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Deutsche Zusammenfassung

In ultrarelativistischen Schwerionenkollisionen werden Schwerionen auf nahezu Lichtgeschwin-
digkeit beschleunigt und anschließend in Detektoren zur Kollision gebracht. Bei diesem Vorgang
wird sehr viel Energie in einen winzigen Raumbereich deponiert, so dass bei einer Temperatur
von mehr als einer Billion Grad Celsius eine besondere Form von Materie entsteht – das Quark-
Gluon-Plasma (QGP). Aufgrund der hohen Energiedichte können einige der elementarsten
Bausteine der Materie, die Quarks und Gluonen, frei miteinander wechselwirken und sind daher
nicht mehr in Protonen und Neutronen eingeschlossen. Ihre Wechselwirkungen untereinander
werden durch die starke Kraft beschrieben, welche – neben der schwachen, elektromagnetischen
und Gravitationskraft – eine der vier Kräfte des Standardmodells der Teilchenphysik darstellt.
Durch die Untersuchung von Schwerionenkollisionen lassen sich somit Rückschlüsse auf die
Quantenchromodynamik (QCD) ziehen, welche die zugrundeliegende Theorie der starken Kraft
ist.

Zahlreiche experimentelle Messungen, z.B. an dem Relativistic Heavy-Ion Collider (RHIC)
am Brookhaven National Laboratory, USA, oder dem Large Hadron Collider (LHC) am CERN
bei Genf, Schweiz, weisen darauf hin, dass das QGP interessante Eigenschaften besitzt. Bei-
spielsweise verhält es sich wie eine nahezu ideale Flüssigkeit mit einem kleinen Verhältnis
von Scherviskosität zu Entropiedichte, wie der Vergleich des gemessenen kollektiven Flus-
ses mit hydrodynamischen Modellen zeigt. Hierbei ist vor allem der elliptische Fluss v2 zu
erwähnen, welcher durch den zweiten Fourier-Koeffizienten der azimutalen Winkelverteilung
der gemessenen Teilchen gegeben ist. Ein anderer bemerkenswerter Fund ist das sogenannte
jet quenching. Demnach deponieren hochenergetische Teilchen (Jets) einen großen Teil ihrer
Energie im entstehenden Medium. Eine experimentelle Observable hierfür ist der nukleare
Modifikationsfaktor RAA, der das Verhältnis der Anzahl von Jets in Schwerionenkollisionen
und in skalierten Proton-Proton-Kollisionen angibt. Aus der Untersuchung von Schwerionen-
kollisionen kann man zudem Rückschlüsse auf die ersten Mikrosekunden nach dem Urknall
ziehen, da hier die Materie so heiß und verdichtet war, dass das gesamte Universum aus einem
einzigen großen Quark-Gluon-Plasma bestand.

Sogenannte harte Sonden (hard probes) sind besonders geeignet, um das QGP zu untersuchen.
Ihr Name weist bereits darauf hin, dass diese Teilchen in harten Prozessen mit einem großen
Impulstransfer erzeugt werden. Beispiele für harte Sonden sind die bereits genannten Jets,
aber auch schwere Quarks (relevant sind vor allem Charm- und Bottom-Quarks) aufgrund
ihrer großen Massen. Da für die Produktion dieser harten Teilchen viel Energie aufgebracht
werden muss, können sie nur in anfänglichen harten Parton-Parton-Stößen der kollidierenden
Kerne oder in einer sehr frühen Phase des QGP erzeugt werden und geben dadurch Einblicke
in das Verhalten des Plasmas kurz nach seiner Entstehung. Weil die harten Teilchen so früh
produziert werden, propagieren sie zudem lange Zeit durch das QGP, wobei sie wechselwirken,
Energie verlieren sowie am kollektiven Fluss teilnehmen und daher wertvolle Informationen
über das entstandene Medium tragen.

Eine bedeutende Komplikation bei der Erforschung des QGP ist die Tatsache, dass es
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Deutsche Zusammenfassung

nur indirekt untersucht werden kann. Nach der Kollision der Schwerionen expandiert das
produzierte QGP, wodurch seine Temperatur fällt und die Quarks und Gluonen hadronisieren.
Die entstandenen Hadronen oder ihre Zerfallsprodukte werden dann in Detektoren gemessen,
die den Kollisionspunkt umschließen. Da der Quarkflavor – im Fall schwerer Quarks Charm
bzw. Bottom – in der QCD eine Erhaltungsgröße ist, kann aber aus den gemessenen D- bzw.
B-Mesonen (sie bestehen aus einem schweren und einem leichten Quark) – oder genauer gesagt
aus ihren Zerfallsprodukten – auf das Charm- bzw. Bottom-Quark-Spektrum geschlossen
werden. Schwere Quarks sind somit eine eindeutige Sonde für die Untersuchung des QGP.

Von besonderer Bedeutung sind auch Mesonen, die sich aus schweren Quarks und Antiquarks
zusammensetzen, wie zum Beispiel das J/ψ-Meson bestehend aus Charm- und Anticharm-
Quark. Rechnungen der Gittereichtheorie weisen darauf hin, dass die schweren J/ψ-Mesonen
zu einem gewissen Grad im Medium überleben können. Nur wenn die Temperatur über die
Dissoziationstemperatur steigt, schmelzen sie im QGP. Bei niedrigerer Temperatur ist es sogar
möglich, ein neues J/ψ-Meson durch ein Charm- und Anticharm-Quark zu erzeugen. Aus
diesem Wechselspiel zwischen Dissoziation und Regeneration können interessante Rückschlüsse
auf die Eigenschaften des produzierten Mediums gezogen worden, wie zum Beispiel dessen
Temperaturevolution.

Das verwendete Modell

Aufgrund der enormen Anzahl an erzeugten Quarks und Gluonen im QGP und der großen
Komplexität ihrer Wechselwirkungen untereinander sind numerische Simulationen ein viel-
versprechendes Mittel, um diesen Materiezustand von der theoretischen Seite näher zu un-
tersuchen. In dieser Arbeit wird hierfür das 3+1-dimensionale Transportmodell Boltzmann
Approach to Multi-Parton Scatterings (BAMPS) angewendet, das numerisch die Boltzmann-
Transportgleichung löst. Dabei werden alle während der Schwerionenkollision entstehenden
Quarks und Gluonen durch Raum und Zeit propagiert und können in 2→ 2 und 2↔ 3 Kolli-
sionen miteinander wechselwirken. Die Wirkungsquerschnitte für diese zahlreichen Kollisionen
werden im Rahmen der perturbativen Quantenchromodynamik (pQCD) ausgerechnet. Mit Hilfe
von BAMPS wird versucht, die Realität mit dem theoretischen, uns zur Verfügung stehenden
Wissen möglichst genau in ein Modell abzubilden und damit Vorhersagen für verschiedene
Observablen zu machen, die experimentell überprüft werden können.

Als Teil dieser Arbeit sind alle relevanten elastischen und radiativen Wechselwirkungen
schwerer Quarks mit anderen Teilchen in BAMPS implementiert worden. Der Wirkungsquer-
schnitt für diese Interaktionen ist mit pQCD in führender Ordnung errechnet. Da dieser für
lange Reichweiten divergiert, die Interaktionen aber in einem Plasma stattfinden, kann er mit
einer Abschirmmasse regularisiert werden, welche von der Größenordnung der (QCD-)Debye-
Masse ist. Der Vergleich mit Rechnungen höherer Ordnung, die resummierte harte thermische
Schleifenkorrekturen (hard thermal loops, HTL) enthalten, zeigt, dass der genaue Wert der
Abschirmmasse µ kleiner als die Debye-Masse mD ist, genaugenommen µ2 = κtm

2
D mit

κt = 1/(2e) ≈ 0.2. Zudem ist in BAMPS im Zuge dieser Arbeit für alle Prozesse – sowohl für
leichte als auch schwere Teilchen – die laufende Kopplung der QCD implementiert worden,
welche in vielen anderen Modellen als konstant angenommen wird.

Für radiative 2 → 3 Bremsstrahlungsprozesse wird in der vorliegenden Dissertation die
pQCD-Rechnung in der sogenannten Gunion-Bertsch-Näherung (GB-Näherung) für weiche
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Impulsüberträge auf endliche Massen schwerer Quarks erweitert. In dieser Näherung faktori-
siert das Matrixelement in einen elastischen Anteil und einen Faktor, der die Emission des
abgestrahlten Gluons beschreibt. Im Zuge dieser Rechnung fiel jedoch auf, dass das in der
Literatur weit verbreitete, originale GB-Matrixelement für masselose Teilchen in Vorwärts-
und Rückwärtsrapidität des abgestrahlten Gluons vom exakten Ergebnis des Matrixelements
deutlich abweicht. Basierend auf einer detaillierten analytischen Rechnung führen wir eine
verbesserte Version des GB-Matrixelements ein, das in allen relevanten Phasenraumbereichen
sehr gut mit dem exakten Resultat übereinstimmt, wie unsere umfangreichen numerischen
Vergleiche des totalen Wirkungsquerschnitts und differentiellerer Größen zeigen. Diese Er-
gebnisse verbessern nicht nur den radiativen Wirkungsquerschnitt schwerer Quarks in der
GB-Approximation, sondern auch das in der Literatur weit verbreitete GB-Matrixelement für
leichte Partonen. Weiterhin berechnen wir das Matrixelement für schwere Quarks in Feyn-
man-Eichung (im Gegensatz zur Lichtkegeleichung im GB-Fall) sowie leicht unterschiedlichen
Approximationen und zeigen, dass dieses Ergebnis konsistent mit unserer GB-Rechnung ist.
Analog zu elastischen Streuungen wurde auch für radiative Prozesse die laufende Kopplung in
BAMPS eingebaut.

Weiterhin wird explizit gezeigt, dass der sogenannte dead-cone-Effekt in unserem Ergebnis
der verbesserten GB-Rechnung für schwere Quarks enthalten ist. Dieser von Dokshitzer und
Kharzeev eingeführte Effekt besagt, dass die Gluonabstrahlung von einem schweren Quark
bei kleinen Abstrahlwinkeln unterdrückt ist. Unser Ausdruck für den Unterdrückungsfaktor ist
für alle Winkel und alle Werte der Masse von schweren Quarks gültig und verallgemeinert somit
den Ausdruck von Dokshitzer und Kharzeev, der nur für kleine Winkel und kleine Massen
gilt. Wichtig für radiative Prozesse ist der sogenannte Landau-Pomeranchuk-Migdal-Effekt
(LPM-Effekt), der die Unterdrückung mehrfacher Gluonbremsstrahlung in einem Medium durch
Interferenzeffekte beschreibt. Der LPM-Effekt ist phänomenologisch über das Abschneiden
großer Formationszeiten des abgestrahlten Gluons in BAMPS implementiert, wobei ebenfalls
die endliche Masse schwerer Quarks berücksichtigt ist.

Energieverlust schwerer Quarks im statischen Medium

Als analytische Referenz wird die HTL-Rechnung von Peshier und Peigne für den elastischen
Energieverlust von energetischen schweren Quarks in einem statischen thermischen Medium
mit Quantenstatistik dargelegt und auf Boltzmann-Statistik erweitert, um sie mit numerischen
BAMPS-Simulationen, in denen alle Teilchen als Boltzmann-Teilchen behandelt werden, ver-
gleichen zu können. Mit der HTL-inspirierten Debye-Abschirmung (κt = 0.2) wird eine sehr
gute Übereinstimmung zwischen BAMPS und dem analytischen Resultat gefunden. Weiter-
hin berechnen wir eine analytische Formel für den Energieverlust schwerer Quarks in einem
fließenden Medium, die ebenfalls eine hervorragende Übereinstimmung mit den numerischen
BAMPS-Resultaten zeigt.

In einer umfangreichen numerischen Studie wird der elastische und radiative Energieverlust
von Charm- und Bottom-Quarks in einem statischen Medium für Standard- (κt = 1) und
HTL-inspirierter (κt = 0.2) Debye-Abschirmung sowie laufender und konstanter Kopplung
gegenübergestellt und diskutiert. Obwohl die HTL-Debye-Abschirmung den totalen Energiever-
lust pro Einheitslänge aus der HTL-Rechnung korrekt reproduziert, kann aus diesem Vergleich
keine Aussage getroffen werden, ob auch differentiellere Größen wie der Energieverlust pro
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Kollision oder die mittlere freie Weglänge richtig beschrieben werden. Die bei der Abschirmung
mit κt = 0.2 auftretende sehr kleine mittlere freie Weglänge für elastische Kollisionen führt
aufgrund der effektiven LPM-Implementierung zu einem sehr kleinen radiativen Energieverlust
schwerer Quarks. Wenn man jedoch nicht diese effektive Beschreibung der Abschirmmasse,
sondern den Standardwert der Debye-Masse nutzt, ist der Energieverlust aufgrund radiati-
ver Prozesse etwa doppelt so groß wie der elastische Energieverlust. Obwohl die Raten von
elastischen und radiativen Interaktionen vergleichbar sind, ist der Energieverlust pro Kollision
von radiativen Prozessen größer, was durch den modifizierten Phasenraum aufgrund der drei
auslaufenden Teilchen erklärt werden kann.

Vergleicht man den radiativen Energieverlust von leichten Quarks und Charm-Quarks für die
Standard-Debye-Abschirmung, so sind beide gleich groß, obwohl man aufgrund des dead-cone-
Effekts einen kleineren Energieverlust von Charm-Quarks erwarten würde. Der Grund hierfür
liegt darin, dass der dead-cone aufgrund der endlichen Charm-Masse (dead-cone-Effekt) von
einem zweiten dead-cone entstehend durch den LPM-Effekt überlagert wird. Da der LPM-Effekt
sowohl für schwere als auch leichte Quarks wirkt, ist der dead-cone aufgrund der Charm-Masse
nicht mehr sichtbar und beide Teilchen haben den gleichen Energieverlust. Die Masse von
Bottom-Quarks hingegen ist wesentlich größer und der dead-cone aufgrund der Masse wird nicht
mehr komplett durch die LPM-Implementierung überdeckt, was in einen kleineren radiativen
Energieverlust resultiert. Zusätzlich untersuchen wir im Detail die Sensitivität der Ergebnisse
bezüglich des LPM-Effekts, indem wir die Phasenraummodifikation der LPM-Implementierung
variieren und entweder die freie Weglänge des Jets oder des abgestrahlten Gluons mit der
Gluonformationszeit vergleichen.

Schwere (und leichte) Quarks in Schwerionenkollisionen

Um mit experimentellen Daten von D- und B-Mesonen oder ihrer Zerfallsprodukte am RHIC
und LHC zu vergleichen, werden schwere Quarks in 3+1-dimensionalen BAMPS-Simulationen
von ultrarelativistischen Schwerionenkollisionen untersucht. Die Anfangsverteilung schwe-
rer Quarks wird mit dem Monte-Carlo-Event-Generator MC@NLO erzeugt, welcher gute
Übereinstimmung mit der experimentell gemessenen Produktion schwerer Mesonen in Proton-
Proton-Kollisionen am RHIC und LHC liefert. Die Untersuchungen zeigen, dass elastische Kol-
lisionen schwerer Quarks mit pQCD-Wirkungsquerschnitten unter expliziter Berücksichtigung
der laufenden Kopplung und mit Debye-Abschirmung, die aus resummierten HTL-Rechnungen
entnommen ist, eine große Rolle spielen. Dennoch reichen sie allein nicht aus, um die experi-
mentellen Daten zu beschreiben.

Bevor wir auch radiative Prozesse in BAMPS eingebaut haben, schätzten wir ihren Anteil an
den Interaktionen ab, indem der elastische Wirkungsquerschnitt effektiv mit einem Faktor K =
3.5 multipliziert wurde. Der genaue Wert ist so angepasst ist, dass eine gute Übereinstimmung
mit dem elliptischen Fluss der Elektronen von schweren Quarks am RHIC erhalten wird.
Gleichzeitig stimmt auch der mit dem gleichen Faktor berechnete nukleare Modifikationsfaktor
der Elektronen am RHIC gut mit den Daten überein. Nachdem der Wert für K durch die RHIC-
Daten bestimmt wurde, erhält man für den gleichen Wert ebenfalls eine gute Übereinstimmung
mit dem experimentell am LHC mit einer Schwerpunktsenergie von

√
s = 2.76 TeV gemessenen

nuklearen Modifikationsfaktor von D-Mesonen, nicht-direkten J/ψ (aus B-Mesonen-Zerfällen)
und Myonen, die von schweren Quarks stammen. Weiterhin machten wir Vorhersagen für den
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nuklearen Modifikationsfaktor von Elektronen von schweren Quarks sowie für den elliptischen
Fluss von D-Mesonen, nicht-direkten J/ψ, Elektronen und Myonen von schweren Quarks am
LHC. Mittlerweile veröffentlichte Daten für D-Mesonen und Elektronen zeigen eine exzellente
Übereinstimmung mit unseren Vorhersagen.

Es ist äußerst interessant, dass die mit schweren Quarks assoziierten experimentellen Daten
für den nuklearen Modifikationsfaktor und den elliptischen Fluss bei RHIC und LHC simultan
sehr gut nur durch elastische Kollisionen beschrieben werden, falls deren Wirkungsquerschnitt
durch den Faktor K = 3.5 vergrößert wird. Während die Übereinstimmung bei beiden Be-
schleunigern für die korrekte Extrapolation von RHIC- zu LHC-Energien in unserem Modell
spricht, ist die phänomenologische Vergrößerung des elastischen Wirkungsquerschnitts von
einem theoretischen Standpunkt nicht zufriedenstellend. Daher drängt sich die Frage auf,
ob radiative Prozesse die restliche Diskrepanz zwischen den Ergebnissen mit nur elastischen
Kollisionen und den Daten erklären können.

Der oben bereits dargelegte Einbau radiativer Prozesse in BAMPS erlaubt die Simulation
von Schwerionenkollisionen mit sowohl elastischen als auch radiativen Prozessen für schwere
und leichte Partonen in einem gemeinsamen Modell. Da die Abschirmprozedur mit κt = 0.2 aus
HTL-Rechnungen nur für schwere Quarks hergeleitet ist, setzen wir zunächst die Abschirmmasse
auf den Standardwert der Debye-Masse (κt = 1), damit leichte und schwere Quarks gleich
behandelt werden und wir den Einfluss der endlichen Quarkmasse im Detail untersuchen können.
Wie schon im statischen Medium beobachtet, ist der Energieverlust von leichten Quarks und
Charm-Quarks in Schwerionenkollisionen sowohl für konstante als auch laufende Kopplung sehr
ähnlich, was sich in einem vergleichbaren nuklearen Modifikationsfaktor manifestiert. Wieder
ist hierfür ein zweiter dead-cone durch die LPM-Implementierung verantwortlich, der den dead-
cone aufgrund der Charm-Masse überdeckt. Gluonen hingegen sind angesichts eines größeren
Farbfaktors stärker unterdrückt. Jedoch verursachen Masseneffekte in der Fragmentation
von Gluonen und leichten Quarks zu (leichten) geladenen Hadronen und Charm-Quarks zu
D-Mesonen einen vergleichbaren nuklearen Modifikationsfaktor auf hadronischer Ebene. Dies
ist eine bemerkenswerte Erklärung für die überraschende experimentelle Entdeckung am RHIC
und LHC, dass geladene Hadronen und Teilchen, die von Charm-Quarks stammen, gleich stark
unterdrückt sind.

Obwohl der Verlauf des nuklearen Modifikationsfaktors als Funktion des transversalen Im-
pulses sehr gut mit den Daten übereinstimmt, ist die absolute Unterdrückung verglichen
mit den Daten unterschätzt. Der Grund für diese Diskrepanz ist vermutlich die effektive
Implementierung des LPM-Effekts in BAMPS, bei der alle Gluonemissionen verworfen werden,
die zu Interferenzen führen könnten. Dadurch werden nur Prozesse erlaubt, die vollkommen un-
abhängig voneinander sind. Eine weniger phänomenologische Implementierung des LPM-Effekts
würde jedoch einen Teil der Interferenzprozesse erlauben, was zu einem höheren Energieverlust
führen würde. Wenn wir nun einen Faktor X < 1 in der LPM-Implementierung einführen, der
effektiv einen Teil der Interferenzprozesse zulässt, finden wir die beste Übereinstimmung für
den nuklearen Modifikationsfaktor geladener Hadronen für X = 0.3. Für den gleichen Wert
wird ebenso der nukleare Modifikationsfaktor von D-Mesonen sehr gut beschrieben. Obwohl
der genaue Wert von X ein freier Parameter ist, erwarten wir, dass eine verbesserte Implemen-
tierung des LPM-Effekts effektiv äquivalent zu X < 1 wäre. An dieser Stelle sei noch einmal
angemerkt, dass für diese Rechnung leichte und schwere Quarks komplett konsistent inklusive
laufender Kopplung in BAMPS behandelt werden und dass wir somit eine mikroskopische
Beschreibung für die gleiche Unterdrückung von geladenen Hadronen und D-Mesonen gefunden
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haben. Für Bottom-Quarks hingegen ist der dead-cone-Effekt stärker ausgeprägt. Dadurch liegt
der nukleare Modifikationsfaktor von B-Mesonen für X = 0.3 höher als der von D-Mesonen,
aber auch leicht höher als die Daten.

Wenn wir für schwere Quarks die Debye-Abschirmung aus HTL-Rechnungen verwenden, so
sind radiative Prozesse aufgrund der großen Rate elastischer Kollisionen in Verbindung mit
der LPM-Implementierung stark unterdrückt. Demzufolge ist der nukleare Modifikationsfaktor
aller mit schweren Quarks assoziierten Teilchen größer als die Daten. Allerdings kann man
auch hier wieder phänomenologisch Interferenzprozesse zulassen, indem man ein X < 1
wählt. Für X = 0.2 finden wir eine sehr gute Übereinstimmung mit dem experimentell
gemessenem nuklearen Modifikationsfaktor von D-Mesonen, nicht-direkten J/ψ und Elektronen
von schweren Mesonen am LHC. Es sei anzumerken, dass der Wert für X in der gleichen
Größenordnung wie für die Standard-Debye-Abschirmung liegt.

Obwohl der nukleare Modifikationsfaktor der mit schweren Quarks assoziierten Teilchen
gut mit X = 0.2 beschrieben werden kann, ist der elliptischer Fluss dieser Teilchen für den
gleichen Parameter deutlich kleiner als die experimentellen Daten. Verglichen mit dem oben
betrachteten Szenario, in dem elastische Kollisionen mit K = 3.5 skaliert wurden und eine
gute Übereinstimmung mit dem nuklearen Modifikationsfaktor und dem elliptischen Fluss
gefunden wurde, ist der Energieverlust im Szenario mit sowohl elastischen als auch radiativen
Kollisionen sehr ähnlich, aber der Transportwirkungsquerschnitt deutlich kleiner. Da letzterer
für die Isotropisierung und den Aufbau des elliptischen Flusses eine wichtige Rolle einnimmt,
ist das v2 kleiner als das mit elastischen Kollisionen sowie K = 3.5 berechnete und daher
auch kleiner als die Daten. Eine Erklärung für den fehlenden Anteil im elliptischen Fluss
könnten zum Beispiel event-by-event-Fluktuationen, Koaleszenzeffekte oder Beiträge aus der
hadronischen Phase sein, die in der Studie nicht berücksichtigt werden.

Unsere Resultate stimmen mit den meisten Ergebnissen in der Literatur überein. Alle Model-
le, die sowohl elastische als auch radiative Prozesse betrachten (mit Ausnahme des Modells der
Nantes-Gruppe), können den nuklearen Modifikationsfaktor und den elliptischen Fluss nicht
gleichzeitig beschreiben. Mit nur elastischen Kollisionen (entweder mit Wirkungsquerschnitten
aus der pQCD wie in dieser Arbeit oder aus dem Resonanzstreuungsmodell) sind beide Obser-
vablen in einigen Modellen simultan erklärbar. Wie wir allerdings in der vorliegenden Studie
sehen, beeinflusst die Hinzunahme von radiativen Prozessen den nuklearen Modifikationsfaktor
und den elliptischen Fluss in sehr unterschiedlicher Weise. Demnach ist es nicht klar, ob diese
Modelle weiterhin beide Observablen beschreiben können, wenn auch radiative Interaktionen
betrachtet werden.

J/ψ-Mesonen in Schwerionenkollisionen

Ein weiteres Thema dieser Dissertation ist das Verhalten von J/ψ-Mesonen im Quark-Gluon-
Plasma. J/ψ-Mesonen bestehen aus einem Charm- und einem Anticharm-Quark und sind
wegen möglicher Rekombinationsprozesse sehr eng mit den Eigenschaften freier Charm-Quarks
verknüpft. Daher haben wir in Ergänzung zu Gluonen, leichten und schweren Quarks auch
J/ψ-Mesonen in BAMPS eingebaut, welche dynamisch in ihre Bestandteile dissoziieren können,
falls sie mit Gluonen aus dem Medium interagieren oder falls die Umgebungstemperatur über
die Dissoziationstemperatur steigt. Auf der anderen Seite können unabhängige Charm- und
Anticharm-Quarks während der QGP-Evolution zu einem J/ψ-Meson rekombinieren. Ein
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wichtiger Punkt ist auch der Einfluss von sogenannten Effekten der kalten Kernmaterie (cold
nuclear matter effects). Das sind Modifikationen der J/ψ-Anzahl, die von anderen Effekten (wie
Shadowing in der Partonverteilungsfunktion, Cronin-Effekt, nukleare Absorption) herrühren
und nicht auf den Einfluss des QGP zurückzuführen sind. Sie spielen eine wichtige Rolle für
die anfängliche J/ψ-Verteilung und sind ebenfalls in BAMPS implementiert worden.

In 3+1-dimensionalen BAMPS-Simulationen von Schwerionenkollisionen am RHIC wird
die Zeitentwicklung der J/ψ-Dissoziation und -Regeneration betrachtet. Unter Beachtung der
Effekte in kalter Kernmaterie und mit einer J/ψ-Formationszeit von τ0 = 0.6 fm, um das
Schmelzen von J/ψ in der anfänglichen, nicht-thermischen Phase zu verhindern, in der die
Temperatur noch nicht korrekt definiert werden kann, finden wir eine gute Übereinstimmung mit
dem experimentell gemessenen nuklearen Modifikationsfaktor von J/ψ-Mesonen bei zentraler
Rapidität für verschiedene Kollisionszentralitäten. Im Gegensatz zu den experimentellen Daten
ist die J/ψ-Unterdrückung bei Vorwärtsrapidität in zentralen und semi-zentralen Kollisionen
jedoch kleiner als bei zentraler Rapidität. Der Grund hierfür liegt in der kleineren Temperatur
in BAMPS bei Vorwärtsrapidität verglichen zur zentralen Rapidität.

Experimentelle Messungen am RHIC zeigen, dass der elliptische Fluss von J/ψ-Mesonen
sehr klein ist. Dies ist im Widerspruch zum Regenerationsbild, in dem der elliptische Fluss
von Charm-Quarks auf J/ψ übertragen werden sollte. BAMPS ist bestens geeignet, um das
im Detail zu untersuchen, da es den elliptischen Fluss von D-Mesonen reproduzieren kann
und auch die dynamische Rekombination von Charm-Quarks zu J/ψ beinhaltet. Da die
meisten J/ψ-Mesonen bereits am Anfang erzeugt werden und dadurch keinen elliptischen
Fluss besitzen, sehen wir auch in BAMPS einen sehr kleinen elliptischen Fluss von J/ψ, der
konsistent mit den experimentellen Daten ist. In einer weiteren Studie untersuchen wir die
Abhängigkeit des elliptischen Flusses der sekundär produzierten J/ψ-Mesonen von der J/ψ-
Dissoziationstemperatur. Dabei finden wir, dass J/ψ-Mesonen, die spät in der QGP-Evolution
erzeugt werden, einen elliptischen Fluss annehmen, der nicht mit den experimentellen Daten
verträglich ist. Demnach müssen die meisten der experimentell gemessenen J/ψ-Mesonen früh
in der zeitlichen Entwicklung des QGP erzeugt worden sein.

Abschließende Worte

Am Ende der Arbeit werden nach einer kurzen Zusammenfassung mögliche Erweiterungen
und Verbesserungen für das Modell BAMPS vorgeschlagen. Die wahrscheinlich interessanteste
Erweiterung ist hierbei die mikroskopische Implementierung des LPM-Effekts basierend auf
einer Summation des transversalen Impulses des abgestrahlten Gluons während seiner Formati-
onszeit, was die kohärente Natur des Effekts besser wiedergibt als die momentan implementierte
Modifikation des Phasenraums. Aufgrund der Komplexität des Problems handelt es sich hierbei
eher um ein längerfristiges Projekt, was den oben besprochenen phänomenologischen X-Faktor
in der jetzigen Implementierung erklären könnte.

Wie in dieser Arbeit gezeigt wird, ist das partonische Transportmodell BAMPS ideal dafür
geeignet nicht nur Charm- und Bottom-Quarks, sondern auch leichte Quarks, Gluonen und J/ψ-
Mesonen in relativistischen Schwerionenkollisionen zu untersuchen. Durch den Vergleich der
mit BAMPS simulierten Ergebnisse (und zum Teil auch Vorhersagen) mit den experimentellen
Daten lassen sich eine Vielzahl von Rückschlüsse auf die Interaktion von schweren Quarks
mit dem Medium und auf die Eigenschaften des QGP ziehen. Die dabei wohl interessanteste
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Beobachtung ist die Überlagerung des dead-cone-Effekts aufgrund der endlichen Charm-Quark-
Masse durch den LPM-Effekt, was zu einem gleichen nuklearen Modifikationsfaktor von
geladenen Hadronen und D-Mesonen führt, wie es experimentell ebenfalls gemessen wurde.
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1. Introduction

Dass ich erkenne, was die Welt
Im Innersten zusammenhält.
(So that I may perceive whatever holds
The world together in its inmost folds.)

Faust: The First Part of the Tragedy
Johann Wolfgang von Goethe

Ultra-relativistic heavy-ion collisions are an ideal tool to study the properties of quantum
chromodynamics (QCD), which is the underlying theory of the strong force. The latter is one
of the four known forces in nature—strong, weak, gravitation, and electromagnetic force—that
form together with the known elementary particles the standard model of particle physics.
The standard model contains all our knowledge of the fundamental properties and interactions
of particles and has been very successful in explaining nature.

QCD is a remarkably complex theory with many interesting—and not yet completely
understood—phenomena such as confinement or asymptotic freedom and describes the dominant
interactions on subatomic scales. Collisions of protons or heavy-ions, which are accelerated to
nearly the speed of light, are an excellent system to study these interactions in more detail.
In contrast to proton-proton collisions, where only a small number of particles is created,
the particle production in heavy-ion collisions is so enormous that a medium with collective
behavior and unique properties is produced. It consists of quarks and gluons and is, therefore,
called quark gluon plasma (QGP). Quarks are the elementary building blocks of protons and
neutrons and gluons the exchange particles of the strong force, which renders the QGP a
unique opportunity to study QCD.

Ultra-relativistic heavy-ion collisions are carried out, for instance, at the Large Hadron
Collider (LHC) at CERN1 and the Relativistic Heavy-Ion Collider (RHIC) at BNL2, where
several experimental hints have been found that in those collision indeed a new state of matter,
i.e., the QGP, is produced. For instance, the created medium acts like a nearly perfect fluid
with a very small shear viscosity to entropy density ratio, as is indicated by comparing the
experimentally measured elliptic flow v2 and other collective flow observables to hydrodynamic
models. Another finding is the quenching of jets, i.e., highly energetic particles, which deposit
lots of their energy in the medium. An experimentally accessible observable for this jet
suppression is the nuclear modification factor RAA.

Hard probes are a particular interesting type of particles created in heavy-ion collisions.
As the name suggests they are produced in hard processes with a large momentum transfer,
typically at an early stage of the collision, and then traverse the medium, revealing information
about its properties. An example for hard probes are the aforementioned jets with a large
transverse momentum, which can only be generated in hard collisions. Most relevant for this

1European Organization for Nuclear Research
2Brookhaven National Laboratory
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1. Introduction

thesis, heavy quarks, i.e., charm and bottom quarks, are also produced in hard processes due
to their large mass, which qualifies them as hard probes as well. After their early production,
they traverse the medium, lose energy, and participate in the collective flow. Because of
flavor conservation in QCD, heavy quarks are tagged particles, transferring their flavor during
hadronization to D and B mesons, which allows the identification of heavy flavor particles in
measurements.

In contrast to open heavy flavor particles, that are hadrons consisting of only one heavy
quark, hidden heavy flavor denotes particles with a heavy quark and anti-quark of the same
flavor. Prominent examples are J/ψ mesons, which can survive in the medium to some
extent. Since their dissociation depends on the temperature of the medium, J/ψ suppression
in heavy-ion collisions can act as a thermometer for the QGP. However, at the LHC, due to the
abundance of charm quarks, secondary J/ψ can be formed from two independent charm and
anti-charm quarks, leading to the counteractive effect of J/ψ enhancement, which complicates
the picture considerably.

In this work hard probes are studied in the partonic transport model BAMPS. Employing
Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the QGP phase
by propagating all particles in space and time and carrying out their collisions according to
the Boltzmann equation. Since hard probes are produced in hard processes with a large
momentum transfer, the value of the running coupling is small and their interactions should
be describable within perturbative QCD (pQCD). This work focuses on open heavy flavor, but
also addresses the suppression of light parton jets, in particular to highlight differences due to
the mass. For light partons, radiative processes are the dominant contribution to their energy
loss. For heavy quarks, we show that also binary interactions with a running coupling and an
improved Debye screening matched to hard-thermal-loop calculations play an important role.
Furthermore, the impact of the mass in radiative interactions, prominently named the dead
cone effect, and the interplay with the Landau-Pomeranchuk-Migdal (LPM) effect are
studied in great detail. Since the transport model BAMPS has access to all medium properties
and the space time information of heavy quarks, it is the ideal tool to study the dissociation
and regeneration of J/ψ, which has also been started during the course of this work.

It is an exciting time for the field of ultra-relativistic heavy-ion collisions. More than a
decade of collisions at RHIC has produced a wealth of data, which has been used to constrain
theoretical models and learn a lot about the properties of the QGP. This knowledge allowed to
make predictions for the LHC at even higher energies. During the last two years, many new
measurements have been performed at the LHC, which can be compared to those predictions.
Having made several predictions for open heavy flavor ourselves, we compare them in this
work to now available data.

The thesis is organized as follows. After a brief introduction to the standard model and
QCD we address the phenomenology of ultra-relativistic heavy-ion collisions in Chapter 2
and put the topic of this work into context. In Chapter 3 partonic cross sections of heavy
quarks with light quarks and gluons are calculated. We discuss the explicit consideration of the
running coupling as well as an improved Debye screening to regularize the gluon propagator
in presence of a medium for both binary and radiative processes. The focus is put on the cross
section of the latter, which is calculated within the Gunion and Bertsch approximation. Due
to comparisons with the exact cross sections, it is found that the standard Gunion-Bertsch
matrix element exhibits problems at forward and backward rapidity of the emitted gluon.
Consequently, we propose an improved version of the matrix element, which also modifies the
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1. Introduction

cross sections of light partons. In addition, we discuss the presence of the dead cone effect in
our results and outline the implementation of the LPM effect.

In Chapter 4 the partonic transport model BAMPS is introduced in detail with a focus
on the heavy flavor implementation. Furthermore, we address the initial conditions of the
different particle types in BAMPS. The energy loss of a heavy quark in a thermal quark gluon
plasma is calculated in Chapter 5. After the elastic energy loss in a static and flowing medium
is analytically derived from hard-thermal loop calculations, it is compared to simulations with
BAMPS. In addition, we examine elastic and radiative contributions to the total energy loss
and discuss the influence of the running coupling, improved Debye screening, and LPM effect.
Furthermore, the heavy flavor energy loss is compared to the energy loss of light partons and
differences due to the mass are pointed out.

The BAMPS results on open heavy flavor observables are compared to experimental data
from heavy-ion collisions at RHIC and LHC in Chapter 6. In particular, the difference of
binary and radiative heavy quark processes with the improved Gunion-Bertsch cross sections
are highlighted. Simultaneously, we study the effects of the improved Gunion-Bertsch cross
sections on high-energy light partons and compare to heavy flavor observables.

Chapter 7 addresses J/ψ melting and regeneration in ultra-relativistic heavy-ion collisions
as well as the elliptic flow of J/ψ. Finally, we conclude this thesis with a short summary and
outlook in Chapter 8.

The present thesis is based on results that have been published (or submitted for publi-
cation) in Refs. [UFXG10a, UFXG10b, UFXG10c, UFXG11a, UFXG11b, UZF+11, FUXG11,
AGM+12, UFXG12a, UFXG12b, UFXG13a, UFXG13b, MPUG13, FUXG13].
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2. QCD and heavy-ion collisions

Nature has always looked like a horrible mess, but as we
go along we see patterns and put theories together; a
certain clarity comes and things get simpler.

QED: The Strange Theory of Light and Matter
Richard P. Feynman

While the standard model of particle physics describes all known elementary particles and their
interactions, the most important interaction for this work—the strong force—is governed by
quantum chromodynamics (QCD). In the next section the standard model is briefly outlined
with a focus on QCD. Moreover, we address important QCD phenomena such as confinement
(Section 2.1.2) and asymptotic freedom (Section 2.1.1) as well as discuss the QCD phase
diagram in Section 2.1.3.

In Section 2.2 an overview of ultra-relativistic heavy-ion collisions is given and the prominent
observables elliptic flow (Section 2.2.2) and nuclear modification factor (Section 2.2.3) are
introduced. In particular, we highlight the importance of hard probes in heavy-ion collisions
(Section 2.2.3).

2.1. The standard model and QCD

All known elementary particles and all interactions are included in the standard model. Matter
is build of spin-1/2 fermions, i.e., quarks and leptons, each type consisting of six particles
and the respective anti-particles. Quarks are distinguished by their flavor, namely, up, down,
strange, charm, bottom, and top—often abbreviated with their first letter. The lepton sector
consists of electrons, muons, and taus as well as the respective neutrinos.

The four interactions—strong, weak, electromagnetic, and gravitation—are governed by
their respective exchange particles—gluon, photon, W as well as Z bosons, and graviton.
The graviton is the only exchange particle that has not been discovered yet. The first
three interactions are described by quantum field theories. For gravitation, which is related
to Einstein’s general relativity, this has not been possible yet, which leads to tension with the
quantum descriptions of the other interactions at the Planck scale. However, on the scales of
heavy-ion collisions, gravitation can be completely neglected.

In 1967 Glashow, Salam, and Weinberg managed to unify quantum electrodynamics
(QED), which describes electromagnetic processes, and the weak interaction to the electro-weak
theory. Within this framework, the large masses of the W and Z bosons can be explained
due to spontaneous symmetry breaking. Three of the four components of the Higgs field
are absorbed by the mass creation (Goldstone bosons are “eaten” by the gauge bosons),
but the remaining degree of freedom should be detectable as the Higgs boson in high-energy
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2. QCD and heavy-ion collisions

proton-proton collisions. And indeed, recently, a promising candidate for the Higgs boson has
been discovered at the LHC [ATLAS12b, CMS12c].

So far, it has not been possible to also incorporate quantum chromodynamics (QCD) in the
electro-weak theory to form a grand unified theory, despite some efforts, for instance, supersym-
metry [Ait05, Mar97]. Besides the tension of the quantum field theories with gravitation, there
are some other problems with the standard model (matter-anti-matter asymmetry, hierarchy
problem, massive neutrinos, too many free parameters), which lead to the investigation of
physics beyond the standard model, most prominently, string theory [Zwi04, Kir97]. More
details concerning the standard model can be found, for instance, in Refs. [Nov99, Ros01].

Electromagnetic and weak interactions have only minor relevance for heavy-ion collisions
(for instance, for photon production or decay of hadrons). The most important theory for this
work, however, is QCD, which describes the interactions of quarks through gluon exchange.
The Lagrangian of QCD is given by

LQCD =
∑
k

ψ̄k (iγµDµ −mk)ψk −
1

4
F aµνF

µν
a (2.1)

with the covariant derivative Dµ = ∂µ − igTaAµa and gluon field strength tensor F aµν = ∂µA
a
ν −

∂νA
a
µ + gfabcA

b
µA

c
ν , where Ta denote the eight generators of the gauge group SU(3) with the

structure constants fabc. The generators fulfill the Lie algebra of the group, [Ta, Tb] = ifabcTc.

Aaµ are the eight gluon fields, γ the Dirac matrices, ψk (ψ̄k = ψ†kγ
0) the Dirac four-spinor

of the (anti-)quark field with flavor k and g =
√

4παs the coupling. The Lagrangian obeys a
local SU(3) gauge symmetry1, where quarks are in the fundamental and gluons in the adjoint
representation of the group. This leads to quarks and gluons carrying color, which is the
charge of QCD.

The first term of Equation (2.1) describes the propagation of quarks and their interactions
with gluons, whereas the second term characterizes the dynamics of the gluons. Unique in
QCD is that gluons carry color charge and, therefore, couple to themselves, which can be seen
if the last term is multiplied out and terms proportional to A3 and A4 occur. This non-Abelian
feature of QCD renders it to be considerably more complex than QED, which is an Abelian
quantum field theory. In principle, every QCD phenomenon is described by the Lagrangian
above. However, in practice, only the perturbative regime with a small coupling is theoretically
accessible. Non-perturbative effects like confinement (see Section 2.1.2) are hardly understood
and can only be studied by discretizing the phase space on a lattice and extrapolating to the
continuum limit.

The Lagrangian is nearly symmetric under transformations of right and left handed compo-
nents of the quark spinor. Only the mass termmk breaks this chiral symmetry2 [DGH94, Koc97]
explicitly. Furthermore, the spontaneous breaking of the chiral symmetry leads to a rather
complex vacuum state, which is filled with chiral condensates of quark and gluon fields. Due
to these QCD vacuum effects, quarks acquire larger masses within hadrons than their bare

1SU(3) symmetry: Equation (2.1) is symmetric under the local transformation ψk → Uψk and Fµν → UFµνU+,
where U(x) = eiαa(x)Ta . The arbitrary real field αa(x) depends on the position x.

2Chiral symmetry: In the case of only two massless flavors, Equation (2.1) is globally symmetric under the

vector transformation ψ → eiτ ·αψ and the axial-vector transformation ψ → eiγ
5τ ·αψ with τ being a vector

of the Pauli matrices and ψ = (ψu, ψd) a vector of the spinors of the two flavors. γ5 = iγ0γ1γ2γ3 is a
combination of the Dirac matrices and α an arbitrary real vector (not depending on position). Thus, for
two flavors it is a SU(2)V × SU(2)A symmetry [Koc97].
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2.1. The standard model and QCD

masses. This effect is responsible for about 95 % of the total visible mass in the universe and
only the remaining 5 % are due to the coupling to the Higgs boson [DFF+08].

2.1.1. Running coupling and asymptotic freedom

The coupling g =
√

4παs from Equation (2.1) is actually not constant, but depends on the
momentum transfer Q of the considered process. In leading order pQCD it is given by

αs(Q) =
12π

(11Nc − 2nf ) ln(Q2/Λ2
QCD)

. (2.2)

Nc = 3 is the number of colors and nf the number of active quark flavors. The scale of
QCD ΛQCD has to be measured experimentally and is of the order of 200 MeV—the exact
value [Bet07] depends on the number of active flavors. Figure 2.1 depicts the running coupling
as a function of the momentum scale together with measurements.

Figure 2.1.: Overview of measurements of the
coupling αs as a function of the energy
scale Q. Open (closed) symbols mark mea-
surements, whose analysis was done with
QCD calculations in next-to-leading or-
der (next-to-next-to-leading order). The
curves are QCD predictions for αs within
the four-loop approximation for a world av-
erage of αs(MZ0). The plot is taken from
Ref. [Bet07], where also more details can
be found.

In contrast to QED, the running coupling in QCD gets smaller with increasing energy
scale or—according to the Heisenberg uncertainty principle—decreasing distance. Gross,
Politzer, and Wilczek denoted this feature as asymptotic freedom [GW73, Pol73], which is
a consequence of QCD being a non-Abelian gauge theory. Nevertheless, asymptotic freedom
only exists if nf ≤ 16 as seems to be the case in nature with nf = 6.3 If nf were larger than
16, the β function of QCD would be positive and the coupling would increase with Q, as it is
the case in QED.

At large energy scales, the agreement of theory and data is best since the coupling is small
and pQCD applicable. At small energies, however, the coupling rises and non-perturbative
effects take over. The most prominent effect in this regard is confinement.

3Actually, the number of active flavors depends on the the considered energy scale. For most applications, the
masses of the heavy quarks charm, bottom, and top are too large to be produced and, thus, nf is only 3.
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2. QCD and heavy-ion collisions

2.1.2. Confinement

At large distances, which correspond—according to the uncertainty principle—to small energies,
the coupling is large. As a consequence, two quarks cannot be separated, which explains
why free quarks have never been observed. Instead they are confined in hadrons. Because
quarks carry color, this is equivalent to postulating that only colorless objects can be observed
in nature. Examples for colorless objects are mesons with a quark and an anti-quark or
baryons with three quarks.4 Prominent examples for mesons are pions, D mesons, or J/ψ
mesons and for baryons protons or neutrons. Due to the strong coupling at large distances,
non-perturbative effects are at play that have prevented a clear understanding of the details of
confinement.

Phenomenologically, however, the potential between two quarks, separated by distance r,
can be expressed by

V (r) = −4

3

αs(r)

r
+ κr . (2.3)

The first term describes the binding of two quarks at small distances and is analogous to the
Coulomb potential in QED. The second term, however, is unique to QCD and prevents that
two quarks can be separated since the needed energy rises with r. Lattice results confirm that
the potential of two charm quarks in a J/ψ can indeed be described by Equation (2.3) to a
good approximation [B+04].

2.1.3. The phase diagram of QCD

Under ordinary conditions, quarks and gluons are confined in protons and neutrons, which make
up nuclei in atoms. Let us consider the following Gedankenexperiment : If one compresses such
nuclear matter, protons and neutrons start to overlap and it is intuitively clear that at some
point one cannot distinguish to which nucleon each parton belongs. The matter is such dense
that individual nucleons cannot be identified anymore. Instead, their constituents—quarks
and gluons—compose the matter. Since the relevant degrees of freedom changed, a phase
transition from ordinary nuclear matter to a plasma of quarks and gluons occurred.

The same effect takes place if one heats nuclear matter instead of compressing it. Increasing
temperature is equivalent to increasing kinetic energy, not only of the nucleons, but also of
their constituents. Due to asymptotic freedom, quarks and gluons are less and less bound in
the nucleons. Again, at some point a phase transition to the quark gluon plasma occurs.

