
and its inverse 7%, The SO(3,1) valued Levi-Civita tensor density is denoted by g9, with ¢%123 =

+ 1.
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The first Cartan structure equation introduces the spin connection, w?,
T® =d6® +w A0° =: D0°, (2)

where T° is the torsion 2-form, and D the SO(3,1) covariant derivative. In the
following, I specialize to the case of Riemannian geometry, i.e. the torsion is assumed
to vanish, 7'* = 0, and the spin connection to be compatible with the ‘group metric’
Naby 0-€. ANp + WaNep + W Nae = Wab + whe = 0. Under these assumptions, equation
(2) can be solved uniquely for the spin connection in terms of the tetrad, and its first
derivative.
The curvature 2-form, 2%, of the connection w®; is defined by the second Cartan
structure equation
Q% = dw?, + W A WS (3)

In addition, the following consistency conditions hold (Bianchi identities)

DT* = dT* 4w AT" = Q% A0°, (4)
DO = dQ% +wi . AQG —w AN = 0. (5)

The equations (2) through (5) provide an elegant reformulation of the basic equa-
tions of Riemannian geometry. They can be easily translated to space-time ten-
sor language using the tetrad and its inverse, e.g. 0% = (1/2)Q%40° A 0¢, and
R*, 00 = 0%,0,%0,%0,20% .4, where R*,,, is the Riemann tensor of M.

Consider now the first order action for vacuum general relativity

S[0°, W) = ]*(0" A 0") A Qup(w), (6)

where the duality operator % acts on SO(3,1) hivectors as V¢ = (1/2)e*® V¢ and
satisfies ¥2 = —1. The action (6) agrees with the second order vacuum Einstein-
Hilbert action [ d*z\/=¢ R for the metric g,, := 0,°0,%94. The equation of motion
for the connection is D x (8* A 8°) = 0 This equation can be shown to be equivalent
to D0* = 0. When it is solved for the spin connection with rvespect to the tetrad 6¢
and its derivatives, and the solution is substituted back into the action, one recovers
the vacuum Einstein-Hilbert action.

I turn now to the two-component spinor formalism. This formalism exploits the
1-2 isomorphism between the Lorentz group SO(3,1) and the direct product SL(2,C)
® SL(2,C) 5.

A limited description consists in the replacement of the ortho-normal basis 6,°,
with an equivalent basis of 1-forms at a point z of the manifold M, 6,44 2. In

2Upper case latin letters represent two component spinor indices. They are raised and lowered
with the antisymmetric spinor €45, with g3 = +1, together with its inverse and their conjugates
according to the conventions M := ¢ABAg, up 1= fheqp, ete.
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this fixed basis 0,44" is related to 0,° by the constant matrices o,44', i.e. ,44" =

0,44 0,°. These may be given explicitly by
AN _ b aA (1)
where 7044’ is the identity matrix and 7,44, with ¢ = 1,2,3 denote the usual Pauli

matrices.
The matrices 0,44 satisfy the identities

AA!
0 Toan = Nas, (8)
1 ] ] ]
nabo,aAA UbBB = EABeA B , (9)
] ' ' ! - i 7ell ! '] 1 ] / ')
gobedy AA' g BB’y CC'( DD l(eABCCDeA C'B'D' _ (AC BD A'B' C'D ). (10)

The usefulness of the spinorial formalism, for our purposes, is given by the simplifica-
tions it introduces in the decomposition of an arbitrary SO(3,1) bivector Vb = VIl
in its self-dual and anti self-dual parts. V* can be uniquely decomposed it in its
self-dual and anti self-dual part as

yob = %(v“" — i V) 4 -},—(V“" +iw V) = Byt g (Hyed (11)

where
% (Hyeb . ; (F)yeb (12)
% (—)Vub = —1 (—)‘/“b. (13)

In turn, the spinorial components of Vab, VAA'BB' — 5 AA'GBB'Y/ab can he uniquel
? p 1 9 a b ) q

decomposed as
' —A'B!
VAA BRB' VABCAIB’ YV 6AB, (14)

where VAB = V(A4B) = (1/2)V4 4B and [T gl (1/2)V44'45". In the
general complex case V4B and V4’8’ are independent and not related by complex con-
jugation. This is the spinorial version of the decomposition (11) above, i.c. VABA'S’
represents the anti self-dual part of Vo, and VA'B'eA'B’ its self-dual part, as one can
verify directly using the identities (10).

