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I review my previous work I on the Higgs mechanism, adding some new 

results, and mention its application to the Sehwinger model done mainly 

by K. R. !TO 2. 

As is well known, when phase symmetry is spontaneously broken in 

gauge theory, the gauge field acquires a non-zero mass, while the Gold- 

stone boson disappears according to the Higgs mechanism 3. It is im- 

possible, however, to invalidlate the Goldstone theorem in the usual 

framework of local field theory. It is important, therefore, to explain 

why and how the Higgs mechanism is compatible with the Goldstone theorem 

in the manifestlycovariant quantum field theory. 

I consider the Higgs model as an example. Its Lagrangian in the 

covariant formalism is given by 

!F~ F I 2 = -~ ~ + B~A + ~B 
i 2, f ,  _ ~X(@¢$)2 

+ (~+ieA~)¢+-(~ -leA )¢ + ~ 0  @ 

where B is an auxiliary scalar filed, ~ being a gauge parameter. 

equations for the gauge field A are 

DA~ - (I-a)~uB = JU, ~Ju = O, 

~A + ~B = 0, DB = 0. 

Canonical quantization is carried out. Then one can compute all the 

four-dimensional commutation relations involving B; especially, 

(i) 

Field 

(2) 

[ B ( x ) ,  ¢ ( y ) ]  = e $ ( y ) D ( x - y ) .  (3) 

The subsidiary condition 

B(+)(x) Iphys> = 0 (4) 
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is imposed upon physical states so as to avoid negative probability. 

Now, spontaneous symmetry breaking is introduced by setting 

~ ( x )  : v + ~(x )  + i x ( x ) ,  

v : v~ # o ,  < o / ~ ( x ) / O >  = < O l x ( x ) / o >  : o (5)  

as usual. Then the commutation relation (3) implies 

[B(x), X(Y)] : -leEr + ~(y)]D(x-y). (6) 

Therefore, 

<olEB(x), x(y)]lo> = -iM-D(x-y), (7) 

where M =ev stands for the zeroth approximation to the mass of the 

gauge particle. 

Let Auin, Bin ~in, and X in be the asymptotic fields of A , B, 

~, and X, respectively. Since B in = B, the subsidiary conditio~ (4) 

holds also for in-states. From (7) one obtains 

[Bin(x), ×in(y)] = -iM'D(x-y). (8) 

This is a very important relation, which yields the following conclusions. 

in 
I. X is massless, that is, it should be the Goldstone field. Thus, 

the Goldstone theorem holds. 

2. The Goldstone bosons are unphysical because they do not satisfy the 

subsidiary condition (4). Hence the Higgs mechanism works for physical 

states. Here it can be shown that physical fields are U in = A in - 

ZxM-2a~B in - M-I~ X in, B in , and gin. ~ 

Thus, the consistency between the Goldstone theorem and the Hlggs 

mechanism is established in a manifestly covariant way. 
in 

The Ooldstone field X can be shown to satisfy 

where 

[xin(x), xin(y)] = iZxD(X-y ) + laM2E(x-y), 

E(x) - -(a/~m2)k(x,m2)Im=0 , and 

(9 )  

[Q, xin(x)] = -iM, (10) 
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where Q denotes the generator of the gauge transformation. Furthermore, 
in 

the equation for X is 

[]X in = -aM'B in . (Ii) 

Thus the Goldstone bosons are dipole ghosts for a # 0. This may be 

the first example of dipole-ghost Goldstone bosons. [A similar conclu- 

sion has been reached by YOKOYAMA (private communication) independently.] 

The formalism developed above has been applied to the Schwinger 

model 4 (the two-dimensional massless QED) by ITO. 2 This model is known 

to be exactly solvable, and the gauge field acquires a non-zero mass. 

According to KOGUT and SUSSKIND, 5 the so-called Schwinger mechanism is 

different from the Higgs mechanism because there is no spontaneous break- 

down of symmetry. An opposite conclusion, however, is deduced on this 

point: the Schwlnger mechanism is nothing but a special case of the 

Higgs mechanism. 

Field equations are again given by (2), but in the Schwinger model, 

one has J~ = JW - m2A~, where m 2 = e2/w and J~ is a current composed 
6 

by free fermion fields. According to KLAIBER, one can construct an 

"associated boson" field X(x) such that 

J~ = ~X, (12) 

Therefore A~ satisfies 

(D+m2)A~ - ~p[(l-~)B + X] = 0. (13) 

Hence all two-dimensional commutation relations are easily calculated, 

and one finds that 

[X(x), X(y)] = im2D(x-y) + i~m4E(x-y), 

<of[Q, x(x)]lo > = [Q, X(x)] = -im 2 ~ o, 

[] X = -~m2B. 

(14) 

(15) 

(16) 

Eq. (15) shows that there is indeed spontaneous breakdown of symmetry 

and that X is the Goldstone field. Furtheremore,! emphasize that 

there is complete parallelism between the Schwlnger model and the Hi~[s 
....... --1 

model as is seen by comparing (14)-(16) with (9)-(11), that is, m X 

corresponds to X in. (Detailed accounts will appear elsewhere.) 
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DISCUSSIONS 

ITO (comment): ! comment that the Schwinger model can be solved more 

rigorously by the generalized Bogolubov transformation. I have found 

that its bare Hamiltonian cannot be positive without renormalization 

counterterms and that photons become massive by those counterterms. 

SWIECA (question): Is it true that the problem of whether there is or 

not spontaneous breakdown in the Schwinger model depends on the gauge 

used? 

NAKANISHI (answer): Gauge dependence might be possible; I am not sure. 

The complete parallelism between the Schwinger model and the Higgs model 

exists at least in the covariant gauges. 

SEKINE (question): By what equations have you defined the In-fields for 

dipole ghosts? Isn't there any trouble? 

NAKANISHI (answer): They can be defined consistently even for dipole- 

ghost fields by using the Yang-Feldman formalism. 