These simple considerations lead to the phase diagram of QCD, which is sketched in Figure 2.2.
Increasing temperature or baryochemical potential, which is a measure for the density, implies
a phase transition from nuclear matter to the QGP. More precisely, for a small baryochemical
potential, lattice QCD calculations show not a rapid phase transition but a smooth crossover
at a temperature of around Tc = 150 − 170 MeV [AEF+06, B+10, HotQCD10]. At larger
baryochemical potentials lattice QCD has difficulties due to the sign problem [Phi10] and one
has to rely on more phenomenological models [BR99, HJS+98, SMMR01, HI03, Bub05]. It is
thought that at small temperatures and large baryochemical potentials a first order phase
transition occurs to a color superconducting plasma [RW00, Ris04, Ste06], where two quarks

4Mesons as well as baryons are also called hadrons.
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Figure 2.2.: Semi-quantitative sketch of the QCD phase diagram in the plane of temperature
T and baryochemical potential µB. Taken from Ref. [Ste06].

are correlated in Cooper pairs analogously to the BCS5 theory. Nevertheless, this region is
difficult to access experimentally, but might exist in the core of compact neutron stars. More
details on the QCD phase diagram can be found, for instance, in Refs. [Ste06, BMW09].

A cross over at small baryochemical potential and large temperature and a first order
phase transition at large baryochemical potential and small temperature imply that there is
somewhere in between a critical point [Ste06].6 In a laboratory on earth, the only possible
measurements to find the critical point or study the production and properties of the QGP
are heavy-ion collisions. In particular, in ultra-relativistic heavy-ion collisions, which are most
relevant for hard probes and will be discussed in more detail in the next section, nuclei are
collided at a very large energy. Therefore, the baryochemical potential of the produced medium
is small, but the temperature large. Thus, they explore mostly the upper left part of the
QCD phase diagram in Figure 2.2. Also the universe was located in this region of the phase
diagram shortly after the big bang since the matter was so hot that a QGP existed. During
its expansion, the universe cooled off and went down along the temperature axis to its current
state. Since the trajectory of the matter created in heavy-ion collisions is very similar, they
are often referred to as little big bangs and might be able to explore the properties of the early
state of the universe.

2.2. Ultra-relativistic heavy-ion collisions

At ultra-relativistic heavy-ion colliders atomic nuclei are accelerated to nearly the speed of
light and then brought to collision within huge detectors, which measure the produced particles.
The energy deposition within the created medium as well as its compression are thought to
be so large that a QGP is formed. Subsequently, it expands, cools down, and hadronizes
to a hadron gas. These hadrons or their decay products are then measured in the detector.

5after Bardeen, Cooper, and Schrieffer
6On the other hand, however, some recent lattice results [dFP07, dFP08] indicate that there might be no

critical point for physical quark masses.
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2. QCD and heavy-ion collisions

It is important to note that the QGP itself cannot be detected since quarks and gluons are
not color-neutral objects. Even if this were possible, the lifetime of the QGP (approximately
3 · 10−38 seconds) would be much too small to study its properties. Therefore, one has to
rely on the indirect measurements of the several thousand particles that are produced during
or after the phase transition. At this point, theoretical models come into play, which try to
explain what happens in the QGP phase. From comparisons between experimental data and
model predictions for experimental observables, one can learn about the properties of the QGP.
In this work, we employ this idea as well by comparing hard probes observables, which literally
probe the medium properties, to experimental data (see Section 2.2.3).

The heavy-ion collider facilities with the largest center-of-mass energies per nucleon are
RHIC and LHC with

√
sNN = 200 GeV and 2.76 TeV, respectively. The latter has been

running for two beam times and will increase its energy after a shut-down to 5.5 TeV next year.
RHIC measurements have been performed for more than a decade. Recently, a beam energy
scan was done to study heavy-ion collisions at smaller center-of-mass energies. Several other
heavy-ion accelerator facilities such as LBNL7 Bevalac, BNL AGS8, CERN SPS9, and GSI10

SIS1811 studied heavy-ion collision at smaller energies—the latter planning a huge upgrade
named FAIR12.

In the following we present the generally acknowledged picture of the evolution of an ultra-
relativistic heavy-ion collision as well as highlight possible models for different stages. The
initial partons are produced in initial hard and soft processes. According to the Glauber
model (see Appendix A.5), a heavy-ion collision consists of a superposition of several binary
nucleon-nucleon collisions. The hard parton scatterings can be described by pQCD, for instance,
within the mini-jet model (cf. Section 4.5), but the soft part depends on non-perturbative
effects and is, thus, difficult to model. One option is the use of event generators like PYTHIA
(see Section 4.5), which are fitted to experimental proton-proton (p+p) collision data and try
to incorporate—at least phenomenologically—both soft and hard components. Another option
for the initial conditions is derived from the color glass condensate (CGC) description of highly
energetic nuclei [IV03, McL03, Ven05, McL08]. The particle production in the collision of two
nuclei consisting in this framework of coherent and dense gluon matter lead to the creation of
a non-thermal plasma with highly occupied gauge field modes (glasma) [LM06].

After its creation, the QGP thermalizes on a short time scale. This stage of the collision is
least understood. The best tool to study it in detail are non-equilibrium partonic transport
models [GM92, Zha98, MG00, BMS03, XG05, LKL+05], such as BAMPS, which is used in
this work (cf. in particular Chapter 4). After thermalization either transport models or
relativistic hydrodynamic models [HKH+01, HT02, RR07, LR08, GJS+13b] can be employed
to describe the expansion and collective motion of the QGP. In particular, the success of ideal
hydrodynamics in comparing to elliptic flow data lead to the characterization of the QGP
as a nearly perfect liquid with a small shear viscosity to entropy density ratio. When the
temperature of the medium drops below the critical temperature, hadronization sets in. Since
the phenomenon of confinement is not well understood, no reliable microscopic model exists

7Lawrence Berkley National Laboratory
8Alternating Gradient Synchrotron
9Super Proton Synchrotron

10Helmholtzzentrum für Schwerionenforschung (former Gesellschaft für Schwerionenforschung)
11Schwerionensynchrotron 18 (the number results from the magnetic rigidity of the synchrotron of 18 Tm)
12Facility for Antiproton and Ion Research
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2.2. Ultra-relativistic heavy-ion collisions

that describes the phase transition in heavy-ion collisions. The best approach to model this
stage is probably hydrodynamics with an equation of state that incorporates both QGP and
hadron gas and is matched to lattice QCD results [HP10]. To obtain the final hadrons from
the macroscopic hydrodynamic variables the Cooper-Frye prescription [CF74] is usually
applied.

In the remaining hadron gas further scatterings and particle decays take place, which
can be simulated with hadronic cascades such as UrQMD [B+98, BZS+99, PSB+08] or HSD
[EC96, CB99]. After further expansion, the hadron gas decouples, the yields stay fixed (chemical
freeze-out), and the momenta remain unchanged (kinetic freeze-out). These final particles after
freeze-out or their decay products are actually the particles measured in the detector, from
which one tries to draw conclusions about the properties of the QGP. It is noteworthy that
the final identified particle yields are well described by the Statistical Hadronization Model
[BMRS03, Bec09, ABMRS11], which assumes that all hadrons are statistically produced at
the phase transition and that their numbers are given only by the thermodynamic properties
(temperature, baryochemical potential, etc.) of the thermalized medium obtained from a global
fit to the yields.

In general, the properties of the bulk medium can be studied, for instance, with particle
yields, momentum spectra, or collective flow of soft particles with a transverse momentum of
pT < 2− 3 GeV. It is best described by thermal models and hydrodynamics. In contrast, hard
probes physics can be best investigated at large pT > 6− 10 GeV or for heavy particles via, for
instance, momentum spectra or reconstructed jets. While the most prominently applied theory
for this kinematic range is pQCD, hard probes can be studied, for instance, with a transport
model as is done in this work, with a Langevin evolution on a hydrodynamic background,
which is often used for heavy quarks, or the statistical model, that is prominently employed
for studying J/ψ suppression.

Being at the intersection of soft and hard physics, the intermediate pT region is theoretically
least understood. Within our transport model BAMPS we employ pQCD not only for hard
probes, but for all particles, and, hence, provide a tool to study all momentum regions within
a single framework. Details concerning BAMPS are given in Chapter 4.

2.2.1. Overview of results from RHIC and LHC

A comprehensive overview of the first experimental results at RHIC is given in the white
papers of the collaborations [STAR05, PHENIX05a, PHOBOS05, BRAHMS05], which are
named STAR13, PHENIX14, PHOBOS15, and BRAHMS16. Only the first two still exist and
are actively taking as well as analyzing data. An excellent review of more recent RHIC findings
is given in Ref. [JM12].

At the LHC, the ALICE17 experiment is dedicated to measure heavy-ion collisions due to
its specialization in handling large particle multiplicities and both soft and hard momenta.
In contrast, CMS18 and ATLAS19 are designed for p+p collisions, although they also take

13Solenoidal Tracker At RHIC
14Pioneering High Energy Nuclear Interactions eXperiment
15Not an acronym.
16The Broad RAnge Hadron Magnetic Spectrometer
17A Large Ion Collider Experiment
18Compact Muon Solenoid
19A Toroidal LHC ApparatuS
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2. QCD and heavy-ion collisions

heavy-ion data. Their main advantage lies in the hard probes sector since this is the relevant
scale for p+p events. The newest experimental results from LHC can be found, for instance,
in the overview article [MSW12].

The most compelling evidence for the creation of the QGP is the collective behavior of the
medium and the jet quenching, which will be discussed in more detail in Sections 2.2.2 and
2.2.3, respectively. Most relevant for this work are the suppression and elliptic flow of open
heavy flavor and J/ψ. Experimental results in this regard are also shown in Section 2.2.3.

Another intriguing phenomenon that has been measured in heavy-ion collisions [STAR09,
CMS11b], but also—less pronounced—in proton-lead (p+Pb) [CMS13b], and even in high
multiplicities p+p events [CMS10], is the so called ridge of two-particle correlations. A
theoretical explanation for these long-range correlations in the beam direction could be initial
color flux tubes and subsequent hydrodynamic expansion [WKP11]. However, the origin of the
ridge has not been fully understood yet and is actively debated—see Ref. [Li12] for a recent
review.

Several other interesting results such as large baryon to meson ratios [PHENIX03, STAR06],
strangeness enhancement [BM11], indication of chiral restoration from di-lepton measurements
[RWvH09], QGP “temperature” from thermal photons [PHENIX10], system sizes from HBT
[LPSW05], particle chemistry from identified hadron yields [BMRS03], and many more have
been found at RHIC and LHC. For the details we refer to the above mentioned reviews.

Recent p+Pb measurements at LHC are crucial to constrain cold nuclear matter effects
[SAMA+12], which are important for the initial particle distribution in heavy-ion collisions.
The analysis of the data is currently under way and will, for instance, reveal how well the color
glass condensate or other models serve as initial conditions.

2.2.2. Collective flow

The medium produced in heavy-ion collisions exhibits a collective behavior. To study this
quantitatively, the invariant particle yield is decomposed in a Fourier series [PV98],

E
d3N

d3p
=

d3N

pTdpTdydφ
(pT , y, φ) =

1

2π

d2N

pTdpTdy

[
1 +

∞∑
n=1

2vn(pT , y) cos [n(φ−Ψn)]

]

=
1

2π

d2N

pTdpTdy
[1 + 2v1(pT , y) cos(φ−Ψ1) + 2v2(pT , y) cos [2(φ−Ψ2)] + . . .] . (2.4)

The vn are called Fourier coefficients or harmonics. The first three are named directed
(v1), elliptic (v2), and triangular (v3) flow according to their geometrical origin. The factor 2
in front of each coefficient is just due to normalization and ensures the descriptive relation
vn = 〈cos [n(φ−Ψn)]〉 [VZ96]. Ψn is the angle of the spatial plane of symmetry of harmonic
n, which maximizes vn. Neglecting event-by-event fluctuations, it coincides with the reaction
plane for directed and elliptic flow. Hence, expressed by the momenta of the particles with
respect to the reaction plane, the directed flow is v1 = 〈px/pT 〉 and the elliptic flow

v2 =

〈
p2
x − p2

y

p2
T

〉
, (2.5)

where the average over all particles is taken. Experimentally, these quantities are more difficult
to define since the reaction plane is not known. Consequently, other approaches are applied
such as the event plane method [PV98] or two- or four-particle cumulant methods [BDO01].
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Whereas the directed flow is caused by the sideward motion of the particles within the
reaction plane, the elliptic and triangular flow are due to the spatial geometry of the collision
zone. If the nuclei do not collide head-on but peripherally, the collision region looks like a
cigar. Because of different pressure gradients in x and y direction, this spatial deformation is
translated to a momentum anisotropy and, hence, a non-zero v2. In other words, the medium
minimizes—analogously to a liquid—its surface, which is a first hint on the hydrodynamic
behavior of the QGP. The time scale of the conversion from pressure to momentum anisotropy
is a measure of the interaction strength in the medium. A finite v3 is caused by a triangular
initial shape, which is due to fluctuations. In contrast to the elliptic flow, v3 only depends
weakly on centrality since fluctuations are present regardless of the impact parameter.

Figure 2.3 depicts the ATLAS measurements of the first five Fourier coefficients vn at
LHC. The agreement with the curves of the relativistic viscous hydrodynamic model MUSIC
[GJS+13b] is remarkably good. The employed ratio of shear viscosity to entropy density of
η/s = 0.2 is quite small and close to the conjectured lower bound of η/s = 1/4π ' 0.08,
obtained from AdS/CFT20 correspondence [KSS05, PSS01]. That hydrodynamics with a small
shear viscosity to entropy density ratio works so well implies a) that a rapid thermalization in
the early phase of the QGP evolution occurs since hydrodynamics as a local equilibrium theory
is applicable, and b) that the medium behaves like a nearly perfect liquid. Other relativistic
hydrodynamic models [HKH+01, HT02, RR07, LR08] also find a good agreement with data,
although in order to describe all five harmonics at RHIC and LHC a 3+1 dimensional viscous
hydrodynamic model with event-by-event fluctuations [GJS+13b] seems to be needed. A recent
overview of hydrodynamics in heavy-ion collisions can be found in Ref. [GJS13a].

As a note, being a macroscopic model, hydrodynamics cannot make any statements about
the microscopic processes within the medium or explain the large interaction strength. For
those microscopic details, transport models like BAMPS (see Chapter 4) are better suited.
That the plasma seems to have a small viscosity was also shown recently within BAMPS
[XGS08, EMXG09, WER+11, RBE+12] (cf., however, Section 4.6 for some remarks on this
study concerning the Gunion-Bertsch cross section).

20anti de Sitter/conformal field theory
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2. QCD and heavy-ion collisions

At RHIC a scaling of elliptic flow of identified particles with their quark number nq is
observed [PHENIX07d]. If v2/nq is plotted as a function of (mT −m)/nq, where m (mT ) is
the (transverse) mass, all curves for different particle species lie on top of each other, which
can be readily understood in the coalescence picture. However, such a quark number scaling is
not observed at LHC [ALICE11d], which suggests that the scaling at RHIC is just coincidence.

2.2.3. Hard probes

Hard probes, which are particles with either a large momentum or a large mass, are exclusively
produced in hard processes. Since the scales of such a hard production process and the subse-
quent fragmentation to hadrons are very different, these contributions factorize. Consequently,
the invariant production cross section of two hard hadrons H1 and H2—for instance, two jets
or a heavy meson and heavy anti-meson—in a collision of two heavy ions A+B can be written
in leading order pQCD as [G+95, MVL11]

EH1EH2

dσABH1H2

d3pH1d3pH2

=
∑

i,j,k,l=g,q,Q

∫
dxidxjdzkdzl f

A
i (xi) f

B
j (xj)

dσ̂ij→kl

dt̂

xixjs

2π

EH1EH2

EkEl

×
D̄H1/k(pk, zk)

z3
k

D̄H2/l(pl, zl)

z3
l

δ4(pi + pj − pk − pl) , (2.6)

where pn = (En,pn) denotes the four momentum of particle n, s the squared center-of-mass
energy per nucleon of the process A + B, and dσ̂/dt̂ the partonic cross section, which is
discussed in more detail in Chapter 3 for heavy quarks and Appendix A.3 for light partons.
The parton distribution function of a parton i in a nucleus A, fAi (xi), can be factorized in
the proton parton distribution function, fpi (xi), and a parameterization of cold nuclear matter
effects, RAi (xi), i.e., fAi (xi) = RAi (xi)f

p
i (xi). An up-to-date parameterization of the latter is

EPS09 [EPS09], which includes, for instance, shadowing [Arn94, Arm06] and the Cronin
effect [Acc02]. As a note, Equation (2.6) also depends on the factorization and renormalization
scale µF and µR, respectively, which have been suppressed above. The sum runs over all
gluon and quark initial and final states and the δ function ensures energy and momentum
conservation.

The medium modified fragmentation function D̄H/k(pk, zk) of a parton k to a hadron H
with a momentum ratio zk = |pH |/|pk| includes the medium influence on the parton and
its fragmentation to a hadron. Recent experimental data of jet shower shapes [CMS12b]
comparing the fragmentation patterns of jets in heavy-ion and p+p collisions suggests that the
medium modified fragmentation function can be separated in a part describing the in-medium
energy loss and a subsequent vacuum fragmentation similar to p+p events. Thus, the medium
modified fragmentation function can be schematically written as a convolution of these two,

D̄H/k(pk, zk) = P (pk|medium)⊗DH/k(zk) . (2.7)

DH/k(zk) is the vacuum fragmentation function, which is experimentally measured. For heavy
quarks we use in this work the Peterson parameterization [PSSZ83] (see Section 4.1) and for
light partons the AKK fragmentation functions [AKK08] (see Section 6.2.1). The energy loss
in the QGP is described by P (pk|medium), which depends on the geometry and the properties
of the medium. Although it looks rather simple in this form, it is probably the most complex
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2.2. Ultra-relativistic heavy-ion collisions

and least understood contribution of the hard probes sector. In this work we use the transport
model BAMPS to study the medium effects on hard probes in detail.

To get a more intuitive idea of the meaning of Equation (2.6), we write it in a more schematic
form,

EH1EH2

dσABH1H2

d3pH1d3pH2

∼
∑

i,j,k,l=g,q,Q

fAi (xi) f
B
j (xj)⊗

dσ̂ij→kl

dt̂
⊗ P (pk|medium)P (pl|medium)

⊗DH1/k(zk)DH2/l(zl) . (2.8)

It can then be read as the following. Two partons, i and j, which stem from the nuclei A and
B, produce—after colliding in a hard process—two hard partons, k and l, which traverse the
medium, lose energy, and subsequently fragment to the hadrons H1 and H2.

The production of hard probes in p+p collisions can also be described by Equation (2.8)
if the parton distribution function in a proton is taken instead of that in a nucleus and the
medium influence P (pk|medium)P (pl|medium) is omitted. Since cold nuclear matter effects in
the high transverse momentum region are considered to be small, the only differences between
the hard probes production cross sections in p+p and A+B collisions are the in-medium energy
loss effects. Therefore, studying the ratio of these two can reveal valuable information about
the properties of the QGP. This ratio is commonly named the nuclear modification factor and
is addressed in more detail in the following section.

Jet quenching and nuclear modification factor of light particles

In leading order pQCD high transverse momentum particles are always produced in pairs
back-to-back in the transverse plane. Proton-proton measurements of two particle angular
correlations of high-energy particles show indeed a peak at the near side and the away side
shifted by 180◦ [STAR05]. In contrast to p+p events, the away side is strongly suppressed in
heavy-ion collisions [STAR05], which was one of the most striking early RHIC results.

The suppression can be explained by different path lengths of the two produced high-energy
particles. Considering a pair production near the edge of the medium, one particle flies out
without many interactions, whereas the second particle traverses the whole medium and deposits
a large fraction of its energy, failing to pass the momentum threshold for the measurement.
This picture is also confirmed at the LHC by measuring the momentum imbalance AJ of fully
reconstructed jets in heavy-ion collisions and finding a significant deviation compared to p+p
collisions [ATLAS10, CMS11c].

The effect of this suppression can also be seen for single particles without studying correlations
or fully reconstructed jets. A suitable quantity is the nuclear modification factor, which is
defined as the particle yield in heavy-ion collisions divided by the scaled p+p yield,

RAA =
d2NAA/dpTdy

Nbin d2Npp/dpTdy
. (2.9)

The appropriate scaling factor is the number of binary collisions Nbin, defined in Equation (A.21)
and calculated within the Glauber model (see Appendix A.5). If no medium effects occurred,
the RAA would be one for highly energetic particles, which is indeed the case for gauge bosons
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2. QCD and heavy-ion collisions

Figure 2.4.: Compilation of measured
RAA of neutral pions π0, charged
hadrons h±, and charged particles
at SPS [WA9802, d’E04], RHIC
[PHENIX08b, STAR03], and LHC
[ALICE11b, CMS12e] as a func-
tion of transverse momentum pT to-
gether with several theoretical mod-
els [DLP05, VG02, Vit04, SW03,
ADSW05, RHPE11]. Figure taken
from [CMS12e].
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such as photons, W and Z bosons [PHENIX05b, CMS12j] that do not interact strongly with
the medium.21

Figure 2.4 depicts the RAA of light particles for SPS, RHIC, and LHC. It is clearly visible
that high-momentum particles are strongly suppressed at RHIC and LHC. The rising RAA
at LHC suggests that the coupling of the jets to the medium decreases with their energy, as
one would expect from asymptotic freedom (cf. Section 2.1.1). Several theoretical models for
the energy loss of light partons in the QGP are on the market [Zak96, BDM+97a, GLV01,
AMY02, VG02, Vit04, SW03, DLP05, ADSW05, WHDG07, FXG09, SGJ09, RHPE11], some
of which are also depicted in Figure 2.4. For some excellent overviews and comparisons see
Refs. [MVL11, BGM+09, ACG+12]. In Section 6.2.1 we also present results for the light
parton RAA within BAMPS.

Open heavy flavor

Open heavy flavor particles such as D and B mesons are ideal probes to study the QGP.
Their heavy constituents, namely, charm and bottom quarks, are well calibrated in a sense
that they are entirely produced in the early stage of the heavy-ion collision due to their large
mass [UFXG10a] and are also tagged during hadronization because of flavor conservation
in QCD. After their early production they traverse the QGP for a rather long time, collide
with other medium particles, lose energy, and participate in the collective behavior. Due to
these processes their distributions are modified and can reveal—via experimentally accessible
observables like the elliptic flow and nuclear modification factor—information about the
properties of the medium.

Both the elliptic flow and nuclear modification factor are suitable observables to study the

21Soft processes do not scale with Nbin and, thus, the RAA is below one for small transverse momenta even
without suppression.
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2.2. Ultra-relativistic heavy-ion collisions

energy loss of heavy quarks and their coupling to the medium. The larger the v2, the stronger
heavy quarks interact with the medium and adopt its momentum anisotropy. A small value of
RAA indicates a strong suppression and, therefore, large energy loss of heavy quarks in the
QGP.

Of course, heavy quarks themselves cannot be measured in the detector directly due to
confinement. Instead, charm and bottom quarks hadronize at the phase transition to D and
B mesons, respectively, which contain one heavy and one light quark. For charm quarks in
particular the following D mesons exist: D+ (cd̄), D− (c̄d), D+

s (cs̄), D−s (c̄s), D0 (cū), and
D̄0 (c̄u). Nevertheless, the mesons themselves can also not be detected since their life time
is too small (τ = (1040 ± 7) · 10−15 s for D± mesons [PDG12]). However, D mesons can be
reconstructed by measuring their decay products, which has been done—for the first time
in ultra-relativistic heavy-ion physics—by the ALICE collaboration [ALICE12f]. The golden
channels are the decays to pions and kaons, D0 → K−π+ (branching ratio (BR) of 3.88±0.05 %
[PDG12]), D+ → K−π+π+ (BR of 9.13 ± 0.19 % [PDG12]), and D?+ → D0π+ → K−π+π+

(BR of the first (strong) decay: 67.7± 0.5 % [PDG12]). After searching for decay topologies
with a secondary vertex that is displaced in respect to the primary vertex (the heavy-ion
collision), D meson candidates are extracted by cutting on the invariant mass of the decay
products. A recent upgrade enables also STAR to reconstruct D mesons at RHIC [STAR13b].
As a complimentary measurement to D mesons, CMS reconstructs non-prompt J/ψ via the
di-muon channel (BR of 5.93± 0.06 % [PDG12]) [CMS12f]. Non-prompt J/ψ are produced in
the decay of B mesons (combined BR of about 0.5 % [PDG12]), for instance, in B → J/ψK,
and, thus, probe the bottom sector. In contrast, prompt J/ψ are created initially or in the
fireball evolution, which is discussed in the next section. Experimentally, non-prompt J/ψ can
be separated from prompt J/ψ via the displaced secondary vertex of the B meson decay due
to its comparably long life time (τ = (1641± 8) · 10−15 s for B± mesons in comparison to the
J/ψ life time of (71± 16) · 10−22 s [PDG12])

Another possibility, which has been extensively used at RHIC [STAR07, PHENIX07a,
PHENIX11b, STAR13a], is the measurement of heavy flavor electrons. These are electrons
produced in the decay of heavy flavor mesons. Prominent channels for D mesons are, for
instance, the decay to an electron, kaon, and electron neutrino, D+ → e+K̄0νe and D− →
e−K0ν̄e (BR of 8.83± 0.22 % [PDG12]). The heavy flavor electron signal suffers from a huge
contamination due to different electron sources, mainly decay photon conversions (∼ 85 %)
and Dalitz decays (∼ 15 %) [STAR07]. Those contributions are usually subtracted either via
a cocktail of various measured and simulated non-heavy-flavor electron sources [PHENIX07a,
ALICE13e], cuts on the invariant mass of di-electrons [STAR07], or via the converter method
[PHENIX07a], where additional radiation material is added to the beam pipe for part of the
run, which allows an estimation of the electrons from photon conversions. Quite analogous is
the measurement of heavy flavor muons, which is performed by ALICE at forward rapidities
behind several thick absorbers with the muon arm of the detector [ALICE12e] in addition to
the electron measurement at mid-rapidity [ALICE13e]. However, a disadvantage of the heavy
flavor lepton measurements is that the contribution from charm and bottom quarks cannot
be separated. Details concerning the decay channels or branching ratios can be found in the
Particle Data Book [PDG12].

The heavy flavor electron data from RHIC [STAR07, PHENIX07a, PHENIX11b] and the
heavy flavor electron [ALICE13e], muon [ALICE12e], D meson [ALICE12f, ALICE13f], non-
prompt J/ψ [CMS12f], and bottom tagged jets [CMS13c, CMS12g] data from LHC show that
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Figure 2.5.: RAA of D mesons (left) and v2 of heavy flavor electrons (right) at
√
s = 2.76 TeV

measured with the ALICE detector. Model predictions from BAMPS [UFXG11a, UFXG12b],
BDMPS-ASW [ADSW05], POWLANG [ABDP+11, MAB+11], “Rad+dissoc” [SVZ09,
HVZ12], Rapp et al. [vHGR06, HFR12b], and WHDG [HG11] are also shown. For compari-
son, NLO MNR calculations [MNR92] with EPS09 shadowing parameterizations [EPS09]
are depicted for the RAA. The RAA and v2 plots are taken from Refs. [ALICE13e] and
[ALICE12h], respectively.

the suppression of heavy flavor is comparable to that of light particles. From the theory
perspective it was thought that radiative processes involving heavy quarks are reduced due to
the dead cone effect (see Section 3.2.4), which would imply a smaller suppression for massive
particles. Whether this is indeed the case or what is the exact mechanism of the intense
interaction with the medium is actively debated and also subject of this work. Elliptic flow
v2 measurements of heavy flavor electrons at RHIC [PHENIX11b] as well as of D mesons
[ALICE12i] and heavy flavor electrons [ALICE13g] at LHC also show that heavy quarks
interact strongly with the other particles of the medium.

Figure 2.5 depicts the RAA of D mesons in central events and the v2 of heavy flavor electrons
in non-central collisions at the LHC. Several model calculations are also shown. Although the
D meson RAA is in agreement with most of the models, the v2 data seems to be more difficult
to describe. A very good agreement is found with BAMPS, which are our predictions with a
scaled binary cross section. We will discuss the details of this calculation in Section 6.1.

Table 2.1 gives an overview of various open heavy flavor models on the market. Most
models employ pQCD cross sections, where the complete picture should include both elastic
and radiative processes. The resonance scattering models assume that D- and B-meson-like
resonances can form and decay in the QGP, which contribute quite effectively to the energy
loss of heavy quarks through the isotropic outgoing momentum distribution of these s channel
processes. Within the AdS/CFT framework the heavy quark energy loss is calculated from
a string in five dimensional AdS space, which is attached to the horizon of a black hole,
and subsequently matched to a four dimensional supersymmetric Yang-Mills theory, which
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2.2. Ultra-relativistic heavy-ion collisions

Table 2.1.: Overview of open heavy flavor models.

Theory Authors References

pQCD elastic only Alberico, Beraudo, De Pace, Moli-
nari, Monteno, Nardi, Prino

[ABDP+11, ABDP+13]

Gossiaux, Aichelin [GA08, GBA09]

Molnar [Mol07]

Meistrenko, Uphoff, Greiner,
Peshier

[MPUG13]

Moore, Teaney [MT05]

Uphoff, Fochler, Xu, Greiner this worka &
[UFXG11a, UFXG12b]

Young, Schenke, Jeon, Gale [YSJG12]

Zhang, Chen, Ko [ZCK05]

. . .

radiative only Abir, Jamil, Mustafa, Srivastava [AJMS12]

. . .

elastic+radiative Armesto, Cacciari, Dainese,
Salgado, Wiedemann

[ACD+06]

Buzatti, Gyulassy [BG12b, BG12a]

Cao, Bass [CB11, CQBM13]

Wicks, Horowitz, Djordjevic,
Gyulassy

[DGVW06, WHDG07]

Nahrgang, Gossiaux, Aichelin [GNB+13, NAGW13]

Mazumder, Bhattacharyya,
Alam, Das

[MBAD11, MBA13]

Mustafa [Mus05]

Sharma, Vitev, Zhang [SVZ09]

Uphoff, Fochler, Xu, Greiner this workb

. . .

Resonance scatterings Adil, Vitev [AV07]

He, Fries, Rapp [HFR12a, HFR13]

v. Hees, Greco, Rapp [vHGR06, vHMGR08]

Lang, v. Hees, Bleicher [LvHSB12a, LvHSB12b]

. . .

AdS/CFT Chesler, Lekaveckas, Rajagopal [CLR13a, CLR13b]

Horowitz, Gyulassy [HG08, Hor13]

. . .
a The results with only elastic interactions are summarized in Section 6.1.
b The results with elastic and radiative interactions are presented in Section 6.2.
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2. QCD and heavy-ion collisions

can be interpreted as an estimate of the energy loss in the strong coupling regime of QCD.
AdS/CFT models predict a very strong suppression at the LHC, which is not compatible with
the data [Hor13]. A comprehensive overview of heavy flavor in heavy-ion collisions is given in
Ref. [RvH10], and more recently in Ref. [GAG12]. In the following, we highlight five models
and discuss a few details.

• Wicks, Horowitz, Djordjevic, Gyulassy: WHDG
WHDG [DGVW06, WHDG07, Hor13] calculate radiative processes within the DGLV
opacity expansion from pQCD matrix elements. The result includes all orders in opacity,
the QCD analog of the Ter-Mikaelian effect by considering finite gluon masses, and the
Landau-Pomeranchuk-Migdal (LPM) effect through the coherent resummation of
multiple gluon emission. Elastic scatterings are implemented incoherently. The medium
is parameterized within a basic geometric picture and its initial density is constrained
such that the pion RAA at RHIC is well described. With the same parameters, the
heavy flavor electron data at RHIC can also be explained if path length fluctuations
are considered. Predictions for the LHC show a slight underestimation of the charged
hadron RAA, although the D meson RAA is reasonably well described. However, the
elliptic flow of heavy flavor particles at small and intermediate pT in the WHDG model
is much smaller than the data both at RHIC and LHC.

• Gossiaux, Aichelin: MC@sHQ
The model MC@sHQ [GA08, GBA09, GNB+13, NAGW13] studies elastic and radiative
heavy quark interactions with pQCD matrix elements. The initial heavy quark distribu-
tion is obtained from fixed-order-next-to-leading-log (FONLL) calculations [CFH+12] (cf.
Section 4.3). The interactions of heavy quarks with medium particles, which are sam-
pled from a hydrodynamic model [KSH00], are determined from transition probabilities.
Elastic interactions are calculated with a running coupling parameterization as well as
a Debye screening matched to the transition between hard-thermal-loop calculations
and semi-hard processes. Radiative interactions are employed in the Gunion-Bertsch
approximation with the inclusion of the LPM effect and gluon damping [BGGA12]. With
only binary collisions the RHIC heavy flavor electron v2 and RAA data can be described
if the binary cross section is scaled by K = 2. Including also radiative processes, the
heavy quark energy loss is overestimated since a rather small factor K = 0.7 is needed
to fit the data, which could be caused by theoretical uncertainties within the calculation.
With these parameters the RAA agreement at LHC is rather good, whereas the v2 data is
slightly underpredicted. Furthermore, the suppression of heavy quarks in p+p collisions
at LHC was studied with MC@sHQ [VGWA11].

• Uphoff, Fochler, Xu, Greiner: BAMPS
Heavy flavor transport within BAMPS [UFXG11a, UFXG12b] is the main topic of
this work and is described in detail in the following chapters. The initial heavy quark
distribution is obtained from MC@NLO (see Section 4.3) and the medium interactions
are carried out by solving the Boltzmann equation with pQCD cross sections (see
Chapters 3 and 4), not only for heavy quarks but for all other medium particles as well.
Elastic processes employ a running coupling and an improved Debye screening matched
to hard-thermal-loop calculations, quite analogous to MC@sHQ. Details are given in
Sections 3.1 and 5.1.5. As is shown in Section 6.1, RHIC heavy flavor electron data can

20



2.2. Ultra-relativistic heavy-ion collisions

be reproduced with only binary interactions if the cross section is scaled with K = 3.5.22

With this parameter fixed, our predictions for v2 at LHC are in very good agreement
with the data, but the RAA is slightly underestimated. Also as part of this work, we
have included radiative processes for heavy quarks in BAMPS. Many details concerning
the radiative processes are given in Section 3.2 and the results are shown in Section 6.2.
In contrast to most other heavy flavor models, BAMPS also treats all light partons on
the same footing, allowing enlightening comparisons between light and heavy particles
within the same framework.

• He, Fries, v. Hees, Greco, Rapp
The model [vHGR06, vHMGR08, HFR12a, HFR13] investigates heavy quarks within
Langevin simulations with transport coefficients from the T matrix approach for heavy
quark interactions with medium particles. For the input heavy quark potential, the
internal energy is taken, which is extracted from lattice QCD calculations. The idea
behind this approach is that D- and B-meson-like resonances can form and decay
again in the medium close to the critical temperature. While in early versions a
fireball parameterization has been used [vHGR06, vHMGR08], recent results [HFR12a,
HFR13] are obtained with an ideal hydrodynamic model as a background. Furthermore,
interactions in the hadronic phase are taken into account via effective hadronic theory.
The RAA of D mesons and electrons at RHIC can be rather well described. At LHC the
RAA of D mesons is a bit larger than the data, whereas the predicted v2 is too small, as
can be seen in Figure 2.5.

• Lang, v. Hees, Bleicher: UrQMD
Recently, resonance scattering has been implemented in a Langevin approach in the
UrQMD hybrid model [LvHSB12a, LvHSB12b, LvHSB13]. The UrQMD hybrid model
[PSB+08] combines the traditional UrQMD model with a hydrodynamical evolution
for the hot and dense phase. To this end, initial nucleon-nucleon interactions in the
heavy-ion collision are simulated with UrQMD. Then the particle distributions are
mapped to a hydrodynamical model where the QGP evolution and phase transition are
carried out. Finally, through a Cooper-Frye freeze-out hadrons are obtained, which
are evolved further within the UrQMD hadronic cascade. Heavy quarks interact only in
the hydrodynamical phase with drag coefficients taken from Refs. [vHGR06, vHMGR08].
Including event-by-event fluctuations and coalescence for heavy quarks, both v2 and RAA
at RHIC and LHC can be described. Furthermore, predictions are made for Pb+Pb
collisions with

√
s = 25 GeV at FAIR [LvHSB13].

J/ψ suppression

A J/ψ meson is a bound state of a charm and anti-charm quark, whose potential can be
described by Equation (2.3). For a J/ψ in the QGP, however, the confining term vanishes
(κ = 0). Furthermore, the Coulomb term must be modified to take color screening effects

22The discrepancy to MC@sHQ, which needs only K = 2, can be easily explained. In MC@sHQ the scale of the
running coupling within the definition of the Debye mass (see Equation (3.18)) is taken as the Debye mass
itself, whereas in BAMPS the momentum transfer of the considered process is used. Taking the constant
Debye mass instead of the momentum transfer as the scale makes the Debye mass smaller and, thus, the
cross section larger, which in turn results in a smaller K factor.
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Figure 2.6.: RAA of inclusive J/ψ
measured at forward rapidity in
Pb-Pb collisions at

√
sNN = 2.76

TeV compared to the predictions
by the Statistical Hadronization
Model [ABMRS11], Transport
Model I [ZR11] and II [LQXZ09].
Figure taken from [ALICE12d].
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V (r) = −4

3

αs(r)

r
e−r/λD , (2.10)

where λD is the Debye length, which is related to the Debye mass mD = 1/λD, defined in
Equation (3.18). This Debye screening is analogous to electromagnetic plasmas, but is due to
color charge instead of regular charge. Around the heavy quark bound state, a cloud of other
partons is formed that weakens the binding and can lead to a dissociation of the J/ψ meson
in the medium.

The suppression of J/ψ in heavy-ion collisions was first proposed by Matsui and Satz
[MS86] to be a signature of QGP formation. Since lattice calculations [AH04, MP07] indicate
that the probability of the J/ψ melting depends on the medium temperature, J/ψ suppression
could be used as a thermometer for the QGP. However, the interpretation of the data is
significantly complicated because of J/ψ regeneration in the medium (cf. Section 3.3) as well
as J/ψ suppression due to cold nuclear matter effects (see Section 4.4). Regeneration denotes
the in-medium formation of J/ψ from independent charm and anti-charm pairs and is expected
to be important at LHC and maybe also RHIC energies [GR02, vHR05, TM06, ABMRS07,
YS10, LQXZ09, ZXZ10]. Cold nuclear matter effects, on the other hand, are all phenomena
contributing to J/ψ suppression that would also be present if no QGP were formed. The best
systems to study these effects are nucleon-nucleus or deuteron-nucleus collisions since one can
measure directly the impact of nuclear effects on J/ψ production in the absence of a QGP. A
detailed overview of J/ψ in heavy-ion collisions can be found in Ref. [B+11].

Experimental data show indeed a strong suppression of J/ψ at RHIC [PHENIX07c]. Nev-
ertheless, in central collisions at LHC this effect is not as pronounced [ALICE12d], which
could be a hint that the abundance of charm quarks at LHC allows for regeneration of J/ψ.
Figure 2.6 shows recent ALICE data of the J/ψ RAA for different collision centralities. The
Statistical Hadronization Model [BMS00, BMS01, ABMRS07, ABMRS11], which assumes
that all initial J/ψ melt and all final J/ψ statistically form at the phase boundary, is in good
agreement with the data. Also the two transport models [ZR08, ZR11, LQXZ09, ZXZ10] with
a hydrodynamic background are compatible with the data.
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2.2. Ultra-relativistic heavy-ion collisions

Recent measurements show that the elliptic flow of J/ψ is consistent with zero at RHIC
[PHENIX08c, STAR12] and quite small at LHC [ALICE13a]. This challenges the picture of
the Statistical Hadronization Model, in which the J/ψ would acquire a large v2 from the
flowing charm quarks. Nevertheless, the two previously mentioned transport models (also
depicted in Figure 2.6 for the RAA) are in good agreement with the v2 data [ZER13, LXZ10].

Since in BAMPS we have access to all space-time properties of charm quarks and light
medium particles, it is very promising to study J/ψ suppression and flow as well. First
calculations are shown in Chapter 7.

At the LHC a wealth of new data on quarkonia states besides J/ψ suggests that the
suppression depends on the binding energy of the states [CMS12k] and, hence, fits well in
the Matsui and Satz picture. Especially clean probes are the Υ states [CMS11a, CMS12d,
LCXZ11, SB12, EZR12], consisting of two bottom quarks, since the regeneration can be
neglected in view of the small in-medium bottom production at LHC [UFXG10a].
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3. Partonic cross sections

We do not know a truth without knowing its cause.

Nicomachean Ethics, I.1
Aristotle

In this chapter we outline the partonic cross sections of heavy flavor processes. The binary
cross sections of heavy quarks with light quarks and gluons are calculated within pQCD with a
running coupling and an improved Debye screening matched to hard-thermal-loop calculations
in Section 3.1. Radiative contributions are presented in great detail in Section 3.2, which
includes the derivation of the Gunion-Bertsch cross section, the explanation of the dead
cone effect, as well as the introduction of the Landau-Pomeranchuk-Migdal effect. All
these calculations are done for massive quarks. However, they also apply to light quarks if the
mass is set to zero. As a reference, we summarize all binary light parton cross sections with a
running coupling in Appendix A.3. The dissociation and regeneration cross sections of J/ψ
mesons in the QGP are addressed in Section 3.3.

The cross section of two particles in the initial state and n particles in the final state (2→ n
process) is given by [PS95]

σ =
1

2E1 2E2 vrel

1

ν

(
n+2∏
i=3

∫
d3pi

(2π)32Ei

)
(2π)4δ(4)(p1 + p2 −

n+2∑
i=3

pi)
∣∣M12→34...n+2

∣∣2 , (3.1)

where we labeled the momenta of the particles according to the notation p1p2 → p3p4 . . . pn+2.
The relative velocity of the two incoming particles is given by [CGR93]

vrel =

√
(pµ1p2µ)2 −m2

1m
2
2

E1E2
, (3.2)

which simplifies for massless particles to vrel = s/2E1E2, where s is the squared center-of-mass
energy (cf. also Appendix A.2). As a note, this relative velocity can be larger than the
velocity of light c = 1 (using natural units, see Appendix A.1) and, therefore, is not the actual
relativistic invariant relative velocity but proportional to it. A detailed discussion can be found

in Ref. [Sch08].
∣∣M12→34...n+2

∣∣2 denotes the mean squared matrix element that is averaged
over all initial and summed over all final color and spin states. The delta function ensures
energy and momentum conservation and the symmetry factor ν = m! differs only from unity if
m > 1 identical particles are in the final state.

The kinematic prefactor simplifies in the center-of-mass frame for the three most interesting
cases of the scattering of two light partons, one light and one heavy parton, and two heavy
partons to

2E1 2E2 vrel = 2

√(
s−m2

1 −m2
2

)2 − 4m2
1m

2
2 =


2s m1 = m2 = 0

2(s−M2) m1 = M, m2 = 0

2s
√

1− 4M2/s m1 = m2 = M .

(3.3)
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3. Partonic cross sections
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Figure 3.1.: Feynman diagrams in leading order pQCD for elastic heavy quark scattering off
a gluon, g +Q→ g +Q. Time goes from left to right.

Q
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Figure 3.2.: Feynman diagram for elastic heavy quark scattering with a light quark, q +Q→
q +Q.

As a note, differential cross sections (e.g. dσ/dy) can be obtained from Equation (3.1) by
projecting out variables with delta functions (e.g., writing δ(y − y′) in the integrand, where y′

is one of the integration variables hidden in d3p in Equation (3.1)).

3.1. Elastic heavy quark scattering

In the pQCD expansion of the cross section in orders of the coupling αs elastic scatterings are
the lowest order contribution. Although radiative processes lead to a larger energy loss due to
the three particles in the final state (see Section 5.3), elastic collisions also play an important
role in the evolution of heavy quarks.

Heavy quarks interact in the QGP via the following elastic collisions with light partons:

Q+ g → Q+ g

Q+ q → Q+ q . (3.4)

The Feynman diagrams for these processes are shown in Figures 3.1 and 3.2, respectively.
The cross sections for both processes can be calculated in leading-order pQCD. To treat this
accurately, we explicitly take the running of the coupling into account. Furthermore, we
employ an improved Debye screening that is more precise than the standard procedure in
the literature. This is done by comparing the energy loss per unit length dE/dx of the Born
cross section1 to the energy loss within the hard-thermal-loop approach (see Section 5.1.5).

1The Born cross section denotes the cross section calculated in lowest order perturbation theory.
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3.1. Elastic heavy quark scattering

3.1.1. Elastic heavy quark scattering with a gluon in vacuum

Especially interactions with gluons play an important role since gluons dominate the dynamics of
the QGP [MSW12] and the cross section is enhanced compared to interactions with light quarks.
Therefore, we outline in the following the calculation of the cross section for g +Q→ g +Q in
detail. Gluon scattering with a heavy anti-quark, g + Q̄→ g + Q̄, has the same cross section
due to time reversal invariance (see Appendix A.4) [ORG78].

For general 2 → 2 processes in the center-of-mass frame, a simple expression for the
differential cross section can be derived from Equation (3.1),

dσ

dt
=

1

16π
√
s|p1|

1

2E1 2E2 vrel
|M2→2|2 , (3.5)

where we introduced the Mandelstam variable t = (p1 − p3)2 (cf. Appendix A.2) and used
the notation of Figure 3.3.

pµ1 = (E1,p1) pµ2 = (E2,p2)
- �

pµ3 = (E3,p3)

pµ4 = (E4,p4)



















�



















�

θ

Figure 3.3.: Schematic illustration and notation of a 2→ 2 process.