These considerations can now be applied to the decomposition in self-dual and anti
self-dual part of the space-time quantities of interest: the basis of 2-forms 6 A 6°, the
spin connection 1-form w®, and its curvature 0%, all considered as SO(3,1) bivectors.

The anti self-dual and the self-dual parts of 02 A 0® are represented spinorially by

NABeA'B" and XA'B'¢AB respectively, where
1 '
EAB = ;2-0'4,1; A 0BA ) (15)
1t 1 ’ !
TAB e ;)-OAA A 047, (16)

<
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$AB is also anti-self-dual as a spacetime 2-form with respect to the duality operator
* constructed from the space-time metric g,, = 0,440, 44/,

1 .
* E“,,AB = STW"”ZWAB = —zE“,,AB. (17)

<

! [}
ABA'B' 4nd a

The spin connection w® can be decomposed in an anti self-dual part w
A'B'
€

self-dual part wA'B'eAB, Similarly, the curvature 2-form % decomposes in RAB
and RA'P'¢AB. An important fact is that there are no cross terms, i.e. one can verify
that the second Cartan’s structure equation (3) gives

RAB = duB 4 A€ A we®, (18)
RAB" = P £ AweB. (19)
The Bianchi identities (4), (5), become
RAC Ablca + RA:CI ANl = 0, (20)
DRAg := dwap + 2w(AC Awpye = 0, (21)
D,RAIBI = delB: + QUJ(AIC' A LUBI)CI = 0 (22)

Using this language, the decomposition of the Riemann curvature in its irreducible
parts is also simplified. Expanding the curvatures R4B and R4'B’ with respect to the
basis for the space of 2-forms {£4F, £S48’} one finds

; 1 "y
Rap = WapcpZP + 5)\'3/13 + G057, (23)
N
Ragr = Vapop P + §XLA'B' + ®apap E4P. (24)

The totally symmetric spinor ¥ 4pcp = V(48cp) corresponds to the self-dual part of
the Weyl teusor, and V4 picipr = Yiapicrpry to its anti self-dual part. The spinor
Saparpr = Papyarnr = Paparpr corresponds to the trace free part of the Ricci
tensor, and X to its trace part. Note that Rsp and R have the same Ricci part
because of the Bianchi identities (20).

‘The condition of Ricci flatness, i.e. X = 0, ®spa5r = 0, can be written as an
expression involving only the anti self-dual part of the curvature in one of the two
equivalent ways

Rig A 0AA1=0, (25)
Rap = V,pcpE©P, (26)

as can be verified from (23).
Consider now the following “semi-chiral” first order action for complex vacuum
general relativity!?

S[OAAI,U)AB] = _Qi/OAAI A OBA’ A RAB(U.)) (27)
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In order to see that this action reproduces the Einstein field equations, consider the
w4P equation of motion

D64 40 A OBAY := d(0% 40 A OPA) 4 20C A A 0B) 4o A 04 = 0, (28)

This equation can be solved uniquely for ws? with respect to the tetrad, and de-
termines wapeap: as the self-dual part of the spin connection compatible with gaAt
Thus, Rapearp: is identified with the self-dual part of the curvature 2-form 22 of the
spin connection compatible with the tetrad. The 044 field equation, 0B4' AR g = 0,
then states that the spacetime metric g,, = 0,44'0,44 is Ricci flat.

The action (27) is complex. When (28) is satisfied and the tetrad is real, i.e.
EAA', one can check that the imaginary part of (27) vanishes identically. This follows
from the Bianchi identities.