Employing the relevant kinematic relations, for instance, Equation (3.3), the differential
cross section for the process g +Q→ g +Q is explicitly given by

dσ

dt
=
|MgQ→gQ|2

16π (s−M2)2 . (3.6)

The most important contribution to the cross section comes from the t channel, which is
the left diagram in Figure 3.1. Therefore, we outline in the following how the matrix element
can be derived for this channel. Employing the Feynman rules (see for instance Ref. [PS95]),
the matrix element of the t channel is given by (spin indices are suppressed)

Mt channel
gQ→gQ = ū(p3) igγµλbki u(p1)

−igµνδbc
q2

ε?δ(p4) εσ(p2)

× gf cmn
[
gνσ(−q − p2)δ + gσδ(p2 + p4)ν + gδν(−p4 + q)σ

]
, (3.7)
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3. Partonic cross sections

where u denotes the Dirac quark spinor and ε the gluon polarization vector. While g, γµ, and
f have been introduced in Section 2.1, λ are the color matrices and q represents the momentum
of the internal gluon line. After squaring the matrix element, it can be considerably simplified
by using the relations [PS95]∑

s

us(p)ūs(p) = 6p+m and
∑

polarizations

ε?µ(p) εν(p) = −gµν + vanishing terms , (3.8)

where we used the Feynman slash notation, 6p = γµpµ. In principle, one also has to take into
account the interactions with the ghost field since the gluon is a non-Abelian gauge boson.
However, one can circumvent this extra task by considering only the physical polarization
states of the gluon [PS95], which are transverse to the gluon momentum, p · ε(p) = 0. After
collecting all the terms, the averaged squared matrix element, which is summed over final and
averaged over initial color, spin, and polarization states, is given by∣∣∣Mt channel

gQ→gQ

∣∣∣2 =
1

dQ

1

dg

∑
color

∑
spin

∑
polarizations

∣∣∣Mt channel
gQ→gQ

∣∣∣2
=

1

6

1

16
32g4

∑
color

λbkiλ
c
ikf

bmnf cmn
1

q4

×
[
(p1 · p2)(p3 · p4) + (p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3) + (p2 · p4)M2

]
,

(3.9)

where dQ = 2 · 3 and dg = 2 · 8 are the degeneracy factors of heavy quarks and gluons,
respectively. The color factor evaluates to∑

color

λbkiλ
c
ikf

bmnf cmn = C(N)δbcC2(G)δbc = 12 , (3.10)

where C(N) = 1/2 and C2(G) = N are constants of the fundamental and adjoint representation
of SU(N), respectively. Since QCD has a SU(3) gauge symmetry, it is N = 3.

Inserting the color factor in Equation (3.9) and expressing the latter in terms of Mandelstam
variables yields the final result for the squared matrix element of the t channel of the process
gQ→ gQ, ∣∣∣Mt channel

gQ→gQ

∣∣∣2 = 2g4 (s−M2)(M2 − u)

t2
= 32π2α2

s

(s−M2)(M2 − u)

t2
, (3.11)

where g2 = 4παs has been used.
By generalizing the argumentation also to the s and u channel, the averaged squared matrix

element |MgQ→gQ|2 for all three channels and their interference terms reads [Com79]

|MgQ→gQ|2 = π2α2
s

[
32(s−M2)(M2 − u)

t2
+

64

9

(s−M2)(M2 − u) + 2M2(s+M2)

(s−M2)2

+
64

9

(s−M2)(M2 − u) + 2M2(u+M2)

(M2 − u)2
+

16

9

M2(4M2 − t)
(s−M2)(M2 − u)

+ 16
(s−M2)(M2 − u) +M2(s− u)

t(s−M2)

− 16
(s−M2)(M2 − u)−M2(s− u)

t(M2 − u)

]
. (3.12)
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3.1. Elastic heavy quark scattering

The first term is the contribution from the t channel and exactly the same result we obtained
in Equation (3.11).

To calculate the interaction probability in BAMPS simulations (see Chapter 4), the total
cross section is needed. First, the Mandelstam relation s + t + u =

∑
im

2
i = 2M2 (cf.

Appendix A.2) can be used to substitute u. Consequently, the total cross section for gQ→ gQ
is obtained by integrating the differential cross section from Equation (3.6) over t,

σgQ→gQ(s) =

tmax∫
tmin

dσ

dt
dt . (3.13)

The boundaries of the integral can be derived from kinematic considerations. From the
definition of the Mandelstam variable

t = (p1 − p3)2 = 2E1E3(cos θ − 1) (3.14)

one gets from forward (θ = 0◦) and backward (θ = 180◦) scattering the boundaries

tmax = 0

tmin = −(s−M2)2

s
. (3.15)

However, tmax = 0 leads to a singularity in the t channel, which causes a diverging cross
section. The reason for this is the gluon propagator in the left diagram of Figure 3.1. This
propagator diverges for small momentum transfers (small t) since gluons are massless. In a
medium, however, the internal gluon acquires an effective mass that cures the divergence.

3.1.2. Debye screening in a medium

In thermal field theory long-range interactions (which correspond to small t) are screened by
the medium. Formally, the gluon propagator must be screened with its self-energy ΠT (ω, q)

1

t
→ 1

t−ΠT (ω, q)
(3.16)

with (ω,q) = pµ1 − pµ3 and t = ω2 − q2. Nevertheless, calculations with the self-energy are
tedious. Therefore, we approximate the self-energy with a screening mass µt = κtm

2
D that is

proportional to the Debye mass,

1

t
→ 1

t− µt
. (3.17)

The prefactor κt is mostly set to 1 in the literature without a sophisticated reason. However,
one can fix this factor to κt ≈ 0.2 by comparing the dE/dx of the Born cross section with κt
to the energy loss within the hard-thermal-loop approach (see Section 5.1.5).

The Debye mass for gluons is defined by [XG05, Won96a]

m2
D = παsdg

∫
d3p

(2π)3

1

p
(Ncfg + nffq) , (3.18)
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3. Partonic cross sections

and for light quarks by

m2
q = 4παs

N2
c − 1

2Nc

∫
d3p

(2π)3

1

p
(fg + fq) , (3.19)

where Nc = 3 is the number of colors for SU(3) symmetry of QCD, dg = 2 · 8 = 16 the
degeneracy factor of gluons, nf the number of flavors, and f the distribution of gluons and
quarks. It has been assumed that local equilibrium is present and df/dp can be written as
f/p. In the transport model BAMPS (see Chapter 4) the integral in (3.18) is evaluated as a
sum over all particles i in a cell with volume V , which is chosen small enough to ensure local
homogeneity,

di

∫
d3p

(2π)3

fi
p
→ 1

V Ntest

∑
i

1

pi
, (3.20)

where i stands for g (gluons) or q (quarks). Ntest is the number of test particles in BAMPS
(see Section 4.1). The degeneracy factor of light quarks is dq = 2Nc2nf .

For a medium in equilibrium the integrals can be easily performed. With quantum statistics
(Bose-Einstein and Fermi-Dirac distributions for gluons and quarks, respectively) the
Debye mass is

m2
D,eq,QS =

4παs
3

(
Nc +

nf
2

)
T 2 . (3.21)

Assuming classical Boltzmann statistics for gluons and quarks2 the Debye mass reads

m2
D,eq,CS =

8αs
π

(Nc + nf )T 2 . (3.22)

3.1.3. Running coupling

An effective description of the running coupling can be obtained from measurements of e+e−

annihilation as well as non-strange hadronic decays of τ leptons and continued to the time-like
region [DMW96, GA08, Pes12],

αs(Q
2) =

4π

β0

{
L−1
− Q2 < 0

1
2 − π−1atn(L+/π) Q2 > 0

(3.23)

with β0 = 11− 2
3 nf and L± = ln(±Q2/Λ2) with Λ = 200 MeV. For the space like part (Q2 < 0)

this is exactly the same as Equation (2.2). If αs(Q
2) is larger than αmax

s = 1.0 it is set to αmax
s .

This cut-off procedure can be justified by universality arguments [Pes12, Dok02]. We checked
that our results of the energy loss in Chapter 5 are not very dependent on the exact value
of Λ or αmax

s since the contribution of the soft part is very small. Figure 3.4 shows the Q2

dependence of αs for zero and three active flavors.
The renormalization scale µR = Q, at which the running coupling αs(µR) in the matrix

element (3.12) or Debye mass definition is evaluated, is arbitrary due to renormalization flow
equations. However, if one chooses a characteristic scale suitable to the physical problem,

2In the semi-classical transport model BAMPS all particles are treated as Boltzmann particles.
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3.1. Elastic heavy quark scattering
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Figure 3.4.: Running coupling αs as a function of the momentum scale Q2 for nf active flavors.

the contribution of higher orders can be reduced and the uncertainty of considering only the
leading order can be decreased. In the t channel, for instance, large logarithms of t occur
in next-to-leading order (NLO) due to vacuum contributions to the self-energy and vertex
corrections, which can be absorbed via renormalization by fixing the scale, at which αs is
evaluated in the leading order result, to t. Therefore, we evaluate αs(µR) at the virtuality of
the respective channel, that is, s−M2, t, and u−M2 for the s, t, and u channel, respectively.
The coupling in the definitions of the gluon and quark Debye masses from Equations (3.18)
and (3.19), respectively, is also evaluated at the characteristic scale of the corresponding
channel. For instance, in the t channel we employ the substitution

α2
s

t2
→ α2

s(t)

[t− κtm2
D(αs(t))]2

. (3.24)

The u channel internal line of gQ→ gQ is a heavy quark (see left diagram in Figure 3.1)
and, therefore, the propagator is screened with the quark Debye mass,

α2
s

(u−M2)2
→ α2

s(u−M2)

[u−M2 − κum2
q(αs(u−M2))]2

. (3.25)

Due to the heavy quark mass M in the denominator, the propagator is screened anyhow and
the additional quark Debye mass has only minor importance for screening the divergence.
However, to treat heavy and light partons (see Appendix A.3 for the latter) on the same
footing, we keep the Debye mass here, but set κu = 1 for simplicity. The same applies to the
s channel.
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3. Partonic cross sections

Interference terms, e.g., of s and t channel, go with one αs from each channel and every
propagator has its own Debye mass evaluated at the corresponding scale,

α2
s

(s−M2) t
→ αs(s−M2)αs(t)

[s−M2 +m2
q(αs(s−M2))][t− κtm2

D(αs(t))]
. (3.26)

3.1.4. Elastic heavy quark scattering with a gluon in medium

With the considerations from the previous sections the matrix element for gQ → gQ with
running coupling and Debye screening reads for all channels and their interference terms

|MgQ→gQ|2 = 16π2

[
2α2

s(t)
(s−M2)(M2 − u)

[t− κtm2
D(αs(t))]2

+
4

9
α2
s(s−M2)

(s−M2)(M2 − u) + 2M2(s+M2)

[s−M2 +m2
q(αs(s−M2))]2

+
4

9
α2
s(u−M2)

(s−M2)(M2 − u) + 2M2(u+M2)

[M2 − u+m2
q(αs(u−M2))]2

+
1

9
αs(s−M2)αs(u−M2)

× M2(4M2 − t)
[s−M2 +m2

q(αs(s−M2))][M2 − u+m2
q(αs(u−M2))]

+ αs(t)αs(s−M2)
(s−M2)(M2 − u) +M2(s− u)

[t− κtm2
D(αs(t))][s−M2 +m2

q(αs(s−M2))]

− αs(t)αs(u−M2)
(s−M2)(M2 − u)−M2(s− u)

[t− κtm2
D(αs(t))][M2 − u+m2

q(αs(u−M2))]

]
.

(3.27)

The same matrix element can also be employed for light quarks if M is set to zero (cf.
Equation (A.10d) in Appendix A.3).

Figures 3.5 and 3.6 show the total (Equation (3.13)) and differential (Equation (3.6)) cross
sections, respectively, for different κt and constant as well as running coupling.

3.1.5. Elastic heavy quark scattering with a light quark in medium

For light and heavy quark scattering the differential cross section reads

dσ

dt
=
|MqQ→qQ|2

16π (s−M2)2 (3.28)

with the matrix element

|MqQ→qQ|2 =
64

9
π2α2

s(t)
(M2 − u)2 + (s−M2)2 + 2M2t

[t− κtm2
D(αs(t))]2

, (3.29)

where we also employed the running coupling and Debye screening analogously to Equa-
tion (3.27).
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Figure 3.5.: Total cross section of gc→ gc for M = 1.3 GeV and a Debye mass according to
a medium with temperature T = 400 MeV. Running or fixed coupling αs = 0.3 and κt are
varied. In addition, the ratios to the curve with αs = 0.3 and κt = 1 are shown in the lower
plot.
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Figure 3.6.: Differential cross section dσ/dt of gc→ gc for M = 1.3 GeV, a Debye mass for a
medium temperature of T = 400 MeV, and different κt as well as coupling schemes. The
squared center-of-mass energy is fixed to 18T 2 +M2.

3.1.6. Average value of the running coupling in a thermal medium

Due to the explicit consideration of the running coupling and the phenomenon of asymptotic
freedom, the effective coupling strength of a heavy quark jet with small energy is larger than
that of a high-energy heavy quark. The same is true for light partons, for which we have also
implemented the running coupling as part of this work and whose binary cross sections are
given in Appendix A.3.

It is intriguing to study the average value of the coupling in a thermal medium and how
it changes with the temperature of the medium. To this end, we consider with BAMPS (see
Chapter 4) a thermal medium of light partons with temperature T and allow only binary
interactions. As can be seen from the formulas listed in Appendix A.3 for light quarks (and
also Equations (3.27) and (3.29) for heavy quarks), the binary cross sections depend on the
coupling αs through the prefactor proportional to α2

s and through the squared Debye mass in
the internal gluon propagators, which is linear in αs (cf. Equation (3.18)),

σ22 = σ22(αs,m
2
D(αs)) . (3.30)

We now define an effective average value of the running coupling by averaging over all cross
sections of all particle pairs in the static medium,

〈
αeff
s

〉
=

〈√
σ22(αs,m2

D(αs))

σ22(αfixed
s ,m2

D(αfixed
s )) / (αfixed

s )
2

〉
, (3.31)
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Figure 3.7.: Effective average value of the running coupling in a thermal medium of tempera-
ture T for light partons with number of flavors nf and only binary interactions. Furthermore,
the standard parametrization of αs(Q) (see Equation (2.2) or the space-like part of Equa-
tion (3.23)) is shown with setting the scale Q to the first Matsubara frequency 2πT [Bel00]
or the temperature T .

where αfixed
s = 0.3 is set. As a note, the average over the particle pairs is weighted with the

probability for a collision of the pair taking place. The factor (αfixed
s )2 cancels the coupling

prefactor in the cross section in the denominator since it is constant. Thus, schematically
written, Equation (3.31) is for t channel processes

〈
αeff
s

〉
=

〈√√√√∫ (phase space) 1
[t−m2

D(αs(t))]2
α2
s(t)∫

(phase space) 1
[t−m2

D(αfixed
s )]2

〉
, (3.32)

If the Debye mass were not αs dependent, the result in the square root would be, therefore,
the cross section with a squared running coupling divided by the cross section without a
coupling. Hence, the square root would be just the average value of the running αs weighted
with the cross section. However, since the coupling also enters in the Debye mass, we call the
left hand side of Equation (3.31) the effective average value of the running coupling.

Figure 3.7 depicts the effective average value of the running coupling as a function of the
temperature of the medium for nf = 3 and nf = 0. The curves are only moderately temperature
dependent and the effective values of the coupling are between 0.3 and 0.5. In addition, the
third curve is obtained for a Debye mass that is calculated with αfixed

s while the coupling
from the prefactor still runs. Thus, it really is the average of the running coupling prefactor
and not only an effective value since the Debye mass dependent terms in Equation (3.31)
cancel out. For this configuration the coupling depends stronger on the temperature, but is
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3. Partonic cross sections

significantly smaller than one due to the cut with αmax
s in Equation (3.23).

For comparison, we also depict the standard running coupling formula from Equation (2.2)
(or, equivalently, the space-like part of Equation (3.23)), which we evaluate at the first
Matsubara frequency 2πT [Bel00] or the temperature T . These curves depend stronger on
the temperature. The values of αs(T ) are always larger than in BAMPS, whereas the values
of αs(2πT ) are slightly smaller. In conclusion, the effective average values of the running
coupling in BAMPS assume comparable values as for macroscopic thermal quantum field theory
estimations [Bel00], although the running coupling in BAMPS is employed on a microscopic
level by evaluating the coupling at the momentum transfer of each collision.

3.2. Inelastic heavy quark scattering

The most important higher order contribution to heavy quark scattering with a gluon or a
light quark is the radiative correction to the binary scattering with an additional gluon in the
final state:

g +Q→ g +Q+ g

q +Q→ q +Q+ g . (3.33)

Parts of the following sections are based on our work for light parton radiative scatterings,
which was published in Ref. [FUXG13], while it is extended to the heavy flavor sector.

A commonly used approximation for the leading order pQCD matrix element of partonic
2↔ 3 processes is a result derived by Gunion and Bertsch (GB) in 1981 [GB82] for light
quark scattering qq′ → qq′g. This approximation gives a comparatively simple expression for
the gluon radiation amplitude in terms of the transverse momentum of the radiated gluon k⊥
and the transverse exchanged momentum q⊥. It has been widely employed for solving transport
problems [XS94, BvDM+93, SMM97, MPST98, Won96b, CDOW10, CDDW11, GAGG10], for
instance, via rate equations or via microscopic transport approaches. In particular, the GB
matrix element is implemented in the partonic transport model BAMPS, which is subject of
this work and in detail introduced in Chapter 4. In Ref. [DA10, AGMM11, BMDA12] some
efforts are made to go beyond the soft GB approximation, while still obtaining a relatively
compact form.

Recently, the results obtained within the BAMPS framework, especially with respect to the
computed shear viscosity [XG08], have been challenged in a paper by Chen et al. [CDDW13],
who claim that a mis- or double-counting of symmetry factors when applying the GB matrix
element to inelastic processes might lead to an overestimation of interaction rates in BAMPS
by a factor of six. Furthermore, a recent work by Zhang [Zha13] has addressed this issue and
finds numerical discrepancies between cross sections based on the GB approximation compared
to full leading order results for the 2→ 3 amplitudes, which have also been known since the
early 1980s [BKDC+81, ES86]. The numerical discrepancy found in Ref. [Zha13] is much less
pronounced than the one claimed in Ref. [CDDW13]. However, it is not fully clear how the
results of these two works compare since both use different screening schemes.

In Ref. [FUXG13] we addressed these issues in great detail by providing extensive numerical
comparisons between the GB approximation and the exact leading order pQCD result for light
partons. We showed that the approximation by Gunion and Bertsch needs to be carefully
corrected in certain phase space regions when being employed to the computation of cross
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3.2. Inelastic heavy quark scattering

sections or rates from the matrix element. To this end, we proposed an improved version of the
GB matrix element that is valid in all regions of phase space. However, we want to emphasize
that the deviations of rates computed in the original GB approximation compared to rates
computed from the improved GB and the exact matrix element are caused deep within the
approximations made by Gunion and Bertsch and are not given by simple symmetry factors
as argued in Ref. [CDDW13].

In the next section we outline the calculation of the improved GB matrix element as it was
presented in Ref. [FUXG13], but generalize it to include also the scattering of a heavy quark.
In Section 3.2.9 we will compare the original GB, the improved GB, and the exact matrix
element numerically for differential and total cross sections considering light parton as well as
heavy quark processes.

3.2.1. Gunion-Bertsch calculation for heavy quark scattering with a light quark

In this section we argue that the approximation to the leading order pQCD matrix element
for qQ→ qQg processes (and more generally for other gluon radiation processes as well) as
computed by Gunion and Bertsch (for light quarks) [GB82] needs to be carefully corrected
when being applied to the computation of cross sections or rates. This correction consists of
two parts:

1. Keeping a kinematic factor (1 − x)2, where x is the fraction of light cone momentum
carried by the radiated gluon.

2. Respecting the symmetry of the process by explicitly combining results from A+ = 0 and
A− = 0 gauges, restricting the emission of gluons to the respective forward direction.

Kinematics, light cone coordinates, and Feynman diagrams

The Feynman diagrams for the process qQ→ qQg are given in Figure 3.8. In the following
we label the four-momentum of the incoming heavy quark with p1. The incoming light quark
is p2. The outgoing heavy and light quarks are p3 and p4, respectively. The radiated gluon is
denoted with k and the momentum transfer of the process or, equivalently, the momentum of
the internal gluon propagator is q. This notation is shown in Figure 3.9 for the example of
diagram 1.

In the present section we use light cone coordinates because these are better suited to
this particular problem than the standard Minkowski coordinates. An arbitrary vector
vµ =

(
v0, v1, v2, v3

)
is written in light cone coordinates as

vµ =
(
v+, v−, v1, v2

)
=
(
v+, v−,v⊥

)
(3.34)

with v± = v0 ± v3 and v⊥ = (v1, v2). The inner product, which is vµw
µ = v0w0 − v1w1 −

v2w2 − v3w3 in Minkowski coordinates, then reads

vµw
µ =

v+w−

2
+
v−w+

2
− v1w1 − v2w2 (3.35)

in light cone coordinates.
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Figure 3.8.: Feynman diagrams for q +Q→ q +Q+ g.
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Figure 3.9.: Feynman diagram (1) for qQ→ qQg with notation for momenta. The label q at
the internal gluon line denotes the momentum of the exchanged gluon and should not to be
confused with the symbol a light quark.
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3.2. Inelastic heavy quark scattering

In the center-of-mass frame, the momenta of the incoming particles in light cone coordinates
are given by

pµ1 =

(√
s,
M2

√
s
, 0, 0

)
pµ2 =

(
0,
s−M2

√
s

, 0, 0

)
. (3.36)

The Lorentz-invariant quantity

x =
k+

p+
1

(3.37)

characterizes the fraction of light cone momentum carried away by the radiated gluon. It can
be related to the rapidity y of the emitted gluon via

x =
k⊥√
s

ey . (3.38)

The Gunion and Bertsch matrix element is derived in the high-energy limit. This means
that the radiated gluon and the momentum transfer of the process are soft,

k⊥ �
√
s

q⊥ �
√
s . (3.39)

The third approximation relates k⊥, q⊥, and x,

xq⊥ � k⊥ . (3.40)

These approximations are explicitly stated by GB in their paper. However, as we will see later
we need in our calculation three additional approximations, that is, x(1− x)s� k2

⊥ and all
components of q and k being soft, qµ, kµ � √s, to end up with the same result as GB. With
the approximations (3.39) as well as (3.40) and from the constraint that all external particles
are on-shell one can explicitly specify k and q in light cone coordinates

kµ =

(
x
√
s,

k2
⊥

x
√
s
,k⊥

)
qµ =

(
−q2
⊥

√
s

s−M2
,
(q⊥ − k⊥)2

(1− x)
√
s

+
k2
⊥

x
√
s

+
x

1− x
M2

√
s
,q⊥

)
. (3.41)

The outgoing momenta are determined by momentum conservation,3

p3 = p1 + q − k
p4 = p2 − q . (3.42)

The original computation of the GB matrix element has been carried out in light cone gauge,
A+ = 0. This implies that the + component of the polarization vector ε(k) is also zero. The

3For the two diagrams where a gluon is radiated by the light quark line, the kinematics look slightly different.
We will address this in more detail when calculating these diagrams.
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3. Partonic cross sections

physical polarizations of the emitted gluon must be transverse to its momentum, ε(k) · k = 0.
With these two constraints the two physical polarization vectors, i = 1, 2, are given by

εµ(i)(k) =

(
0,

2ε
(i)
⊥ · k⊥
x
√
s

, ε
(i)
⊥

)
, (3.43)

where ε
(1)
⊥ = (1, 0) and ε

(2)
⊥ = (0, 1) are possible choices. For brevity we will suppress the

polarization index (i) in the following, keeping in mind that the final polarization sum will
simply amount to the replacement

∑
ε |p · ε⊥|2 = p2.

Before calculating the matrix element of the process qQ → qQg, we first start with the
diagram of binary scattering without an emitted gluon and evaluate this in the high-energy
limit.

Diagram 0: Elastic scattering

Analogous to Section 3.1.1, the matrix element for qQ→ qQ can be obtained employing the
Feynman rules,

iMqQ
0 = ū(p3) igγνλbki u(p1)

−igνσδbc
q2

ū(p4) igγσλcnm u(p2)

=
ig2

q2
λbkiλ

b
nmJν(p3, p1)Jν(p4, p2) =: λbkiλ

b
nmiM

qQ
0 , (3.44)

where we suppressed the spinor indices and defined the matrix element without color factors,

iM qQ
0 =

ig2

q2
Jν(p3, p1)Jν(p4, p2) . (3.45)

Please note that the full matrix element with color factors is denoted with a stylized M, while
the matrix element without color factors is written as a standard M . Furthermore, we define
the source

Jµ(p, p′) := ū(p)γµu(p′) = ū(p)

[
(p+ p′)µ

2m
+
iσµν(p− p′)ν

2m

]
u(p′) . (3.46)

The second relation is called the Gordon identity [PS95]. The mass of the particle is denoted
with m and the tensor σµν = i

2 [γµ, γν ] is a composition of the Dirac matrices γ. Setting
p′ = p+ q and assuming that q � p (which means that all components of q are soft, qµ � √s),
which is basically the eikonal approximation [BP02], the second term is much smaller than the
first and the expression simplifies to

Jµ(p, p+ q) ' ū(p)
(2p+ q)µ

2m
u(p+ q) . (3.47)

In this limit the complicated matrix structure of the quark-gluon vertex disappears. Since
q � p, the normalization of the Dirac spinors, that is ūr(p)us(p) = 2mδrs (r and s are the
spin indices that have been suppressed before), can be inserted and one obtains

Jµ(p, p+ q) ' (2p+ q)µ . (3.48)
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3.2. Inelastic heavy quark scattering

Here, we suppressed the spin indices again while keeping in mind that the δrs from the
normalization becomes important when summing over the initial and final states. This eikonal
approximation essentially amounts to describing the problem in scalar QCD and is responsible
for the fact that the amplitudes of different gluon and quark processes only differ by the color
factor in the high-energy limit.

With this identity the two sources from Equation (3.44) are given by

Jν(p3, p1) ' (2p1 + q)ν

Jν(p4, p2) ' (2p2 − q)ν . (3.49)

After employing these relations and taking the high-energy limit given by the GB approxi-
mations from (3.39), the matrix element (3.44) reads

iMqQ
0 ' 2ig2 λbkiλ

b
nm

s−M2

t
. (3.50)

For the squared matrix element of the elastic process, which is averaged (summed) over initial
(final) states, one obtains with g2 = 4παs

∣∣MqQ→qQ
∣∣2 :=

∣∣∣MqQ
0

∣∣∣2 =
128

9
π2α2

s

(s−M2)2

t2
, (3.51)

which is the same result as Equation (3.29) for t� s and, therefore, u = 2M2−s−t ' 2M2−s
(cf. Appendix A.2).

For future reference we note the connection to the matrix element iM qQ
0 without color factor

from Equation (3.45): ∣∣∣MqQ
0

∣∣∣2 =
C(N)2(N2 − 1)

N2

∣∣∣M qQ
0

∣∣∣2 =
2

9

∣∣∣M qQ
0

∣∣∣2 (3.52)

with the number of colors N = 3 and the invariant C(N = 3) = 1/2 of the fundamental
representation of the SU(N = 3) group associated with QCD.

Having done most of the preparatory work already with computing the elastic matrix element,
the calculation of the bremsstrahlung diagrams will be relatively straightforward.

Diagram 1

The Feynman rules give for diagram 1

iMqQ
1 = ū(p3) ε?µ(k) igγµλakj

i(6p3 + 6k +M)

(p3 + k)2 −M2
igγνλbji u(p1)

−igνσδbc
q2

ū(p4) igγσλcnm u(p2)

= −ig
3

q2
λakjλ

b
jiλ

b
nm

1

(p3 + k)2 −M2
ε?µ(k) Γµν(p3, p3 + k, p1) Jν(p4, p2) , (3.53)

where we defined

Γµνrs (p, k, p′) = ur(p) γµ ( 6k +m) γν us(p′) =
∑
t

Jµrt(p, k)Jνts(k, p
′) , (3.54)
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but again suppressed the spin indices in Equation (3.53). With (p3 + k)2 = M2 + 2p3 · k and
employing the relation (3.48) for the sources the matrix element reads

iMqQ
1 ' −ig

3

q2
λakjλ

b
jiλ

b
nm

1

2p3 · k
ε?µ(k) (2p1 + 2q − k)µ (2p1 + q)ν(2p2 − q)ν

' −g λakjλbjiλbnmiM qQ
0 (1− x)

2 ε⊥ · k⊥
k2
⊥ + x2M2

. (3.55)

In the last step we inserted the matrix element for the elastic scattering without color
factor iM qQ

0 from Equation (3.45). To end up at the GB result when calculating the term
(2p1 + q)ν(2p2 − q)ν the restriction x(1 − x)s � k2

⊥ is required in addition to the standard
GB approximations (3.39) and (3.40). The implication of this additional constraint will be
discussed at the end of this section, around Equation (3.66).

Diagram 2

Diagram 2 is given by

iMqQ
2 = ū(p3) igγνλbkj

i( 6p1 − 6k +M)

(p1 − k)2 −M2
ε?µ(k) igγµλaji u(p1)

−igνσδbc
q2

ū(p4) igγσλcnm u(p2) .

(3.56)

With (p1 − k)2 = M2 − 2p1 · k and the relations (3.54) and (3.48) the matrix element reads

iMqQ
2 ' ig

3

q2
λbkjλ

a
jiλ

b
nm

1

2p1 · k
ε?µ(k) (2p1 − k)µ(2p1 + q − 2k)ν(2p2 − q)ν

' g λbkjλajiλbnmiM qQ
0 (1− x)

2 ε⊥ · k⊥
k2
⊥ + x2M2

. (3.57)

Again the constraint x(1− x)s� k2
⊥ needs to be used.

Diagram 3

For diagrams 3 and 4 the kinematics are slightly different than for the other diagrams since
the gluon is emitted from the lower line. Therefore, the components of the momentum
transfer q need to be redetermined from the on-shell conditions (p2

3 = (p1 + q)2 = 0 and
p2

4 = (p2 − q − k)2 = 0). With the choice of keeping k in the form given in Equation (3.41),
the momentum transfer reads

qµ '
(
−x√s, q

2
⊥ −M2

√
s

,q⊥

)
. (3.58)

Employing the Feynman rules and performing similar simplifications as for the aforementioned
diagrams give for diagram 3

iMqQ
3 = ū(p3) igγσλbki u(p1)

−igνσδbc
q2

ū(p4) ε?µ(k) igγµλanj
i(6p4 + 6k +M)

(p4 + k)2
igγνλcjm u(p2)

' −ig
3

q2
λanjλ

b
jmλ

b
ki

1

2p4 · k
ε?µ(k)(2p2 − 2q − k)µ(2p1 + q)ν(2p2 − q)ν

' −g λanjλbjmλbkiiM qQ
0 (2− x)

ε⊥ · (q⊥ + k⊥)

s−M2
. (3.59)
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3.2. Inelastic heavy quark scattering

In the light cone gauge A+ and the high-energy limit, the contribution from this diagram is
much smaller than that of diagrams 1 and 2 due to the s term in the denominator. Therefore,
we can neglect it in the following.

Diagram 4

For diagram 4 we get

iMqQ
4 = ū(p3) igγσλbki u(p1)

−igνσδbc
q2

ū(p4) igγνλcnj
i(6p2 − 6k +M)

(p2 − k)2
igγµλajm ε

?
µ(k)u(p2)

' ig
3

q2
λbkiλ

b
njλ

a
jm

1

2p2 · k
ε?µ(k)(2p2 − k)µ(2p1 + q)ν(2p2 − 2k − q)ν

= 0 , (3.60)

since ε?µ(k)(2p2 − k)µ = 0.

Diagram 5

The last diagram is the most interesting one due to its three-gluon vertex. With help of the
Feynman rules the matrix element can be written as

iMqQ
5 = ū(p3) igγνλcki u(p1)

−i
(q − k)2

gf cba [gνσ(k − 2q)µ + gσµ(q + k)ν + gµν(q − 2k)ν ]

× ε?µ(k)
−i
q2
ū(p4) igγσλbnm u(p2)

=
g3

q2(q − k)2
f cbaλckiλ

b
nm ε

?
µ(k) [Jν(p3, p1)Jν(p4, p2)(k − 2q)µ

+ Jν(p3, p1)Jµ(p4, p2)(q + k)ν + Jµ(p3, p1)Jν(p4, p2)(q − 2k)ν ]

' −igfabcλckiλbnm iM qQ
0 (1− x)

2 ε⊥ · (q⊥ − k⊥)

(q⊥ − k⊥)2 + x2M2
. (3.61)

Also for diagram 5 it was necessary to employ the constraint x(1− x)s� k2
⊥ in addition to

the standard GB approximations.

Total matrix element

The total matrix element is the sum of all the five diagrams where we can neglect diagram
3 and diagram 4 does not contribute. Using ([λa, λb])ki = ifabcλcki for the sum of diagrams 1
and 2 yields for the total matrix element

iMqQ→qQg ' −igfabcλckiλbnm iM qQ
0 (1− x) 2 ε⊥ ·

[
k⊥

k2
⊥ + x2M2

+
q⊥ − k⊥

(q⊥ − k⊥)2 + x2M2

]
.

(3.62)

The total squared matrix element summed and averaged over spin, polarization, and color
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states can then be computed to

∣∣MqQ→qQg
∣∣2 = 4g2 C(N)2C2(G) (N2 − 1)

N2

∣∣∣M qQ
0

∣∣∣2 (1− x)2

×
[

k⊥
k2
⊥ + x2M2

+
q⊥ − k⊥

(q⊥ − k⊥)2 + x2M2

]2

= 12g2
∣∣MqQ→qQ

∣∣2 (1− x)2

[
k⊥

k2
⊥ + x2M2

+
q⊥ − k⊥

(q⊥ − k⊥)2 + x2M2

]2

(3.63)

with C2(G) = N = 3.
∣∣MqQ→qQ

∣∣2 := |MqQ
0 |2 denotes the averaged squared matrix element for

qQ→ qQ. This result explicitly demonstrates that in the high-energy limit the matrix element
of the 2→ 3 process factorizes into an elastic 2→ 2 part and a gluon emission amplitude.

For the massless case, M = 0, Equation (3.63) reduces to

∣∣Mqq′→qq′g
∣∣2 = 12g2

∣∣Mqq′→qq′
∣∣2 (1− x)2 q2

⊥
k2
⊥(q⊥ − k⊥)2

. (3.64)

Note that the algebraic simplification employed for the term in the bracket in Equation (3.63)
is strictly only valid if the propagator terms 1/k2

⊥ and 1/(q⊥ − k⊥)2 are not screened with a
Debye mass, cf. Section 3.2.9.

The factor (1−x)2 in Equation (3.63) or (3.64) leads to a sizeable suppression of the amplitude
at forward rapidity, where x > k⊥/

√
s, which is immediately evident from Equation (3.38).

At the maximal rapidity that is kinematically allowed for a given transverse momentum,
ymax = ln(k⊥/

√
s), x is 1 and the factor (1− x)2 completely suppresses the matrix element.

While Gunion and Bertsch have the (1 − x) terms in their intermediate results for the
single diagrams, they were mostly interested in emission spectra in the mid-rapidity region,
x ' k⊥/

√
s� 1, and, thus, omitted the (1− x) terms from their final results. The amplitude

then simplifies to

∣∣Mqq′→qq′g
∣∣2 ' 12g2

∣∣Mqq′→qq′
∣∣2 q2

⊥
k2
⊥(q⊥ − k⊥)2

, (3.65)

which is the formula that has been mostly used in the literature as the GB matrix element
since then [XS94, BvDM+93, SMM97, Won96b, MPST98, CDOW10, CDDW11] and that
has also been implemented in the transport model BAMPS [XG05]. When computing cross
sections or rates from Equation (3.64), however, the phase space integration covers the entire
rapidity region and factors (1− x) must not be omitted. Hence, Equation (3.64), rather than
Equation (3.65), need to be employed when computing rates for 2→ 3 processes in the GB
approximation.

The second modification that has been mentioned at the beginning of this section is somewhat
more subtle. In order to arrive at the simple results for the single diagrams, the approximation

x(1− x)s� k2
⊥ (3.66)

is needed. It is instructive to study this constraint for the two extreme cases of large and small
x.
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1. Large x (x . 1): Equation (3.66) then reads (1 − x)s � k2
⊥, which is equivalent to

y � ln
√
s/k⊥ for k2

⊥ � s, where the definition of x from Equation (3.38) has been used.
From kinematic considerations (see text after Equation (3.108)) one obtains that this is
not a very strong constraint since the rapidity is always smaller than ln

√
s/k⊥ anyhow,

y ≤ ymax = arccosh
s−M2

2
√
sk⊥

' ln
s−M2

√
sk⊥

< ln

√
s

k⊥
. (3.67)

Furthermore, the matrix element itself is small for large x due to the 1 − x factor.
Consequently, Equation (3.66) is not really relevant in this regime.

2. Small x (x � 1): Equation (3.66) then simplifies to xs � k2
⊥. Using Equation (3.38)

again, this is equivalent to y � ln k⊥/
√
s. Since k2

⊥ � s, the approximation includes the
mid-rapidity region, but not the backward rapidity region where y ∼ ln k⊥/

√
s.

Hence, the results (3.63) and (3.64) are only valid at mid-rapidity, where x is small, and for
forward emitted gluons, but not in the backward rapidity region. The constraint (3.66) goes
beyond the approximations (3.39) and (3.40) and has not been mentioned in the original GB
publication [GB82].

Qualitatively, the need for a restriction such as Equation (3.66) can be understood when
noting that the process qq′ → qq′g is symmetric in interchanging q and q′ and, therefore, the
resulting amplitude should be symmetric in the rapidity of the emitted gluon. Terms including
x, however, are evidently not symmetric in y, cf. Equation (3.38), and, thus, the result (3.64)
does not obey the symmetry that should be present. This consideration nicely matches the
analytic finding that Equation (3.64) is valid only in the forward and mid-rapidity region.

One can, however, carry out the same calculation in the A− = 0 gauge. In this gauge,
diagrams 3, 4 and 5 have sizeable contributions, while diagrams 1 and 2 do not contribute to
the final amplitude. Setting

x′ =
k⊥√
s

e−y , (3.68)

the final result for the averaged squared matrix element in A− = 0 gauge reads∣∣MqQ→qQg
∣∣2 = 12g2

∣∣MqQ→qQ
∣∣2 (1− x′)2

[
k⊥
k2
⊥

+
q⊥ − k⊥

(q⊥ − k⊥)2

]2

. (3.69)

Note that no mass terms are present in the denominators of the bracket since the gluon is now
emitted off the light quark line. Apart from this, Equation (3.69) is simply the result obtained
from the A+ = 0 gauge, cf. (3.63), with x being replaced by x′. Since both results are also
valid at mid-rapidity it is self-evident to combine Equations (3.63) and (3.69) to

∣∣MqQ→qQg
∣∣2 = 12g2

∣∣MqQ→qQ
∣∣2 [Θ(y)(1− x)2

[
k⊥

k2
⊥ + x2M2

+
q⊥ − k⊥

(q⊥ − k⊥)2 + x2M2

]2

+Θ(−y)(1− x′)2

[
k⊥
k2
⊥

+
q⊥ − k⊥

(q⊥ − k⊥)2

]2
]

' 12g2
∣∣MqQ→qQ

∣∣2 (1− x̄)2

[
k⊥

k2
⊥ + x2M2

+
q⊥ − k⊥

(q⊥ − k⊥)2 + x2M2

]2

, (3.70)

45



3. Partonic cross sections

where we have defined

x̄ =
k⊥√
s

e|y| . (3.71)

Going from the first to the second line we added the terms x2M2 also in the denominators of
the backward rapidity terms proportional to Θ(−y). This is valid within the approximations
since x (not x′ or x̄) is small at backward rapidity according to its definition (3.38). In the
following we refer to this result as the improved GB matrix element since it is not only valid
at mid-rapidity, but also at forward and backward rapidity. In Section 3.2.9 we compare this
result to the exact matrix element without any approximations.

As a note, the idea of decomposing the phase space in forward and backward rapidities was
also used in Ref. [Gui06] for the inelastic scattering of a light and heavy quark in the GB
approximation, although the (1− x̄)2 factor was neglected.

The observed factorization of the GB matrix element into an elastic part and a gluon emission
amplitude in the high-energy limit, cf. for instance Equation (3.70), immediately implies that
the GB calculation is also valid for other 2 → 3 processes, such as Qg → Qgg or for light
partons qg → qgg or gg → ggg. In the high-energy limit of the GB approximations the specific
nature of the scattering particles becomes irrelevant for the structure of the resulting matrix
elements. Therefore, Equation (3.70) also holds for processes other than the one explicitly
considered here if one takes into account the different color prefactors of the corresponding
2→ 2 small angle amplitudes,

∣∣MgQ→gQ
∣∣2 ' 9

4

∣∣MqQ→qQ
∣∣2 , (3.72)

and for light partons,

∣∣Mgg→gg
∣∣2 ' 9

4

∣∣Mqg→qg
∣∣2 ' (9

4

)2 ∣∣Mqq′→qq′
∣∣2 . (3.73)

For the case of a heavy quark scattering with a gluon we verify this explicitly in the next
section.

3.2.2. Gunion-Bertsch calculation for heavy quark scattering with a gluon

The process g+Q→ g+Q+g has 16 diagrams, much more than for the heavy quark scattering
with a light quark, due to the self-coupling of the gluon. However, in the approximation of a
soft momentum transfer, the Mandelstam variable t is small and, therefore, the t channel
dominates the total cross section. As a consequence, we can neglect the other channels and
consider only the t channel, which has—besides one additional diagram—the same diagrams
as in the previous section if one substitutes the light quark by a gluon, see Figure 3.10.
Nevertheless, the calculation gets considerably more complicated due to the three-gluon
vertices. The additional diagram 6 in Figure 3.10, is suppressed by the kinematics of the
four-gluon vertex and can be neglected.

We start calculating the elastic scattering of a heavy quark and a gluon with the Gunion
and Bertsch approximations.
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3.2. Inelastic heavy quark scattering

Diagram 0: Elastic scattering

The matrix element for gQ→ gQ reads

iMgQ
0 = ū(p3) igγνλbki u(p1)

−igνρδbc
q2

ε?δ(p4) εσ(p2)

× gf cmn
[
gρσ(−q − p2)δ + gσδ(p2 + p4)ρ + gδρ(−p4 + q)σ

]
=
g2

q2
λbkif

bmnJν(p3, p1)F ν(p4, p2,−q) =: λbkif
bmn iMgQ

0 . (3.74)

The source Jν(p3, p1) describes the quark-gluon vertex and is defined in Equation (3.46). We
denote the contribution of the three-gluon vertex with

F ν(p′, p, q) = ε?δ(p
′) εσ(p)

[
gνσ(q − p)δ + gσδ(p+ p′)ν + gδν(−p′ − q)σ

]
= ε?δ(p

′) εσ(p)
[
gνσ(−p′ + 2q)δ + gσδ(2p+ q)ν + gδν(−p− 2q)σ

]
= ε?δ(p

′) εσ(p)
[
gνσ(2q)δ + gσδ(2p+ q)ν + gδν(−2q)σ

]
' ε?δ(p) εσ(p)gσδ(2p+ q)ν , (3.75)

where we made use of the transverse polarization of the gluons, ε(k) · k = 0, and employed the
eikonal approximation (p′ = p+ q with q � p) in the second to last and last step, respectively.
The polarization states in Equation (3.75) vanish when the summing and averaging of the
squared matrix element is performed (cf. Equation (3.8)).4 Therefore, we adopt a somewhat
sloppy notation and just write

F ν(p+ q, p, q) ' (2p+ q)ν . (3.76)

Comparing this result to Equation (3.48) shows that in the eikonal approximation the three-
gluon vertex has the same kinematics as the quark-gluon vertex—only the color factor is
different.

The matrix element without color factor is defined analogously to iM qQ
0 from Equation (3.45)

as

iMgQ
0 =

g2

q2
Jν(p3, p1)F ν(p4, p2,−q) , (3.77)

which is equal to iM qQ
0 in the eikonal approximation since F ν(p4, p2,−q) ' Jν(p4, p2). This is

a remarkable result that simplifies the calculation substantially because we can adopt nearly
every result of the previous section and only have to worry about the color factor.

Doing the color algebra, the squared and averaged matrix element is∣∣∣MgQ
0

∣∣∣2 =
C(N)C2(G) (N2 − 1)

N(N2 − 1)

∣∣∣MgQ
0

∣∣∣2 =
1

2

∣∣∣MgQ
0

∣∣∣2
=

C2(G)N

C(N)(N2 − 1)

∣∣∣MqQ
0

∣∣∣2 =
9

4

∣∣∣MqQ
0

∣∣∣2
' 32π2α2

s

(s−M2)2

t2
. (3.78)

4This is related to the sum of the spin states for the quark-gluon vertex. The result in both procedures is the
same: The spin/polarization states do not contribute to the result.
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Figure 3.10.: Feynman diagrams for the t channel of the process g +Q→ g +Q+ g in lowest
order.

This is the same result as Equation (3.11) for the eikonal approximation t� s, as one would
expect.

Neglecting diagram 6 in Figure 3.10, we now turn to the calculation of the radiative diagrams.

Diagrams 1 to 5

Since the three-gluon vertex has the same kinematics as the quark-gluon vertex in the high-
energy limit, the results of all diagrams are the same as in Section 3.2.1 apart from the color
factor.

Therefore, we can copy the result from Equation (3.62) with the adjusted color factor, which
gives

iMgQ→gQg ' −igfabcf bmnλcki iMgQ
0 (1− x) 2 ε⊥ ·

[
k⊥

k2
⊥ + x2M2

+
q⊥ − k⊥

(q⊥ − k⊥)2 + x2M2

]
.

(3.79)
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The squared and averaged matrix element is then

∣∣MgQ→gQg
∣∣2 = 4g2 C(N)C2(G)2

N

∣∣∣MgQ
0

∣∣∣2 (1− x)2

[
k⊥

k2
⊥ + x2M2

+
q⊥ − k⊥

(q⊥ − k⊥)2 + x2M2

]2

= 12g2
∣∣MgQ→gQ

∣∣2 (1− x)2

[
k⊥

k2
⊥ + x2M2

+
q⊥ − k⊥

(q⊥ − k⊥)2 + x2M2

]2

. (3.80)

As it was the case for qQ→ qQg, the result is only valid at forward and mid-rapidity. Along
the same line of argumentation (cf. Equation (3.70) and surrounding text), it can be generalized
to the improved version of the GB matrix element by substituting (1− x)→ (1− x̄),

∣∣MgQ→gQg
∣∣2 = 12g2

∣∣MgQ→gQ
∣∣2 (1− x̄)2

[
k⊥

k2
⊥ + x2M2

+
q⊥ − k⊥

(q⊥ − k⊥)2 + x2M2

]2

. (3.81)

To sum this and the previous section up, one can split the squared matrix element of the
QCD bremsstrahlung process into the contribution from the elastic scattering plus a radiative
factor P gM in the high-energy limit

∣∣Mg(q)+Q→g(q)+Q+g

∣∣2 =
∣∣Mg(q)+Q→g(q)+Q

∣∣2 P gM (3.82)

with

P gM = 12g2 (1− x̄)2

[
k⊥

k2
⊥ + x2M2

+
q⊥ − k⊥

(q⊥ − k⊥)2 + x2M2

]2

, (3.83)

which depends on the mass M of the heavy quark.

The final result (3.82) is proportional to g6 or α3
s due to the three vertices, two associated

with the 2 → 2 part and one with the emitted gluon. Explicitly considering the running of
the coupling, it is sensible to choose proper scales since this reduces the influence of higher
orders (cf. also the discussion before Equation (3.27)). The relevant scale for the binary part
is the momentum transfer t, the same as for the 2→ 2 matrix element, see Equation (3.29).
The only scale associated with the vertex of the emitted gluon is its transverse momentum k⊥.
Hence, the coupling of the 2→ 3 matrix element goes with α2

s(t)αs(k
2
⊥). For the binary part

of the matrix element one can insert the results from Section 3.1, Equations (3.27) and (3.29).
In the presence of a medium and a running coupling, the radiation factor from Equation (3.83)
modifies to

P gM = 48παs(k
2
⊥) (1− x̄)2

[
k⊥

k2
⊥ + x2M2

+
q⊥ − k⊥

(q⊥ − k⊥)2 +m2
D

(
αs(k2

⊥)
)

+ x2M2

]2

. (3.84)

The first term in the bracket does not need to be screened by a screening mass since the
infrared divergence is cured by the LPM effect, as shown in Section 3.2.7. The second term
stems from diagram 5 in Figure 3.8 and resembles the propagator from one of the internal
gluon lines. Hence, it must be screened with the gluon Debye mass.
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3.2.3. Radiative heavy quark processes in Feynman gauge

In this section we rederive the matrix element for the process q +Q→ q +Q+ g in Feynman
gauge [AGM+12]. Of course, a matrix element should be gauge independent if no approxi-
mations are employed. However, using approximations can break the gauge invariance or at
least restrict the region of validity, as we have seen in the previous two sections. Although we
do the calculation in Feynman gauge with slightly different approximations than in the GB
case in light cone gauge (see Section 3.2.1), we show that both calculations agree within their
approximations, which is an independent check that our calculations are correct. Furthermore,
we compare the GB result to the exact matrix element in Section 3.2.9 to also verify that the
employed approximations are reasonable.

In Figure 3.8 the five Feynman diagrams for the process qQ→ qQg are shown. We assume
very soft gluon emission (k → 0) [BKDC+81], which implies for the Mandelstam variables
defined in Appendix A.2 that t′ → t, s′ → s, u′ → u and for the longitudinal momentum
fraction from Equations (3.38) and (3.71) x, x̄→ 0, respectively. In the center of momentum
frame we consider the case where the energy of the emitted gluon ω is much smaller than the
momentum transfer

√
|t| ≈ q⊥ from the projectile (heavy quark) to the target (light quark)

which again is small compared to the energy E of the heavy quark. This leads to the hierarchy

E �
√
|t| � ω . (3.85)

This hierarchy is very similar to (3.39) and (3.40) used in the Gunion-Bertsch calculation,
but is stricter in the sense that the emitted gluon must be also soft compared to the momentum
transfer t. This significantly simplifies the calculation in Feynman gauge. It is important to
note that—like in the Gunion-Bertsch calculation—the scaled mass of the heavy quark with
its energy M/E and the gluon emission angle θ are free from any constraints.

The gauge invariant amplitude for the process qQ→ qQg can be written as the sum of the
squared matrix elements from the diagrams of Figure 3.8, including their interference terms,∣∣MqQ→qQg

∣∣2 =
∑
i≥j
M2

ij , (3.86)

where i and j run from 1 to 5 andM2
ij =MiM∗j withMi being the matrix element of diagram

i (see Figure 3.8).
With the hierarchy indicated in (3.85) the different squared matrix elements are obtained in

Feynman gauge as

M2
11 =M2

22 =
128

27
g6 s

2

t2
1

k2
⊥

[
M2

s
− 1 + J

]
J

M2
33 =M2

44 =M2
55 = 0

M2
12 =

128

27
g6 s

2

t2
1

k2
⊥

[
1

4

(
M2

s
− 1 + J

)]
J

M2
14 =M2

23 =
128

27
g6 s

2

t2
1

k2
⊥

[
7

8

(
1− M2

s

)]
J

M2
13 =M2

24 =
128

27
g6 s

2

t2
1

k2
⊥

[
1

4

(
1− M2

s

)]
J

M2
34 =M2

15 =M2
25 =M2

35 =M2
45 = 0 (3.87)
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with

J = 1−
[( s

M2
− 1
)

sin2(θ/2) + 1
]−1

(3.88)

and k⊥ = ω sin θ, the transverse momentum of the emitted gluon. For the calculation of the
matrix elements the programs REDUCE and CalcHep [Sem09] have been used. We note that
the results are in accordance with the matrix elements obtained from the process qq̄ → QQ̄g
from Ref. [KPR80] by crossing the light anti-quark and the heavy anti-quark.

The gauge invariant amplitude for the process qQ→ qQg can now be obtained by summing
all the sub-amplitudes given in Equation (3.87),∣∣MqQ→qQg

∣∣2 = 12g2
∣∣MqQ→qQ

∣∣2 1

k2
⊥

J 2(
1− M2

s

)2

= 12g2
∣∣MqQ→qQ

∣∣2 1

k2
⊥

(
1 +

M2

s tan2( θ2)

)−2

= 12g2
∣∣MqQ→qQ

∣∣2 1

k2
⊥

(
1 +

M2

s
e2y

)−2

, (3.89)

where y = η = − ln[tan(θ/2)] is the rapidity of the emitted massless gluon. The two body

amplitude
∣∣MqQ→qQ

∣∣2 is given in this limit in Equation (3.51).
It is the same matrix element as obtained from the GB calculation in Section 3.2.1 if one

applies there the same limit as in this section, that is, the emitted gluon being much softer
as the momentum transfer t. This constraint, given in Equation (3.85) implies for light-cone
coordinates that q⊥ � k⊥ and x, x̄→ 0. The Gunion-Bertsch result from Equation (3.70)
then reduces to∣∣MqQ→qQg

∣∣2 ' 12g2
∣∣MqQ→qQ

∣∣2 [ k⊥
k2
⊥ + x2M2

]2

= 12g2
∣∣MqQ→qQ

∣∣2 1

k2
⊥

(
1 +

x2M2

k2
⊥

)−2

.

(3.90)

As a note, the x2M2 term in the denominator cannot be neglected with respect to k2
⊥, although

x→ 0, since also k⊥ → 0. Plugging in the definition of the longitudinal momentum fraction
from Equation (3.38), x = k⊥ ey/

√
s, yields the same result as Equation (3.89). Therefore, we

find that within the approximations (3.85) of a very soft emitted gluon the result in light cone
gauge and Feynman gauge agree with each other, which indicates that our result is gauge
invariant—at least in the phase space region where the emitted gluon is very soft.

As we saw in the previous paragraph, in the limit q⊥ � k⊥ the second term of the GB
result from Equation (3.70) vanishes. This is the contribution that stems from diagram 5
in Figure 3.8. Consistently, also in Equation (3.87) in Feynman gauge all terms that have
contributions from diagram 5 vanish. Hence, in other words, the approximations employed in
this section higlight the QED-like diagrams of the process and neglect the emission from the
internal gluon line, which is unique to QCD.

3.2.4. Dead cone effect

The dead cone effect, that is, the suppression of gluon emission off a heavy quark at small
angles, should be also visible in our results from the previous sections, which is shown in this
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section and compared to the original result of Dokshitzer and Kharzeev [DK01]. They
calculated the radiation spectrum of a gluon emitted off a heavy quark for a large heavy quark
energy, E �M , and small angle θ of the gluon with respect to the outgoing heavy quark. In
addition, they neglected the diagram in which the gluon can also be emitted off the exchanged
gluon between the heavy quark and the medium particle (diagram (5) in Figure 3.8), which
corresponds to the limit q⊥ � k⊥.

First, we derive the dead cone effect for these approximations to find the same result as
Dokshitzer and Kharzeev. Consequently, we show that the dead cone suppression factor is
also present in our results—and that it even has a larger level of validity than the one from
Ref. [DK01]. More specifically, our result is valid for all heavy quark masses as well as all
angles of the emitted gluon and reduces to the result of Ref. [DK01] for small masses and
small angles.

As we saw in the last section, for q⊥ � k⊥ the matrix element for qQ → qQg from
Equation (3.70) is dominated by the first term in the bracket going basically with 1/k2

⊥ (cf.
Equation (3.89)),

∣∣MqQ→qQg
∣∣2 ' 12g2

∣∣MqQ→qQ
∣∣2 (1− x̄)2

[
k⊥

k2
⊥ + x2M2

]2

. (3.91)

For small angles θ the components of the momentum of the emitted gluon can be approxi-
mated by kz ' ω and k⊥ = ω sin θ ' ω θ. The momentum fraction x of the gluon with respect
to the incoming heavy quark is then given by

x =
k+

p+
' 2ω√

s
' 2ω

2E
=
ω

E
' k⊥
θ E

, (3.92)

where we used in the third step E �M . If we insert this in Equation (3.91), we end up with

∣∣MqQ→qQg
∣∣2 ' 12g2

∣∣MqQ→qQ
∣∣2 (1− x̄)2 k2

⊥(
k2
⊥ + x2M2

)2
' 12g2

∣∣MqQ→qQ
∣∣2 (1− x̄)2 1

k2
⊥
DDK , (3.93)

where we defined the dead cone factor as

DDK =
1(

1 + M2

θ2 E2

)2 =
1(

1 +
θ2
D
θ2

)2 (3.94)

with the dead cone angle θD = M/E. This is exactly the same expression that was found in
Ref. [DK01] and named the dead cone suppression factor.

In Figure 3.11 the dead cone factor DDK is depicted as a function of θ. For a massless
quark, the suppression vanishes and DDK = 1 for all angles. For finite masses, small angles
are suppressed, which is the manifestation of the dead cone effect. With increasing mass the
suppression gets more pronounced. The dead cone angle θD = M/E is an indicator where
the transition between suppression and standard radiation occurs, although this transition is
actually smeared out over a rather broad range for larger masses. More precisely, θD labels the
angle at which the radiation off a heavy quark is only 25 % (DDK = 1/4) of the radiation off a
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Figure 3.11.: The dead cone factor DDK as a function of the angle θ between the emitted gluon
and the heavy quark for an incoming heavy quark with an energy of 10 GeV and different
masses. The vertical lines indicate where the dead cone angle θD = M/E is located for the
respective masses.

massless quark (cf. Equation (3.94)). Therefore, the angle θD can be interpreted as the angle
of a dead cone around a heavy quark. Within this cone the radiation is suppressed, but—in
principle—still allowed with a small probability.

In general, without employing the approximations given above, the dead cone factor can be
defined as the radiation spectrum of a gluon emitted off a heavy quark as given in Equation (3.83)
divided by the spectrum for the massless case,

DGB =
P gM
P g0

. (3.95)

In contrast to DDK an explicit dependence on k⊥, q⊥, and the angle between both, φ, remains.
For E �M , a small angle θ, and q⊥ � k⊥ the more general dead cone factor DGB simplifies
to DDK.

Figure 3.12 shows the dead cone factor DGB as a function of θ for M/
√
s = 0.1 and φ = 1.0

as well as different parameter sets for k⊥ and q⊥. Especially for large θ, the suppression factor
DGB deviates from DDK since the latter is only applicable for small angles. While DDK goes
back to zero for large angles—thus, creating a second artificial dead cone around the light
parton—DGB saturates at one, as it is expected. If k⊥ and q⊥ are of the same order, the dead
cone is even more pronounced than that of Dokshitzer and Kharzeev. The dead cone factor
is also strongly dependent on the the angle φ and the mass M . For small φ the suppression
is considerably larger than DDK, whereas for φ = π/2 the suppression factor DGB does not
depend on k⊥ and q⊥ anymore (both not plotted). For large masses M the suppression of
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Figure 3.12.: The dead cone factor DGB as a function of the angle θ between the emitted gluon
and the heavy quark for M/

√
s = 0.1 and φ = 1.0 (the angle between k⊥ and q⊥). The

curves are for different values of k2
⊥/s and q2

⊥/s. In addition, the result of Ref. [DK01] is
shown. The vertical line indicates the dead cone angle θD = M/E.

DGB is also significantly larger than DDK for the same mass, as shown in Figure 3.13 for
M/
√
s = 0.8. This difference comes due to the approximation E �M employed for DDK.

To study the suppression factor DGB in more detail we once again employ the approximation
q⊥ � k⊥, but do not put any constraints on the heavy quark mass or the angle of the emitted
gluon as has been done by Dokshitzer and Kharzeev. The suppression factor then reads

DGB =
P gM
P g0
'

[
k⊥

k2
⊥+x2M2

]2

[
k⊥
k2
⊥

]2 =

(
1 +

x2M2

k2
⊥

)−2

=

(
1 +

M2

s tan2( θ2)

)−2

=: DAGMMU (3.96)

and does not depend on k⊥ or q⊥ anymore. As a note, this is also the result that one would
directly obtain from our result in Feynman gauge, see Equation (3.89), due to the given
hierarchy (3.85) [AGM+12]. Therefore, we name this suppression factor in the very soft gluon
approximation in the following DAGMMU after the authors of our paper [AGM+12]. It is valid
in the full range of θ—or rapidity of the emitted gluon—(i.e., −π < θ < +π) and in the full
range of m = M/

√
s (i.e., 0 < m < 1). As can be seen in Figure 3.14 the suppression is rather

narrow in θ for small m, but becomes very wide for large masses. The valley around θ ' 0
clearly indicates the presence of the dead cone in the forward direction with respect to the
propagating heavy quark. In the backward region, θ ' ±π, the suppression factor saturates to
unity. This suggests that the quark mass plays only a role in the forward direction where the
energy of the quark becomes of the order of its mass.
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Figure 3.15.: The suppression factor (3.96) as a function of θ (labeled as AGMMU) compared
to the result of Dokshitzer and Kharzeev [DK01] (DK) for different m = M/

√
s. Note

that the latter is only valid at small angles.

In the limit M � √s and θ ' 0, it is
√
s ' 2E and tan(θ/2) ' θ/2 and Equation (3.96)

reduces to the result of Dokshitzer and Kharzeev from Equation (3.94). Figure 3.15
compares the suppression factor (3.96) to that given in Equation (3.94) as a function of the
emission angle θ for two values of the mass, m = 0.2 and 0.4. The result of Dokshitzer and
Kharzeev [DK01] agrees with our result in the domain of a small emission angle. However,
the little variation in this region is due to the constraint M � √s employed in Ref. [DK01],
whereas no such constraint is set in our calculation. For large emission angles the suppression
factor DAGMMU approaches unity. This indicates that the backward emission is as strong as
for light quarks. In this domain the result of Ref. [DK01] is not valid.

To summarize this section, our results contain a generalized suppression factor for gluon
emission off a heavy quark through the scattering with a light parton. In the appropriate
limit this expression reduces to the usually known dead cone factor. Our analysis shows that
there is a suppression of soft gluon emission due to the mass of the heavy quark in the forward
direction. On the other hand, the present findings also indicate that a heavy quark emits
a soft gluon almost similar to that of a light quark in the backward rapidity region. This
is an important aspect for gluon emission off a heavy quark which was not explored earlier
[MPST98, DK01, DAM10, KPS10]. Instead, some models [TKS05, XDZ05, ZZX07, DAM10,
MBAD11] employ the simplified dead cone formula (3.94) from Ref. [DK01] for all angles,
which gives an additional suppression in the backward region that should not be there.

The impact of the improved GB matrix element, which gives the correct suppression pattern,
on the energy loss of heavy quarks in a static medium and on heavy flavor observables in
heavy-ion collisions is studied in Sections 5.3 and 6.2, respectively.
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3.2. Inelastic heavy quark scattering

3.2.5. Total cross section

In Sections 3.2.1, 3.2.2, and 3.2.3 the matrix elements for radiative processes involving a heavy
quark have been calculated. To carry out collisions one needs the total cross section, which is
obtained by integrating over the available phase space.

According to Equation (3.1) the total cross section of a 2→ 3 process (p1 + p2 → p3 + p4 +k,
where k is the radiated gluon) is defined by

σ23 =
1

2E1 2E2 vrel

1

ν

∫
d3p3

(2π)32E3

d3p4

(2π)32E4

d3k

(2π)32k0

× (2π)4δ(4)(p1 + p2 − (p3 + p4 + k))
∣∣M2→3

∣∣2 , (3.97)

where we used the same notation as in Section 3.2.1. Note that the symmetry factor ν = n!,
which accounts for n identical particles in the final state, is not needed when computing
cross sections from the (improved) GB matrix element. In this case the specific choice and
identification of the outgoing momenta, where k is the momentum of the radiated gluon, selects
a specific configuration and, thus, obviates the need for a symmetry factor 1/ν. This is taken
into account for all calculations involving the original or improved GB matrix elements in
this work and has also been correctly implemented in BAMPS from the beginning [XG05].
However, when we compare to the exact matrix elements in Section 3.2.9 the symmetry factors
must be explicitly considered when calculating the cross section of the exact matrix elements
since gluons are treated as indistinguishable particles in these matrix elements.

To obtain the total cross section of radiative heavy quark processes we want to insert the
Gunion-Bertsch cross section from the previous sections. However, this is not given in terms
of the four-momenta p3, p4, and k but in terms of q⊥, k⊥, and x̄ in the center-of-mass frame (cf.
Equation (3.82)). More precisely, it only depends on the scalars x̄, q2

⊥, and k2
⊥ as well as on the

angle φ between q⊥ and k⊥ through the terms q⊥ ·k⊥ = q⊥k⊥ cosφ. Consequently, we rewrite
the integrals in Equation (3.97) as integrals over q2

⊥, k2
⊥, φ and the rapidity of the emitted

gluon y, which is related to x̄ via Equation (3.71). Along this way we generalize previous
considerations [XG05, Foc11] to quarks with finite masses. Another advantage of changing
to these variables is the numerical efficiency. Instead of performing the nine-dimensional
integration in Equation (3.97) one can analytically integrate out the delta function to end up
with only a five dimensional integral, which can be reduced to a four dimensional integral by
performing one angle integration directly.

Employing for p4 the general relation∫
d3p

2E
=

∫
d4p δ(p2 −m2) Θ(p0) , (3.98)

which follows from a property of the delta function,

δ
(
f(x)

)
=
∑
i

1

|f ′(xi)|
δ(x− xi) , (3.99)

where xi are the roots of f(x), and performing the integral over p4 yields

σ23 =
1

128π5

1

ν

1

2E1 2E2 vrel

∫
d3p3

E3

d3k

k0
δ(F )

∣∣M2→3

∣∣2 . (3.100)
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3. Partonic cross sections

The argument of the δ function F = (p1 + p2 − p3 − k)2 −m2
4 can also be expressed in terms

of the new variables,

F = s− 2
√
s

(√
q2
⊥ +m2

3 cosh y3 + k⊥ cosh y

)
+ 2q⊥k⊥ cosφ+m2

3 −m2
4

+ 2
√
q2
⊥ +m2

3 k⊥ (cosh y3 cosh y − sinh y3 sinh y) , (3.101)

where y (y3) denotes the rapidity of the particle with momentum k (p3) and mi is the mass
corresponding to pi.

For a particle with momentum p the derivative of the rapidity with respect to pz is dy/dpz =
1/E and, thus, d3p/E = d2p⊥dy = 1

2dp2
⊥dφ′dy. Employing this relation for p3 and k,

respectively, performing one of the φ′ integration (e.g., φ′p3
from d3p3), and choosing the

coordinate system such that the other φ′ (e.g., φ′k from d3k) corresponds to φ, one ends up
with

σ23 =
1

128π4

1

ν

1

2E1 2E2 vrel

∫
dq2
⊥ dy3 dk2

⊥ dy dφ δ(F )
∣∣M2→3

∣∣2 . (3.102)

By performing the y3 integration and making use of Equation (3.99) the final result of the
total cross section of a 2→ 3 process is given by

σ23 =
1

128π4

1

ν

1

2E1 2E2 vrel

∫
dq2
⊥ dk2

⊥ dy dφ
∣∣M2→3

∣∣2∑(
∂F

∂y3

∣∣∣∣
F=0

)−1

. (3.103)

The derivative of F reads

∂F

∂y3
= −2

[(√
s− k⊥ cosh y

)
pz3 +

√
q2
⊥ + pz3

2 +m2
3 k⊥ sinh y

]
(3.104)

and the solutions for F = 0 are

pz3 =
−b±

√
b2 − 4ac

2a
, (3.105)

with

a =
(√
s− k0

)2 − k2
z

b = kz
(
s− 2

√
s k0 + 2q⊥k⊥ cosφ+m2

3 −m2
4

)
c =

(√
s− k0

)2 (
q2
⊥ +m2

3

)
− 1

4

(
s− 2

√
s k0 + 2q⊥k⊥ cosφ+m2

3 −m2
4

)2
. (3.106)

Furthermore, the solutions have to satisfy the additional constraint

s− 2
√
s k0 + 2q⊥k⊥ cosφ− 2pz3 kz +m2

3 −m2
4 ≥ 0 . (3.107)

As a check, we have confirmed numerically that both formulas for the total 2→ 3 cross section,
(3.97) and (3.103), give the same results.

So far the derivation applies to all 2→ 2 +g processes, regardless of the mass of the particles
(only the emitted gluon must be massless). For a scattering of a heavy quark with mass M
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3.2. Inelastic heavy quark scattering

(Einitial
jet , 0, 0, pz) (Efinal

jet ,−~k⊥, (1− x)pz)

(ω,~k⊥, xpz)

Figure 3.16.: Kinematics of gluon radiation off a heavy quark jet. The four-momenta of the
individual particles are shown.

and a light parton, Equation (3.103) reads

σg(q)+Q→g(q)+Q+g =
1

256π4

1

ν

1

s−M2

(s−M2)2

4s∫
0

dq2
⊥

(s−M2)2

4s∫
0

dk2
⊥

ymax∫
ymin

dy

π∫
0

dφ

×
∣∣Mg(q)+Q→g(q)+Q+g

∣∣2∑(
∂F

∂y3

∣∣∣∣
F=0

)−1

, (3.108)

where we used Equation (3.3) and restored the boundaries of the integrals, which are deter-
mined from kinematics. The available phase space limits the rapidity range to ymax /min =
± arccosh

[
(s−M2)/2

√
sk⊥

]
. However, as we will see in Section 3.2.8 an additional constraint

due to the Landau-Pomeranchuk-Migdal (LPM) effect also restricts the rapidity range.
For massless particles the LPM effect also introduces a lower cut-off for k⊥, which is not present
for massive particles. However, the interplay between the LPM effect and the dead cone effect
prevents also for heavy quarks a divergence of the total cross section (see Figure 3.19 and
surrounding text).

3.2.6. Formation time of a gluon emitted off a heavy quark

The radiation of a gluon off a heavy quark jet is a quantum mechanical process that does
not happen instantaneously, but has a certain formation time. According to the uncertainty
principle the formation time τ is of the order of the inverse of the virtuality ∆E of the process,

τ ' 1

∆E
. (3.109)

The virtuality of the process can be determined by adding up all energies of the involved
particles. If all the particles were on-shell, the sum would be zero. A finite value gives the
off-shellness or virtuality of the process.

We consider a fast heavy quark jet in the lab frame that radiates a soft gluon. Due to the
boost the gluon is emitted at small angles even if the angle in the center-of-mass frame can be
large (cf. Section 3.2.4). With the notation from Figure 3.16, the virtuality of the process is

∆E = Efinal
jet + ω − Einitial

jet

=
√

(1− x)2p2
z + k2

⊥ +M2 +
√
x2p2

z + k2
⊥ −

√
p2
z +M2 , (3.110)

where M is the mass of the heavy quark and x = kz/pz the longitudinal momentum fraction
of the emitted gluon.5 Soft small angle radiation implies pz � kz as well as x� 1 and for a

5Note that x here is slightly differently defined than in Equation (3.37). However, in the present scenario we
assume that the gluon is emitted at small angles and in this case both definitions are the same.
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3. Partonic cross sections

fast heavy quark jet it is pz �M . With these assumptions ∆E is

∆E ' k2
⊥ + x2M2

2kz
' k2

⊥ + x2M2

2ω
, (3.111)

since for small angles the energy of the gluon is ω ' kz. Thus, the formation time of a gluon
that is emitted off a heavy quark jet is given in the lab frame by

τ ' 2ω

k2
⊥ + x2M2

. (3.112)

This result agrees with the finding of Ref. [ZWW04] within the approximations. For a massless
case it simplifies to the well-known result τ ' 2ω/k2

⊥.
This formation time was calculated for an off-shell 1 → 2 process in the lab frame. A

complimentary derivation of the formation time of the gluon in the center-of-mass frame of
an on-shell 2 → 3 process is the following. Consider a reference frame Σtrans in which the
emitted gluon is purely transverse. In this frame the formation time is given by the uncertainty
principle as τtrans ' 1/k⊥. To obtain the value in the center-of-mass system one has to boost
with the factor γtrans = cosh y where y is the rapidity of the emitted gluon in the center-of-mass
frame. Hence, with ω = k⊥ cosh y the formation time of a gluon for a 2→ 3 processes in the
center-of-mass frame is

τ ' ω

k2
⊥
. (3.113)

This value differs from the formation time of a 1 → 2 processes in the lab frame in Equa-
tion (3.112) by a prefactor of 2 and by the missing mass term in the denominator.

Since within the BAMPS model we are mainly interested in 2→ 3 on-shell processes and
because Equation (3.113) has been applied for massless particles, we also use this formula, but
extend it to the heavy flavor sector by adding the mass term in the denominator. Thus, we
employ for the formation time in the frame Σtrans

τtrans =
k⊥

k2
⊥ + x2M2

. (3.114)

Furthermore, we will study the effect of varying the prefactor of the formula on our results.

3.2.7. Landau-Pomeranchuk-Migdal effect

The Landau-Pomeranchuk-Migdal (LPM) effect [LP53, Mig56] describes the suppression
of medium-induced bremsstrahlung processes due to coherence effects of multiple scatterings.

For a jet traversing a medium radiation processes are induced by the medium. If the
wavelengths, or equivalently the formation times, of the radiated particles (gluons in QCD
or photons in QED) are large compared to the time between subsequent interactions with
the medium constituents, interference effects lead to a suppression of the radiation. In the
QED case the time between two scattering processes is given by the mean free path of the jet.
However, in QCD also the emitted gluon carries color charge and interacts (cf. Figure 3.17),
leading to a modification of its formation time and a more complicated suppression procedure
[GW94, BDPS95, BDM+97b].
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3.2. Inelastic heavy quark scattering

Figure 3.17.: Illustration of multiple medium-induced gluon radiation from a high-energy
parton and rescatterings of the emitted gluons.

The implementation of such a coherence effect is rather involved in a semi-classical transport
model like BAMPS. To keep things simple we allow only radiation processes that are indepen-
dent from subsequent interactions and discard all interfering processes during the formation
of the emitted gluon. In other words radiation is only allowed if the formation time of the
emitted gluon is smaller than the time until the next interaction happens. We assume that this
time is given by the mean free path of the jet, which is inspired by the QED case. However, to
be more in line with the QCD case one should in principle compare to either the jet mean
free path or the mean free path of the emitted gluon—whichever is smaller. Nevertheless, this
is currently not implemented in BAMPS due to numerical limitations. One would have to
carry out the full sampling of the final momenta for a potential scattering to determine the
mean free path of the emitted gluon that is needed to calculate the actual cross section of the
process and determine if the scattering actually happens in the first place.

The constraint that the formation time τ of the emitted gluon is smaller than the mean free
path λ of the jet can be ensured by multiplying the integrand in Equation (3.108) with the
step function

Θ (λ− τ) (3.115)

before calculating the cross section. This makes the cross section—and thus also the rate—
dependent on the mean free path, which in turn influences the mean free path. Hence, the
actual mean free path of the jet must be determined in an iterative procedure,

λ = lim
i→∞

λi = lim
i→∞

v

R22 +R23(λi−1) +R32(λi−1)
, (3.116)

where v is the velocity of the jet in the rest frame of the medium and Rn the rate for process
n. The rates for 2↔ 3 are influenced by the LPM effect and, therefore, depend on the mean
free path itself. However, for heavy quarks we will neglect 3→ 2 processes since their rates
are much smaller than the other processes.

It is important to consider the formation time and the mean free path in the same frame
of reference. To compare to the formation time from Equation (3.114), which is given in the
frame Σtrans where the emitted gluon is entirely transverse, the mean free path, calculated in
the rest frame of the medium Σlab, must be first boosted to the center-of-mass system Σcms

and then to Σtrans. This leads to an overall boost of

γ = γcmsγtrans (1 + βcms · βtrans) =
cosh y√
1− β2

cms

(1 + βcms | tanh y | cos θ) , (3.117)
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where the definition of γ = 1/
√

1− β2 has been used. γcms denotes the boost from Σlab to
Σcms and γtrans the boost from Σcms to Σtrans. The latter is specified by the gluon’s rapidity
in the center-of-mass system via γtrans = cosh y and βtrans = | tanh y | since the boost is along
the z axis in the center-of-mass frame. The angle between βcms and βtrans is denoted with θ.
The situation of the two boosts is illustrated in Figure 3.18.

plab
1

plab
2

pcms
1

pcms
2

ptrans
1

ptrans
2

Σlab Σcms Σtrans

βcms

βtrans

θ
k⊥

kcms

Figure 3.18.: Illustration of the reference frames involved when comparing the mean free path
λ measured in the frame Σlab to the formation time of the emitted gluon τtrans measured
in the frame Σtrans. plab

i , pcms
i and ptrans

i are the momenta of the incoming particles 1 and
2 in the respective frame. The thick dashed arrow (labeled k) depicts the radiated gluon.
See text for more details. In this example

∣∣plab
2

∣∣ = 2
∣∣plab

1

∣∣ and ^
(
plab

1 ,plab
2

)
= 45◦ are

chosen, leading to βcms ≈ 0.933 and θ ≈ 69◦. The gluon in this example is emitted with
cosh y = γtrans =

√
2. Taken from Ref. [Foc11].

Hence, the step function that is employed in BAMPS for the 2↔ 3 processes reads

Θ (λ− τ) = Θ

(
λ

γ
− τtrans

)
, (3.118)

where τtrans from Equation (3.114) is used.
Approximating the LPM effect with a cut-off introduced by the step function is rather

crude and leads to stronger suppression compared to more realistic scenarios since the in-
terference domain is not only suppressed but completely discarded. Recently, more sophisti-
cated implementations of the LPM effect in Monte Carlo simulations have been introduced
[ZSW09, ZSW11, CSBS11, CSM12] and it would be interesting to study the impact of those
on the BAMPS simulations. We leave this as a future project.

3.2.8. Phase space constraints due to kinematics and the
Landau-Pomeranchuk-Migdal effect

The allowed phase space of the emitted gluon is constrained by the LPM effect and by
kinematics. The constraint from kinematics due to energy and momentum conservation has
already been introduced in Equation (3.108) as the integral boundary for the rapidity y of the
gluon and demands

k⊥ <

√
s(1−m2)

2 cosh y
, (3.119)
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where we defined m = M/
√
s as the heavy quark mass M scaled by the center-of-mass

energy
√
s.

The implementation of the LPM effect allows only interactions if λ/γ > τtrans through the Θ
function from Equation (3.118). By employing Equation (3.37) this constraint can be rewritten
in terms of y and k⊥,

k⊥ >
cosh y +A sinh y

B (1 +m2e2y)
(3.120)

with A = β′ cos θ and B = λ
√

1− β′ 2. This relation only holds if the heavy quark is the
incoming particle number 1 that flies in the positive z direction (cf. notation in Figure 3.9). If
the heavy quark is particle 2, all the findings of this section must be substituted with y → −y
due to the symmetry of the process.

For the numerical sampling of the outgoing momenta after a collision via the rejection
method (see Appendix A.6), the maximum of the total phase space volume is needed. The
maximum kinematically allowed rapidity range independent of k⊥ can be obtained by finding
the intersection points of the functions

fkin(y) =

√
s(1−m2)

2 cosh y
and flpm(y) =

cosh y +A sinh y

B (1 +m2e2y)
, (3.121)

which stem from Equations (3.119) and (3.120), respectively. This results in

yleft/right =
1

2
ln

(
b∓
√

∆

2a

)
(3.122)

with a = 1 + A− 2B(m2 −m4), b = 2[1− B(1−m2)], c = 1− A, and ∆ = b2 − 4ac. If the
argument of the square root ∆ is negative, no solution exists since no phase space region
fulfills both Equations (3.119) and (3.120). If the term b∓

√
∆/2a is negative, yleft/right is ∓∞,

respectively.
The values for yleft/right give the maximum rapidity range independent of k⊥. In contrast,

to evaluate the integral in Equation (3.108), the rapidity range for a given k⊥ must be known,
which is smaller than (or equal to) yleft/right. For the kinematic constraint one has to solve

fkin(y) = k⊥, which gives ykin
max /min(k⊥) = ± arccosh

[
(s−M2)/2

√
sk⊥

]
. Determining the

limits of the LPM constraint is more complex. The equation flpm(y) = k⊥ can be reduced to a
cubic equation that is solved in BAMPS numerically. The function flpm(y) goes asymptotically
to 0 (+∞) for y → +∞ (−∞). Therefore, the smallest solution of flpm(y) = k⊥ is the lower

limit ylpm
min(k⊥) and the upper limit has always to be ylpm

max(k⊥) = ∞ due to the asymptotic
behavior. Finally, the allowed y range is then given by the more restricting constraint of both
cases,

ymin(k⊥) = max
(
ykin

min(k⊥), ylpm
min(k⊥)

)
and ymax(k⊥) = ykin

max(k⊥) . (3.123)

In Figure 3.19 the available phase space in the y-k⊥-plane is illustrated. The drawn curves
show the envelope functions fkin(y) and flpm(y). The dashed line represents for comparison the
LPM constraint for a massless quark. In this case the LPM effect serves as a lower cut-off in k⊥.
In contrast, the emission from a massive quark with very small k⊥ is allowed at very forward
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Figure 3.19.: Phase space sampling in the y-k⊥-plane of the emitted gluon for a heavy quark
with E = 3 GeV and mass M = 1.3 GeV. The heavy quark comes from the left and has a
momentum of p1 = (E, 0, 0,

√
E2 −M2). The medium particle is taken as p2 = (3T, 0, 0,−3T )

with T = 0.4 GeV. The upper envelope curve is the constraint due to kinematics, fkin(y),
while the lower line is the LPM constraint, flpm(y). Allowed phase space is the area between
these two curves. For comparison, the dashed line shows the LPM constraint for a massless
quark. Each of the 100 000 dots represents one sampled phase space point from BAMPS.
The mean free path is taken to be λ = 1 fm.

rapidity because of the mass dependence of the formation time, although the cross section
in this region is very small due to the (1− x̄) factor and the x2M2 term in the denominator
of the matrix element from Equation (3.83) (dead cone effect). This interplay between the
LPM and dead cone effect prevents a divergence of the cross section for small k⊥ in the case
of heavy quark scatterings.

Each dot depicts a sampled phase space point from BAMPS for the given parameters. It
can be nicely seen that all sampled phase space points obey the phase space constraints from
Equations (3.119) and (3.120). The density of the points is a measure for the value of the
matrix element in this phase space region. The density increases with smaller k⊥ and is largest
around mid-rapidity. At positive rapidities the density is lower than at negative rapidities,
which is due to the dead cone effect (see Section 3.2.4).

Figure 3.20 shows the phase space distribution for different heavy quark energies. The
constraint from kinematics is always symmetric in rapidity and rises with larger heavy quark
energy. In contrast, the LPM constraint is asymmetric in rapidity. For a small heavy quark
energy it suppresses the backward region more than the forward direction. However, this
changes for larger heavy quark energy. At E = 50 GeV backward rapidities are hardly
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Figure 3.20.: As Figure 3.19 for different heavy quark energies E.

suppressed and the most suppression is in the forward region, creating basically a second
dead cone due to the LPM effect. This overlays the standard heavy quark dead cone due
to the matrix element and, thus, reduces its effect. Since such an LPM dead cone is also
present for light particles (see dashed lines in Figure 3.20), it could be an explanation why
the experimentally observed energy loss of light and heavy quarks is rather comparable. In
other words, the dead cone due to the mass of the heavy quark is hidden behind the dead cone
of the LPM effect. We will discuss this in more detail in Section 5.3. With increasing heavy
quark energy the LPM constraint gets more and more independent of the heavy quark mass
and resembles the dashed LPM curve for a massless particle. It would be interesting to study
whether this effect is also present in a more sophisticated Monte Carlo implementation of the
LPM effect, which is planned for the future.

The whole treatment of the LPM effect for heavy quarks is in line with the implementation
for light partons [XG05, FXG10, Foc11] and reduces to the latter if the heavy quark mass M
is set to zero.

3.2.9. Comparison of Gunion-Bertsch and exact cross sections

In this section we compare the original and improved GB matrix elements, see Equations (3.65)
and (3.70), respectively, with the exact matrix elements for different processes [FUXG13]. For
the sake of simplification, most comparisons are done for massless quarks, setting M = 0.
However, at the end of this section we compare explicitly also the radiative heavy quark process
qQ→ qQg.
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3. Partonic cross sections

Exact matrix elements

The exact matrix elements for the 2→ 3 processes involving light partons have been calculated
in Refs. [BKDC+81, ES86]. For qq′ → qq′g the result is relatively simple, [BKDC+81]

∣∣Mqq′→qq′g
∣∣2 =

g6

8

[(
s2 + s′2 + u2 + u′2

)
/tt′
]

[(p1k) (p2k) (p3k) (p4k)]−1

×
{
C1

[(
u+ u′

) (
ss′ + tt′ − uu′

)
+ u(st+ s′t′) + u′(st′ + s′t)

]
−C2

[(
s+ s′

) (
ss′ − tt′ − uu′

)
+ 2tt′(u+ u′) + 2uu′(t+ t′)

]}
, (3.124)

with the constants C1 = (N2 − 1)2/4N3 and C2 = (N2 − 1)/4N3 where N = 3 is the number
of colors. The Mandelstam variables for the 2→ 3 process are defined in Equation (A.6) in
Appendix A.2. However, the expression for the matrix element has been simplified to such
an extent that it is not obvious anymore how to identify the internal propagators, which are
usually screened with a mass of the order of the Debye mass in thermal QCD.

The matrix element for qg → qgg is also given in Ref. [BKDC+81]. The expression for
gg → ggg is considerably more complicated than the other two processes, but can still be
expressed in a relatively compact form due to its symmetry [BKDC+81],

∣∣Mgg→ggg
∣∣2 =

g6

2

[
N3/(N2 − 1)

]
[(12345) + (12354) + (12435) + (12453) + (12534)

+ (12543) + (13245) + (13254) + (13425) + (13524) + (14235) + (14325)]

×
[ [

(p1p2)4 + (p1p3)4 + (p1p4)4 + (p1p5)4 + (p2p3)4
]

(p1p2)(p1p3)(p1p4)(p1p5)(p2p3)(p2p4)(p2p5)(p3p4)(p3p5)(p4p5)

+

[
(p2p4)4 + (p2p5)4 + (p3p4)4 + (p3p5)4 + (p4p5)4

]
(p1p2)(p1p3)(p1p4)(p1p5)(p2p3)(p2p4)(p2p5)(p3p4)(p3p5)(p4p5)

]
(3.125)

with (ijklm) = (pipj)(pjpk)(pkpl)(plpm)(pmpi) and p5 being the momentum of the third
outgoing gluon—in our notation p5 = k. As for the other matrix elements, it is not a priori
obvious how one would screen this matrix element. For the purpose of this work we introduce
a cut-off prescription in the next section that regulates the divergencies when calculating the
total cross section and allows for consistent comparisons to the GB result.

The exact matrix element for qQ → qQg is rather lengthy. It can be obtained from the
process qq̄ → QQ̄g, which has been calculated in Ref. [KPR80], by crossing the two anti-quarks.
We checked numerically that it agrees with Equation (3.124) if the mass of the heavy quark is
set to zero.

Numerical comparison

We have carried out extensive numerical comparisons between the exact matrix element and
the matrix element calculated in the GB approximation (for both the original and improved
GB matrix element) [FUXG13]. In order to obtain a picture as complete as possible we
have investigated differential cross sections such as dσ/dy, dσ/dx, dσ/dk⊥dq⊥ in addition to
the total cross section. All calculations take into account the full kinematics according to
Equation (3.97) or (3.103), ensuring energy and momentum conservation.
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3.2. Inelastic heavy quark scattering

Both the exact and GB matrix elements are divergent for infrared and collinear configurations.
In thermal quantum field theory these divergencies can be cured by loop resummations
of the propagator, which leads to an extra term with the self energy in the propagator.
Phenomenologically, this self energy can be mimicked with a Debye mass mD that modifies
the propagator terms and makes them infrared-safe (cf. Section 3.1),6

1

q2
⊥
→ 1

q2
⊥ +m2

D

. (3.126)

However, it is not straightforward to identify the propagator terms in the exact matrix
elements due to their compact notation. Therefore, for all numerical calculations of total or
differential cross sections from both the exact and the GB matrix elements we choose a simple
cut-off procedure to cure the divergencies. The integrand is set to zero if the scalar product
of any incoming or outgoing four-momenta is smaller than a cut-off Λ2, pi · pj < Λ2 with
i, j = 1...5. Formally, this is expressed by multiplying the integrand in Equation (3.97) with∏

i 6=j
Θ(pi · pj − Λ2) , (3.127)

where Λ2 is chosen to be proportional to the Debye mass,

Λ2 = εm2
D . (3.128)

It is immediately obvious from Equation (3.125) that this prevents divergencies of the integrand.
For propagator terms this scheme acts similar to the Debye screening, but the restrictions to
the phase space potentially go beyond Debye screening only propagator terms. The resulting
numerical values for the total or differential cross sections need thus not be the physically
correct values and are, consequently, given in arbitrary units where necessary. Still, this cut-off
prescription allows for consistent and well-defined comparisons between the GB approximation
and the exact leading order matrix elements, which is the focus of this study. If not mentioned
otherwise, we set ε = 0.001 to reduce the screening effect as much as possible. In the last part
of the section we will discuss the impact of different ε and compare this cut-off prescription to
the standard Debye screening procedure for more physical scenarios.

The calculations in the remainder of the section are done for a temperature of T = 400 MeV.
The coupling is set constant, αs = 0.3. If not stated otherwise, we use the average thermal
value for massless particles for the squared center-of-mass energy, s = 18T 2 ' 2.88 GeV2, and
determine Λ from the usual gluon Debye mass for Boltzmann statistics from Equation (3.18).
For nf = 3 at the given temperature and coupling, the Debye mass is m2

D ' 0.73 GeV2.
Figure 3.21 compares the rapidity spectrum of the emitted gluon as given by different

approximations of the matrix element by depicting the differential cross section dσ/dy for the
process qq′ → qq′g. This process is the clearest to study since only one (the emitted) gluon is
involved. Furthermore, it is the process that has been studied in the original GB publication,
cf. Section 3.2.1. The plot nicely demonstrates the shortcomings of the standard GB matrix
element, Equation (3.65), in the forward and backward region.

The exact matrix element, Equation (3.124), only peaks at mid-rapidity and does not have
any sizeable contribution at forward or backward rapidity. The gluon emission into the forward

6For simplicity we omit here the κ prefactor for the screening mass that was introduced in Section 3.1 for
heavy quarks to match hard-thermal-loop calculations.
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Figure 3.21.: Differential cross section dσ/dy for the process qq′ → qq′g calculated with the
exact (Equation (3.124)), GB (3.65), GB with (1−x)2 (3.64), and improved GB with (1− x̄)2

(3.70) matrix element.

and backward region is suppressed since the phase space is occupied by the two quarks which
just scatter off with a small angle. Furthermore, the cross section is symmetric in the rapidity
of the emitted gluon as it must be for this process. The standard GB matrix element without
the (1 − x)2 term (Equation (3.65)) is very similar at mid-rapidity, but has two additional
large contributions at forward and backward rapidity. Thus, this matrix element would allow
that, for instance, the gluon is emitted into the backward region and that one of the quarks is
located at mid-rapidity. Although the matrix element itself is symmetric in y, the curve is not,
since in our implementation the pz of particle 3 is restricted to positive values to ensure that
the particle only scatters off with a small angle.7

The matrix element with the GB approximation and the term (1 − x)2, Equation (3.64),
has the same value at mid-rapidity as the other matrix elements since x is small in this region.
However, at forward rapidity the (1 − x)2 factor leads to a significant reduction compared
to the pure GB result. Here, the curve lies right on top of the curve from the exact matrix
element. Nevertheless, as discussed in Section 3.2.1, the curve with (1− x)2 is not symmetric
anymore due to the asymmetric y dependence contained in x.

The last curve in Figure 3.21 shows the cross section of our proposed improvement of the GB
matrix element, Equation (3.70). At forward and mid-rapidity it agrees with the previously
mentioned curve. At backward rapidity the modified (1− x̄)2 term removes the excess and

7This constraint is necessary if one transforms from Mandelstam t to q2
⊥ for such a small angle favoring

process since q2
⊥ can be small for an outgoing particle that moves exactly in the other direction than it

moved before the reaction. But in this case the scattering angle is not small anymore. Thus, t becomes
large and t ' −q2

⊥ does not hold anymore.
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respectively, for the process qq′ → qq′g calculated with the exact (Equation (3.124)) and
improved GB (Equation (3.70)) matrix element.

reconciles the shape of the GB approximation with the symmetry of the process. The overall
agreement between the differential cross sections from the improved matrix element and from
the exact result is remarkably good. The difference between the approximation and the exact
result is on the level of a few percent over the entire y-range. This striking agreement is also
visible in other differential cross sections such as dσ/dq2

⊥dk2
⊥ and dσ/dx. In Figure 3.22 the

transverse momentum distributions dσ/dk2
⊥ and dσ/dq2

⊥ are depicted. At small k2
T and q2

T ,
where the contribution to the cross section is largest, the deviation between the improved GB
and the exact result is less than 5 %. The asymmetry between the k2

T and q2
T distributions is

due to an interplay between the cut-offs and the (1−x) factor for the GB matrix element. The
presence of this asymmetry in the exact curves is a further indicator that the (1− x) factor is
essential in describing the exact result.

Figure 3.21 was done for the simplest process, qq′ → qq′g, where only one gluon is involved.
However, the findings also hold for qg → qgg and gg → ggg. Since gluons are indistinguishable
particles we plot the dσ/dy for qg → qgg of all outgoing gluons in Figure 3.23. Since we choose
the incoming gluon to be particle 1 and the process favors small angle scattering, there is a
peak at forward rapidity in addition to the gluon peak at mid-rapidity. Again, the curve from
the improved GB matrix element reproduces the curve from the exact one very well. This
also holds for gg → ggg, where one gets an additional gluon peak in the backward region that
corresponds to the third outgoing gluon.