0AA —

III. 2-FORMALISM FOR GRAVITY

In order to obtain an entirely chiral formulation, one would like to replace the
tetrad with an SL(2,C) valued field variable.
The key observation is that the tetrad appears in (27) only in the combination

1 ,
50/‘,1, AOBA =, £1B, (29)

where the 2-forin £48 is symmetric, i.e. 4% = LB One can therefore think of
adopting this symmetric SL(2,C) valued 2-form as the primary metric variable.
An obvious candidate action is

S[E,w] = —41 / YA A Rap. (30)

However, the 48 equation of motion would then imply that the whole R4p vanishes,
not only its Ricci part. (This would be a sort of 4-dimensional analog of 3-dimensional
gravity, see Sect. VI below.) What is needed is a constraint which enforces the fact
that £42 must ‘have come from some tetrad’, i.e. take the form (29) for some tetrad
044", Since a chiral formulation is sought, the constraint should be invariant under
SL(2,C) transformations. A constraint which satisfies these requirements is given by

x(4B A £CD) =, (31)

This constraint is a necessary condition. The expression 0A L AOBG A0S e =0 is
totally antisymmetric in [4’B’c’], and hence vanishes since spin space is 2-dimensional.
A dimension counting argument shows that it is also sufficient. (See e.g. Ref [9] for
an explicit proof.)
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Hence, in order to have an action equivalent to (27), in which the primary metric
variable is a trio of 2-forms $4B, one can append the constraint (31) to the action
(30) via an arbitrary Lagrange multiplier. As shown by Plebariski®, a chiral action
for (complex) vacuum general relativity is then given by

| ] } {
S[ZAB, WAB, lI"ABC’D] = —41/ [EAB A Rig — 5 Y aBcD TAB 4 5D ] . (32)

where VU 4pcp is a totally symmetric spinor field, ¥ 4pcp = Y(aBeD).
The variation of this action gives the following equations of motion.

NUBATCD) = o, (33)
DEAB = (AP 4 2,CU A RB) =0, (34)
Rup = VYuapeopXi©P. (35)

The first equation (33) is just the constraint (31) above. The preceeding discussion
shows that it implies that ¥4Z has the form (29) for some 044", If the solution of the
constraint is substituted back in the action, one recovers the action (27), which was
already shown to be equivalent to (complex) vacuum general relativity.

From (26), it follows that the equations of motion identify the Lagrange multiplier
W apcn with the Weyl spinor, so (35) states that the curvature is pure Weyl.

In the presence of a cosmological constant A, the action (32) is modified to

; . - 1 3 1
.S[zAB,wAB,\I’ABCD] :42/[LAB/\RAB—§\D,\R(;D LAB'/\SCD—EAzAB/\EAB]. (36)

The only modification in the field equations is in the Y48 field equation, which
becomes

, |
Rap = VY pcpXP + tiAEAB- (37)

When the constraint (31) is satisfied, £47 is determined by the tetrad only up
to SL(2,C) transformations on the primed indices. However, the metric is uniquely
determined®!é, (see also Ref. [17]). The metric density can be expressed directly in
terms of 4% with

1
\/Eguu = _geaﬂ'yS EuaABEﬁ'yBCE&/CAa (38)

where the 2-forms £4B appear as a ‘cubic root’ of the metric density.

IV. REALITY CONDITIONS
The signature of the metric g can be fixed by imposing certain conditions on £45,

Signature (+ + — —) corresponds simply to real L42. Euclidean signature is selected
by imposing the condition that £48 be hermitian with respect to some hermitian
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inner product on the 2-dimensional spin space. This can be achieved by expanding
$AB as BAB = %irAB with real coefficients £ in a fixed basis of hermitian symmetric
spinors 7%, Note that these conditions do not fix the overall sign of the metric, since
under 248 — —%48 one has g,, — —g,,. For these signatures, the factor of 7 should
be dropped from the action (32), if it is to be real.

Conditions for lorentzian signature are not linear reality conditions on the 2-form
$4B. One option is to impose the condition, cubic in the &’s, that the expression (38)
be 7 times a lorentzian signature metric. Alternatively, one can impose the following
quadratic conditions

4B ATAE 2 o, (39)
(EMY 7' Syw) + (T 0% ATgpr) = O. (40)

For all signatures, these conditions in turn imply reality conditions on the con-
nection wyp, via the compatibility equation DX48 = 0.