Since all differential cross sections for the improved GB and exact matrix elements agree
nicely, it is not a surprise that this is also true for the total cross sections. In Figure 3.24
the ratios of the total cross sections σ2→3 for different processes from the improved GB to

69



3. Partonic cross sections

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

-4 -2  0  2  4

d
σ

/d
y
 (

a
.u

.)

y

qg → qgg

exact
improved GB

Figure 3.23.: Differential cross section dσ/dy for all outgoing gluons for the process qg → qgg
calculated with the exact and improved GB matrix element.

those obtained from the exact matrix elements are depicted as a function of the squared
center-of-mass energy s. The exact and improved cross sections agree very well for all processes
and virtually all s. Only at very small s, below the thermal average s = 18T 2 ' 2.88 GeV2,
there is a slight discrepancy up to about 40 %. The original GB cross section for gg → ggg
as it was previously implemented in BAMPS is about a factor of three larger than the exact
cross section. The same is true for the other processes (not plotted).

Figure 3.25 shows the dependence of the total cross section on the cut-off ε = Λ2/m2
D. The

improved GB matrix element works best for small ε, where the matrix elements are dominated
by small k⊥ and q⊥. At larger ε most of the phase space at small k⊥ and q⊥ is cut away and
other phase space regions, in which the GB approximation is not as good, play the dominant
role. Hence, the ratio rises. At ε & 0.6 (indicated by the gray band in the figure) the cut-off is
so large that the entire available phase space is cut away and the GB as well as exact cross
sections are zero. For such severe cut-offs the comparison scheme is not reliable anymore and
the previously introduced Debye screening would be more realistic. However, the comparison
to the exact matrix element with standard Debye screening is not done in this paper since
the identification of the propagators in the compact results of the exact matrix elements is not
known. Also note that Figure 3.25 is made for thermal s = 18T 2. For larger values of s the
cut-off parameter ε, at which the ratio deviates from unity, becomes significantly larger. Thus,
in summary, the improved GB approximation works best for larger s and/or smaller screening
cut-offs ε.

Our improved GB result is, therefore, an especially good approximation for studying jet
effects in heavy-ion collisions. For bulk dynamics, where the mean s is smaller, it is important
how strong the screening effects actually are and if one is already in the regime of large ε where
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the improved GB matrix element might deviate from the exact matrix element. To explore
this in more detail, Figure 3.26 explicitly compares the improved GB differential cross section
obtained from the cut-off procedure8 to the one obtained using the standard Debye screening
according to Equation (3.126), which is for qq′ → qq′g (cf. Equations (3.64) and (3.70))9

∣∣Mqq′→qq′g
∣∣2 =

32

3
g6 s2

(q2
⊥ +m2

D)2
(1 − x̄)2

[
k⊥

k2
⊥ +m2

D

+
q⊥ − k⊥

(q⊥ − k⊥)2 +m2
D

]2

. (3.129)

Now, to get a feeling for the quality of the improved GB approximation for Debye screened
thermal processes one can either try to match the total cross sections σ or the differential
cross sections dσ/dy at mid-rapidity. Doing this, the necessary parameter ε can be determined
to be of the order of ε ≈ 0.4 to 0.5. As can be seen from Figure 3.25 the deviations between
the improved GB and exact result in this ε region vary roughly between σ/σexact ≈ 4 and
σ/σexact ≈ 9. However, Figure 3.26 also clearly demonstrates the distortion of the phase space
due to extreme choices of the cut-off. Large rapidities are cut away entirely, while the standard
Debye screening procedure leaves the whole phase space available. It is questionable whether

8Note that in contrast to the previous figures, the differential cross section in Figure 3.26 is not given in
arbitrary units since we are now in a regime where the cross sections (especially with Debye screening)
have a physical meaning.

9The implementation in BAMPS does not screen the 1/k2
⊥ term in the bracket since small k⊥ are regularized

by the LPM effect [FXG10]. However, since the LPM effect is not employed in this study for the sake of
simplicity, we regularize also this term with the Debye mass.
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Equation (3.128). In addition, the ratio of the original GB cross section of gg → ggg as it
was previously implemented in BAMPS to the exact is depicted.

the strong cuts in the cut-off procedure make physical sense. The comparison is thus a rather
qualitative one and should be regarded as a first estimate of the quality of the (improved) GB
approximation in the region of thermal processes with a standard Debye screening.

The factorization of the GB matrix element into an elastic 2 → 2 part and a radiation
amplitude features an elastic amplitude that is in the small angle approximation and GB

coordinates given by
∣∣M2→2

∣∣2 ∝ 1/q4
⊥. If one, however, instead employs the exact binary

matrix element for the t channel, which is∣∣M2→2

∣∣2 ∝ 1

t2
, (3.130)

the agreement between the exact and the improved GB result becomes much better at large ε,
which is illustrated in Figure 3.27. The ratio is of the order of 1 over the entire ε range and
the deviation is at most 50 % for all processes. In contrast to the previous result with the
approximated 2→ 2 matrix element (cf. Figure 3.25), the ratio for small ε is not 1 anymore
but 0.9. This is probably due to the fact that different approximations are employed for the
2→ 2 and the radiative parts of the matrix element. However, since the numerical agreement
is so good also in the region of thermal processes at larger ε, the combination of the improved
GB approximation (3.70) for the radiation amplitude with the exact 2 → 2 part (3.130) is
implemented in our transport model BAMPS.

Also for heavy quarks, the good agreement between the improved GB and exact results
holds. Figure 3.28 compares the rapidity spectrum of the emitted gluon for the scattering of
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a heavy quark with a light quark, qQ → qQg. For a heavy quark mass of M = 0 GeV, the
process is in fact a scattering of two light quarks and, thus, symmetric. The exact curve is the
same as in Figure 3.21. For the improved GB curve we employed the exact gluon propagator
proportional to 1/t2 instead of the small angle approximation. Therefore, it deviates slightly
from the curve in Figure 3.21. Furthermore, the gluon emission spectra for massive heavy
quark scatterings are depicted for the charm and bottom masses. At forward rapidities—or
small emission angles—the gluon emission spectrum is suppressed, which is a consequence of
the dead cone effect (cf. Section 3.2.4). Independent of the heavy quark mass, the agreement
between the improved GB and exact matrix element is remarkably good.

In Figure 3.29 the dependence of this agreement on the cut-off parameter ε is shown. Using
the exact gluon propagator for the 2→ 2 part in the GB matrix element, the deviation for all
ε is rather small for both light and heavy quarks. Note that the threshold, above which the
whole phase space is cut away, is smaller for heavy quarks. Thus, these curves go back to zero
for smaller ε compared to the light quark case where the gray box depicts the region with zero
cross section.

Results with these improved GB cross sections are presented in Sections 5.3 and 6.2, where
we show the radiative energy loss of light and heavy partons in a static medium and their
suppression in ultra-relativistic heavy-ion collisions, respectively.

3.3. J/ψ dissociation and regeneration

In the medium, J/ψ can dissociate via the process J/ψ + g → c+ c̄. The cross section of this
interaction has been calculated in Ref. [Pes79, BP79] by expanding the matrix element as
operator products and applying QCD sum rules. To this end, a coulombic-bound meson state
with a large mass is considered with a soft, short-distance dominated perturbation from the
gluon. The cross section is then given to leading order in the coupling αs and leading order in
1/N2

c (large Nc limit with Nc being the number of colors) as [Pes79, BP79]

σJ/ψ g→cc̄(s) =
211π

3N2
c

1√
M3
c εJ/ψ

(
w
εJ/ψ
− 1
)3/2

(
w
εJ/ψ

)5 , (3.131)

where w = PµJ/ψPg µ/MJ/ψ = (s−M2
J/ψ)/2MJ/ψ is the gluon energy in the rest frame of the

J/ψ and εJ/ψ = 2MD−MJ/ψ is the binding energy of the J/ψ. Mc, MD, and MJ/ψ denote the

charm quark, D meson, and J/ψ mass, respectively. The kinematic prefactor (M3
c εJ/ψ)−1/2 is

proportional to αsa
2
0 [AGGA02], where a0 = 16π/3g2Mc is the Bohr radius of the coulombic-

bound cc̄ system. This makes the leading order nature of Equation (3.131) for an interaction
of a color dipole of size a0 apparent [AGGA02]. The leading order result corresponds to a
chromoelectric dipole interaction, while the (repulsive) octet potential—or, equivalently, the
final state interaction—is neglected [BEGV11]. A rederivation of Equation (3.131) within the
Bethe-Salpeter formalism can be found in Ref. [BAG11]. Recently, the Bhanot-Peskin
cross section was extended to finite temperatures in an effective field theory approach [BEGV11],
resulting only in small modifications of the thermal width compared to the Bhanot-Peskin
formula.

The cross section of the back reaction, c+ c̄ → J/ψ + g, that is, the regeneration of J/ψ
via charm and anti-charm annihilation, can be obtained from Equation (3.131) via detailed
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balance (cf. Appendix A.4),

σcc̄→J/ψ g(s) =
4

3

(s−M2
J/ψ)2

s(s− 4M2
c )

σJ/ψ g→cc̄(s) . (3.132)

In Chapter 7 we employ these cross sections to study the dissociation and regeneration of J/ψ
in heavy-ion collisions.
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4. Parton cascade BAMPS

We know very little, and yet it is astonishing that we
know so much, and still more astonishing that so little
knowledge can give us so much power.

ABC of Relativity
Bertrand Russell

In the following we outline some details of the partonic transport model BAMPS with a focus
on the treatment on heavy flavor particles. In particular, initial distributions of open heavy
flavor (Section 4.3) and J/ψ (Section 4.4) are highlighted, but also the initial conditions of
light partons are addressed in Section 4.5. Furthermore, in Section 4.6 we give a brief overview
of BAMPS results not associated with heavy flavor.

4.1. The framework

The partonic transport model BAMPS [XG05, XG07], which stands for Boltzmann Approach
to MultiParton Scatterings, simulates the full 3 + 1 dimensional space-time evolution of the
QGP in heavy-ion collisions by solving the Boltzmann equation [Rei76, Hau05, Sch06],(

∂

∂t
+

p

E

∂

∂r

)
fi(r,p, t) = C2→2

i + C2↔3
i + . . . , (4.1)

dynamically for on-shell partons with a stochastic transport algorithm and pQCD interactions.
The left hand side describes the dynamics and evolution of the one-particle distribution function
fi(r,p, t) of species i = g, q, Q, J/ψ. If the right hand side were zero, no collisions would take
place and the solution of the Boltzmann equation would be just freely streaming particles.
Thus, the interactions between the particles are described by the collision terms Ci. For
instance, for 2→ 2 processes it is given by [XG05]

C2→2
i =

∑
j, k, l

1

2Ei

1

νij

∫
d3pj

(2π)32Ej

d3pk
(2π)32Ek

d3pl
(2π)32El

fkfl |Mkl→ij |2

× (2π)4δ(4)(pk + pl − pi − pj)

−
∑
j, k, l

1

2Ei

1

νkl

∫
d3pj

(2π)32Ej

d3pk
(2π)32Ek

d3pl
(2π)32El

fifj |Mij→kl|2

× (2π)4δ(4)(pi + pj − pk − pl) , (4.2)

where i denotes the considered species from the Boltzmann equation (4.1) and j, k, and l
each stand for one of the implemented species g, q, Q, J/ψ. If k and l are identical particles,
it is νkl = 2, otherwise νkl = 1.
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4. Parton cascade BAMPS

Within the stochastic method, the probability for a collision of two particles during a time
step ∆t in a volume element ∆V can be obtained from these collision integrals [XG05],

P2→n = vrel
σ2→n
Ntest

∆t

∆V
, (4.3)

where vrel stands for the relative velocity (see Equation (3.2)), and σ2→n for the two body
cross sections.

To enhance statistics the test particle method is used. That is, a real particle is substituted
by Ntest virtual particles. This implies that the particle density scales like n → nNtest. To
keep the physical mean free path for each particle the same, the cross section has to be scaled
like σ → σ/Ntest, which is the reason why this factor is present in Equation (4.3).

The following binary processes are implemented in BAMPS in the light and heavy flavor
sector:

light flavor heavy flavor

g g ↔ q q̄ g g ↔ QQ̄

q q̄ → q′ q̄′ q q̄ ↔ QQ̄

g q → g q g Q→ g Q

q q′ → q q′ q Q→ q Q

g g → g g J/ψ g ↔ c c̄

q q → q q

q q̄ → q q̄

(4.4)

The light parton cross sections are discussed in Section A.3 for both a fixed and running coupling.
The heavy quark cross sections are given in Section 3.1 and the J/ψ cross section in Section 3.3.
Details on the heavy quark production cross sections can be found in Refs. [UFXG10a, Uph09].
Elastic heavy quark processes among each other are neglected since the number of produced
heavy quarks in heavy-ion collisions is small.

In addition to the binary collisions, BAMPS incorporates also the following 2↔ 3 scatterings:

light flavor heavy flavor

g q ↔ g q g g Q→ g Q g

q q′ ↔ q q′ g q Q→ q Q g

g g ↔ g g g

q q̄ ↔ q q̄ g

q q ↔ q q g

(4.5)

The cross sections for these processes are implemented in the Gunion-Bertsch approximation,
which has been explicitly calculated in Section 3.2.1 for heavy quarks. The light parton results
can be obtained by setting the heavy quark mass to zero. All processes that are dominated by
the s channel have been neglected since their cross section is much smaller and the Gunion-
Bertsch cross section is only calculated for the t channel. Details on the implementation of
the light parton 3→ 2 processes can be found in Ref. [XG05, Foc11]. For heavy quarks, 3→ 2
processes are not implemented since their cross section is rather small and does not have a
significant impact on the heavy quark energy loss.
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4.1. The framework

The initial particle distributions can be obtained, for instance, from event generators or
other initial models for the momentum space and geometric considerations of the collision
overlap region for the particle positions. But also other initial configurations and geometries
such as a thermal static medium are possible for more theoretical studies. BAMPS divides
then the system into small cells of volume ∆V such that the mean free paths of the particles
are larger than the cell size to prevent acausal behavior. In each cell, all particles can scatter
with each other, no matter where exactly they are in the cell. The probability of an interaction
is given by Equation (4.3). Of course, it must always be smaller than one, which is ensured by
reasonable choices for ∆t and ∆V . In one considered time step, BAMPS goes through all cells
and carries out the interactions by comparing the probability for a process to a random number
between zero and one. If the random number is smaller than the probability, a scattering takes
place and the momenta of the outgoing particles are determined according to the differential
cross section, e.g., dσ/dt for binary processes. If it is larger, the particles do not scatter. After
the collisions took place, all particles are propagated to the next time step. If the energy
density in a cell falls below a threshold of εc = 0.6 GeV/fm3, a phase transition to a hadron
gas should occur and the partons should hadronize. However, since hadronization of the bulk
medium has not been implemented in BAMPS yet, the particles just do not interact anymore.1

Algorithm 1 illustrates the procedure of a BAMPS simulation.

Algorithm 1: Schematic view of the stochastic collision algorithm used in BAMPS.
Taken from Ref. [Foc11].

t = 0
while t < tfinal do

foreach cell ∆V do
foreach particle pair (triplet) in the current cell do

Compute collision probability P
Generate random number x ∈ [0, 1)
if x < P then // collision takes place

Sample new momenta of outgoing particles
Assign new momenta to outgoing particles

t = t+ ∆t
Propagate particles to time t

In Figure 4.1 the evolution of the particles is shown for a BAMPS simulation of a heavy-ion
collision at the LHC. The beam axis runs horizontally. Each dot depicts a single particle. The
color is chosen according to its rapidity, where blue means small and yellow large. The number
of test particles is Ntest = 7. Consequently, there are seven times more particles than in reality.
The pictures are taken from a movie [Uph12] that has been produced with ParaView2, an
open source application for visualizing data. A tool to transfer heavy-ion data into a suitable
input format for ParaView was provided by Xunlei Wu (Renci3) and Steffen Bass (Duke

1Heavy quarks, however, are fragmented to heavy mesons to compare to data (see below).
2http://www.paraview.org
3Renaissance Computing Institute, founded by Duke University, North Carolina State University, and University

of North Carolina.
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4. Parton cascade BAMPS

Figure 4.1.: Screenshots from a movie picturing the evolution of a central heavy-ion collision
at
√
s = 2.76 TeV in a BAMPS simulation. The movie can be found in Ref. [Uph12].
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4.1. The framework

Figure 4.2.: Sketch of heavy flavor in BAMPS.

University) from a project of the MADAI collaboration4.
Figure 4.2 displays a sketch of heavy flavor in BAMPS. Heavy quarks are primarily produced

in initial hard parton scatterings. To have a proper initial input we employ the next-to-leading
order (NLO) event generator MC@NLO to sample the initial heavy quark momenta—the
details are given in Section 4.3. Since MC@NLO focuses only on heavy quarks, PYTHIA
[SMS06, SMS08] is used for the light parton initial production, which is outlined in Section 4.5.
The initial positions of the particles are sampled according to the geometry of the overlap
region [XG05]. After their production, heavy quarks traverse the medium, lose energy, and
participate in the collective flow. During the medium evolution, additional heavy quark
production can take place. Furthermore, unrelated charm and anti-charm quarks can bound
together and regenerate a J/ψ. Also the complimentary interaction of J/ψ melting in the
medium or dissociation due to an interaction with a gluon can occur (see Section 3.3).

After the energy density in the surrounding of a heavy quark in BAMPS has dropped below
εc = 0.6 GeV/fm3 it is fragmented to a D or B meson. The model we use for the hadronization
process is Peterson fragmentation. The Peterson fragmentation function of a heavy quark
to a heavy meson H is given by [PSSZ83]

DH/Q(z) =
N

z
(

1− 1
z −

εQ
1−z

)2 . (4.6)

N is a normalization constant, z = |pH |/|pQ| the ratio of the meson and quark momenta, and
εQ = 0.05 (0.005) for charm (bottom) quarks, which are the default values in PYTHIA [SMS06]
and in agreement with leading log fits to heavy quark production data [NO00, ZEUS03].
In Figure 4.3 the Peterson fragmentation function is depicted for charm and bottom
quarks. Since the average z in both distributions is relatively large, D and B mesons carry

4funded by the NSF under grant # NSF-PHY-09-41373
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Figure 4.3.: Peterson fragmentation function as a function of z = |pH |/|pQ| with εQ =

0.05 (0.005) for charm (bottom) quarks.

most of the momenta of their mother quark, as one would expect for such a heavy particle.
Some models even assume that heavy mesons have still the same momenta as heavy quarks
before hadronization, which is often named parton hadron duality and corresponds to a delta
function δ(z − 1) for DH/Q(z). Peterson fragmentation, however, is only applicable at large
transverse momenta of the particles. At smaller pT one expects that other hadronization
models like coalescence become more dominant.

The produced D mesons can then directly be compared to the experimental data. To yield
non-prompt J/ψ, that is, a J/ψ stemming from a B meson, we carry out the decay of B mesons
with PYTHIA 8.1 [SMS06, SMS08] by switching on the relevant decay channels. PYTHIA is
also used to perform the decay of D and B mesons to electrons and muons, which can then also
be compared to experimental data. In these decays, heavy flavor electrons—or muons—carry
approximately half of the transverse momentum of the parent meson if one considers a realistic
meson pT spectrum from p+p events, as is shown in the left panel of Figure 4.4.

The direction of a heavy flavor electron points in the same direction as its parent heavy
flavor meson if the transverse momentum of the electron is not too small. From the right panel
of Figure 4.4 it can be concluded that electrons from D (B) mesons have the same direction for
pT & 1 GeV (4 GeV). Hence, they are a good probe to study open heavy flavor if the mesons
themselves are not accessible.

Since charm and bottom quarks are very rare probes (there are about four heavy quark
pairs at mid-rapidity in a central Au+Au collision at RHIC compared to about 800 gluons
[UFXG10a]), one needs to simulate several million events to yield sufficient statistics to
obtain their spectra and elliptic flow. However, the most time consuming part of these event
simulations is the computation of the interactions among the sizeable number of gluons (and
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from MC@NLO simulations of heavy quark production in p+p events at

√
s = 2.76 TeV,

consecutive Peterson fragmentation to heavy mesons, and the decay to heavy flavor
electrons performed with PYTHIA.

light quarks), for which we do not need as much statistics. Therefore, we generate a smaller
sample of pure light partonic events and use them several times as a background medium,
in which heavy quarks generated with MC@NLO are placed. This treatment is in perfect
accordance with the conventional BAMPS model. The only difference to full simulations
is the neglect of medium modifications induced by the heavy quarks, which is a very good
approximation given the small number of heavy quarks in a heavy-ion collision.

4.2. Details of the numerical implementation of the cross sections

To calculate the probabilities according to Equation (4.3) for 2→ 2 and 2→ 3 processes the
total cross sections are needed. Due to the complexity of the matrix elements and especially
when employing a running coupling, it is necessary to perform the integration for the total cross
sections numerically. For this, the VEGAS routines [Lep78, PTVF07] are used. However, an
online integration for the cross sections of all possible scattering pairs is rather time consuming.
Therefore, the integration has been done only once and tabularized as a function of the needed
parameters. In the BAMPS simulations the value for the cross section of each scattering pair
is then interpolated from these tables.

For 2→ 2 processes (see Section 3.1 for heavy quarks and Section A.3 for light partons),
the total cross sections are usually dependent on the squared center-of-mass energy s and the
Debye mass m2

D, for some processes also on the quark Debye mass m2
q . For 2→ 3 processes

(see Section 3.2), there are more parameters due to the LPM effect. The following choice of
parameters is implemented in BAMPS (see Section 3.2.7 for the definitions): the Debye mass
scaled by the squared center-of-mass energy m2

D/s, the scaled mean free path λ
√
s, the boost

γ, the angle cos θ, and the squared center-of-mass energy s (the latter is only necessary if a
running coupling or a heavy quark is considered since both introduce an additional scale that
breaks the scale invariance of the matrix element with respect to s).
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4. Parton cascade BAMPS

The momenta of the outgoing particles are sampled according to differential cross sections.
For binary scatterings, t is sampled from dσ/dt, see Equation (3.5), with the Metropolis
algorithm (cf. Appendix A.6). Knowing t and the azimuthal angle, which is sampled uniformly,
determines all the outgoing momenta. The sampling of q⊥, k⊥, y, and φ for 2→ 3 scatterings
is done with the rejection method (see Appendix A.6) according to

dσ23

dq2
⊥ dk2

⊥ dy dφ
=

1

128π4

1

ν

1

2E1 2E2 vrel

∣∣M2→3

∣∣2∑(
∂F

∂y3

∣∣∣∣
F=0

)−1

, (4.7)

which is obtained from Equation (3.103). All the kinematics of the three outgoing particles can
be determined from these four variables and an additional azimuthal angle that is uniformly
distributed.

4.3. Initial heavy quark distribution—MC@NLO

The initial heavy quarks for BAMPS simulations of heavy-ion collisions are sampled with
the Monte Carlo event generator for next-to-leading order (NLO) calculations MC@NLO
[FW02, FNW03]. This framework is linked to the Les Houches Accord Parton Density Function
(LHAPDF) program [WBG05], which conveniently allows switching between different parton
distribution function parameterizations such as CTEQ [P+02, KLOT04], MRST [MRST02,
MRST05], GRV [GRV98], and many more. For the results in this section we employ CTEQ6m,
which is suitable for NLO matrix elements. To compare the initial distributions to the
experimental data from p+p collisions, the heavy quarks are fragmented to D and B mesons,
which subsequently decay into heavy flavor electrons.

Figure 4.5 compares the measured heavy flavor electrons in p+p collisions at RHIC to the
initial distributions obtained with MC@NLO. The factorization and renormalization scales, µF
and µR, respectively, are in principle arbitrary when considering all orders of the cross section.
However, for the leading order cross section uncertainties due to neglecting higher order terms
can be reduced if the two scales are of the order of the relevant scale of the process,√

p2
T +M2 , (4.8)

pT being the transverse momentum and M the mass of the produced heavy quarks. The exact
value of the scale is fixed by giving a good agreement with the experimental data, which results
in

µF = µR = 0.65
√
p2
T +M2

c (4.9)

for charm (Mc = 1.3 GeV) and

µF = µR = 0.4
√
p2
T +M2

b (4.10)

for bottom quarks (Mb = 4.6 GeV). The agreement of the fit and the data is very good, as
can be seen in Figure 4.5.

As a note, large theoretical uncertainties in the heavy quark distributions exist due to
uncertainties in the parton distribution functions, renormalization and factorization scales, and
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Figure 4.5.: Differential invariant cross section of heavy flavor electrons at mid-rapidity |y| <
0.35 as a function of transverse momentum for p+p collisions with

√
s = 200 GeV simulated

with MC@NLO. For comparison experimental data [PHENIX11b, STAR11a] is also shown.

heavy quark masses [UFXG10a, CNV05]. In particular, the relative contributions of charm
and bottom quarks to the electron spectrum have not been fully settled yet, although there
are first measurements to distinguish both [STAR10, ALICE13d].

In contrast, at the LHC charm and bottom can be separated by measuring D mesons and
non-prompt J/ψ from B mesons directly. Therefore, it is even more important to have the
correct reference for the initial heavy quark distribution. As for RHIC we employ MC@NLO
with a factorization and renormalization scale of

µF = µR = 1
√
p2
T +M2

c (4.11)

for charm and

µF = µR = 0.4
√
p2
T +M2

b (4.12)

for bottom quarks, which have been fitted to experimental data. The scales for charm differ
slightly from those used for RHIC simulations, reflecting the uncertainties of the underlying
theoretical calculations. It should be emphasized that fitting these scales to data does not
provide any additional physical insight, but is necessary to obtain a proper initial heavy quark
distribution, which is crucial when comparing to experimental data of the nuclear modification
factor (cf. Chapter 6).

In Figure 4.6 the invariant differential cross sections of D mesons and heavy flavor electrons
as well as muons are compared to experimental data from ALICE at

√
s = 7 TeV. The

D mesons and heavy flavor electrons at mid-rapidity are well described by MC@NLO. At
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as a function of the transverse momentum for p+p collisions with
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with MC@NLO. For comparison experimental data [ALICE12b, ALICE11e, ALICE12c]
with the same kinematic cuts is also shown. In the upper plot the electron curves and the
corresponding data points have been scaled with the factor 0.1 to distinguish them from the
muon curves. Since the data for electrons is preliminary, we do not have access to the errors
and plot those data points without any errors as obtained from Ref. [ALICE11e].

forward rapidity, however, the slope of the muons at larger pT is slightly different. Such a
disagreement has also been observed by CMS in a more detailed study of inclusive bottom
jets in Ref. [CMS12a] by comparing MC@NLO to data for larger pT and various rapidities.
Nevertheless, we checked that the muon RAA is not very sensitive to the exact slope in this pT
range.

To obtain the initial heavy quark distribution as an input for BAMPS we run MC@NLO
with the same parameters for a center-of-mass energy of

√
s = 2.76 TeV, the energy of the

recent heavy-ion runs.

The initial distributions for nucleus-nucleus collisions are obtained by scaling proton-proton
collisions according to the Glauber model (see Appendix A.5). Thus, the p+p events from
MC@NLO are scaled with the number of binary collisions, see Equation (A.21). In the present
work nuclear effects for the parton distribution functions, for instance, shadowing or the
Cronin effect, are not taken into account for heavy quark production since the impact on the
heavy quark distributions at intermediate and high transverse momentum pT is rather small
[ACD+06].

MC@NLO samples both charm and anti-charm quarks from NLO matrix elements in a single
p+p scattering. Thus, it provides a realistic angle distribution of correlated heavy quarks,
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4.4. Initial J/ψ production

which is necessary for correlation studies. It would be interesting to study those in a future
project. In contrast, fixed-order-next-to-leading-log (FONLL) calculations [CNV05, CFH+12],
which are theoretically more advanced than NLO calculations, only have access to inclusive
heavy quark distributions and are, therefore, not suitable for studying correlations of heavy
quarks.

4.4. Initial J/ψ production

To study J/ψ suppression in ultra-relativistic heavy-ion collisions it is important to have the
proper initial production as a baseline. In contrast to open heavy flavor, cold nuclear matter
effects have a large impact on the J/ψ yield and can already explain part of the observed
suppression.5 Therefore, we convolve in this section the initial J/ψ distribution scaled from
p+p events with parameterizations of cold nuclear matter effects to obtain a physical initial
J/ψ input for BAMPS [UZF+11]. The influence of the medium on J/ψ mesons, that is, the
hot nuclear matter effect, is discussed in Chapter 7.

The dominant process of initial J/ψ production is gluon fusion, g+ g → J/ψ+ g. Therefore,
the differential cross section for J/ψ production in p+p collisions is given by

dσ
J/ψ
pp

dpTdyJ/ψdyg
= x1x2fg(x1, µF )fg(x2, µF )

dσgg→J/ψg

dt
, (4.13)

which is related to the heavy quark production cross section from Equation (2.6)—only with
other labels, slightly different kinematics, and without medium effects.

In this section we parameterize the measured J/ψ production cross section in p+p collisions
and incorporate cold nuclear matter effects as outlined in the following to get the production
cross section for A+A collisions. The implementation in BAMPS was done in collaboration
with the Tsinghua group [LQXZ09, LQXZ10, ZXZ10, LXZ10, ZER13].

The most important contributions to cold nuclear matter effects are shadowing, nuclear
absorption, and the Cronin effect. Shadowing describes the phenomenon that the parton
distribution functions of partons in a nucleus fA(x, µF ) are modified compared to parton
distribution functions in a nucleon fp(x, µF ). The ratio of both for parton i,

RAi (x, µF ) =
fAi (x, µF )

fpi (x, µF )
, (4.14)

can be obtained, for instance, from deep inelastic scattering at nuclei and nucleons. In the
present study we employ the shadowing parameterization EPS08 [EPS08] for RAi (x, µF ) and
set the factorization scale,

µF =
√
p2
T +M2

J/ψ , (4.15)

5There are two reasons why cold nuclear matter effects are more important for J/ψ than for open heavy
flavor: 1) nuclear absorption, which is an effect that only acts on the meson and not on the quark level,
2) shadowing, which is present for both, but is most important at small pT . Open heavy flavor is usually
studied at intermediate and large pT where shadowing effects can be neglected, whereas J/ψ RAA is
usually pT integrated because the total number is important. Hence, it crucially depends on the shadowing
parameterization for low pT .
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4. Parton cascade BAMPS

to the transverse mass of the J/ψ. Furthermore, we use a shadowing function that also depends
on the transverse position in the collision [KV03],

RAi (xT , x, µF ) = 1 +NA,ρ

[
RAi (x, µF )− 1

] TA(xT )

TA(0)
. (4.16)

TA(xT ) denotes the nuclear thickness function from the Glauber model (see Appendix A.5)
and NA,ρ = A TA(0)/TAB(0) is a normalization constant.

A produced J/ψ can also be absorbed by the remains of the collided nuclei shortly after its
production. The nuclear absorption can be effectively described by a survival probability for
J/ψ passing through nuclear matter,

Sabs = e−σabs[TA(xT ,zA,+∞)+TA(xT−b,−∞,zB)] . (4.17)

TA(xT , z1, z2) is the nuclear thickness function, but not integrated over the full z range
(−∞,+∞) but over the interval [z1, z2]. The limits in the formula above are chosen in such
a way that it represents the path length that the produced J/ψ travels through the passing
remains of the nuclei. For the absorption cross section we employ a value of σabs = 2.8 mb
[PHENIX08a]. However, the exact value and whether nuclear absorption is still present at
LHC energy is under debate.

The J/ψ production cross section in p+p collisions can be parameterized as [LQXZ10,
PHENIX07b]

dσ
J/ψ
pp

pTdpTdy
=

2(n− 1)

D(y)

(
1 +

p2
T

D(y)

)−n
dσ

J/ψ
pp

dy
. (4.18)

The prefactor 2(n− 1)/D(y) is a normalization constant and ensures that the integration over

the transverse momentum yields indeed dσ
J/ψ
pp /dy. The function D(y) can be determined by

considering the mean transverse momentum squared for a given rapidity,

〈
p2
T

〉pp

y
=

∫
dp2

T p
2
T

(
1 +

p2
T

D(y)

)−n
∫

dp2
T

(
1 +

p2
T

D(y)

)−n =
D(y)

n− 2
. (4.19)

Of course, the mean p2
T is zero for a J/ψ in beam direction, which has (the maximum allowed)

rapidity Y = arccosh(
√
spp/(2mJ/ψ)) obtained from cosh y = E/MT . Taking into account

that
〈
p2
T

〉pp

y
should be the same for positive and negative y leads to the following educated

guess for the rapidity dependence of mean transverse momentum squared〈
p2
T

〉pp

y
=
〈
p2
T

〉pp

y=0

(
1− y2/Y 2

)
. (4.20)

With the measured mid-rapidity value at RHIC of 〈p2
t 〉pp
y=0 = 4.14 GeV2 [PHENIX07b], Equa-

tion (4.20) is in good agreement with the measured value in forward rapidity [PHENIX07b].

For dσ
J/ψ
pp /dy we employ a double Gaussian distribution [PHENIX07b, LQXZ10] to fit

the data, which is depicted in Figure 4.7 (left) for RHIC energies. The best fit to the pT
distribution is obtained with n = 6 in Equation (4.18)—see Figure 4.7 (right). The fits to the
LHC data are shown in Figure 4.8. The extracted parameters for the LHC fit are n = 6 and
〈p2
t 〉pp
y=0 = 8 GeV2.
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To account for the Cronin effect, which describes the pT broadening of the fusing gluons in
the nuclei, we add an additional path length dependence to the mean pT in the parameterization
of the p+p cross section above,

〈p2
t 〉 = 〈p2

t 〉pp + agN L (4.21)

with agN = 0.1 GeV2/fm [ZR08] and

L =
1

n0
[TA(xT ,−∞, zA) + TA(xT − b, zB,+∞)] . (4.22)

The latter is the path length of the two incoming gluons through the nuclear matter of the
other nucleus. n0 denotes the maximum nuclear density from the Woods-Saxon distribution
(cf. Section A.5).

With all these cold nuclear matter effects the differential J/ψ production cross section in
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heavy-ion collisions can be written as

dN
J/ψ
AA

dpTdyJ/ψdyg
=

∫
dxT

∫
dzA

∫
dzB nA(xT , zA)nA(xT − b, zB)

×RAg (xT , x1, µF )RAg (xT − b, x2, µF ) e−σabs[TA(xT ,zA,+∞)+TA(xT−b,−∞,zB)]

× x1x2fg(x1, µF )fg(x2, µF )
dσgg→J/ψg

dt

=

∫
dxT

∫
dzA

∫
dzB nA(xT , zA)nA(xT − b, zB)

×RAg (xT , x1, µF )RAg (xT − b, x2, µF ) e−σabs[TA(xT ,zA,+∞)+TA(xT−b,−∞,zB)]

× dσ
J/ψ
pp

dpTdyJ/ψdyg
, (4.23)

where Equation (4.13) was used. In the following we assume that the emitted outgoing gluon
in the J/ψ production process g + g → J/ψ + g is soft. As a consequence, x1 and x2 are
independent of its rapidity yg and we can integrate it out:

dN
J/ψ
AA

dpTdyJ/ψ
=

∫
dxT

∫
dzA

∫
dzB nA(xT , zA)nA(xT − b, zB)

×RAg (xT , x1, µF )RAg (xT − b, x2, µF ) e−σabs[TA(xT ,zA,+∞)+TA(xT−b,−∞,zB)]

× dσ
J/ψ
pp

dpTdyJ/ψ
. (4.24)

If there are no cold nuclear matter effects (RAg = 1, agN = 0 GeV2/fm, and σabs = 0 mb) this
formula simplifies to the well known binary scaling from p+p to A+A collisions,

dN
J/ψ
AA

dpTdy
= TAA(b)

dσ
J/ψ
pp

dpTdy
. (4.25)

In Figure 4.9 the initial J/ψ distributions for Au+Au collisions at RHIC with cold nuclear
matter effects for different impact parameters are compared to the p+p reference. The nuclear
matter effects in central Au+Au collisions are quite sizeable, although the shape itself is
barely changed. In peripheral Au+Au collisions the suppression is smaller due to the impact
parameter dependent nuclear absorption and shadowing parameterizations. It is also interesting
to compare to the data from deuteron-gold (d+Au) collisions since here only cold nuclear
matter effects are present. The suppression in the positive rapidity direction, which is the
direction of the deuteron, is larger than in the negative direction since a produced J/ψ sees
the passing nucleus and can be absorbed. Furthermore, a J/ψ in this direction is produced on
average from gluons with a smaller x from the nucleus than from the deuteron. Hence, the
small x regime is probed, where shadowing effects are strong. In the negative direction hardly
any suppression compared to p+p is present. Interestingly, the curve for only cold nuclear
matter effected J/ψ in peripheral heavy-ion collisions is rather close to the d+Au data at mid-
and forward rapidity, which might not be too suprising given that ultra-peripheral heavy-ion
collisions should not be too different from d+Au collisions at forward rapidity.
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[PHENIX11a] is measured with the deuteron going in the forward rapidity direction. B is
the branching ratio of J/ψ to di-electrons.

Since Equation (4.24) describes the initial J/ψ distribution in heavy-ion collisions including
cold nuclear matter effects, we employ it to sample the initial J/ψ input for BAMPS. The
subsequent evolution and the effect of hot nuclear matter on J/ψ are presented in Chapter 7,
where we also show results on J/ψ RAA and v2.

4.5. Initial light parton distribution—PYTHIA and minijet model

The initial light parton distributions are obtained either from PYTHIA or the mini-jet model.
For most calculations in this work, PYTHIA is employed since it gives a more realistic picture
of the initial distribution. However, for studying highly energetic light partons in Section 6.2.1
we employ the mini-jet model since it is numerically easier to use for sampling rare probes
such as jets and because it has been applied for studying light parton observables in the past
[FXG09, FXG10].

For our simulation we use PYTHIA 6.4 [SMS06] with the parton distribution function
CTEQ6l [P+02], allow all QCD interactions, and turn off the hadronization. PYTHIA
distinguishes between soft and hard events. Since soft events are usually events without any
hard parton interactions, we discard them and only scale the hard events with the number
of binary collisions, see Equation (A.21), having in mind the picture of a heavy-ion collision
consisting—according to the Glauber model (cf. Appendix A.5)—of a superposition of
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4. Parton cascade BAMPS

independent nucleon-nucleon collisions.
Both at RHIC and LHC most of the initially produced particles are gluons. In contrast, the

quark number is much smaller, resulting in an initial quark to gluon ratio at mid-rapidity of
0.15 at RHIC and 0.1 at LHC [UFXG10a].

In the mini-jet model [KLL87, EKL89], the initial parton distribution is given by several
independent 2-jet events, which are sampled according to [WG91]

dσjet

dp2
Tdy1dy2

= K
∑
a,b

x1fa(x1, p
2
T )x2fb(x2, p

2
T )

dσab
dt

, (4.26)

where pT denotes the transverse momentum, y the rapidity, and x the Bjorken variable. The
cross section σab is calculated in leading order pQCD and a K = 2 factor is introduced to
account for higher orders.

To avoid problems at low momenta where pQCD is not valid anymore, a momentum cut-off
must be introduced. However, since we employ the mini-jet model only for high-energy particles
the value of this cut-off is not important.6 The number of produced partons is given by

Npartons(b) = σjet TAB(b) (4.27)

with TAB(b) being defined in Appendix A.5.
For more details on the two models and the particular implementation in BAMPS we refer

to Refs. [XG05, Uph09, UFXG10a].

4.6. Non-heavy-flavor BAMPS studies

Apart from the heavy flavor results presented in this thesis, BAMPS has been applied to study
a wide variety of phenomena related to heavy-ion collisions. The most important investigations
are briefly summarized in the following.

It is important to note that for all previous pQCD based studies the original Gunion-
Bertsch (GB) matrix element has been employed. In Section 3.2 we identified several problems
with the original GB version and proposed an improved matrix element. The applicability
of the latter was verified by comparing to exact calculations. Hence, the previously obtained
results with the original GB cross section must be revisited with the improved version that
should describe the inelastic processes more accurately, which is planned for the near future.
As a note, all hard probes studies presented in this thesis feature the improved GB cross
section.

One of the first studies after establishing the BAMPS framework was the investigation of
thermalization of a gluon plasma in both a static medium and an expanding fireball in a
heavy-ion collision [XG05]. A very short thermalization time of about 1 fm was found, mainly
driven by inelastic processes [XG05, XG07]. In addition, the thermalization within BAMPS
with color glass condensate initial conditions was compared to the so called “bottom-up”
scenario [EXG08].

For either a large coupling αs = 0.6 and a large freeze-out energy density εc = 1.0 GeV/fm3

or a small coupling αs = 0.3 and later freeze-out (εc = 0.6 GeV/fm3), the integrated elliptic

6If one is also interested in the soft parton sector, one can fix the value by comparing the final transverse
energy distribution of the gluons with data [XG06].
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flow at RHIC can be described by a purely gluonic plasma [XGS08, XG09]. More recent
calculations of the elliptic flow include also light quark degrees of freedom, either effectively
[XG10] or rigorously [FUXG11, Foc11] by actually implementing light quarks in BAMPS.

Calculations that reproduce the measured elliptic flow also exhibit a very small shear
viscosity to entropy density ratio [XGS08], as it is also the case for hydrodynamic models (cf.
Section 2.2.2). The shear viscosity in BAMPS has been calculated using different methods: from
transport rates [XG08], from the Green-Kubo relation [WER+11], from the classical picture of
the shear viscosity [RBE+12], and from the entropy principle as well as Grad’s approximation
for the off-equilibrium distribution function [EMXG09, ELW+12], giving consistent results.

Within the same framework that describes the QGP with a large elliptic flow, a rapid
thermalization, and a small shear viscosity to entropy density ratio, also the jet quenching
of light partons was studied [FXG09, FXG10, CGW+10, FUXG11, Foc11]. This includes the
calculation of the nuclear modification factor but also the extraction of the jet transport
parameter q̂. In addition, first calculations with reconstructed jets have been performed
[SFU+13]. The suppression of highly energetic particles is much larger than the experimental
data [FXG09, FXG10, FUXG11, Foc11] due to a strong radiative energy loss. As we will see
in Section 6.2.1, the improved GB matrix element leads to a much smaller energy loss.

BAMPS was also employed in several more theoretical studies. For instance, the relativistic
Riemann problem, which considers the propagation of a shock wave, was investigated in
hot and dense matter with different viscosities [B+09]. Being in agreement with the analytic
solution for vanishing viscosity, the BAMPS results for finite viscosity can serve as a benchmark
for viscous hydrodynamic models [BMN+10]. Such comparisons are possible since BAMPS
solves the Boltzmann equation very accurately. Therefore, it can be employed to verify
dissipative hydrodynamic equations derived from kinetic theory, for instance, in the Israel-
Stewart procedure [EXG10, EMXG10, EBW+12] and beyond [DNB+12]. The latter result
is in agreement with heat flow calculations in BAMPS [GRB+13].

Furthermore, BAMPS was used to study whether jets in heavy-ion collisions can produce
shock waves in form of Mach cones and if they form a double peak in two-particle correlations
[BEF+12]. In addition to heavy-ion collisions, BAMPS was extended to p+p collisions and the
elliptic as well as triangular flow was calculated in these more elementary collisions [DXG12].
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5. Energy loss of heavy quarks

One thing I have learned in a long life: that all our
science, measured against reality, is primitive and
childlike—and yet it is the most precious thing we have.

Letter to Hans Mühsam dated July 9th, 1951
Albert Einstein

In this chapter we study the elastic and radiative energy loss of heavy quarks. First, we
outline a derivation of an analytic formula for elastic heavy quark energy loss from pQCD
matrix elements and hard-thermal-loop resummations in a static medium [PP08b, PP08a] and
recalculate it for Boltzmann statistics. By comparing to this result we can analytically fix
the screening mass of the Born cross section, which is implemented in BAMPS. To verify this
matching we compare BAMPS simulations of a heavy quark traversing a static medium to the
analytic result. In Section 5.2 we extend the analytic formula to a flowing medium and again
compare to BAMPS simulations. Numerical results from BAMPS for the radiative energy loss
are presented in Section 5.3 and compared to the elastic energy loss.

5.1. Elastic energy loss in a static medium

In this section we consider a high-energy heavy quark with massM and large energy E traversing
a static medium of thermally distributed light quarks and gluons with a temperature T . The
energy loss per unit length of the heavy quark can be expressed as [BT91b, BT91a]

dE

dx
=
∑
i

1

2Ev

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4
ni(p2) n̄i(p4)

× (2π)4δ(4)(p1 + p2 − p3 − p4) di
∣∣Mi+Q→i+Q

∣∣2 ω . (5.1)

The four-momenta of the incoming and outgoing heavy quark are p1 = (E,p1) and p3 =
(E3,p3). Thus, ω = E − E3 denotes the energy loss of the heavy quark in one interaction.
The momenta of the incoming (outgoing) medium particle i is denoted with p2 (p4). v is the

velocity of the heavy quark and
∣∣Mi+Q→i+Q

∣∣2 is the summed and averaged squared matrix
element of one of the following elastic processes (i = g, q):

g +Q→ g +Q

q +Q→ q +Q . (5.2)

The matrix elements for the two processes are given in Equations (3.27) and (3.29), respectively.
The degeneracy factor di of the thermal scattering particle is dg = 2 · (N2

c − 1) = 16 for gluons
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and dq = 2 · 2 · Nc · nf = 12nf for quarks. First, we calculate the general result for Bose-
Einstein and Fermi-Dirac statistics, ni(k) = (exp(k/T ) ∓ 1)−1, for thermal gluons and
light quarks, respectively, but later employ the assumption of Boltzmann statistics for both
species, ni(k) = exp(−k/T ), in order to compare with BAMPS, in which all particles are
treated as Boltzmann particles. The factor n̄i = 1 ± ni takes the Bose enhancement or
Pauli blocking in the final state into account.

The following calculation is done analogously to Ref. [PP08b, PP08a]. Equation (5.1) can
be rewritten after somewhat lengthy kinematical transformations [PP08b] in terms of the
differential cross section dσ/dt by neglecting quantum effects in the final state, n̄i → 1, and
assuming that E is very large,

dE

dx
=
∑
i

di

∫
d3p2

(2π)32E2
ni(p2)

tmax∫
tmin

dt (−t) dσi+Q→i+Q
dt

, (5.3)

The differential cross sections of the processes in (5.2) are given in Section 3.1, in which also
the limits of the t integration are calculated from the kinematics, see Equation (3.15).

The most important contribution to the differential cross section of both processes from
(5.2) is the t channel, which is proportional to

dσi+Q→i+Q
dt

∣∣∣∣
t channel

∝ 1

t2
+ . . . . (5.4)

Consequently, the integral

tmax∫
tmin

dt (−t) dσi+Q→i+Q
dt

∣∣∣∣
t channel

∝ ln
|tmin|
|tmax|

+ . . . , (5.5)

which enters in the energy loss calculation of Equation (5.3), is divergent for tmax = 0. This
is the same divergence that arose in Section 3.1, where we regularized the t channel with a
screening mass. Here, however, we will go another way and calculate the energy loss of the
soft diverging part within the hard-thermal-loop (HTL) approximation [BP90, Tho95], which
is a more accurate description of medium effects on the propagator compared to the simple
Debye screening.

To this end, following along the lines of the Braaten-Yuan prescription [BY91], we divide
the t range with a cut-off t? in a soft (|t| < |t?|) and hard (|t| > |t?|) part. The parameter t?

is chosen as an arbitrary intermediate scale that fulfills m2
D � |t?| � T 2 with mD being the

Debye mass defined in Equation (3.18). This implies that m2
D � T 2, which is strictly only

fulfilled if the coupling is very small. The issue is discussed in great detail in Ref. [GA08],
where also another description is proposed that leads to very similar results as presented in
this chapter. For the hard part, we can just proceed from here with the standard integration
of Equation (5.3) since no divergence occurs. For the soft part, we calculate the energy loss
within the HTL approximation, which also gives finite results.

As a note, it is not straightforward to employ the HTL approximation to calculate the total
cross section directly instead of the more indirect energy loss because it would result in another
divergence in the calculation of the interaction rate. In contrast, in the energy loss calculation
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the additional explicit factor of (−t) in Equation (5.3) (compared to the interaction rate) keeps
the integrals finite.

In the next section we calculate not only the hard part of the t channel but also the
contribution of the s and u channel, which are both infrared safe. The soft part of the t
channel is calculated within the HTL approach in Section 5.1.2. We combine these results
to the total energy loss in Section 5.1.3 and show that the final result does not depend on
the separation scale t?. Subsequently, in Section 5.1.4 the result for the energy loss with all
particles obeying Boltzmann statistics is derived. In Section 5.1.5 we fix the screening mass
of the Born cross section by comparing to the HTL calculation and also compare the analytic
formula to BAMPS simulations. Finally, we extend the analytic formula of the energy loss
from a constant to a running coupling in Section 5.1.6.

5.1.1. s, t, and u channel—hard part

For the scattering process of a light and a heavy quark, only the t channel exists. Equa-
tions (3.29) and (3.28) can be rewritten (without any approximations) as1

dσqQ→qQ
dt

=
πα2

s

16s̃2

128

9

(
s̃2

t2
+
s

t
+

1

2

)
, (5.6)

where we introduced the abbreviation s̃ = s−M2 and, for later reference, also define ũ = u−M2.
The coupling αs is assumed to be constant. In Section 5.1.6, however, we loosen this constraint
and explicitly consider a running coupling. After plugging the differential cross section in
Equation (5.3), one can perform the t integration up to tmax = t? as well as the k integration
and gets

dEq
dx

∣∣∣∣
|t|>|t?|

=
4πα2

sT
2

3

nf
6

[
ln

8ET

|t?| − γE −
3

4
+
ζ ′(2)

ζ(2)

]
(5.7)

with γE ≈ 0.577 being the Euler constant. ζ and ζ ′ denote the Riemann Zeta Function and
its derivative, respectively.

In the limit of E →∞ the differential cross section of gluon-heavy-quark scattering from
Equations (3.12) and (3.6) can be approximated as

dσgQ→gQ
dt

' πα2
s

16s̃2

[
32

(
s̃2

t2
+
s

t
+

1

2

)
+

64

9

(−ũ
s̃

+
s̃

−ũ

)]
, (5.8)

The first inner bracket is the contribution from the t channel, the second from the s and u
channels. The interference terms as well as some terms in the s and u channels vanish in this
limit.

The t channel contribution is the same expression as for q+Q scattering, just with a different
prefactor. Taking this prefactor, the different degeneracy factors of gluons and light quarks,
and the different integrals of Bose and Fermi distributions (an extra factor of 2 as well as

1Since we are here only interested in the hard part and |t| > |t?| � m2
D, we can neglect the screening masses.

The soft part is computed in the next section from HTL calculations, which are theoretically more advanced
than the Debye screening.
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Distribution n(E)
∫∞

0 dE n(E)E
∫∞

0 dE n(E)E ln(E/T )

Bose-Einstein (exp(E/T )− 1)−1 π2

6
T 2 π2

6
T 2

[
1− γE +

ζ ′(2)

ζ(2)

]
Fermi-Dirac (exp(E/T ) + 1)−1 π2

12
T 2 π2

12
T 2

[
1− γE +

ζ ′(2)

ζ(2)
+ ln 2

]
Boltzmann exp(−E/T ) T 2 T 2 [1− γE ]

Table 5.1.: Useful integrals of the distribution functions of particles that obey Bose-Einstein,
Fermi-Dirac, or Boltzmann statistics.

the lack of a ln 2 term, cf. Table 5.1) into account, yields the following result for the hard part
of t channel contribution of gQ→ gQ:

dEg
dx

∣∣∣∣t channel

|t|>|t?|
=

4πα2
sT

2

3

[
ln

4ET

|t?| − γE −
3

4
+
ζ ′(2)

ζ(2)

]
. (5.9)

The s and u channels are not divergent for small t due to the finite heavy quark mass.
Therefore, there is no need to introduce a cut-off t? and the t integration in Equation (5.3)
can be continued to zero. Consequently, in the next section we only have to consider the soft
part of the t channel. Substituting t by ũ with the Mandelstam relation s̃+ t+ ũ = 0 (cf.
Appendix A.2) and integration over the second term of Equation (5.8), yields the energy loss
from the s and u channels:

dEg
dx

∣∣∣∣s,u channels

=
4πα2

sT
2

3

2

9

[
ln

4TE

M2
− 5

6
− γE +

ζ ′(2)

ζ(2)

]
. (5.10)

5.1.2. t channel—soft part

In contrast to the previous section, the collisional energy loss of a heavy quark from the soft
contribution is derived from its self-energy, which is calculated in the HTL approximation.
The interaction rate Γ, which is closely related to the energy loss via

dE

dx
=

1

v

∫
dω

∂Γ

∂ω
ω , (5.11)

can be calculated from the self-energy Σ of the heavy quark, [Bel00, PP08b]

Γ(E) = − 1

2E
(1− nF (E)) tr [(P/ +M) Im Σ(P )] . (5.12)

Because of gauge invariance one can choose an arbitrary gauge (here Coulomb gauge) and
evaluate the trace. Due to the assumption M � T , the Fermi distribution is nF (E)� 1 and
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the interaction rate becomes [PP08b]

Γ(E) =
2αs
v

4

3

∞∫
0

dq q

ω+∫
ω−

dω (1 + nB(ω))

{
ρL(ω, q)

[
1− ω

E
− t

4E2

]

+ ρT (ω, q)

[
v2 − ω2

q2
+

t ω

Eq2
− t

2E2
− t2

(2Eq)2

]}
, (5.13)

where q is the gluon momentum, nB the Bose distribution and ω±(q) = E −
√

(p∓ q)2 +M2.
The spectral functions of the longitudinal and transverse gluons are defined by [BT91a]

ρL,T (ω, q) ≡ − 1

π
Im [∆L,T (ω + iε, q)] (5.14)

with ∆L,T being the longitudinal and transverse gluon propagators, which are in the HTL
approximation given by

∆L(ω, q) =
1

q2 + ΠL(x)
, ∆T (ω, q) =

1

ω2 − q2 −ΠT (x)
(5.15)

with the self-energies [BI02]

ΠL(x) = m2
D [1−Q(x)] ,

ΠT (x) =
m2
D

2

[
x2 + (1− x2)Q(x)

]
=
m2
D

2
x(1− x2)Q′(x) ,

Q(x) ≡ x

2
ln
x+ 1

x− 1
, (5.16)

where mD is the Debye mass.
To obtain the energy loss of a heavy quark one must weight—according to Equation (5.11)—

the integral in Equation (5.13) with the factor ω/v. We also change variables to t = ω2 − q2

and x = ω/q, approximate the boundaries of the x integral to ±v, and neglect terms of the
order of O(|t|1/2/E) since we only consider the soft region |t| < |t?| here. The energy loss then
reads

dEg,q
dx

∣∣∣∣t channel

|t|<|t?|
=
αs
v2

4

3

v∫
−v

dx
x

(1− x2)2

0∫
t?

dt (−t)
[
ρL + (v2 − x2)ρT

]
. (5.17)

As we have mentioned above, weighting the integral with ω is essential to avoid an infrared
divergence. Thus, the energy loss is a well-defined quantity, whereas the interaction rate
diverges due to soft transverse exchanges.

After evaluating the integrals, using |t?| � |Π̃L(x)|, |ΠT (x)|, and going to the limit E →∞
and, thus, v → 1, we arrive at the result of the energy loss in the soft region of the t channel,

dEg,q
dx

∣∣∣∣t channel

|t|<|t?|
=
αsm

2
D

4

4

3
ln

2|t?|
m2
D

=
4πα2

sT
2

3

(
1 +

nf
6

)
ln

2|t?|
m2
D

, (5.18)

where the definition of the Debye mass m2
D = 4παsT

2(1 + nf/6) for gluons with Bose
statistics from Equation (3.21) was used.
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5.1.3. Total energy loss

In the previous sections we calculated the contributions of the s and u channel, Equation (5.10),
the hard part of the t channel for scatterings with a light quark and a gluon, Equations (5.7)
and (5.9), respectively, as well as the soft contribution of the t channel from the HTL approach,
Equation (5.18). Adding all these results together, gives the total collisional energy loss of a
heavy quark in a static and thermal quark-gluon plasma,

dE

dx
=

4πα2
sT

2

3

[(
1 +

nf
6

)
ln
ET

m2
D

+
2

9
ln
ET

M2
+ c(nf )

]
(5.19)

with

c(nf ) = anf + b ' 0.146nf + 0.050 , (5.20)

where the exact values of a and b are a = (2/3) ln 2 − 1/8 + (ζ ′(2)/ζ(2) − γE)/6 and b =
(31/9) ln 2− 101/108 + 11(ζ ′(2)/ζ(2)− γE)/9.

The first term in the bracket of Equation (5.19) has been first calculated by Bjorken [Bjo82]
and is called the Coulomb logarithm since it arises from the t channel. The second term is
the Compton logarithm and stems from the s and u channels.

5.1.4. From quantum statistics to the classical Boltzmann limit

The parton cascade BAMPS treats the partons as Boltzmann particles. Therefore, to compare
to numerical results from BAMPS, we must re-derive the analytic formula of the energy loss
for particles that obey Boltzmann statistics. Table 5.1 on page 98 lists some integrals over
the distribution functions that are used in the calculation. After performing these integrals,
the contributions of the different channels from the light quark and gluon scatterings (see
Equations (5.7), (5.9), (5.10), and (5.18)) are modified to

dEq
dx

∣∣∣∣
|t|>|t?|

=
8α2

sT
2

π

nf
3

[
ln

4ET

|t?| − γE −
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4

]
dEg
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|t|>|t?|
=

8α2
sT

2

π

[
ln

4ET

|t?| − γE −
3

4

]
dEg
dx
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=
8α2

sT
2

π
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[
ln

4ET

M2
− γE −

5

6

]
dEg,q
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∣∣∣∣t channel

|t|<|t?|
=

8α2
sT

2

π

(
1 +

nf
3

)
ln

2|t?|
m2
D

. (5.21)

Summing all these contributions up, yields the total collisional energy loss in the Boltzmann
limit:

dE

dx
=

8α2
sT

2

π

[(
1 +

nf
3

)
ln
ET

m2
D

+
2

9
ln
ET

M2
+ f(nf )

]
(5.22)

with

f(nf ) = g nf + h ' 0.251nf + 0.747 , (5.23)
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5.1. Elastic energy loss in a static medium

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10  100  1000

d
E

/d
x
 [
G

e
V

/f
m

]

E [GeV]

T = 300 MeV

M = 1.3 GeV

BAMPS, κ=0.184
analytic, Boltzmann stat.

analytic, quantum stat.

Figure 5.1.: Collisional energy loss per unit length dE/dx as a function of jet energy E of
the heavy quark in a static and thermalized medium of gluons (nf = 0) with temperature
T = 300 MeV. The numerical result from BAMPS with the Born cross section, a constant
coupling αs = 0.3, and a screening mass with κt = 0.184 is compared to the analytical
result from Equation (5.22) for Boltzmann statistics. In addition, the curve for quantum
statistics is shown.

where g = ln 2− 1/4− γE/3 and h = (31/9) ln 2− 101/108− 11γE/9.
In Figure 5.1 both results for Boltzmann and quantum statistics are shown. The analytic

curve for quantum statistics is about 25 % larger than the Boltzmann curve for E ' 10 GeV.
In addition, the result from a BAMPS simulation with an improved Debye screening is
depicted, which is discussed in the next section.

5.1.5. Comparison to Born cross section

We emphasized earlier that a full HTL calculation of the interaction rate or, equivalently, the
cross section diverges. However, the cross section that is implemented in BAMPS must be
finite. Accordingly, we approximated in Equation (3.16) the self-energy in the screened gluon
propagator by a constant screening mass µ2 = κtm

2
D, which is proportional to the Debye

mass, as discussed in Section 3.1. In this section we will fix the prefactor κt by comparing the
energy loss obtained with the screened Born cross section from Section 3.1 to the energy loss
from the HTL calculation.

Therefore, we now perform the integration in Equation (5.3) for the different channels of
the screened Born matrix elements given in Equations (3.27) and (3.29) with the screening
mass µ2 = κtm

2
D in the t channel but for a constant coupling.2 The result of the s and u

2Furthermore, we set the screening masses in the s and u channel to zero since both channels are screened by

101



5. Energy loss of heavy quarks

channel is the same as in Equation (5.10) since they are not affected by the screening. The
integration range for the hard part of the t channel is |t| ∈ [|t?|, s̃2/s]. By definition |t?| � m2

D

and, therefore, |t| � m2
D for the hard part. As a consequence, the screening of the gluon

propagator can be neglected in this range, 1/(t− µ2)2 → 1/t2, and the energy loss of the hard
part of the t channel is the same as in Equations (5.7) and (5.9) for scattering with a quark or
gluon, respectively.

Consequently, the only difference arises from the soft t channel contribution, which we now
calculate with the screened Born matrix elements for scatterings with quarks and gluons
instead from HTL calculations. To obtain the energy loss due to the soft part of the t channel,
we insert the screened Born cross section in Equation (5.3) and perform the integrations. Due
to the screened gluon propagator the t integration does not diverge and we can integrate from
tmin = t? to tmax = 0. For large s we obtain the result (quantum statistics)

dEg,q
dx

∣∣∣∣t channel

|t|<|t?|
=

4πα2
sT

2

3

(
1 +

nf
6

) (
ln
|t?|
µ2
− 1

)
=

4πα2
sT

2

3

(
1 +

nf
6

)
ln

|t?|
e κtm2

D

. (5.24)

Comparing this result to the energy loss of the soft t channel, computed in the HTL approxi-
mation in Equation (5.18), determines κt to be

κt =
1

2e
≈ 0.184 . (5.25)

The same result for κt is also obtained with Boltzmann statistics instead of quantum statistics.
Hence, if we employ this κt in the screening mass µ in the Born cross section, we reproduce the
energy loss calculated in the theoretically more advanced HTL approach. One advantage is that
we can use the screened Born matrix element also to calculate the cross section, which does
not diverges and can be implemented in BAMPS. However, although this approach leads to the
correct overall energy loss dE/dx, it does not reveal whether the energy loss per collision ∆E
and the mean free path ∆x individually are correctly described. Due to the HTL resummations
in the soft region, also long-range interactions are probed. This corresponds to an increase in
the number of scattering centers and, hence, an increase of the rate compared to the standard
Born cross section, while the energy loss per collision is expected to decrease. And indeed the
resulting cross sections seem to be rather large whereas the mean energy transfer per collision
is rather small. Although this goes in the expected direction, the presented prescription does
not make any statement whether the rates or energy loss per collision are the same as one
would obtain from a more sophisticated HTL scheme. Thus, this approach may only be an
effective description to obtain the correct overall energy loss but not the microscopic details of
the underlying processes. We discuss this in more detail in Section 5.3.

In Figure 5.1 the numerical result with BAMPS and κt = 0.184 is compared to the analytic
formula (5.22) for Boltzmann statistics. For large jet energies—the regime in which the
analytic formula is valid—the agreement with the numerical result is very good.

This comparison has also been done in Refs. [GA08, Pes12]. Ref. [GA08] calculated the
energy loss with the full QCD matrix element (3.12) and not only the approximation from
Equation (5.8). In this case an explicit dependence on t? remains in the final dE/dx result.
This dependence can only be neglected if |t?| > T 2, a domain in which the HTL approximation
is not necessarily valid anymore. However, if one screens also the hard part of the t channel

the heavy quark mass and, therefore, do not diverge for small t or u.
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5.1. Elastic energy loss in a static medium

with Equation (3.17), the final result depends only weakly on |t?|. With this procedure the
authors find κt ≈ 0.16 for a constant coupling and κt ≈ 0.11 for a running coupling.

5.1.6. Running coupling

The analytic result of the heavy quark collisional energy loss obtained for a constant coupling,
Equation (5.19) or (5.22), can be extended to include a running coupling by examining some
simple considerations without performing the tedious calculation from the last sections again.
To this end, we first derive the leading Coulomb and Compton logarithms, lnET/m2

D and
lnET/M2, respectively, in a simpler picture for a constant coupling, which is then generalized
to a running coupling.

For the Coulomb logarithm we consider the dominant part of t channel scattering ∝ 1/t2

(cf. Equations (5.6) and (5.8)). Up to leading logarithmic accuracy the boundaries of the t
integration in Equation (5.3) can be replaced by tmin = −s̃2/s ' −s→ −ET and tmax → −m2

D

[PP08a]. The latter expresses the presence of medium effects and is equivalent to screening
the gluon propagator with the Debye mass (up to leading logarithmic accuracy). For a fixed
coupling αs the t integration yields the leading logarithm (cf. Equation (5.5)):

α2
s

−m2
D∫

−ET

dt (−t) 1

t2
= α2

s ln
ET

m2
D

. (5.26)

The running coupling for this channel should be evaluated at t (see (3.27) and the surrounding
text), which influences the integration,

−m2
D∫

−ET

dt αs(t)
2(−t) 1

t2
=

(
4π

β0

)2 [ 1

ln(−t/Λ2)

]−m2
D

−ET
=

(
4π

β0

)2 ln(ET/Λ2)− ln(m2
D/Λ

2)

ln(ET/Λ2) ln(m2
D/Λ

2)

= αs(ET )αs(m
2
D) ln

ET

m2
D

, (5.27)

where the representation of αs from Equation (3.23) has been used, which simplifies for
space-like Q to αs(Q

2) = 4π/
[
β0 ln(−Q2/Λ2)

]
.

The Compton logarithm stems from the u channel. Here, the running coupling should
be evaluated at ũ (cf. Equation (3.27)) and the t integration in Equation (5.3), which is
substituted by ũ, looks like

−M2∫
−ET

dũ αs(ũ)2 1

−ũ = αs(ET )αs(M
2) ln

ET

M2
. (5.28)

The contribution to the constant beyond leading logarithmic accuracy is dominated by
|t| ' m2

D and |t| ' ET for the t channel and |ũ| ' ET for the u channel. Since there is no
singularity in these integrals, the coupling of these terms can be evaluated at an arbitrary
scale between m2

D and ET [PP08a]. Therefore, we can just choose α2
s = αs(ET )αs(m

2
D) and
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5. Energy loss of heavy quarks

write for the total energy loss of a heavy quark with running coupling [PP08a]

dE

dx
=

4πT 2

3

[
αs(ET )αs(m

2
D)
(

1 +
nf
6

)
ln
ET

m2
D

+ αs(ET )αs(M
2)

2

9
ln
ET

M2

+ αs(ET )αs(m
2
D) c(nf ) +O

(
αs(ET )α2

s(m
2
D) ln

ET

m2
D

)]
(5.29)

with c(nf ) given in Equation (5.20).

For the Boltzmann case the energy loss reads

dE

dx
=

8T 2

π

[
αs(ET )αs(m

2
D)
(

1 +
nf
3

)
ln
ET

m2
D

+ αs(ET )αs(M
2)

2

9
ln
ET

M2

+ αs(ET )αs(m
2
D) f(nf ) +O

(
αs(ET )α2

s(m
2
D) ln

ET

m2
D

)]
(5.30)

with f(nf ) from (5.23).

5.2. Elastic energy loss in a flowing medium

In heavy-ion collisions the medium is not static but expands, which is fully taken into account
in BAMPS calculations since it simulates the medium on the particle level without the need of
thermodynamic variables. Therefore, it is intriguing to study the energy loss of heavy quarks
analytically in a flowing thermal medium and compare it to BAMPS simulations.

In this section, we consider Boltzmann statistics for the medium particles. More precisely,
they obey a Jüttner distribution, which is a generalization of the Boltzmann distribution
for a non-vanishing velocity uµ of the medium,

nJ(k) = e−
uµk

µ

T (5.31)

with uµ = γ(1,u) and γ = 1/
√

1− u2. For u = 0 the Jüttner distribution reduces to the
standard Boltzmann distribution.

If we insert the Jüttner distribution in Equation (5.3) for ni(p2), the right hand side is
manifestly covariant since every factor (ni(p2), t, and dσ/dt) and both integration measures
(d3p2/2E2 and dt) are covariant. Consequently, one could expect, as an educated guess, that
the energy loss of a flowing medium can be simply obtained from Equation (5.19) or (5.22)
by substituting E → pµu

µ in the leading logarithms. This is indeed the case as we showed
analytically in Ref. [MPUG13] for the Coulomb logarithm.

Since the integrals with the Jüttner distribution are rather complex, we consider here
only the special case that the flow of the medium is parallel to the heavy quark direction and
show that the modification of the result due to the flowing medium indeed boils down to the
substitution E → pµu

µ.

To calculate the energy loss for the s and u channel as well as the hard part of the t channel
for a flowing medium, the Jüttner distribution from Equation (5.31) must be inserted in
Equation (5.3) instead of the Boltzmann distribution for a static medium. Performing
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5.2. Elastic energy loss in a flowing medium

the phase space integration for gluon and light quark scattering, which is considerably more
complicated with the Jüttner distribution, the energy loss reads

dEq
dx

∣∣∣∣
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. (5.32)

Since we are only interested in the leading logarithms and not the exact value of the constant
beyond logarithmic accuracy, we refrain from calculating the soft part of the t channel from
HTL for a flowing medium.

For the parallel case, the four-product of the heavy quark momentum and the medium velocity
is γE(1 − u) = pµu

µ. Inserting this in Equation (5.32) and summing up the contributions,
gives for the energy loss of a heavy quark in a medium that flows parallell to the heavy quark
propagation

dE

dx
=

8α2
sT

2

π

[(
1 +

nf
3

)
ln
pµu

µT

m2
D

+
2

9
ln
pµu

µT

M2
+ fuµ(nf )

]
. (5.33)

Note, that this result is only derived for the special case of a medium flowing parallel to
the heavy quark, although we have already inserted the general expression pµu

µ to make a
connection to the general result.

Comparing Equation (5.33) to the result of the static medium from Equation (5.22), the
only modification is the substitution of E by pµu

µ. The simplicity of this result suggests
that Equation (5.33) also holds for a medium flowing in an arbitrary direction. This has
been explicitly verified for the Coulomb logarithm in Ref. [MPUG13] and also holds for the
Compton logarithm.

Furthermore, Equation (5.33) can be interpreted as boosting the energy of the heavy quark
in the rest frame of the medium and evaluating the energy loss there. The energy loss per
unit length in the fluid rest frame is then the same as in the lab frame. This and covariant
arguments would even suggest that the constant fuµ(nf ) is the same as for the static case
f(nf ), which can be numerically verified by comparing to BAMPS simulations (see below).
However, to calculate the constant analytically, an HTL calculation for a flowing medium must
be done, which is not subject of this work.

In Figure 5.2 the result from Equation (5.33) is tested numerically with BAMPS for parallel
and perpendicular flow with respect to the heavy quark direction. If the medium flows in the
opposite direction with respect to the heavy quark propagation, the energy loss of the latter is
enhanced since it experiences an additional “headwind” from the medium. In contrast, the
energy loss is reduced if the medium flows in the direction of the heavy quark jet. The agreement
between the analytical and numerical result is very good. The small difference between both
curves is also present for vz = 0, which indicates that we are not fully in the regime E →∞,
in which the analytic formula is valid—despite using a jet energy of E = 500 GeV (cf. also
Figure 5.1). The independence of this difference on the velocity indicates that the constant
beyond logarithmic accuracy is indeed independent of the flow, fuµ(nf ) = f(nf ).
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Figure 5.2.: Energy loss per unit length dE/dx as a function of the velocity vz of a medium of
gluons (nf = 0) with temperature T = 300 MeV. In the upper plot the flow is parallel to the
jet, which propagates in the positive z direction. In the lower plot the flow is transverse to
a jet in x direction. The numerical results from BAMPS with the Born cross section and a
screening mass with κt = 0.184 are compared to the analytical results from Equation (5.33)
for Boltzmann statistics.
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Figure 5.3.: Elastic energy loss per unit length of a charm quark (M = 1.3 GeV) with energy E
traversing a static thermal medium with a temperature of T = 0.4 GeV. The curves are for
constant or running coupling and Debye mass prefactor κt = 1 or κt = 0.2.

5.3. Elastic vs. radiative energy loss in a static medium

In Section 5.1 we calculated the elastic heavy quark energy loss analytically and made some
first comparisons to simulations with BAMPS. Here, we take a closer look on the numerical
calculations as well as address the differences between elastic and radiative energy loss.

First, to make a connection to the previous sections, we discuss BAMPS simulations of
the elastic energy loss for constant and running coupling as well as different values for the
Debye mass prefactor κt. The latter is defined in Equation (3.17) and is usually simply
set to one. However, in Section 5.1.5 we derived an improved screening procedure that
reproduces the energy loss derived from HTL calculations when setting the prefactor to
κt = 1/2e ' 0.184 ' 0.2.

All the calculations in this section are done for a static thermal medium with a temperature
of T = 400 MeV. The cross sections for the binary scatterings are given in Section 3.1, where
also the idea of the κt factor and the running coupling is motivated in detail.

Figure 5.3 shows the energy loss per unit length of a charm quark in a static medium as a
function of its energy. The first curve is the generally applied pQCD result employing a cross
section with the standard Debye screening (κt = 1) and a constant coupling of αs = 0.3. The
energy loss for this configuration is rather small. The curve for κt = 1, but with a running
coupling has quite similar values but a slightly different energy dependence. As one would
expect from the running coupling, the energy loss for small (large) E is stronger (weaker) than
for the constant case.

Lowering the screening mass by the factor κt = 0.2 increases the cross section significantly
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5. Energy loss of heavy quarks

(cf. Figure 3.5). As a consequence, also the energy loss rises. For a running coupling, this
effect is even more pronounced since the coupling also enters in the definition of the Debye
mass (cf. Equations (3.18) and (3.27)). For a large jet energy, the momentum transfer is also
sizeable and, hence, the coupling smaller than 0.3. Consequently, the Debye mass is smaller
and the cross section as well as energy loss are larger than for a fixed αs = 0.3.3

We have compared the elastic energy loss of heavy quarks in BAMPS with two other
models that also feature the improved screening procedure and the running coupling. A model
developed by Peshier [Pes12], which is based on transition probabilities, was extended by
Meistrenko to include the same physics of elastic interactions. In detailed comparisons of
the heavy quark energy loss in a static as well as flowing medium we found a perfect agreement
between this model and BAMPS [MPUG13]. We also compared the energy loss in a static
medium with results from the Nantes group [GA08, GBA09]. Due to different parameter
choices, their energy loss is about 20 % larger.4 In their model the maximum value of the
coupling αmax

s (see Section 3.1.3) is set to 1.117 instead of 1.0 as in BAMPS. The scale of
the running coupling in the definition of the Debye mass from Equation (3.21) is not set to
the momentum transfer t but to the Debye mass itself, αs(−m2

D), leading to an iterative
determination of the Debye mass. If we implement their parameter choices in BAMPS, we
find a perfect agreement in the energy loss (and also in more differential variables such as the
rate, energy loss per collision, or transport coefficient).

As mentioned before, setting κt = 0.2 reproduces the HTL energy loss and is, thus, well
motivated from the theory perspective. However, this matching holds primarily for the energy
loss and does not make any statement about more differential variables like the energy loss per
collision ∆E and the rate R (or the mean free path λ). These quantities are related to the
energy loss per unit length in a static thermal medium via

dE

dx
' ∆E

λ
=
R∆E

v
, (5.34)

where v is the velocity of the heavy quark.
In contrast to the analytic HTL calculation, these variables are accessible in BAMPS

simulations. Figure 5.4 shows the collision rate and energy loss per collision for the same
configurations as in Figure 5.3. Multiplying these curves for each E gives essentially the dE/dx
curves from Figure 5.3 since the velocity for high-energy charm quarks is nearly one.

The increased energy loss for the improved screening κt = 0.2 is completely dominated by
the increased rate. The energy loss per collision is even smaller for κt = 0.2 than for the
standard Debye screening. The reason for the large rate is the sizeable cross section due
to the small screening mass. On the other hand, a small screening mass leads to a stronger
peak of the differential cross section dσ/dt at small momentum transfers |t| (see Figure 3.6).
Consequently, the energy loss per collision decreases.

Although the energy loss per unit length of the improved screening scheme gives the correct
result, as has been verified in Section 5.1.5, it is questionable whether the microscopic treatment

3Although this reasoning holds in principle also for κt = 1, the effect in that case is much less pronounced.
For the κt = 0.2 case the screening mass is significantly smaller, which renders the cross section to be very
sensitive on its exact value. Furthermore, the energy loss is a complicated interplay between increased rates
and decreased energy loss per collision for running coupling or κt = 0.2 compared to constant coupling and
κt = 1, as we will discuss in the following and is shown in Figure 5.4.

4This also gives an indication why they need a smaller K factor to explain the open heavy flavor data with
only binary interactions, cf. Section 6.1.
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Figure 5.4.: Energy loss per collision and collision rate of a charm quark in a static thermal
medium for the same configurations as in Figure 5.3.

of this effective procedure is accurate. The huge rate and small energy loss per collision raise at
least some concerns regarding this treatment. However, we expect that the effective treatment
gives correct results for observables that merely depend on the energy loss of the particles
such as the nuclear modification factor. Nevertheless, as we will see below, problems occur on
the microscopic level, for instance, when implementing the LPM effect (see Section 3.2.7) for
radiative processes.

We now turn to the radiative energy loss. The cross sections of 2→ 3 processes are calculated
in Section 3.2. Within the Gunion-Bertsch approximation the radiative matrix element
factorizes in the 2→ 2 matrix element and a factor for the emitted gluon, see Equation (3.82).
For the binary part of the radiative process we employ the same matrix element as for the
2 → 2 process, including the running coupling and κt factor. The screened gluon emission
factor is given in Equation (3.84).

Figure 5.5 depicts the elastic and radiative energy loss of light, charm, and bottom quarks
for a constant coupling and standard Debye screening. The radiative energy loss is larger

109



5. Energy loss of heavy quarks

 0

 0.5

 1

 1.5

 2

 2.5

 0  10  20  30  40  50

d
E

/d
x
 [
G

e
V

/f
m

]

E [GeV]

αs = 0.3, κ = 1

2→3, light quark
2→3, charm
2→3, bottom
2→2, light quark
2→2, charm
2→2, bottom

Figure 5.5.: Elastic and radiative energy loss per unit length of a light quark (M = 0 GeV),
a charm quark (M = 1.3 GeV), and a bottom quark (M = 4.6 GeV) traversing a static
thermal medium with temperature T = 0.4 GeV. The curves are calculated with constant
coupling and Debye mass prefactor κt = 1.

than the elastic energy loss for all quark masses. While both have similar sizes at small energy,
they differ by about a factor of two at larger energies for all flavors. The mass hierarchy is
visible for both the elastic and radiative energy loss—heavy quarks lose less energy. However,
between light and charm quarks the difference for the radiative energy loss is only marginal.
As we have mentioned in Section 3.2.7, the LPM effect suppresses the gluon emission at small
angles and partly overshadows the dead cone of heavy quarks. The charm quark dead cone is
rather small at larger energies. Consequently, the energy loss is mostly influenced by the LPM
suppression, which renders the charm and light quark curves to be rather similar.

This reasoning can be nicely verified by looking at the angular distribution of the gluon
emitted off a light and charm quark jet. In the left panel of Figure 5.6 the differential cross
section is depicted as a function of the gluon emission angle with respect to the jet for light,
charm, and bottom quarks. The distributions of light and charm quarks are very similar.
Small angles are suppressed due to the LPM effect, but no additional dead cone suppression
for charm jets can be seen.

In the right panel of Figure 5.6 the mean free path that enters in the LPM effect is not
determined iteratively (which is the default implementation in BAMPS), but set by hand to
a large value of λ = 10 fm. Hence, the LPM suppression is reduced and smaller angles are
allowed. Consequently, the suppression due to the dead cone effect becomes visible again,
which results in a stronger suppression of charm quarks at small angles compared to light
quarks. As a note, the total cross sections of all quarks are larger for λ = 10 fm compared to
the default implementation since the LPM suppression is reduced.
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Figure 5.6.: Average differential cross section dσ/dθ of a light, charm, and bottom quark jet
with energy E = 10 GeV as a function of the angle θ, at which the gluon is emitted in the
lab frame with respect to the jet direction. For the left plot the mean free path that enters
in the LPM effect is determined iteratively, while for the right plot it is set by hand to the
large value of λ = 10 fm.

In contrast to charm quarks, the dead cone for bottom quarks is more pronounced and
is even visible for an iteratively calculated mean free path. Hence, also the energy loss in
Figure 5.5 is considerably smaller than for lighter quark flavors. The similar energy loss of
light and charm quarks could be an explanation why the measured nuclear modification factors
of charged hadrons and D mesons in heavy-ion collision have the same values. We discuss this
in more detail in Section 6.2.

If we employ a running coupling, the findings change only modestly. As we saw in Figure 5.3
the elastic energy loss has a slightly different energy dependence but very similar values.
However, Figure 5.7 shows that the radiative energy loss with a running coupling is significantly
smaller than for a constant coupling at large energies. This is due to the LPM effect. The
binary cross section for a running coupling is larger than for a constant coupling of αs = 0.3
(cf. rates in Figure 5.4). Hence, the mean free path is smaller, which leads to a stronger
suppression. The mass hierarchy is barely present anymore. For a running coupling, the charm
energy loss is slightly larger than for light quarks and even the bottom radiative energy loss is
close to the light quark curve above E = 30 GeV. This is again a possible explanation for the
similar suppression of light and heavy flavor in heavy-ion collisions.

The picture changes significantly if we consider not only a running coupling, but also the
improved Debye screening. As we saw in Figure 5.4 the binary rate for κt = 0.2 is very large.
Hence, the mean free path is small and we expect a considerable suppression of the radiative
energy loss due to the LPM effect. Figure 5.8 confirms that this is indeed the case. The
radiative contribution is so strongly suppressed that it can basically be neglected compared
to the elastic energy loss. We only depict the curves for heavy quarks since the improved
screening was solely derived for massive quarks in Section 5.1.

As discussed above, the huge binary rate is rather unphysical and also the small radiative
contribution does not seem to be very sensible. The only way to circumvent this problem would
be the implementation of a more accurate screening procedure, preferably by considering the
gluon self energy in the HTL framework. However, this is a very complex task and seems nearly
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Figure 5.7.: As Figure 5.5 for a running coupling and Debye mass prefactor κt = 1.
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Figure 5.8.: As Figure 5.5 for a running coupling and Debye mass prefactor κt = 0.2. Light
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Figure 5.9.: Elastic and radiative energy loss per unit length of a charm quark in a static
medium for constant or running coupling as well as κt = 1 or κt = 0.2.

impossible to be implemented in a transport model. Hence, we stick to the effective Debye
screening and explore in this section as well as in Section 6.2 the limits of this prescription.

Figure 5.9 summarizes the energy loss scenarios from the previous figures for the case of
a charm quark. The radiative energy loss for constant and running coupling with standard
Debye screening is twice as large as the elastic energy loss. The improved Debye screening
leads to a large elastic energy loss, but suppresses the radiative energy loss enormously due to
the LPM effect.

For these configurations we also depict the energy loss per collision and the collision rate in
Figures 5.10 and 5.11, respectively. The energy loss per collision is larger for radiative processes
than for binary interactions due to the third particle in the final state. As we observed in
Figure 5.4 already for the binary case, the energy loss per collision is largest for a constant
coupling and standard Debye screening and smaller for running coupling and/or improved
screening due to a stronger peaking of the differential cross section at small |t|. A difference
from this hierarchy is only present for radiative processes with improved screening and running
coupling because of the strong modification of the phase space due to the LPM suppression.
The binary rate for κt = 0.2 and running coupling is again much larger than for the other
configurations. As a result, the radiative rate for the same configuration is negligibly small
because of the LPM effect.

We saw before that the radiative energy loss of light and heavy quarks only differs slightly,
although the collisional energy loss has very different values. This is a consequence of the
implementation of the LPM effect. Without any LPM suppression the radiative energy loss
of light quarks would be larger than that of heavy quarks. But since the binary rate is also
larger for light quarks, the LPM suppression is stronger for light quarks than for heavy quarks,
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Figure 5.10.: Energy loss per collision of a charm quark for constant or running coupling and
different choices of κt.
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5.3. Elastic vs. radiative energy loss in a static medium
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Figure 5.12.: Radiative collision rate of gluons and light quarks with a fixed value for the mean
free path λ = 10 fm that enters in the LPM implementation.

which decreases the radiative energy loss of light quarks more than that of heavy quarks. This
effect and the previously mentioned overshadowing of the dead cone effect by the LPM effect
lead to the observation that the radiative energy loss of light and charm quarks takes very
similar values.

The same effect can also be observed when comparing the radiative energy loss of gluons
and light quarks. The ratio of the binary cross sections of energetic gluons and light quarks
is the color factor 9/4. This also holds for the radiative cross sections (cf. Section 3.2.1)
if no LPM suppression is present or if we employ the same mean free path that enters in
the LPM implementation for both species instead of calculating it iteratively according to
Equation (3.116).

Figure 5.12 depicts the 2 → 3 rate for gluons and light quarks with setting a fixed mean
free path of λ = 10 fm for the LPM effect by hand. And indeed, the ratio of both curves lies
exactly at 9/4. In contrast, Figure 5.13 shows the rates for gluons and light quarks with the
default implementation that the mean free path for the LPM effect is calculated iteratively
and, therefore, is actually the mean free path of the jet. As for the energy loss of massless and
massive quarks, the difference due to the color factor is screened by the iterative computation
of the mean free path. Gluons have a larger binary and radiative rate (without LPM), which
leads to a stronger suppression of radiative processes compared to light quarks. This effect
even overcompensates the difference due to the color factor and the radiative rate of light
quarks becomes even slightly larger than that of gluons.

The LPM effect in BAMPS is implemented via a Θ function in the integrand of the 2→ 3
cross section, as discussed in Section 3.2.7. Since the prefactor of the formation time of the
emitted gluon calculated in Section 3.2.6 is not rigorously defined and varies in the literature,
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Figure 5.13.: Radiative collision rate of gluons and light quarks with the default implementation
of the LPM effect, which calculates the mean free path iteratively. The expected ratio of
9/4 of gluon and light quark rates without LPM effect is indicated by the solid thin line.

it is interesting to study the dependence of the radiative energy loss on this parameter. We
include it in BAMPS by modifying the Θ function from Equation (3.118),

Θ (λ− τ)→ Θ (λ−Xτ) . (5.35)

Obviously, X = 1 corresponds to the default implementation and the previously presented
results. An X smaller than one, effectively lowers the gluon formation time and reduces
the suppression. Consequently, the energy loss increases, as depicted in Figure 5.14. Since
our implementation resembles the Bethe-Heitler regime of independent scatterings and
completely suppresses interference effects, X < 1 is closer to the physical reality—LPM
suppression is still present, but it is smaller than in the crude rejection of all possibly interfering
processes. For completeness, we also show in Figure 5.14 the X = 2 case, which has a smaller
energy loss very similar to the elastic one. Furthermore, the default implementation (X = 1) is
depicted, but with setting a large mean free path (λ = 10 fm) by hand instead of calculating it
iteratively from the rates. This case corresponds to a very small LPM suppression and, hence,
the charm quark loses a lot of energy radiatively.

Figure 5.15 depicts the X dependence of the energy loss for light, charm, and bottom quarks
with an energy of E = 10 GeV. The total cross section depends logarithmically on X. Since
the energy loss per collision is only mildly influenced by X, the energy loss per unit length is
also logarithmically dependent on X, dE/dx ∼ ln 1/X. As discussed above, the energy loss
of light quarks and charm quarks is comparable for X = 1 (cf. Figure 5.5) because an LPM
dead cone overshadows the mass dead cone of the charm quark. For X < 1 the impact of the
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5. Energy loss of heavy quarks
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Figure 5.16.: Dependence of the radiative energy loss of a gluon, light quark, and charm
quark on the choice of the mean free path (MFP) that enters as a parameter in the LPM
implementation. “Jet MFP” means that the mean free path of the incoming jet particle
is considered, which is the default choice in BAMPS (cf. Section 3.2.7). “Gluon MFP”
compares the formation time to the mean free path of the emitted gluon. For simplicity, in
this case the mean free path is set to the mean free path of a thermal gluon.

LPM effect is reduced and the energy loss of charm quarks becomes smaller than that of light
quarks, which is in accordance with the expectations from the dead cone effect.

As discussed in Section 3.2.7, the mean free path of the jet is compared to the formation
time of the gluon to determine whether the process is forbidden due to the LPM effect. This
implementation corresponds to the QED picture of the LPM effect. In QCD, also the emitted
gluon rescatters off other medium constituents. Therefore, comparing the mean free path of
the emitted gluon to its formation time would be more in the spirit of QCD. However, this
would be very demanding computational-wise since the collision dynamics have to be sampled
before knowing if the scattering actually takes place. Consequently, to estimate the effect, we
assume the emitted gluon to be thermal and just take the thermal mean free path of a gluon
as an input for the LPM effect.

Figure 5.16 compares the radiative energy loss of gluons, light quarks, and charm quarks
obtained with this procedure to the default LPM implementation where the mean free path of
the jet particle is considered. As we saw before, the radiative energy loss of gluons, light quarks,
and charm quarks is very similar for the default LPM implementation with the jet mean free
path since the differences due to color factors or masses are screened by the LPM effect. If we
now calculate the LPM suppression with the gluon mean free path, the gluon radiative energy
loss changes only marginally since the thermal gluon mean free path differs only slightly from
that of an energetic gluon. For light and charm quarks, however, the radiative energy loss
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5.3. Elastic vs. radiative energy loss in a static medium

decreases significantly. This is due to the thermal gluon mean free path, which is dominated by
elastic collisions and, therefore, about a factor of 9/4 smaller than for highly energetic quarks.
Since the gluon, light quark, and charm quark energy loss is calculated with the same mean
free path of the emitted gluon entering in the LPM effect, also the radiative energy loss of
gluons and quarks now differs by a factor of about 9/4.
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6. Open heavy flavor in heavy-ion collisions

The true mystery of the world is the visible, not the
invisible.

The Picture of Dorian Gray
Oscar Wilde

In this chapter we present BAMPS results on open heavy flavor observables such as the elliptic
flow and nuclear modification factor and compare to the wealth of experimental data from
RHIC and LHC. In Section 6.1 we first limit ourselves to include only elastic heavy quark
processes while discussing their importance but also their problems in describing the data. In
Section 6.2 radiative processes are then also included. We compare again to experimental data
for different heavy flavor particles but also highlight differences compared to light particles.

As outlined in Section 4.1, heavy quarks and high-energy light partons studied in this
section are set on top of fully simulated BAMPS background events to enhance the statistics
of these rare probes. This treatment is in line with full BAMPS simulations, but neglects
medium response effects. In this chapter we use solely background events calculated with
the original Gunion-Bertsch cross section, since they correctly reproduce bulk medium
properties such as the measured elliptic flow of charged hadrons [XGS08, FUXG11, Foc11].
We checked that background events calculated with the improved Gunion-Bertsch cross
section, do not change the RAA results presented in this section due to a similar number of
scattering centers. However, the light parton elliptic flow with the improved Gunion-Bertsch
cross section might be reduced, which in turn would also decrease the elliptic flow of heavy
quarks. Nevertheless, to determine this effect quantitatively, detailed calculations must be
carried out, which is planned for the near future. In summary, the results in this section are
calculated with a bulk medium that correctly features the experimentally measured properties
and, thus, is appropriate to study the suppression and flow of hard probes.

6.1. Elliptic flow and nuclear modification factor from elastic
collisions

6.1.1. RHIC

The leading order pQCD cross section for elastic heavy quark scatterings given in Section 3.1
with a constant coupling αs = 0.3 and the regular Debye screening mass for the t channel, i.e.,
κt = 1, is much too small to build up an elliptic flow that is in agreement with the experimental
data of heavy flavor electrons at RHIC [UFXG10b, UFXG10c]. If we take the running of the
coupling into account and determine the screening mass from comparison to hard-thermal-loop
calculations, see Sections 3.1 and 5.1.5, we obtain an elliptic flow and RAA that are much closer
to the data [UFXG10c, UFXG11b]. However, since no radiative processes are included, it is
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6. Open heavy flavor in heavy-ion collisions

not surprising that the binary interactions alone—even with an improved Debye screening
and running coupling—cannot explain the data.

In this section we summarize our findings from Refs. [UFXG12b, UFXG11a, UFXG10c,
UFXG11b, UZF+11, UFXG12a, UFXG13a, UFXG13b], where we mimicked the lack of radia-
tive or higher order contributions by scaling the binary cross section with an (artificial) K
factor. To be compatible with the heavy flavor electron data for the elliptic flow measured
by PHENIX [PHENIX11b], the elastic cross sections have to be multiplied with a factor
K = 4 [UFXG11a, UFXG10c, UFXG11b, UZF+11, UFXG12a] if we consider heavy quarks in
a purely gluonic plasma, and K = 3.5 [UFXG12b, UFXG13a, UFXG13b] if also light quarks
are included (the reason for the deviation of the K factor is explained below).

As a note, for all calculations we assign the same kinematic acceptance cuts that are applied
for the analysis of the experimental data (see labels in the plots for the values). The impact
parameters used in BAMPS are matched with a Glauber calculation (cf. Appendix A.5) to the
mean number of participants 〈Npart〉 given for each centrality class [PHENIX11b, ALICE11a].

First, we review the results for a pure gluonic plasma [UFXG11a], where we studied in
particular the dependence of the heavy flavor observables on the initial model for the bulk
medium. In Figure 6.1 we show the elliptic flow and nuclear modification factor of heavy
quarks and heavy flavor electrons for a non-central Au+Au collision at RHIC obtained with
BAMPS at the end of the QGP phase, that is, after the energy density of a given cell has
dropped below εc = 0.6 GeV/fm3 and interactions are not allowed any more (cf. Chapter 4).