Now, is it possible to avoid the use of self-dual variables, and thus the need for
reality conditions, while retaining the essential features of 2-form formalism? The
answer 1s yes. A real formalism which mimics the chiral formalism presented here
which uses a collection of six 2-forms as primary metric variables is introduced in

Ref. [9].

V. SELF-DUAL GRAVITY

In a Symposium in honor of Jerzy Plebariski, one should not miss the chance to
talk about self-dual gravity.

In the special case of sell-dual solutions, the field equations (33), (34), (35) for
vacuum general relativity simplify considerably. For vanishing cosmological constant,
the equations reduce to

SABARCD) = o, (41)
dEARs =1 0. (42)

This formulation of the self-dual vacuum equations was employed by Plebanski to
reduce the self-dual case to the ‘heavenly equations’®. Gindikin nsed this formulation
to generate self-dual solutions!®. It is also directly related to the canonical version of
Ashtekar, Jacobson and Smolin?°,

In the case of non-vanishing cosmological constant, when the Weyl spinor ¥ 4p¢cp
vanishes, (37) reduces to Rup = %AZAB. Given this, (34) is satisfied by virtue
of the Bianchi identity DR4p = 0%, so all that remains of the field equations is
the quadratic constraint (41). Thus self-dual solutions with cosmological constant
can be characterized by the condition that the spin connection satifies the metric-
independent equation??23,

Rias A Repy = 0. (43)
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The 2-form defined by £48 .= %RAB determines via (29) a metric which is a self-dual
solution with cosmological constant, and all such solutions arise in this manner, at
least locally.

VI. MODIFICATIONS OF THE CHIRAL ACTION

From the vantage point of the chiral formalism for gravity, formal similarities
between general relativity and other field theories appear. Here I consider some field
theories which result from natural modifications of the actions (32) and (36).

First, some ‘truncated’ versions of (32) and (36) c01resp0nd to some of the 4-
dimensional topological field theories considered by Horowitz!?

A topological field theory is obtained by simply dropping the U term in (32). The
action takes a form analogous to the one for 3-dimensional gravity

S[B,w) = /')3"3 A Rap. (44)

The equation of motion for £42 implies that the connection is (locally) flat. The
analogy with 3-dimensional gravity goes a step further. Because of the Bianchi iden-
tities, the action possesses an extra symmetry 6548 = D748 fw,up = 0, for some
1-form 742, If there are no topological obstructions, this symmetry can be used to
set the 2-form 4P equal to anything, in particular it can be set equal to zero.

A second type of topological field theory is obtained by dropping the ¥ term in
(32) but adding a cosmological constant term, t.e¢.

.5'[2,1.0] = /EAB A Rag — —l;A):AB A 2A (45)

The equations of motion are then DXAB = 0 and £48 = A~ R48, which are satisfied
by any connection. The action has now an ‘extra’ symmetry unde1 AEAE = PrAB,
SwAB = AnAB_ 1 this is treated as a gauge symmetry, all connections can be gauged
to zero, so although all connections are solutions, they are all gauge-equivalent.

An interesting type of field theory, introduced by Husain and Kuchat'* in the con-
text of the loop representation for quantum gravity, is derived from a rather innocent
looking modification of the action (32): Il the cosmological constant is promoted to a
Lagrange multiplier, then we have the action (32) without the condition that ¥ 4pcp
be totally symmetric (tracefree). Its variational equation thus imposes a stronger al-
gebraic constraint, £4% A £¢P = 0. This constraint implies that there exists a trio of
1-forms 048 = ¢4P) guch that £AB = 04, A0BC (or equivalently that £48 = aA§4B,
for some 1-form «v). When this is substituted back in the action one obtains the action
considered in Ref. [14],

S[OAB,U)AB] = /OAC A DB p Rap. (46)
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This theory is itself a ‘truncated’ version of vacuum general relativity. As shown by
Husain and Kuchaf, in its canonical form it can be obtained from vacuum general
relativity in the form proposed by Ashtekar by dropping the scalar constraint.
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