One huge advantage of transport models is the direct access to all particles of the QGP
during the whole time evolution. Therefore, we plot in addition to the heavy flavor electron
curve the RAA and v2 of charm and bottom quarks. As can be seen in Figure 6.1 the curve of
the heavy flavor electrons is shifted to smaller pT compared to the parental heavy quarks due
to fragmentation and decay processes (cf. also Section 4.1).

The binary cross section features the running coupling and an improved Debye screening (see
Section 3.1). Since radiative contributions and quantum effects are missing, we try to determine
the impact of those missing contributions by multiplying the cross section of gQ→ gQ with
an artificial factor K = 4, which is fitted to the elliptic flow data. BAMPS studies on the
energy loss of light partons reveal that radiative contributions are dominant for light particles
[FXG09, FXG10]. For heavy quarks these contributions are expected to be suppressed due to
the dead cone effect (see Section 3.2.4), but as we saw in Section 5.3 the radiative energy loss
is in most scenarios still considerably larger than the elastic energy loss. A larger contribution
of radiative compared to elastic processes is also observed in other models [Mus05, WHDG07].
Consequently, we assume here that the implementation of radiative corrections like gQ→ gQg
could account for the missing factor of 4. In Section 6.2 we explicitly include the radiative
processes and study whether these contributions have indeed the same effect as rescaling
the binary cross section by a constant K factor. Furthermore, the consideration of quantum
statistics would also enhance the cross section as is shown in Figure 5.1 for the energy loss
and can, therefore, explain a part of the missing factor of 4.

Of course, a constant factor K = 4 is only an estimate for radiative contributions and
quantum statistics. To explore the uncertainty of this factor the curves for K = 3 and 5 are
also plotted in Figure 6.1 as gray bands for electrons and mini-jet initial conditions. Both
observables v2 and RAA are not very sensitive on the exact value of K, although K = 4 gives
the best agreement with the data.

Figure 6.1 compares the elliptic flow and heavy quark suppression obtained with two
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Figure 6.1.: Elliptic flow v2 (top) and nuclear modification factor RAA (bottom) of heavy
quarks and heavy flavor electrons with pseudo-rapidity |η| < 0.35 as a function of transverse
momentum for Au+Au collisions at RHIC with an impact parameter of b = 8.2 fm. The
curves are obtained with PYTHIA and mini-jet initial conditions (IC) for a gluonic plasma
(nf = 0 + 2). The cross section of gQ→ gQ is multiplied with the factor K = 4. To estimate
the uncertainty of this K factor we plotted for mini-jet IC the electron curves for K = 3
and K = 5 as gray bands. For comparison, data of heavy flavor electrons for the centrality
class of 20 %−40 % [PHENIX11b] are shown.
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6. Open heavy flavor in heavy-ion collisions

different initial conditions for the gluons. Both the PYTHIA and the mini-jet scenarios (see
Section 4.5) lead to comparable curves, especially for larger pT . This indicates that both
heavy flavor observables are not very sensitive on the initial light parton distributions as long
as the elliptic flow of light hadrons is reproduced, which has been shown for both mini-jet
[XGS08, XG09, XG10] and PYTHIA [Foc11] initial conditions. However, in Ref. [GVvH+11]
it was found that differences in the medium evolution can lead to modifications of the heavy
quark suppression and elliptic flow up to a factor of two.

With K = 4 the agreement with the data is very good for large pT . We emphasize that both
v2 and RAA are described simultaneously within the same partonic transport model. For small
pT the employed hadronization scheme, namely, Peterson fragmentation (see Section 4.1), is
not suitable and coalescence might be the dominant process. It is expected that coalescence
increases the elliptic flow at small transverse momenta since light quarks would also contribute
to the flow of the heavy mesons. This could be an explanation why BAMPS underestimates
the flow in Figure 6.1 for very small pT . Neglecting cold nuclear matter effects such as the
Cronin effect or shadowing and also coalescence effects could be the reason for the deviation
of the RAA at small pT . Recently, PHENIX measured the suppression factor RdAu of heavy
flavor electrons in deuteron-gold collisions to be larger than one at small pT [PHENIX12],
which points exactly in this direction.

These results are obtained with initial heavy quark distributions from MC@NLO. In addition,
we employed heavy quark initial conditions from other NLO calculations [CNV05, Vog10] and
found a good agreement with the curves shown in Figure 6.1. In contrast to PYTHIA, which
we used in Refs. [UFXG10c, UFXG11b] for the initial heavy quark distributions, the electron
spectrum from MC@NLO is slightly steeper for low pT , which results in a less suppressed RAA
and, therefore, better agreement with the experimental data for pT < 3 GeV.

To be compatible with the heavy flavor electron data for RAA and v2 at RHIC the elastic
cross section had to be multiplied with a factor K = 4. Those calculations have been done
without light quarks, nf = 0 + 2 (number of light quarks + heavy quarks). In the following we
present results from Refs. [UFXG12b, UFXG13a, UFXG13b], which feature a newer version
of BAMPS that also includes light quark degrees of freedom (nf = 3 + 2).

Figure 6.2 depicts the heavy flavor v2 and RAA for the pure gluonic calculations and the
version including also light quarks. Comparing the K = 4 curves for nf = 0 + 2 and nf = 3 + 2
shows that both the suppression and elliptic flow are slightly higher for the latter. At first sight
this seems counterintuitive since we use the same initial conditions from PYTHIA for both
cases and, to get the same energy density, convert initial light quarks to gluons for nf = 0 + 2,
which are associated with a larger Casimir factor. However, the situation is more complex.
The running coupling also depends on the number of flavors and is larger for nf = 3 + 2 (see
Figure 3.4). Furthermore, the chemistry of a purely gluonic plasma behaves slightly differently
than a quark gluon plasma. This results in a larger number of scattering centers of the medium
for nf = 3 + 2. All influences combined lead to a slight increase of the suppression and elliptic
flow for nf = 3 + 2 compared to nf = 0 + 2.

As can be seen in Figure 6.2 the best agreement with elliptic flow data for nf = 3+2 is found
with K = 3.5 in contrast to nf = 0+2, where K = 4 yielded the best results. Again, we assume
that this factor is necessary due to the lack of radiative processes and quantum statistics in our
calculations, which we study in more detail in Section 6.2. As a note, the value of 3.5 is close to
the needed K factor of Ref. [MPUG13], which—in an independent framework—included similar
cross sections for nf = 3 + 2 using ideal hydro as well as temperature and flow information
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Figure 6.2.: As Figure 6.1, elliptic flow v2 (top) and nuclear modification factor RAA (bottom)
of heavy flavor electrons at RHIC for different flavor configurations of the medium.
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Figure 6.3.: Nuclear modification factor RAA of heavy flavor electrons at RHIC for b = 4.2 fm
with data [PHENIX11b].

from BAMPS for the medium evolution.

Although the agreement between the scaled BAMPS results and the data is very good for
the elliptic flow, it slightly undershoots the RAA data at small and intermediate pT . This effect
is also present in more central events, as is shown in Figure 6.3.

Since BAMPS solves the Boltzmann equation (cf. Section 4.1), which includes also non-
equilibrium effects, BAMPS calculations explicitly consider the early phase of heavy-ion
collisions where the medium is not thermalized yet. In contrast, many other models that
rely on a hydrodynamic evolution of the background medium can only start after hydro is
applicable, that is, after the medium is thermalized.

In Figure 6.4 the influence of such different treatments on the RAA and v2 is studied. To
this end, we give heavy quarks different formation times, before which they are not allowed
to interact with the rest of the medium. The first curve depicts the standard BAMPS
implementation where the formation time of the heavy quark is set to the inverse of its
transverse mass, 1/MT , which can be motivated from the uncertainty principle. For the second
curve we give heavy quarks a formation time of 1 fm, which is often set as the starting time
for hydrodynamic calculations. This mimics the implementation in many other models where
the heavy quarks just stream freely before the hydrodynamic evolution starts. As can be seen
from the figure, the suppression and elliptic flow gets considerably smaller if heavy quarks
are not allowed to interact before 1 fm. Therefore, it is important to consider also the early
non-equilibrium phase when studying the interactions of heavy quarks. In the following we
thus set the formation time of heavy quarks again to the standard BAMPS choice of 1/MT .

A recent STAR upgrade makes it possible to reconstruct D mesons at small and intermediate
transverse momenta also at RHIC [STAR13b]. In Figure 6.5 we compare our results for D
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Figure 6.4.: As Figure 6.2, elliptic flow v2 (top) and nuclear modification factor RAA (bottom)
of heavy flavor electrons at RHIC for the standard BAMPS formation time 1/MT (MT is
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Figure 6.5.: Nuclear modification factor RAA of D mesons at RHIC for b = 5.2 fm with data
[STAR13b].

mesons, obtained with the same parameters as above, with the data. Again, the underestimation
at small and intermediate pT is visible. In addition, we cannot reproduce the bump around
1.5 GeV, which could be due to cold nuclear matter effects.

Above, we fitted the factor K = 3.5 to the heavy flavor electron elliptic flow data from
PHENIX in the centrality class 20-40 % [UFXG12b]. In Figure 6.6 we show our prediction for
0-60 % centrality class for the same parameters, which is compared to new data from STAR
[STAR13a]. Not surprisingly, the agreement is very good for small and intermediate transverse
momenta. Even the bump around 1.7 GeV is nicely described. At large pT , however, the data
is significantly larger than our calculations. This could also be due to jet-like correlations,
which are not considered in the analysis [STAR13a].

6.1.2. LHC

As is shown in the previous section, the effective description of the RHIC data with K = 3.5,
which was fitted to the PHENIX heavy flavor v2 data, agrees simultaneously also with the
RAA for intermediate and large pT . Having the K factor fixed from RHIC data, one can make
predictions with the exact same parameter for the LHC.

In this section we review our calculations at the LHC energy of
√
s = 2.76 TeV [UFXG12b],

made at a time where only data for the RAA of D mesons [ALICE12f], non-prompt J/ψ
[CMS12f], and muons [ALICE12e] were available. Although preliminary data of the heavy
flavor electron RAA [ALICE11f] and D meson v2 [ALICE11c] had also been presented, the
errors were so large, that they were consistent with everything. In that sense our calculations
for the electron RAA, as well as the non-prompt J/ψ, D meson, electron, and muon v2 from
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Figure 6.6.: Elliptic flow v2 of heavy flavor electrons at RHIC for 0-60 % centrality class with
STAR data [STAR13a].

Ref. [UFXG12b] were predictions. In this section we compare these calculations, which have
been published in Refs. [UFXG11a, FUXG11, UFXG12b, UFXG12a, UFXG13a, UFXG13b],
with the newest available data.

In previous studies [UFXG10a, UFXG10b, UFXG11b, Uph09] we have found that at LHC
energies a sizeable fraction of the produced charm quarks is created during the evolution of
the QGP and not only in initial hard parton scatterings. These secondarily produced charm
quarks can, of course, contribute to the v2 and RAA of heavy quarks. However, the impact on
these observables is very small and could only affect the region of low pT since secondary charm
quarks are produced with small momenta. Due to their early production time, which is usually
less than 1 fm/c [UFXG10a], secondary charm quarks have enough time to interact with the
medium, lose energy, and build up elliptic flow. Consequently, also in the low pT region, v2 is
barely changed by secondary charm quarks. The fraction of bottom quarks produced in the
medium is so small that the assumption that all of them are created in the initial hard parton
scatterings is justified [UFXG10a]. In short, since the contribution of secondarily produced
heavy quarks is insignificant, we neglect it in the following.

In Ref. [UFXG11a] we presented predictions for the electron RAA and v2 at LHC for
nf = 0 + 2. In Figure 6.7 an update on the predictions of the heavy flavor electron RAA
to nf = 3 + 2 is shown [UFXG12b], employing again—as at RHIC—only collisional energy
loss with a running coupling, improved Debye screening, and K = 3.5. Our calculation is
slightly stronger suppressed than the preliminary experimental data. This is in accordance
with the RHIC heavy flavor RAA from last section, although at RHIC the deviation was even
less pronounced. In addition to the electron curve, we show the RAA on the heavy quark level
directly, which is shifted to larger pT as one would expect.
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Figure 6.7.: Predictions for the nuclear modification factor RAA of heavy flavor electrons
at Pb+Pb collisions at LHC with an impact parameter b = 3.6 fm together with data
[ALICE13e]. For heavy quarks only binary collisions are switched on, which are multiplied
with K = 3.5.

ALICE can measure muons in forward rapidity stemming from heavy flavor decays. Figure 6.8
shows the BAMPS results in the same rapidity range as the experimental data. Comparing to
Figure 6.7, it is obvious that the suppression of muons at forward rapidity is as strong as that
of electrons at mid-rapidity since both nuclear modification factors assume very similar values.
Again, a small deviation is visible between the data and our curve, which is calculated for the
same parameters that describe the RHIC heavy flavor electron data.

By considering muons or electrons, the contributions from charm and bottom cannot be
distinguished. However, at the LHC for the first time1 one has access to charm and bottom
quarks separately via D mesons and non-prompt J/ψ from B mesons.

The D meson RAA from BAMPS for two impact parameters is compared to data in Figure 6.9.
In addition to the D meson curve, we plot the charm quark RAA. The difference between both
curves is considerably smaller than it was the case for heavy flavor electrons or muons, which
renders D mesons a very good indicator for actual charm quark quantities. Although the order
of magnitude of the suppression is comparable, the experimental data tends to be slightly
underestimated by our calculation. This is in accordance with the muon RAA at forward
rapidity in Figure 6.8 and the electron RAA at mid-rapidity in Figure 6.7. Since the deviation
is more pronounced at LHC than at RHIC, it could be a first hint that new effects compared
to RHIC play a role at the LHC. An indication in this direction is also the fact that D meson
suppression seems to be slightly smaller than that of charged hadrons [ALICE12f].

1As is discussed in Section 6.1.1, recently, also STAR reconstructed D mesons directly at RHIC.
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Figure 6.8.: RAA of muons at forward rapidity at LHC with data [ALICE12e].

Possible explanations for the discrepancy of our RAA calculations and the heavy flavor data
could be cold nuclear matter effects, the normalization error of the data, which is not shown in
the plot, or that we represent the rather large centrality classes by only one impact parameter
(the agreement is better for 0–7.5 % than 0–20 % centrality class). Furthermore, a reason could
be that the approximation of modeling the radiative energy loss by scaling the binary cross
section with a constant factor is not justified. Although we do not expect that such a K
factor is temperature dependent for a thermalized system,2 non-thermal effects in the medium
evolution could trigger different K factors for different collision energies at RHIC and LHC.
However, this cannot be assessed without actually doing the calculation with higher order
processes where the K factor is obsolete. We will investigate this in more detail in Section 6.2.

A complimentary measurement with respect to D mesons has been performed by the CMS
collaboration, which has measured the suppression of non-prompt J/ψ from the decay of
B mesons [CMS12f]. Although only one data point could be extracted, the suppression of
non-prompt J/ψ is clearly visible in Figure 6.10 and the magnitude is in good agreement with
our calculation. Analogously to the other RAA comparisons at LHC, our curve is slightly
smaller than the experimental value, although still within the errors. Again, the suppression
of bottom quarks themselves is very similar to that of non-prompt J/ψ.

All these RAA calculations have been done for central events at LHC. Figure 6.11 shows the
integrated RAA of highly energetic D mesons and non-prompt J/ψ as a function of the number
of participants. As expected from the plots above, we also underestimate the integrated RAA.

2In a thermal system the only relevant scale is the temperature T . Therefore, due to dimensional considerations
both the average thermal binary cross section σ22 and the average (abstract) full cross section that includes
all orders of the pQCD expansion σall orders are proportional to 1/T 2. Consequently, the ratio of both, which
is the definition of the K factor, K = σall orders/σ22 is not temperature dependent.
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Figure 6.12.: Predictions for the elliptic flow v2 of muons, electrons, non-prompt J/ψ, and D
mesons.

However, it should be emphasized that the shape of the data and the difference between charm
and bottom is very well reproduced, suggesting that if the employed K factor were smaller all
data could be described.

In Figure 6.12 we show BAMPS predictions of the elliptic flow of muons, electrons, D
mesons, and non-prompt J/ψ calculated with the same parameters used for the previous
figures, which describe the RHIC data. The flow of non-prompt J/ψ is considerably smaller
than the D meson flow due to the mass difference of charm and bottom quarks. While the
elliptic flow of heavy flavor electrons is dominated for small pT by the charm contribution, the
v2 at larger pT resembles the v2 of non-prompt J/ψ. The reason lies in the pT dependence of
the charm and bottom contributions to heavy flavor electrons resulting from different slopes
of the charm and bottom production spectra (cf. Section 4.3). Muons at forward rapidity
adopt the same elliptic flow as electrons at mid-rapidity. This is in accordance with the same
RAA of muons and electrons (cf. Figures 6.8 and 6.7). Since BAMPS is a 3+1 dimensional
transport model, boost invariance of the system along the beam axis is not assumed, but—in
first approximation—comes out naturally for not too large rapidity gaps, which is reflected
in the same v2 and RAA of electrons and muons at mid- and forward rapidities, respectively.
However, in Chapter 7 we will see that a residual temperature dependence in rapidity remains
that causes different prompt J/ψ yields at mid- and forward rapidities.

Figure 6.13 compares the BAMPS calculations for D meson v2 to recent data. The error
bars of the preliminary data are too large to draw any definite conclusion, but our results are
in good agreement within the errors. For the heavy flavor electron v2 the errors of the data
[ALICE13g] are much smaller and we find a very good agreement with our predictions, as can
be seen in Figure 6.14.
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Figure 6.13.: Predictions for elliptic flow v2 of D mesons at Pb+Pb collisions at LHC with an
impact parameter b = 9.7 fm together with data [ALICE13b]. The D meson curve is the
same as in Figure 6.12.
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In summary, both the nuclear modification factor and the elliptic flow at RHIC and LHC can
be fairly well described with only elastic heavy quark collisions if a running coupling as well as
an HTL inspired improved Debye screening are introduced and the cross sections are scaled
with K = 3.5. A similar observation has been done by the authors of Refs. [GA08, GBA09],
who need K = 2 to describe the RAA and v2 simultaneously. As is discussed in Section 5.3,
the reason for the difference in the K factors lies in slightly different parameter choices, while
the underlying physics is very similar. Refs. [ABDP+11, ABDP+13] consider also only binary
interactions with a screening from HTL calculations within a Langevin approach with a
2 + 1D hydrodynamic model for the background medium. However, while they get a rather
good agreement with the RAA data, the elliptic flow is much smaller than the data.

In Ref. [MPUG13] we included the same cross sections as in BAMPS in an independent
model developed by Peshier based on transition probabilities. For the medium evolution
either ideal hydro or temperature and flow information extracted from BAMPS are employed.
If also quantum statistics are considered, v2 and RAA can be fairly well described with only
binary collisions and K = 3, which is consistent with the BAMPS results presented in this
section with Boltzmann statistics.
Moore and Teaney [MT05] simulated the v2 and RAA in a Langevin approach with

a 2 + 1D hydrodynamic model. The diffusion coefficient is also calculated only with elastic
collisions in LO pQCD. With αs = 0.5 they get the right magnitude of the RAA, but the v2 is
much smaller than the data.

The authors of Refs. [HFR12a, HFR13] and [LvHSB12a, LvHSB12b] find that within the
resonance scattering approach the RAA and v2 can be described simultaneously if coalescence
is taken into account. The driving force behind this is the s channel process, which leads to
large angle scatterings and, thus, large transport cross sections.

From these observations one can conclude that either resonance scattering or small-angle-
peaked pQCD with the running coupling and the improved screening procedure as well as a K
factor are needed to get an agreement with the experimental elliptic flow data. Or in other
words, heavy quarks must have a large cross section—or at least a large transport cross section
in the case of resonance scatterings—for interactions with the other medium constituents to
pick up the elliptic flow of the medium. In the following we elaborate on this in more detail
by addressing also the transport cross section and what we can learn from the comparison to
experimental data.

Due to the transport character of BAMPS we have access to all the collision properties
during the whole time evolution. Figure 6.15 sheds some light on why the experimental data
can be fairly well described with the K factor.

For the elliptic flow isotropization is important and, hence, the transport cross section
and transport rate are the relevant quantities since they weight the cross section and rate,
respectively, with the angle of the diffracted particle. In the left plot of Figure 6.15 the time
evolution of the mean transport cross section is shown in the central region of a heavy-ion
collision at LHC. The value for charm quarks, including only 2→ 2 processes, is about 5 times
larger than that for gluons, which interact also via 2↔ 3 processes. As a note, the calculations
with the 2→ 2 and 2↔ 3 light parton processes employ the original GB matrix element (see
Section 3.2.1) and can describe the elliptic flow data of light particles [XGS08, XG09, XG10].
Due to the large charm transport cross section also a sizeable elliptic flow for charm quarks
builds up.

For comparison we show also the charm transport cross section under the assumption that
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Figure 6.15.: Mean transport cross section 〈σ sin2 θ〉 (left) and transport rate 〈R sin2 θ〉 (right)
of charm quarks and gluons as a function of time in the central region of a heavy-ion collision
at LHC (b = 9.7 fm,

√
s = 2.76 TeV, nf = 3 + 2, K = 3.5 for charm quarks). θ is the angle

between the momenta of the considered charm quark (gluon) before and after the collision
in the lab frame. The cross section is averaged over all particles in a tube with a radius
of 1.5 fm and space-time rapidity η ∈ [−0.5; 0.5]. In addition, the charm transport cross
section and rate in a thermally and chemically equilibrated medium is shown. That is, for
each time we extract the medium energy density and mean charm energy from BAMPS in
the central region and compute the transport cross section and rate of a charm quark with
that energy in a static and equilibrated medium.

the medium is thermally and chemically equilibrated. These values are smaller compared to
the full heavy-ion collision, where the gluon fugacity is below unity, which leads to a smaller
Debye mass and, therefore, larger cross section. However, the sensitivity on the fugacity is
reduced when considering the transport rates since the density also enters. The right hand
side of Figure 6.15 shows that for the charm transport rate the equilibrium curve is only a
factor of about 1.4 smaller than the values extracted from the full heavy-ion collision.

Gluons are calculated with a standard Debye screening and without a K factor, but with
2 → 3 interactions, leading to a smaller transport cross section compared to charm quarks.
The reason for the large charm transport cross section is the effective treatment of the Debye
screening on the heavy flavor sector and the additional multiplication of the factor K = 3.5.
Since the binary pQCD cross section is dominated by small angles, the total cross section can
be one order larger than the transport cross section, which is too large for partonic interactions.
Therefore, we will investigate in Section 6.2 radiative processes, which can lead to an effective
energy loss without the need of large cross sections, as it has been demonstrated in Section 5.3.

6.2. Elliptic flow and nuclear modification factor from elastic and
radiative processes

In the previous section we saw that binary collisions alone cannot explain the experimental
heavy flavor data, neither at RHIC nor at LHC. However, if the binary cross sections are
scaled with a phenomenological K factor, both the elliptic flow and nuclear modification factor
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6. Open heavy flavor in heavy-ion collisions

of heavy flavor particles can be described at RHIC and LHC. We concluded that missing
contributions such as radiative processes or quantum effects play an important role.

In this section we explicitly add the radiative contributions and study if binary and radiative
processes together can explain the experimental data. In Section 6.2.1 the focus is put on the
similarities and differences of light and heavy flavor particles. Furthermore, the influence of the
dead cone effect is investigated. To treat light and heavy flavor partons on the same footing,
we use for all species the standard Debye screening. In Section 6.2.2 we explicitly study the
effect of the improved screening procedure and confront various heavy flavor calculations with
experimental data.

6.2.1. Comparison between heavy and light flavor

The cross sections of binary processes are given in Appendix A.3 for light partons and in
Section 3.1 for heavy flavor. As part of this work we implemented not only a running coupling
for heavy flavor, but also applied it to the light parton sector. Since the improved screening
procedure with setting the screening mass prefactor to κt = 0.2 (cf. Section 5.1.5) has only
been derived for massive quarks and we want to treat heavy and light flavor on the same
footing in order to make proper comparisons, we employ in this section the standard Debye
screening for both light and heavy partons. Nevertheless, in the next section we investigate the
influence of the improved screening procedure on heavy quark observables. It would be also
interesting to extend the derivation of the improved screening procedure from comparisons to
HTL calculations to the light parton sector and determine the value of κt for light particles. It
is important to note that the same cross sections are employed for light and heavy partons.
That is, if the mass in the heavy flavor cross sections is set to zero the cross sections of light
quarks are obtained.

The same is true for the radiative processes. The cross sections calculated in Section 3.2 can
be employed for heavy quarks and also for light partons if the mass is set to zero. Also the
LPM effect and the treatment of all the kinematics are implemented in BAMPS consistently
for massive and massless particles. Since 3→ 2 processes have only minor relevance for the
energy loss of high-energy particles, we neglect those processes in the following study.

Figure 6.16 depicts the nuclear modification factor of gluons, light quarks, and charm quarks
for central Pb+Pb collisions at the LHC. For each particle species the curves for fixed coupling
αs = 0.3 and running coupling are shown. At large transverse momentum both curves for each
species are very similar. While the light quark curves only differ slightly at smaller pT , the
suppression of charm quarks and gluons with running coupling becomes stronger than with
constant coupling in this regime and a slight rise in the RAA with pT becomes visible, as it is
also present in the data.

As could have been guessed from the rather similar energy loss in a static medium (see
Figures 5.5 and 5.7), the suppression of light and charm quarks is very similar. The reason is
the same; a dead cone at small angles of the radiated gluon stemming from the LPM effect
overshadows the dead cone caused by the mass (cf. Section 5.3). Thus, effectively, the radiation
pattern off a heavy quark in a medium is comparable to that off a light quark. The gluon RAA
is significantly smaller because of the larger elastic and also radiative energy loss due to the
larger color factor.

For qualitative comparison, the experimental data of charged hadrons and D mesons are also
depicted. The parton level RAA seems to be slightly larger than the data. However, to make a
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quantitative comparison to the data, the partons have to be first fragmented to hadrons.
The fragmentation of heavy quarks to D and B mesons with Peterson fragmentation is

outlined in Section 4.1. Light partons are fragmented to charged hadrons by using the AKK
fragmentation functions [AKK08], which are obtained from global fits to data. In the following
we briefly outline this procedure. The details can be found in Ref. [Foc11].

To reduce statistical fluctuations the fragmentation is not performed on the particle level
but for the spectra. To this end, the spectra of all light parton species (k = g, u, d, s, and the
light anti-quarks) are fitted with a power law

d2Nk

dpT dy
(pkT ) = a

[
pkT

]−b
, (6.1)

where pkT is the transverse momentum of a parton of type k. Subsequently, the spectra are
convoluted with the vacuum fragmentation function DH/k(zk) to obtain the spectrum of

hadrons of type H at momentum pHT (cf. Section 2.2.3),

d2NH

dpT dy

(
pHT
)

=
∑
k

1∫
zmin
k

dzk
d2Nk

dpT dy

(
pHT
zk

)
DH/k

(
zk, Q

2
)

'
∑
k

pkT,max∫
pHT

dpkT
pHT

(pkT )2

d2Nk

dpT dy

(
pkT

)
DH/k

(
pHT
pkT
, Q2

)
, (6.2)

where zk = |pH |/|pk| ' pHT /pkT denotes the ratio of hadron and parton momenta.
Using in Equation (6.2) the vacuum fragmentation function instead of the medium modified

fragmentation function is the appropriate choice since the medium modification is already
contained in the BAMPS evolution and data on jet shower shapes suggest that high-energy
particles fragment outside the medium produced in heavy-ion collisions [CMS12b].

In Figure 6.17 the nuclear modification factor RAA of charged hadrons obtained after
fragmentation is depicted for a running coupling and standard Debye screening. In addition,
we plot also the corresponding gluon and light quark curves before fragmentation from
Figure 6.16. The charged hadron curve lies mainly between the light quark and gluon curves,
but is slightly larger than the light quark curve for large pT , which is counter-intuitive at first
sight. However, the average z of the fragmentation function is of the order of 0.5 [Foc11], that
is, the charged hadron RAA at a given pT has approximately the same value as the parton
RAA at twice as large pT . Due to the rise in the RAA the hadron curve is shifted to larger
values than the parton curve at same pT .

Furthermore, the slope of the hadron curve is steeper than the parton curves. The reason
lies again in the fragmentation process as well as in the different slopes of gluon and light
quark spectra. Hadrons at large pT are dominated by quark fragmentation, while hadrons at
small pT are dominated by gluon fragmentation [Foc11]. Since the light quark RAA is larger
than the gluon RAA due to different color factors, the hadron curve increases stronger with pT
compared to the parton curves.

Whereas the heavy quark fragmentation to D and B mesons did not change the RAA
significantly due to the heavy quark mass and a peak of the fragmentation function at large z
(cf. Figure 4.3), the light particle RAA is significantly modified by the fragmentation process.
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Figure 6.16.: Nuclear modification factor RAA of gluons, light quarks, and charm quarks with
a constant coupling αs = 0.3 and running coupling for central LHC events. To guide one’s
eye, the experimental data for charged hadrons [ALICE13c] and D mesons [ALICE13f] are
also shown, although the parton curves have to be fragmented to hadrons for quantitative
comparison with the data, see Figures 6.17 and 6.18.

The shape of the charged hadron RAA from BAMPS is very similar to the data. However, the
overall value is substantially larger. As discussed in Section 3.2.7, the way how the LPM effect
is implemented in BAMPS forbids most of the radiative processes, leading to a destructive
interference that is too strong. A more sophisticated treatment of the LPM effect should allow
more processes, which would decrease the RAA. We introduced a first step in this direction in
Section 5.3 by lowering the formation time of the emitted gluon by a factor X, which effectively
allows more radiative processes for X < 1. To this end, we modified the Θ function from
Equation (3.118) according to

Θ (λ− τ)→ Θ (λ−Xτ) . (6.3)

In Figure 6.18 we tuned this parameter to get an agreement with the experimental data,
which leads to X = 0.3. Not only the magnitude of the RAA is nicely reproduced but also the
shape and especially the rise with pT . However, it is important to mention that the exact value
of X is not theoretically motivated and, thus, a free parameter. Nevertheless, we expect that a
more sophisticated LPM implementation boils effectively down to an X < 1. It is planned for
the future to improve the implementation of the LPM effect in BAMPS and study the impact
on observables such as the RAA.

If we set the same value X = 0.3 also for heavy quarks, the experimental data of D mesons
is also nicely reproduced. Since we employ the standard Debye screening in this section
to heavy quark interactions as well, both heavy and light partons are treated consistently.
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Figure 6.17.: Nuclear modification factor RAA of gluons, light quarks, and charged hadrons at
LHC for a running coupling and standard Debye screening together with data of charged
hadrons [ALICE13c].
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Figure 6.18.: Nuclear modification factor RAA of charged hadrons and D mesons at LHC in
comparison to data [ALICE13c, ALICE13f]. The LPM parameter X is set to 1 and 0.3 (see
text).

141



6. Open heavy flavor in heavy-ion collisions

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  5  10  15  20  25  30  35

R
A

A

pT [GeV]

Pb+Pb, √s = 2.76 TeV

b = 3.6 fm, running αs

charged hadrons, X=0.3
D mesons, X=0.3

non-prompt J/psi, X=0.3
charged hadrons 0-5% (ALICE)

D mesons 0-7.5% (ALICE)
non-prompt J/psi 0-20% (CMS)

Figure 6.19.: Nuclear modification factor RAA of charged hadrons, D mesons, and non-prompt
J/ψ at LHC for X = 0.3 in comparison to data [ALICE13c, ALICE13f]. Note that the
impact parameter b = 3.6 fm represents approximately a centrality class of 0-10 %, while the
data is only available for slightly different centrality classes.

Although the dead cone effect is present in our matrix element, the RAA of D mesons and
charged hadrons are comparable, as it is also the case for the data. There are two reasons
for that: first, as described in detail in Section 5.3, the LPM effect produces a second dead
cone that overlays the dead cone due to the heavy quark mass and effectively annihilates its
influence. This leads to a similar suppression of light and heavy quarks. However, gluons are
still stronger suppressed (see Figure 6.16). The second reason lies in the fragmentation process.
The D meson RAA is not really modified by the fragmentation, whereas the fragmentation of
light quarks and gluons shifts the light hadron RAA closer to the light quark curve and, thus,
also to the D meson curve. Consequently, due to the interplay between these two effects, both
the D meson and charged hadron RAA take very similar values.

Very recently, the same observation was made by Djordjevic [Djo13] within an extension
of the WHDG framework. Also in her model, the suppression of light and charm quarks is
comparable, whereas gluons are more suppressed. However, analogously to what we have
observed, mass effects in the fragmentation function result in a similar suppression of charged
hadrons and D mesons.

In Figure 6.19 we depict besides the charged hadron and D meson RAA for X = 0.3 also
the RAA of non-prompt J/ψ for the same parameter. Non-prompt J/ψ, which stem from
B mesons, are less suppressed than D mesons or charged hadrons. Because of the large mass
of bottom quarks, the dead cone due to the mass is larger than the dead cone due to the LPM
effect. This leads to a smaller suppression of bottom quarks compared to charm quarks. The
experimental data of non-prompt J/ψ is slightly smaller than our curve but still larger than
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the D meson data (however, note the slightly different centrality classes).

6.2.2. Open heavy flavor at RHIC and LHC with improved screening

In the previous section we employed the standard Debye screening to ensure a similar treatment
of light and heavy partons. In contrast, we study in this section the effect of the improved
screening procedure (κt = 0.2) on heavy flavor observables.

Figure 6.20 depicts the RAA and v2 of heavy flavor electrons in non-central RHIC collisions
for various parameter sets. As we saw also in the previous section for D mesons at LHC, the
suppression with standard Debye screening and X = 1 is smaller than the data both for a
constant and running coupling.

Setting κt = 0.2 leads to a large binary cross section and a small mean free path of the
heavy quark, as has been mentioned in Section 5.3. Due to our particular implementation of
the LPM effect (see Section 3.2.7), most of the radiative processes are forbidden. Thus, the
total rate or energy loss for running coupling and improved screening is completely dominated
by the binary processes (cf. Figure 5.8). Since effectively no radiative processes are allowed,
also the RAA is above the data for large pT .

In the previous section we lowered the effective formation time of the emitted gluon by
setting X = 0.3 to get a reasonable agreement with the data for light and heavy particles with a
standard Debye screening. If we employ the improved screening procedure, the best agreement
with the RAA data at large pT is found for X = 0.2, which is depicted in Figure 6.20. It is
worth noting that the value of X that gives a good agreement with the improved screening lies
in the same range as that for the standard Debye screening. However, we want to emphasize
again that the exact value of X is a free parameter, although a value smaller than one is
expected from theoretical considerations (cf. Section 5.3). We expect that a more sophisticated
treatment of the LPM effect makes such X factors obsolete.

For comparison, we also show the curve from Section 6.1, which was obtained by allowing
only binary collisions and scaling the cross sections with K = 3.5. It gives a slightly stronger
suppression than the curve with X = 0.2 at large pT and a slightly weaker suppression at
small pT . This reflects the observation made for the energy loss in a static medium (see
also Figure 6.21): including radiative processes is not the same as scaling the binary cross
sections with a constant K factor since both energy loss distributions have distinguished energy
dependencies.

For the elliptic flow, the picture looks very different (see lower panel of Figure 6.20). None of
the curves that include radiative interactions can describe the elliptic flow data. In contrast, the
scenario with the scaled binary interactions gives a sizeable v2, although its RAA is comparable
to the curve with X = 0.2. This similarity in the RAA and the large deviation for the v2,
simultaneously, are at first sight surprising. However, the mechanisms responsible for the two
observables are very different. For the RAA, the energy loss is the important quantity, while
v2 is most effectively build up by a large transport cross section.

In Figure 6.21 we depict the energy loss and transport cross section of charm quarks in a
static medium for the two scenarios: only binary interactions scaled with K = 3.5 and binary
as well as radiative processes with X = 0.2. Although the energy loss of both scenarios is on
the same order,3 the transport cross section deviates strongly. This leads to a very similar

3The scaled binary cross section has a slightly larger energy loss, which is reflected in a slightly smaller RAA
at large transverse momentum in Figure 6.20.
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Figure 6.20.: Nuclear modification factor RAA (top) and elliptic flow v2 (bottom) of heavy flavor
electrons in non-central events at RHIC for running and constant coupling as well as different
values of the screening prefactor κt and the LPM parameter X. For comparison, data
[PHENIX11b] and the curve with only scaled (K = 3.5) binary collisions (see Section 6.1)
are shown.
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Figure 6.21.: Energy loss dE/dx (left) and transport cross section
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(right) of charm

quarks with momentum p in a static medium with a temperature T = 400 MeV. A running
coupling and improved Debye screening are employed. The first curve includes binary and
radiative collisions with X = 0.2 and the second curve only binary collisions with K = 3.5.

RAA, but a large v2 for the case with only binary interactions. However, a more detailed study
(not shown here) reveals that the angular distribution is rather similar for elastic and radiative
processes. Only the cross sections of both scenarios differ substantially. Due to the large
K = 3.5 factor, the scenario with only scaled elastic collisions has a much larger cross section
than the scenario with elastic and radiative processes. Since the energy loss per collision for
radiative processes is significantly larger than for elastic interactions, the overall energy loss
per unit length is similar. Nevertheless, the large cross section for the scenario with only scaled
binary collisions produces a large v2 that is in agreement with the data.

Figures 6.22 and 6.23 depict the nuclear modification factor of D mesons and non-prompt
J/ψ, respectively, in Pb+Pb events at LHC. Again, the curves with elastic and radiative
processes and X = 1 are significantly larger than the data, but the curves with X = 0.2
agree very well with the experimental results for both D mesons and non-prompt J/ψ. This
indicates that the mass hierarchy of heavy quarks is accurately described within BAMPS if
the improved screening procedure is employed. To this end, it is not surprising that one also
finds a good agreement with heavy flavor electrons from D and B meson decays at LHC for
X = 0.2, as shown in Figure 6.24.

Figures 6.25 and 6.26 display the elliptic flow of heavy flavor electrons and D mesons,
respectively, in non-central events at LHC. Analogously to RHIC, the elliptic flow at LHC
cannot be explained by elastic and radiative processes with X = 0.2, although the RAA is
described with this parameter. In contrast, the curve with only binary collisions scaled with
K = 3.5 describes both the electron and D meson RAA. The explanation for the discrepancy
between the two curves is the same as mentioned in the discussion of the RHIC results: the
transport cross sections of the scaled binary collisions are larger than for the scenario with
binary and radiative processes and X = 0.2, although the energy loss is very similar. Hence,
both have a rather similar RAA (see Figures 6.22, 6.23, and 6.24) but a different v2.

A possible reason why we obtain a small elliptic flow with elastic and radiative processes
might be that some effects are missing. We neglect initial stage fluctuations, apply only
Peterson fragmentation instead of coalescence at small transverse momenta, and do not take
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Figure 6.22.: Nuclear modification factor RAA of D mesons at LHC for b = 3.6 fm with data
[ALICE13f]. A running coupling is employed and either the parameter set κt = 1, X = 1
or κt = 0.2, X = 0.2. For comparison, the scaled binary collision curve from Section 6.1 is
shown.
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Figure 6.23.: RAA of non-prompt J/ψ at LHC for b = 5.0 fm with data [CMS12f] for the same
configurations as in Figure 6.22.
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Figure 6.24.: RAA of heavy flavor electrons at LHC for b = 3.6 fm with data [ALICE13e] for
the same configurations as in Figure 6.22.
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Figure 6.25.: Elliptic flow v2 of electrons at LHC for b = 8.3 fm together with data [ALICE13g]
for the same configurations as in Figure 6.22.
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Figure 6.26.: Elliptic flow v2 of D mesons at LHC with b = 9.7 fm together with data
[ALICE13b] for the same configurations as in Figure 6.22.

hadronic interactions into account. All of these effects are expected to increase the elliptic
flow, while the nuclear modification factor at large pT is not strongly affected.

Most of the open heavy flavor models in the literature that include radiative interactions
cannot describe the nuclear modification factor and elliptic flow simultaneously. Both in the
ASW [ACD+06] and GLV (or the extended WHDG) [DGVW06, WHDG07, BG12b, BG12a]
framework the RAA is well described (also for light partons), but the calculated v2 is significantly
smaller than the data. The same is true for the results of Refs. [CB11, CQBM13], where
radiative processes have been implemented in a Langevin approach coupled to a 2 + 1D
viscous hydrodynamic model.

Several models describe the RAA data, but do not perform any elliptic flow calculations:
Refs. [MBAD11, MBA13] and [AJMS12] conclude that radiative processes play the dominant
role for the RAA, whereas in Ref. [SVZ09] a combination of heavy quark quenching and inelastic
heavy meson break-up processes lead to a strong suppression.

In contrast, the Nantes group explains the RAA and v2 data simultaneously fairly well if
elastic and radiative interactions are rescaled with K = 0.7 [GNB+13, NAGW13]. This result
is at first sight a little surprising, given that in BAMPS quite similar physics is implemented
and—as we saw in this section—BAMPS cannot describe RAA and v2 simultaneously with
radiative collisions. However, although the Gunion-Bertsch matrix element is also employed
in Refs. [GNB+13, NAGW13], two phenomena are treated differently compared to BAMPS.
First, the emitted gluon acquires a finite mass from screening effects, whereas it is massless
in BAMPS. Second, in contrast to BAMPS (see Section 3.2.7 for our implementation), the
LPM effect is implemented through an interpolation between single and multiple scatterings
[Gos12] that is matched to the BDMPS result [BDM+97b]. Both effects lead to very different
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properties of radiative processes in BAMPS and the Nantes model [GA13], although the
underlying matrix element is the same. Furthermore, differences in the background medium
evolution might also lead to additional differences in the heavy quark observables.
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7. J/ψ in heavy-ion collisions

Physics is really nothing more than a search for ultimate
simplicity, but so far all we have is a kind of elegant
messiness.

A Short History of Nearly Everything
Bill Bryson

As discussed in Section 2.2.3, two classes of phenomena are important for studying J/ψ
suppression in heavy-ion collisions: cold nuclear matter effects and hot nuclear matter effects.
The former are all effects that would be present even if no QGP were formed and influence
primarily the initial J/ψ production before the QGP is created. We discussed these effects,
which include shadowing, nuclear absorption, and the Cronin effect, in detail in Section 4.4.
Hot nuclear matter effects, on the other hand, describe the modification of J/ψ mesons during
the evolution of the QGP. In ultra-relativistic heavy-ion collisions, however, both effects are
present and it is a challenge to disentangle them.

The J/ψ distribution obtained with cold nuclear matter effects according to Equation (4.24)
is used as an input for the partonic transport model BAMPS (see Chapter 4), which we employ
in this chapter to study hot nuclear matter effects. In the medium J/ψ can dissociate via
the process J/ψ + g → c+ c̄, whose cross section is given in Section 3.3. Furthermore, J/ψ
regeneration from independent charm and anti-charm quarks is possible. Especially in view
of the large charm production at the LHC, the process can be rather important. The cross
section for the process c+ c̄→ J/ψ + g is also given in Section 3.3.

Lattice results [AH04, MP07] indicate that a J/ψ can survive in the QGP up to the
dissociation temperature Td and melts at higher temperatures. In this study we use Td = 2Tc
[RBC10, LQXZ09] with Tc = 165 MeV being the phase transition temperature. However, the
exact value of Td has not been determined yet and it is to some extent a parameter of the
models. In BAMPS we implement the melting effect in the following way. If the temperature
in a cell is larger than the dissociation temperature Td, all the J/ψ in this cell decay to
charm and anti-charm quarks. This is a rather crude and somehow artificial treatment of this
phenomenon. However, it could be improved by considering—instead of Equation (3.131)—a
more sophisticated cross section for J/ψ dissociation that leads to such a melting above Td by
itself without the need of an additional cut-off. A first attempt in this direction has been done,
for instance, in Ref. [ZR08] with quasi-free scattering.

The main focus of this thesis is put on open heavy flavor. J/ψ production and suppression
are studied, in a sense, as a side project, in particular, because of the unique opportunity to
have with BAMPS a common framework that includes light as well as heavy flavor and that
has access to all medium properties. In this chapter some first J/ψ results at RHIC energies
are presented. We tried to incorporate all important effects in the most accurate way. However,
more work on the details should be done and uncertainties of employed parameters need to
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Figure 7.1.: RAA of J/ψ at mid-rapidity |y| < 0.35 in central Au+Au collisions at RHIC as
a function of time without cold nuclear matter effects. In addition, the contribution from
initial and secondary J/ψ as well as experimental data [PHENIX07c] are shown.

be studied. For instance, any feed-down effects from higher cc̄ states such as χc and ψ′ on
the J/ψ yield are neglected, which prevents detailed quantitative comparisons with data. It
would be interesting to extend this study to cover a broader spectrum of J/ψ physics not
only at RHIC but also at LHC energies. Nevertheless, the next sections show the wealth of
J/ψ phenomena in heavy-ion collisions and demonstrate that BAMPS provides an unique
framework to study them in detail.

7.1. J/ψ suppression

Figure 7.1 shows the nuclear modification factor RAA of J/ψ without cold nuclear matter
effects for central Au+Au collisions at RHIC as a function of time. The initial value is exactly
one since cold nuclear matter effects are not included. Then right from the beginning, a lot
of initially produced J/ψ melt due to the large temperature of the QGP at RHIC. After the
rapid melting, the number of initial J/ψ stays nearly constant because most of the survived
J/ψ are located at the edge of the heavy-ion collision. A counter-effect to the J/ψ dissociation
is the regeneration, which enhances the total J/ψ number. Our final value at the end of the
QGP phase is a bit smaller than the experimental data point.

In Figure 7.2 the same curve for the total J/ψ is shown and compared to the curve that
also includes cold nuclear matter effects. Although the initial value of the yellow dashed
curve is considerably smaller, the final J/ψ number is only slightly less since most of the
J/ψ melt anyhow. The reason for the substantial melting in the first 0.5 fm is the large
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Figure 7.2.: As Figure 7.1 with and without cold nuclear matter (CNM) effects as well as J/ψ
formation time τ0 = 0.6 fm.

medium temperature. However, since the medium is not thermalized yet, the physical meaning
of defining a temperature is more than questionable. Therefore, we give the initial J/ψ a
formation time of τ0 = 0.6 fm. During this time they cannot melt in the medium. Consequently,
as shown in Figure 7.2, the J/ψ yield stays constant in this time span. Thereafter, the drop due
to instantaneous melting is not as pronounced as without formation time, since the medium
already cooled down and the temperature is properly defined. The value of τ0 reflects the
thermalization time of the QGP, but is to some extent a free parameter. It would be interesting
to study the dependence of the RAA on τ0 in more detail, which we leave as a future project.
The final value of the curve that includes cold nuclear matter effects and a formation time is
in good agreement with the data point at mid-rapidity in central collisions.

In Figure 7.3 the curve with cold nuclear matter effects and a J/ψ formation time of
τ0 = 0.6 fm is compared to the model calculation of the Tsinghua group [LQXZ09, LQXZ10,
ZXZ10, LXZ10]. They study J/ψ dissociation and regeneration with a three dimensional
transport equation and a 2 + 1D hydrodynamic model. As can be seen in the figure, they
choose slightly different parameterizations of the cold nuclear matter effects than we do (cf.
Section 4.4). The starting time of their hydrodynamical medium evolution is also τ0 = 0.6 fm,
which leads to a similar drop in the J/ψ number at this time due to instantaneous melting.
Because of different medium evolutions, the curves from BAMPS and Tsinghua differ slightly
as a function of time. Moreover, their yield of secondarily produced J/ψ is higher than in
BAMPS, although we implemented the same cross section for J/ψ regeneration. The reason
for this difference lies in the treatment of open heavy flavor. While all charm quarks are taken
to be thermalized in the Tsinghua model, BAMPS includes their full space-time evolution as
well, which effectively reduces the J/ψ regeneration.
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Figure 7.3.: RAA of J/ψ at mid-rapidity at RHIC as a function of time with cold nuclear
matter (CNM) effects and a J/ψ formation time of τ0 = 0.6 fm compared to the model of
the Tsinghua group [LQXZ09, LQXZ10, ZXZ10, LXZ10]. The respective secondary J/ψ
curves are also shown.

In Figure 7.4 the BAMPS calculations of the nuclear modification factor of J/ψ at RHIC
for different rapidities are depicted as a function of the number of participants. Also for
non-central collisions the agreement of our results and the data is very good at mid-rapidity.
At forward rapidity the J/ψ suppression in BAMPS is less than at mid-rapidity, which is in
contrast to the experimental data. The reason for the smaller suppression at forward rapidity
lies in the smaller temperature in this region. In contrast to many other theoretical models,
BAMPS does not assume boost invariance in the beam direction, and, hence, the temperature
depends on the rapidity.

The generally assumed reason for the smaller suppression at mid-rapidity is the regeneration
of secondary J/ψ, which is larger at mid-rapidity since more charm quarks are present.
Although we observe a larger regeneration at mid-rapidity in BAMPS as well, the effect is
not strong enough to counteract the larger suppression due to the larger temperature at
mid-rapidity.

7.2. Elliptic flow of J/ψ

Experimental measurements at RHIC showed that the elliptic flow v2 of J/ψ is very small
[STAR11b]. This is in contradiction with the regeneration picture where the flow of the charm
quarks should be transferred to the J/ψ. BAMPS is an ideal framework to study this in more
detail since it reproduces the D meson flow (cf. Section 6.1) and also allows recombination of
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Au+Au collisions at RHIC as a function of the number of participants, together with
experimental data [PHENIX07c]. Cold nuclear matter effects and a J/ψ formation time of
τ0 = 0.6 fm are included.

charm quarks to J/ψ.

Figure 7.5 shows that in BAMPS even with regeneration the elliptic flow of all J/ψ is
compatible with the experimental data. As expected, the v2 of initial J/ψ is zero apart from
small statistical fluctuations. In contrast, the flow of secondary J/ψ depends crucially on
its production time. A later time means a larger v2 since the regenerating charm quarks
have already picked up flow from the medium. However, in non-central collisions the number
of secondarily produced J/ψ is small and the total J/ψ is dominated by initial production.
Therefore, the v2 of total J/ψ is very small and consistent with the data. To get an idea of
the relevant scale of the J/ψ elliptic flow, we also plot the v2 of charm quarks. The finding of
a very small J/ψ elliptic flow is in agreement with the results of other transport models that
study J/ψ [ZER13, LXZ10].

In the following, we investigate in a qualitative study the effect of regeneration on flow—in
particular, the impact of the production time of secondary J/ψ on the elliptic flow. To keep
things simple, we consider only the elliptic flow of secondary J/ψ, which are created in the
medium from the recombination of two charm quarks. As shown in Figure 7.5, initial J/ψ has
(nearly) vanishing v2 and must be taken into account if one wants to compare to data.

In Figure 7.6 we show the number of secondary J/ψ as a function of time and their elliptic
flow as a function of transverse momentum for two (academic) scenarios. In one scenario the
J/ψ melting temperature is large. Hence, secondary J/ψ can be formed already in the early
phase of the medium evolution where the temperature is still large. In the other scenario we
choose a small melting temperature, which only allows secondary J/ψ production at late times.
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Figure 7.5.: Elliptic flow of J/ψ as a function of the transverse momentum with data [STAR11b].
For comparison the charm quark v2 with only binary interactions and K = 3.5 (see
Section 6.1) is also shown.

The total number for both scenarios is normalized to one since the v2 is an averaged quantity
and does not depend on the number and we only want to emphasize the different production
times in both scenarios.
J/ψ from the first scenario only have a small v2 since they are produced early and their

constituent charm quarks could not build up a sizeable flow. The second scenario corresponds
more to the coalescence picture. Due to the late production, the regenerating charm quarks
have already a sizeable v2 close to the final value, which is also depicted in Figure 7.6. As
in the coalescence picture, the J/ψ v2 is shifted to twice as large values at twice as large pT
compared to the charm flow,

v
J/ψ
2 (pT ) ≈ 2vc2(pT /2) . (7.1)

Hence, the fraction of initial J/ψ at large pT must be considerably larger than secondary J/ψ
to bring down the v2 of the total J/ψ in a region that is compatible with the data.

At the LHC, the experimental v2 data is still small but slightly larger than zero, at least
for one pT bin [ALICE13a]. This might enable models to pin down the contribution from
regeneration and learn more about the production time and fraction of secondarily produced
J/ψ. It will be also interesting to study this in more detail with BAMPS in the future.
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Figure 7.6.: Time evolution (top) of the number of secondary J/ψ (normalized) and their
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8. Conclusions

There is something fascinating about science. One gets
such wholesale returns of conjecture out of such a trifling
investment of fact.

Life on the Mississippi
Mark Twain

In the following, the content of this work is briefly summarized and an outlook on future
studies and possible improvements is given.

8.1. Summary

In this work hard probes in ultra-relativistic heavy-ion collisions are studied within the partonic
transport model Boltzmann Approach to MultiParton Scatterings (BAMPS). The focus is
put on open heavy flavor, but also light particles are considered, in particular, to highlight
differences due to mass effects. Furthermore, we investigate the dissociation and regeneration
of J/ψ mesons in the hot and dense medium produced in heavy-ion collisions.

BAMPS is a partonic transport model that solves the Boltzmann equation for on-shell
particles and perturbative QCD (pQCD) interactions. For light partons, all possible 2→ 2 and
2↔ 3 processes are included. As part of this work, all relevant elastic and radiative collisions
of heavy quarks with other medium constituents have been implemented in BAMPS, while the
running of the coupling is explicitly taken into account for elastic as well as radiative light
and heavy flavor processes. The divergent t channel of heavy flavor scatterings is regularized
with a screening mass µ that is determined by matching elastic energy loss calculations with
leading order pQCD cross sections to results from hard thermal loop (HTL) calculations.
The comparison of both results shows that the screening mass µ is smaller than the usually
employed Debye mass mD, more precisely, µ2 = κtm

2
D with κt = 1/(2e) ≈ 0.2.

For radiative processes we recalculate the commonly used approximation to the leading
order pQCD matrix element for partonic 2→ 3 processes, which was first derived by Gunion
and Bertsch (GB) for massless quarks, to be also valid for massive partons. In the GB
approximation the radiative matrix element factorizes in an elastic part and a factor that
describes the radiation. During the course of this work we found that the original GB matrix
element deviates from the exact result in characteristic regions of the phase space, which
becomes important when employing the matrix element to obtain rates or cross sections
from phase space integration. Therefore, based on a detailed analytic investigation of the
underlying approximations, we propose an improved version of the GB matrix element for
all light and heavy partons. A very good agreement between the improved GB result and
the exact calculation is found in all phase space regions by performing extensive numerical
comparisons of the total cross sections as well as more differential quantities, while taking
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the full kinematics for the phase space integration into account. Furthermore, we calculate
the radiative heavy quark matrix element within Feynman gauge (in contrast to light cone
gauge in the GB case) as well as for slightly different approximations and show that the results
from both gauges are consistent. In accordance to binary interactions, radiative processes are
implemented in BAMPS by explicitly taking the running coupling into account.

We specifically verify the presence of the dead cone suppression in our results. Due to
this effect gluon radiation off heavy quarks is suppressed at small angles. While our result
of the dead cone suppression factor is consistent with the calculation of Dokshitzer and
Kharzeev, it extends their result by being valid for all heavy quark masses and all angles.
Furthermore, the BAMPS implementation of the Landau-Pomeranchuk-Migdal (LPM)
effect that describes coherence effects of multiple in-medium gluon radiation is extended to
include also finite heavy quark mass effects.

As a note, during the course of this work we also implemented the running coupling for light
parton interactions in addition to the heavy flavor processes. Hence, if one does not employ
the improved screening procedure from HTL for heavy quarks—thus, setting κt = 1—both
heavy and light partons are treated on the same footing.

The analytic calculation of Peshier and Peigne for the energy loss of energetic heavy
quarks in a static thermal medium within the HTL approach for quantum statistics is outlined
and recalculated for Boltzmann statistics to enable comparisons to BAMPS. Employing
the improved screening procedure we find a good agreement with the numerical BAMPS
results. Furthermore, we derive an analytic formula for the elastic heavy quark energy loss
in a flowing medium, which also agrees well with the numerical calculations. In an extensive
numerical study, the elastic as well as radiative energy loss of heavy quarks is investigated for
constant and running coupling as well as standard and improved Debye screening. Although
the improved screening procedure reproduces the overall energy loss per unit length of the
analytic HTL calculation, it is not clear whether more differential quantities, for instance, a
small energy loss per collision and a huge rate, are correctly featured or just a result of the
effective treatment of the screening.

Due to the LPM implementation and the huge binary rate with κt = 0.2, the radiative heavy
quark energy loss with the improved screening is found to be very small. With a standard
Debye screening, however, the radiative energy loss of light and heavy quarks is about a factor
of two larger than the elastic energy loss. Although the rates of elastic and radiative collisions
are comparable, the energy loss per collision for radiative processes is increased due to the
three-body phase space in the final state. Comparing the radiative energy loss of charm and
light quarks with standard Debye screening, we find that both are very similar for constant
and running coupling because the LPM effect produces a second dead cone at small emission
angles that overshadows the dead cone due to the heavy quark mass. In contrast, the mass
dead cone for bottom quarks is large enough to be still visible in the presence of the LPM
effect. We investigate in detail the sensitivity of the results on the LPM effect by modifying
the LPM cut-off and employing the mean free path of the jet or the emitted gluon in the LPM
implementation.

To compare with experimental open heavy flavor data, we study heavy quarks in full BAMPS
simulations of ultra-relativistic heavy-ion collisions with the running coupling and the improved
screening procedure. The initial heavy quark distributions are obtained with MC@NLO, which
gives good agreement with heavy flavor data in proton+proton collisions at RHIC and LHC.
Quantitative comparisons show that elastic processes are responsible for a large fraction of

160



8.1. Summary

the observed suppression of heavy quarks. However, they alone are not able to reproduce the
data of the nuclear modification factor RAA or the elliptic flow v2 of any heavy flavor particle
species.

Before radiative heavy quark processes have been implemented in BAMPS, we mimicked
their influence by effectively increasing the elastic cross section by a factor K = 3.5, which
is tuned to the elliptic flow data of heavy flavor electrons at RHIC. Simultaneously, the
nuclear modification factor of heavy flavor electrons at RHIC can be described with the same
parameter. Having fixed this parameter to the RHIC data, we find a good agreement with
the experimentally measured nuclear modification factor of D mesons, non-prompt J/ψ (from
B meson decays), and heavy flavor muons at the LHC energy of

√
s = 2.76 TeV. Furthermore,

we made predictions for the nuclear modification factor of heavy flavor electrons as well as the
non-prompt J/ψ, D meson, electron, and muon elliptic flow at the LHC. Recently released
data on the nuclear modification factor of electrons and the elliptic flow of electrons and
D mesons show an excellent agreement with our predictions.

It is striking that both the nuclear modification factor and elliptic flow of various heavy flavor
particles at RHIC and LHC can be simultaneously described with only elastic heavy quark
interactions if their cross sections are scaled with K = 3.5. While the agreement indicates the
consistency of the experimental data at both colliders as well as of our model, the need of the
phenomenological K factor is rather unsatisfying from the theory perspective.

Therefore, the question arises whether radiative processes can account for the missing
contribution parameterized by the K factor. To this end, we carried out BAMPS calculations
with elastic and radiative processes for both light and heavy particles in a common framework.

Since the improved screening prescription is only derived for heavy quarks, we first employed
the standard screening to treat light and heavy partons consistently and to study finite mass
effects. Analogous to what we observe in the case of a static medium, the energy loss of charm
and light quarks in full heavy-ion collisions is very similar for constant and running coupling.
This is again because of a second dead cone due to the LPM effect that overshadows the dead
cone due to the charm mass. In contrast, gluons are more suppressed than light quarks (and
charm quarks) due to a larger color factor. However, mass effects in the fragmentation of gluons
and light quarks to charged hadrons and charm quarks to D mesons lead to a very similar
suppression of charged hadrons and D mesons in BAMPS. This is a remarkable explanation of
the heavy flavor puzzle at RHIC and LHC, which denotes the experimental observation that
charged hadrons and D mesons are equally suppressed.

Although the shape of the nuclear modification factor as a function of the transverse
momentum is nicely reproduced by BAMPS, the overall suppression is underestimated. The
reason for this discrepancy is probably the effective implementation of the LPM effect in
BAMPS, which discards all possible interference effects and only allows independent scatterings.
If we introduce a factor X < 1 that modifies the LPM cut-off and effectively allows more
radiative interactions, a good agreement with the experimental data of charged hadrons and
D mesons is found for X = 0.3. Although the exact value of X is a free parameter, we expect
that a more sophisticated implementation of the LPM effect would effectively correspond to
an X < 1 and might make the need of the X parameter obsolete. We want to emphasize
that light partons and heavy quarks are treated consistently in this calculation and we can,
thus, provide a microscopic explanation of the heavy flavor puzzle with the dead cone effect
being explicitly present in the employed matrix elements. For bottom quarks the dead cone
suppression is stronger. Hence, our calculated nuclear modification factor of non-prompt J/ψ
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is larger than that of D mesons, but also slightly larger than the data.
If the improved screening procedure is applied to heavy quarks, radiative processes are

strongly suppressed due to the large rate of binary scatterings and its effect on the LPM
treatment. Hence, the nuclear modification factor of heavy flavor particles is larger than the
data. However, if we set the LPM parameter to X = 0.2, we find a good agreement with
the nuclear modification factor of D mesons, non-prompt J/ψ, and heavy flavor electrons at
LHC. It is noteworthy, that the value of X lies in the same regime as for the case without the
improved screening.

Although the heavy flavor data of the nuclear modification factor is nicely reproduced with
X = 0.2, the same calculations cannot describe the heavy flavor elliptic flow data simultaneously.
Compared to the binary interactions scaled with K = 3.5, which give a good agreement with
the nuclear modification factor and elliptic flow data, elastic and radiative processes with
X = 0.2 but without a K factor have a very similar energy loss but a considerably smaller
transport cross section. Since the latter is the relevant quantity for isotropization and the
build-up of elliptic flow, the v2 of elastic and radiative collisions is smaller than the data,
whereas the v2 of the scaled binary collisions agrees with the data. An explanation for the
small elliptic flow could be the lack of event-by-event fluctuations and coalescence effects in
BAMPS, which might increase the v2.

Our results are in accordance with most of the findings in the literature. All models that
include radiative contributions (except the model of the Nantes group) cannot describe the
nuclear modification factor and elliptic flow simultaneously. With only binary interactions
(either with scaled pQCD cross sections as presented in this work or resonance scattering)
some models can explain both. However, as we showed in this work, the inclusion of radiative
processes influences the results on the nuclear modification factor and elliptic flow differently.
Hence, it is not clear whether these models can still describe both if radiative processes are
taken into account.

Lattice QCD calculations suggest that J/ψ mesons survive in the quark gluon plasma to
some extent. Therefore, we included in BAMPS in addition to gluons, light quarks, and
heavy quarks also J/ψ mesons, which can be dynamically dissociated by interactions with
gluons or if the medium temperature becomes larger than the J/ψ dissociation temperature Td.
Furthermore, two independent charm quarks can bind together to form a J/ψ during the
evolution of the quark gluon plasma. The initial J/ψ distribution is parameterized from
experimental proton+proton data and the inclusion of cold nuclear matter effects such as
shadowing, nuclear absorption, and the Cronin effect.

In full heavy-ion collisions at RHIC simulated with BAMPS, we study the time dependence
of the dynamic J/ψ dissociation and regeneration. Including cold nuclear matter effects and a
J/ψ formation time of τ0 = 0.6 fm to prevent melting during a stage where the temperature
cannot be reliably defined, a good agreement with the experimental data of the J/ψ nuclear
modification factor at mid-rapidity is found for different centralities. However, in contrast
to experimental data, the J/ψ suppression at forward rapidity in central and semi-central
events is smaller than the suppression at mid-rapidity, which is due to a smaller temperature
in BAMPS at forward rapidity compared to the mid-rapidity region.

Experimental measurements at RHIC reveal that the elliptic flow of J/ψ is very small.
This is in contradiction with the regeneration picture where the flow of the charm quarks
should be transferred to the J/ψ mesons. BAMPS is an ideal framework to study this in
more detail since it can reproduce the D meson flow and also allows recombination of charm
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quarks to J/ψ. Since most of the final J/ψ is already initially produced and, thus, does
not exhibit a flow, we observe a small J/ψ elliptic flow at RHIC that is consistent with the
experimental data. In a more theoretical study, we investigate the dependence of the elliptic
flow of secondarily produced J/ψ on the J/ψ dissociation temperature. We find that J/ψ
mesons that are produced late in the medium evolution possess an elliptic flow larger than the
data. Therefore, most of the experimentally observed J/ψ mesons must be produced at an
early stage of the heavy-ion collision.

To conclude the summary, we depict in Figure 8.1 a word cloud with the most frequent
words in this thesis, which offers a quick overview of the most prominently featured topics of
this work.

Figure 8.1.: Word cloud of the most frequently used words in this thesis. The size of the words
corresponds to their number of appearances in this text. Common English words are filtered
out. Created with [Fei09].

8.2. Outlook

In this section we give a brief overview of possible extensions to the studies presented in this
work. Several of the projects are planned to be implemented in BAMPS in the near future.

As part of this thesis an improved Debye screening procedure for heavy quarks was
implemented in BAMPS. Since it is only derived for massive particles, it cannot be applied
to the light parton sector. Therefore, it would be highly interesting to perform the HTL
calculation for light particles and derive an improved screening procedure for massless partons
as well. To this end, an analogous calculation could be performed for radiative processes for
both light and heavy partons, which would put the screening effects for inelastic collisions on
theoretically solid grounds.

The current implementation of the LPM effect in BAMPS via a cut-off in the gluon formation
time is a rather effective treatment of the LPM phenomenology. Although the inclusion of
coherence effects in a semi-classical transport model is challenging, a numerical implementation
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of a more sophisticated treatment of the LPM effect on the microscopic level seems to be
possible. To this end, the emitted gluon in 2→ 3 processes accumulates additional transverse
momentum and decreases its formation time until it is eventually formed. Only then, the other
partons involved in this process are allowed to rescatter. Possible prescriptions in this regard
are outlined, for instance, in Refs. [ZSW09, ZSW11, CSBS11, CSM12].

A theoretically more advanced implementation of the LPM effect would certainly allow
more radiative collisions and might be able to explain the factor X = 0.2− 0.3 in the current
implementation that is needed to describe the measured suppression of light and heavy
high-energy particles in heavy-ion collisions.

For the evolution of heavy quarks in heavy-ion collisions, not only the interactions of heavy
quarks with the medium play an important role but also the medium evolution itself. For
instance, a recent study [GVvH+11] suggests that the medium evolutions of two different
models can lead to about a factor of two difference in heavy flavor observables, even if the
same heavy quark interactions are employed. Therefore, when comparing different heavy flavor
models, one does not know whether differences come from different heavy quark interactions
or different medium evolutions. To entangle both and gain more insight about the microscopic
interaction properties of heavy quarks, we are convinced that it would be very helpful to
compare the heavy flavor energy loss and the transport rate in a controlled environment of a
thermalized static medium for all models on the market. First comparisons of these quantities
with the Nantes group proofed to be very fruitful.

Several further studies would be interesting to investigate within the BAMPS framework
presented in this work with light and heavy partons as well as elastic and radiative collisions. To
understand the impact of the dead cone effect in more detail, it would be insightful to compare
jet shower shapes of fully reconstructed light particle jets and bottom tagged jets. These
quantities might be accessible in LHC experiments [CMS12b, CMS13c, CMS13a, ATLAS13].
A study that is experimentally more challenging is the angular correlation of D mesons [Z+07,
Mis11, NAGW13]. The transport model BAMPS is well suited for such investigations since it
contains from MC@NLO a very accurate initial heavy quark (angle) distribution and it has
access to all heavy quark space-time properties throughout the quark gluon plasma evolution.

In this work, we proposed the improved Gunion-Bertsch matrix element and employed
it for heavy quarks as well as for energetic light partons. To this end, it is also planned to
study its impact on the bulk medium in more detail. Although we expect a decrease of the
elliptic flow and an increase of the shear viscosity compared to the original GB cross section,
one must wait for the numerical results to see how large the effect will actually be. While the
running coupling is currently only implemented for 2→ 2 and 2→ 3 interactions, we also want
to include it in 3→ 2 collisions. Moreover, the influence of the inclusion of a hadronization
scheme (such as the coalescence model) on the bulk medium observables will be of great
interest. Subsequent hadronic interactions might also affect observables like the elliptic flow.
The latter is also sensitive on initial event-by-event fluctuations. Although it is challenging to
include such effects in BAMPS on a particle basis due to the test particle method, it might be
possible by sampling initial test particles according to a smeared distribution that includes
fluctuation effects [PSB+08, SJG11].

Coalescence and initial stage fluctuations might also affect heavy quarks at low transverse
momenta. Both are expected to increase the elliptic flow of heavy flavor particles. Thus,
neglecting these effects in BAMPS could be an explanation why we observe an elliptic flow
smaller than the data if we consider elastic and radiative processes.
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Finally, it would be interesting to extend the presented J/ψ study from RHIC to LHC
energy. An abundance of experimental data [ALICE12d, CMS12f] is already available at low
and high transverse momenta, which can help to further constrain theoretical considerations. In
addition, a more detailed study of the sensitivity of the experimentally accessible observables
on the input values of the cold nuclear matter parameterizations as well as on the J/ψ
dissociation temperature and formation time would be worthwhile. The implementation of
Υ states in BAMPS is in principle also possible and would allow for further comparisons to
data [CMS11a, CMS12d].

With the wealth of new data and detailed experimental analysis from the LHC and also
from RHIC, heavy-ion theorists are in a great position to constrain their models and confront
their calculations with the measurements to gain deeper insight in the properties of the quark
gluon plasma. As we showed in this thesis, the partonic transport model BAMPS is a great
tool to study the dynamics of the quark gluon plasma on a microscopic level—not only for
hard probes but also for the bulk medium. It will be highly interesting to employ this unique
framework also for the suggested future studies outlined in this section.
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A. Appendices

To the small part of ignorance that we arrange and
classify we give the name of knowledge.

The Devil’s Dictionary
Ambrose Bierce

A.1. Natural units

The laws of physics are, of course, independent of any unit system. However, if one wants to
calculate numbers, it is convenient to chose a proper system suitable to the problem at hand.
The standard unit system in physics is the SI1 system. However, it is designed for the usual
scales of the world around us. In contrast, the scales in high-energy physics are very different
and quantities expressed in SI units are not very handy. Therefore, natural units are widely
used in high-energy physics. To reduce the complexity of equations, the most relevant physical
constants, that is, the speed of light c, the Planck constant ~, and the Boltzmann constant
kB, are set to 1,

c = ~ = kB = 1 . (A.1)

This implies that space and time as well as energy and momentum have the same units,
respectively. The former are usually expressed in femtometer (1 fm = 10−15 m) and the latter
in gigaelectronvolt (1 GeV = 106 eV). In principle, however, only one of these two units is
necessary since both are related via

1 = ~c = 0.197 GeV fm . (A.2)

Cross sections are usually given in millibarn (mb), which is the unit of an area. It is related
to the units given above via

1 mb = 0.1 fm2 = 2.568 GeV−2 . (A.3)

A.2. Mandelstam variables

The Mandelstam variables [Man58] are useful to express matrix elements or cross sections
since they do not depend on the frame of reference. For 2→ 2 processes they are defined by

s = (p1 + p2)2 = (p3 + p4)2

t = (p1 − p3)2 = (p2 − p4)2

u = (p1 − p4)2 = (p2 − p3)2 , (A.4)

1International System of Units, abbreviated SI from French: Le Système international d’unités
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where p1 and p2 are the incoming and p3 and p4 the outgoing momenta (cf. also Figure 3.3 on
page 27 for the notation). From the definitions it is obvious that the Mandelstam variables
are indeed Lorentz invariant quantities. The variable s also happens to be the squared
center-of-mass energy.

The Mandelstam variables are related to each other and the masses of the particles via

s+ t+ u =
4∑
i=1

m2
i , (A.5)

which can be easily derived from Equation (A.4).
The previous definitions can also be generalized to a 2→ 3 process,

s = (p1 + p2)2 , s′ = (p3 + p4)2 ,

u = (p1 − p4)2 , u′ = (p2 − p3)2 ,

t = (p1 − p3)2 , t′ = (p2 − p4)2 , (A.6)

where we defined the momenta of the involved particles as p1 + p2 → p3 + p4 + p5. Accordingly
to the binary case, the Mandelstam variables are related to the masses by

s+ t+ u+ s′ + t′ + u′ = 2

4∑
i=1

m2
i +m2

5 . (A.7)

Clearly, if the momentum p5 is much softer than the other momenta and m5 vanishes, the
dashed variables are redundant, s′ → s, t′ → t, and u′ → u, as in the binary case. Also
Equation (A.5) can be recovered from Equation (A.7) for this configuration.

A.3. Binary light parton cross sections

According to Equation (3.5) the 2→ 2 differential cross section for light partons (m = 0) is
given by

dσ

dt
=

1

16πs2

∣∣M2→2

∣∣2 . (A.8)

In the following we write down all the 2→ 2 matrix elements for light parton scatterings,
which are taken from Refs. [CKR77, PS95] if not indicated otherwise. Furthermore, the explicit
expression for the matrix element with a running coupling and Debye screening is stated.
As we discussed in Section 3.1.3, the coupling of each channel is evaluated at the scale of the
given channel, which is the momentum transfer of the internal propagator, i.e., s, t, and u
for the respective channel. Furthermore, the coupling in the Debye mass definitions from
Equations (3.18) and (3.19), which screen the propagator, is also evaluated at the corresponding
virtuality.

A.3.1. Matrix elements

gg→ gg

The matrix element of the process was first calculated in Ref. [CS78], although with a wrong
term for the constant. The result was corrected in Ref. [CKR77], which also agrees with
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Ref. [PS95].

Matrix element
∣∣Mgg→gg

∣∣2 = 72π2α2
s

[
3− tu

s2
− su

t2
− st

u2

]
(A.9a)

Small angle behavior t→ 0
∣∣Mgg→gg

∣∣2 = 72π2α2
s

s2

t2
(A.9b)

Large angle behavior u→ 0
∣∣Mgg→gg

∣∣2 = 72π2α2
s

s2

u2
(A.9c)

With running coupling and Debye screened propagators the matrix element reads∣∣Mgg→gg
∣∣2 = 72π2

[
3α2

s(s)− α2
s(s)

tu

[s+m2
D(αs(s))]2

− α2
s(t)

su

[t−m2
D(αs(t))]2

−α2
s(u)

st

[u−m2
D(αs(u))]2

]
. (A.9d)

Since the first term cannot be attributed to one specific channel, we set the scale for the
running coupling to the squared center-of-mass energy. However, we checked that the cross
section is not very sensitive on this choice.

qg→ qg and q̄g→ q̄g

The matrix element from Refs. [CKR77, PS95] is simplified to such an extent that the internal
propagators cannot be identified. Therefore, we take the matrix element for heavy quark
scattering with a gluon Qg → Qg [Com79], see Equation (3.12), which is given for all channels
individually, and set the mass to zero. Without screening or running coupling it agrees with
the simplified result [CKR77, PS95].

Matrix element
∣∣Mqg→qg

∣∣2 = 16π2α2
s

[
−4

9

(su
s2

+
su

u2

)
− 2

su

t2
− su

ts
− su

tu

]
(A.10a)

Small angle behavior t→ 0
∣∣Mqg→qg

∣∣2 = 32π2α2
s

s2

t2
(A.10b)

Large angle behavior u→ 0
∣∣Mqg→qg

∣∣2 =
64π2α2

s

9

s

−u (subdominant) (A.10c)

As a note, the ratio of the small angle result to the small angle result for gg → gg is just the
color factor 4/9.

The Mandelstam variables in the different terms, e.g., su/u2, have not been canceled in
order to screen the full propagator (in this case 1/u2). With running coupling and Debye
screened propagators the matrix element reads∣∣Mqg→qg

∣∣2 = 16π2

[
−4

9

(
α2
s(s)

su

[s+m2
q(αs(s))]

2
+ α2

s(u)
su

[u−m2
q(αs(u))]2

)
−2α2

s(t)
su

[t−m2
D(αs(t))]2

− αs(s)αs(t)
su

[s+m2
q(αs(s))][t−m2

D(αs(t))]

−αs(t)αs(u)
su

[t−m2
D(αs(t))][u−m2

q(αs(u))]

]
. (A.10d)
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qq′ → qq′

For this process there is only one t channel diagram. Hence, the matrix element looks rather
simple.

Matrix element
∣∣Mqq′→qq′

∣∣2 =
64π2α2

s

9

[
u2 + s2

t2

]
(A.11a)

Small angle behavior t→ 0
∣∣Mqq′→qq′

∣∣2 =
128π2α2

s

9

s2

t2
(A.11b)

Large angle behavior u→ 0
∣∣Mqq′→qq′

∣∣2 =
64π2α2

s

9
(subdominant) (A.11c)

The ratio of the small angle result to the small angle result for gq → gq is again the color
factor 4/9. With running coupling and Debye screened propagators the matrix element reads∣∣Mqq′→qq′

∣∣2 =
64π2

9
α2
s(t)

u2 + s2

[t−m2
D(αs(t))]2

. (A.11d)

qq→ qq and q̄q̄→ q̄q̄

In addition to the t channel diagram, which is the same as for qq′ → qq′, there is also a u
channel diagram present.

Matrix element
∣∣Mqq→qq

∣∣2 =
64π2α2

s

9

[
u2 + s2

t2
+
t2 + s2

u2
− 2

3

s2

tu

]
(A.12a)

Small angle behavior t→ 0
∣∣Mqq→qq

∣∣2 =
128π2α2

s

9

s2

t2
(A.12b)

Large angle behavior u→ 0
∣∣Mqq→qq

∣∣2 =
128π2α2

s

9

s2

u2
(A.12c)

The small angle result is exactly the same as the small angle result for qq′ → qq′. Due to the
symmetry of the process the contribution for small u is the same as for small t. With running
coupling and Debye screened propagators the matrix element reads∣∣Mqq→qq

∣∣2 =
64π2

9

[
α2
s(t)

u2 + s2

[t−m2
D(αs(t))]2

+ α2
s(u)

t2 + s2

[u−m2
D(αs(u))]2

−2

3
αs(t)αs(u)

s2

[t−m2
D(αs(t))][u−m2

D(αs(u))]

]
. (A.12d)

qq̄→ qq̄

The matrix element for this process can be easily obtained from the process qq → qq by
crossing s and u channel.

Matrix element
∣∣Mqq̄→qq̄

∣∣2 =
64π2α2

s

9

[
u2 + s2

t2
+
t2 + u2

s2
− 2

3

u2

st

]
(A.13a)

Small angle behavior t→ 0
∣∣Mqq̄→qq̄

∣∣2 =
128π2α2

s

9

s2

t2
(A.13b)

Large angle behavior u→ 0
∣∣Mqq̄→qq̄

∣∣2 =
128π2α2

s

9
(subdominant) (A.13c)
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The small angle result is exactly the same as the small angle result for qq′ → qq′. With running
coupling and Debye screened propagators the matrix element reads

∣∣Mqq̄→qq̄
∣∣2 =

64π2

9

[
α2
s(t)

u2 + s2

[t−m2
D(αs(t))]2

+ α2
s(s)

t2 + u2

[s+m2
D(αs(s))]2

−2

3
αs(t)αs(s)

u2

[t−m2
D(αs(t))][s+m2

D(αs(s))]

]
. (A.13d)

gg→ qq̄

The matrix element for this process can be obtained from qg → qg by crossing the s and t
channel and multiplying with 3/8 due to the color and spin averaging.

Matrix element
∣∣Mgg→qq̄

∣∣2 = 6π2α2
s

[
4

9

(
tu

t2
+
tu

u2

)
+ 2

tu

s2
+
tu

st
+
tu

su

]
(A.14a)

Small angle behavior t→ 0
∣∣Mgg→qq̄

∣∣2 =
8π2α2

s

3

s

−t (A.14b)

Large angle behavior u→ 0
∣∣Mgg→qq̄

∣∣2 =
8π2α2

s

3

s

−u (A.14c)

Due to the symmetry of the process the behavior for small t and u is the same. With running
coupling and Debye screened propagators the matrix element reads

∣∣Mgg→qq̄
∣∣2 = 6π2

[
4

9

(
α2
s(t)

tu

[t−m2
q(αs(t))]

2
+ α2

s(u)
tu

[u−m2
q(αs(u))]2

)
+2α2

s(s)
tu

[s+m2
D(αs(s))]2

+ αs(s)αs(t)
tu

[s+m2
D(αs(s))][t−m2

q(αs(t))]

+αs(s)αs(u)
tu

[s+m2
D(αs(s))][u−m2

q(αs(u))]

]
. (A.14d)

qq̄→ gg

This process can be obtained through detailed balance from the previous process gg → qq̄,
taking the extra factor (8/3)2 for color and spin averaging into account.

Matrix element
∣∣Mqq̄→gg

∣∣2 =
128π2α2

s

3

[
4

9

(
tu

t2
+
tu

u2

)
+ 2

tu

s2
+
tu

st
+
tu

su

]
(A.15a)

Small angle behavior t→ 0
∣∣Mqq̄→gg

∣∣2 =
512π2α2

s

27

s

−t (A.15b)

Large angle behavior u→ 0
∣∣Mqq̄→gg

∣∣2 =
512π2α2

s

27

s

−u (A.15c)
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With running coupling and Debye screened propagators the matrix element reads

∣∣Mqq̄→gg
∣∣2 =

128π2

3

[
4

9

(
α2
s(t)

tu

[t−m2
q(αs(t))]

2
+ α2

s(u)
tu

[u−m2
q(αs(u))]2

)
+2α2

s(s)
tu

[s+m2
D(αs(s))]2

+ αs(s)αs(t)
tu

[s+m2
D(αs(s))][t−m2

q(αs(t))]

+αs(s)αs(u)
tu

[s+m2
D(αs(s))][u−m2

q(αs(u))]

]
. (A.15d)

qq̄→ q′q̄′

For this process only s channel scattering is allowed, which makes the matrix element very
small compared to the other processes. The matrix element can be obtained from qq′ → qq′ by
crossing s and t.

Matrix element
∣∣Mqq̄→q′q̄′

∣∣2 =
64π2α2

s

9

[
t2 + u2

s2

]
(A.16a)

Small angle behavior t→ 0
∣∣Mqq̄→q′q̄′

∣∣2 =
64π2α2

s

9
(A.16b)

Large angle behavior u→ 0
∣∣Mqq̄→q′q̄′

∣∣2 =
64π2α2

s

9
(A.16c)

With running coupling and Debye screened propagators the matrix element reads

∣∣Mqq̄→q′q̄′
∣∣2 =

64π2

9
α2
s(s)

t2 + u2

[s+m2
D(αs(s))]2

. (A.16d)

A.3.2. Overview of the processes

Figure A.1 shows an overview of all t channel dominated cross sections from above for a
constant coupling. In addition, the respective heavy quark processes from Section 3.1 are also
depicted. In the large s limit all cross sections converge to the same number if the trivial
differences due to color factors are scaled out. It is rather instructive to determine this number
in a back-of-the-envelope calculation. As mentioned before, the processes are dominated by
the t channel. An integration about this part, see, for instance, Equation (A.11b) for qq′ → qq′

(and add the Debye mass in the denominator), gives in the large s limit

σsmall angle
qq′→qq′ =

8πα2
s

9

(
1

m2
D

− 1

s+m2
D

)
s→∞−−−→ 8πα2

s

9m2
D

. (A.17)

For the parameters of Figure A.1 the value is 0.34 GeV−2, which agrees perfectly with the
asymptotic limit in the figure.

Figure A.2 shows an overview of the cross sections with a running coupling. A similar
asymptotic behavior with a slightly larger value is visible.

172



A.3. Binary light parton cross sections

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1  10  100  1000

σ
to

t 
[1

/G
e
V

2
]

s [GeV
2
]

T=0.4 GeV

qq’ → qq’
q

−
q → q

−
q

qq → qq
gg → gg × (4/9)

2

qg → qg × 4/9

cg → cg × 4/9

bg → bg × 4/9

cq → cq
bq → bq

Figure A.1.: Total cross sections with a constant coupling αs = 0.3 of various processes with
the same asymptotic behavior as a function of the squared center-of-mass energy s. Processes
that involve gluons are scaled with a color factor. In addition, heavy quark processes from
Section 3.1 are also included. The Debye mass is calculated for an equilibrated medium
with a temperature of T = 400 MeV.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1  10  100  1000

σ
to

t 
[1

/G
e
V

2
]

s [GeV
2
]

T=0.4 GeV

qq’ → qq’
q

−
q → q

−
q

qq → qq
gg → gg × (4/9)

2

qg → qg × 4/9

cg → cg × 4/9

bg → bg × 4/9

cq → cq
bq → bq

Figure A.2.: Same as Figure A.1 with a running coupling.
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A.4. Detailed balance

In contrast to the weak interaction2, there is no experimental indication that QCD is not
invariant under time reversal transformations. In fact, the time reversal invariance of the QCD
Lagrangian from Equation (2.1) can be explicitly shown [PS95]. As a consequence, all processes
in QCD obey detailed balance [Sac87]. That is, the cross sections of the reaction a+ b→ c+ d
and its back reaction c+ d→ a+ b are—apart from degeneracy factors—identical. The deeper
reason for that lies in the time reversal invariance of the squared matrix elements. Applying the
time reversal operator on the matrix element yields that the matrix element of the back reaction
is the complex conjugated matrix element of the original reaction, Mc+d→a+b =M?

a+b→c+d
[Smi06]. Since the cross section of the reaction and its back reaction are proportional to the
squared matrix element |M|2, both cross sections have the same value.

A.5. Glauber model

The Glauber model is widely used for describing the initial stage of heavy-ion collisions. It
assumes that a heavy-ion collision is given as a superposition of nucleon-nucleon interactions.
The latter can be sampled according to geometric considerations.

Within the Glauber model the nuclear thickness function of a nucleus with mass number A
is defined as

TA(b) =

∫
dz nA(r = (b, z)) (A.18)

with the impact parameter b and the nuclear density function nA of the nucleus A. The
quantity 1

ATA(b)db resembles the probability for a nucleon-nucleon collision with impact
parameter b [Won94].

A good description of the nuclear density function of heavy nuclei is the Woods Saxon
distribution,

nA(xT , z) =
γ n0

1 + exp
[(√

x2
T + (γz)2 −RA

)
/d
] , (A.19)

where RA =
(
1.12A1/3 − 0.86A−1/3

)
fm is the radius of the nucleus and d = 0.54 fm the

thickness of its skin. The Lorentz factor γ = [1− (v/c)2]−1/2 ensures the length contraction
of the relativistic nucleus with velocity v. The maximum density can be obtained from the
normalization

∫
d3rnA = A.

The overlap region in a collision of two nuclei A+B is described by the nuclear overlap
function

TAB(b) =

∫
d2xT1dz1 d2xT2dz2 nA(r1)nB(r2) δ2(b− (xT1 − xT2)) . (A.20)

2 In 1964 Christenson, Cronin, Fitch, and Turlay discovered that the weak interaction is not invariant
under CP transformations. C stands for charge conjugation, i.e., interchanging particles and anti-particles,
and P for parity, i.e., flipping the sign of the spatial coordinates. However, in the 1950s Lüders, Pauli, and
independently Bell proofed the CPT theorem, which states that any Lorentz invariant local quantum
field theory with a hermitian Hamiltonian is CPT invariant. T describes a time reversal transformation.
Since the CPT invariance, therefore, also applies to the weak interaction, being not invariant under CP
transformations, implies that the weak interaction is also not invariant under T transformations.
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The total number of binary nucleon-nucleon collisions in a heavy-ion collision is then given
by [Won94]

Nbin(b) = σp+p TAB(b) , (A.21)

where σp+p is the inelastic p+p cross section. The values for RHIC and LHC are σp+p ≈ 42 mb
and 64 mb, respectively. As a note, the number of binary collisions in a central collision of two
identical nuclei (A = B) scales with A4/3 since TAA ∼ A2/R2

A ∼ A4/3 with RA ∼ A1/3.

A.6. Sampling with the rejection method and the Metropolis
algorithm

Monte Carlo codes rely strongly on random numbers due to the employed stochastic methods.
The random number generator used in BAMPS is based on the Mersenne twister algo-
rithm [MN98] as implemented in the Boost library3. Like most other generators it produces
uniformly distributed numbers between zero and one. However, often the random numbers
x should lie in a range x ∈ [a, b] and should not be sampled uniformly but according to a
probability density function p(x). Several methods deal with this problem, two of which—the
rejection method and the Metropolis algorithm—are employed in BAMPS and described
in more detail in this section. The rejection method is very fast if an analytic comparison
function is known that is always larger than p(x) and invertible. The Metropolis algorithm on
the other hand works also very well if such a function is not available.

The probability density function p(x) shall be normalized to one. If p(x) has a form such
that the cumulative distribution function

A(x) =

x∫
a

p(x′)dx′ (A.22)

is invertible, there is no need to employ sophisticated sampling algorithms. Instead, we can
sample a random number for A between zero and one and obtain from the inverse function
x(A) an x that is distributed according to p(x).

If A(x) is not invertible, the rejection method can be employed. For that, we need another
function f(x) (often called comparison function) that is invertible and always larger than p(x),
i.e., f(x) ≥ p(x) for all x. To this end, we define

Ã(x) =

x∫
a

f(x′)dx′ . (A.23)

The algorithm looks as follows:

1. Sample a random number for Ã in the interval [0, Ã(b)] and calculate x(Ã).

2. Sample a second random number y between zero and one.

3. If y f(x) ≤ p(x), the number x is accepted. Otherwise it is rejected and the procedure
starts again at step 1.

3http://www.boost.org. More precisely, the mt19937 variant of the Mersenne twister algorithm provided
by the Boost libraries is used in BAMPS.
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Due to this prescription, x is distributed according to p(x). It is immediately clear that a well
chosen comparison function f(x) that is only slightly larger than p(x) reduces the number of
rejected x significantly.

If such a comparison function is not available or if its resembling of the original function is
poor and, thus, the number of rejections large, the Metropolis algorithm is an efficient method
to sample random numbers according to the probability density function p(x). Moreover, p(x)
does not have to be normalized. Therefore, a time consuming computation of the normalization
constant is not needed.

The Metropolis algorithm was first proposed by Metropolis et al. [MRR+53] to sample
numbers according to the Boltzmann distribution. It was then extended by Hastings to
general probability density functions [Has70].4 The idea of the algorithm is to produce a
sequence of random numbers that are distributed according to p(x) by performing a random
walk in probability space. New candidates for random numbers are proposed solely depending
on the current position—thus, being a Markov process—and, subsequently, accepted or rejected
according to a criterion derived from the probability and proposal distributions.

In detail, the algorithm looks as following. The first number x1 is randomly chosen in the
range [a, b]. Having the number xi given, the next number in the sequence xi+1 is calculated
as follows:

1. Propose a new candidate x′ according to a probability density Q(x′ | xi) of your choice.

2. Calculate an acceptance probability α = min {αp αQ, 1}, where αp is the likelihood ratio
and αQ the ratio of the proposal densities of x′ and xi,

5

αp =
p(x′)

p(xi)
αQ =

Q(xi | x′)
Q(x′ | xi)

. (A.24)

3. Sample a random number y ∈ [0, 1]. If y ≤ α, accept x′ and set xi+1 = x′, otherwise go
back to the first step.

After the burn-in phase, i.e., after the initial state x1 is “forgotten”, this procedure generates
a sequence of random numbers that are distributed according to p(x). The burn-in is achieved
by discarding a sufficiently large number of initial states—a number that varies from problem
to problem and has to be determined empirically.

The proposal probability density Q(x′ | xi) is often chosen to be symmetric, Q(x′ | xi) =
Q(xi | x′) (for instance, a Gaussian distribution), which results in αQ = 1. However, it is most
efficient to use a proposal probability density that is close to p(x), i.e., Q(x′ | xi) = f(x′) ≈ p(x′)
since α is then close to one, as can be seen from Equation (A.24). Due to step 1 in the
enumeration above, f(x′) must be invertible. Since f(x′) does not depend on the previous
number xi, it can also be employed for sampling the first number x1, which shortens the
burn-in process.

Although the Metropolis algorithm seems to be rather complex at first, the basic idea is
obvious. Numbers that have a larger probability density p(x) than the previous number are
always accepted. Numbers that have a smaller probability are accepted or rejected proportional

4Therefore, it is often named Metropolis-Hastings algorithm.
5Since p(x) only enters as a ratio in αp, it does not have to be normalized.
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to this probability, which leads to clusters where p(x) is large and only occasional samplings
in regions where p(x) is small.

In BAMPS, for sampling the differential cross section dσ/dt, for instance, the probability
density function changes for each collision. Therefore, we do not need a sequence of random
numbers but only one sampled number for a given collision. Consequently, the iteration is
aborted after the burn-in phase and the last number is taken.

Both the rejection method and Metropolis algorithm can be straight forwardly extended
to multi-dimensional probability density functions. In general, the rejection probability in
the rejection method increases exponentially with the number of dimensions. Thus, the
Metropolis algorithm might become more efficient for high dimensions. In BAMPS a
multi-dimensional rejection method is applied for sampling the outgoing momenta of 2→ 3
processes, whereas the Metropolis algorithm is employed for samplings in 2→ 2 and 3→ 2
interactions.
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