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Preface

This is an essay for the Smith-Knight and Rayleigh-Knight contests. Section 1 is a reworking
of the third chapter of [Fay73], it contains an extract of the paper [CSB11]. Section 2 is back-
ground material. Section 3 contains a result obtained in the joint work [CSB11] and some of its
consequences, in particular section 3.1 is the third section of [CSB11]. Sections 4 and 5 are my
own research. Pictures are taken from [Ber].

This work is done under the supervision of Prof. N. Shepherd-Barron.

Abstract

The Schottky problem is that of identifying the moduli space Mg of genus g curves inside the
moduli space Ag of principally polarized abelian varieties. We focus on modular forms and
degenerations, this involves considering the Satake compacti�cationsMS

g and ASg . Our aim is to
give an insight into the relation between solutions of the Schottky problem in di�erent genera.

The space Ag lies in the boundary of ASg+m for every m. As sets, the intersection of Ag
and MS

g+m is Mg. Following [CSB11], we prove that the intersection between MS
g+m and Ag

contains the m-th in�nitesimal neighbourhood of Mg in Ag, this implies that stable equations
forMg do not exist.

With the same spirit, we look at the hyperelliptic locus Hypg. We consider its Satake com-
pacti�cation HypSg . As sets the intersection of Ag and HypSg+1 is Hypg. In section 4 we show

that HypSg+1 ∩ Ag is, scheme theoretically, equal to Hypg: this enables us to write down many
millions of stable equations for Hypg.

We have similar results for Prym varieties of étale double covers and double covers branched
at two points.

Most of our work relies upon variational formulæ. By variational formula we mean an explicit
expression of (the �rst order part of) the periods of a one-parameter family of curves.
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Introduction

We consider algebraic curves over the �eld of complex numbers. To a smooth genus g curve C
one can associate its Jacobian variety Jac(C), this is an abelian g-fold principally polarised by
the Theta divisor. Torelli's theorem guarantees that is possible to reconstruct the curve from its
Jacobian. Classical references for this are [Spr57], [Mum07], [Fay73] and [ACGH85].

Given a family of curves, it is possible to construct the relative Jacobian (see [ACG11] section
XI.8), so we have the Torelli morphism

T : Mg → Ag
C 7→ Jac(C)

where Mg denotes the moduli space of smooth genus g curves and Ag the moduli space of g
dimensional principally polarised abelian varieties. Dealing with global questions, there is an
important di�erence between the moduli stack and the associated coarse space. In this essay,
most of the time we will consider only coarse spaces: this means that we will consider just general
curves.

The dimension of Mg is 3g − 3 and the dimension of Ag is 1
2g(g + 1), so Torelli's map is

dominant only for g ≤ 3. The tangent space at a general point is the �rst order deformation space.
In the case of a curve, it is isomorphic to H0(C, 2KC)∨, where KC denotes the canonical bundle
of C (cf. [ACG11] section XI.3). The �rst order deformation space of Jac(C) can be interpreted
either as the tangent space of a Grassmannian ([ACG11] section XI.8), or the deformation space
of a polarised variety ([CvdG00] section 3). Using the second interpretation, the heat equation
means that the �rst order deformation space of a principally polarised abelian variety X is
Sym2T0X

∨, where T0X is the tangent space at the origin of X. Pick an automorphisms-free
curve C, the co-di�erential of the Torelli map

dT (C)∨ : (TJac(C)Ag)∨ = Sym2H0(C,KC)→ (TCMg)
∨ = H0(C, 2KC)

can be identi�ed with the natural multiplication map ([ACG11] XI.8), which is surjective if C is
not hyperelliptic by Max Noether's theorem.

One advantage of working with Ag is its concrete presentation: it is the quotient of the Siegel
upper half space Hg (i.e. g-by-g complex symmetric matrices with positive de�nite imaginary
part) by the action of the symplectic group Sp(2g,Z). On this space we can de�ne weight k
modular forms, these are holomorphic functions on Hg which transform in an appropriate way
under the action of Sp(2g,Z). Weight 1 modular forms are sections of an ample line bundle L
on (the stack) Ag, weight k modular forms are section of Lk. A standard reference is [Mum07].

The Schottky problem is to understand when an abelian variety is the Jacobian of a curve.
This problem has many aspects, the one we are interested in is to �nd modular forms vanishing on
Mg, in other terms we are looking for the equations ofMg in Ag. The Schottky-Jung relations
give an ideal Sg of equations forMg. In [vG84] is proven that, for g > 4, the ideal Sg cuts out
a reducible subscheme and Mg is one of its irreducible components. More in general, one can
address the same question about other interesting sublocus of Ag, such as the locus Hypg of
Jacobians of hyperelliptic curves, or the locus Pg of Prym varieties of étale double covers.

In this essay, we will study degenerations of curves. This involves considering the Satake
compacti�cations, which is the natural object to look at if one wants to understands how modular
forms behave on degenerations.

The Satake compacti�cation of Ag is constructed using modular forms, we denote it by ASg .
It is normal and every modular form on Ag extends to ASg . The boundary of ASg is isomorphic to

ASg−1. A stable modular form F is the datum of weight nmodular form Fg for every g, compatible
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with the restriction from ASg to ASg−1. The Satake compacti�cation ofMg (respectively of Hypg
and Pg) is denoted by MS

g (HypSg , PSg ), it is the closure of Mg (Hypg, Pg) inside ASg . The

variety MS
g is equal, as set, to the union of all products Mg1 × · · · ×Mgs with

∑
gi ≤ g. In

particular, if we intersect MS
g+m with Ag we obtain, as set, Mg. The same is true for HypSg

and PSg . We will review Satake compacti�cations and stable modular forms in section 2, see also
[Fre83].

Our �rst result is obtained in the joint work [CSB11].

Theorem 0.1 ([CSB11] Theorem 1.1). The intersection ofMS
g+m and Ag is not transverse, it

contains the m-th in�nitesimal neighbourhood ofMg in Ag.

We will prove it in section 3.1, see theorem 3.7. The proof relies upon a variational formula
proven in [Fay73], see theorem 1.10. By variational formula we mean an explicit expression of
(the �rst order part of) the periods of a one-parameter family of curves.

A stable equation for Mg is a non-trivial stable modular form vanishing on Mg for every
g, these are also called stable Schottky relations. The above theorem means that if a modular
form Fg+1 vanishes with multiplicity k on Mg+1, then its restriction Fg on Ag vanishes with
multiplicity at least k + 1 onMg, see theorem 3.1. This immediately implies:

Corollary 0.2 ([CSB11]). Stable equations forMg do not exist.

This corollary is a no-go result, but, as we will discuss in Section 3.2, it allows us to de�ne
many divisors on Mg. In particular, one can associated to every even unimodular positive
de�nite lattices Λ a Theta series ΘΛ, this is a weight 1

2rk(Λ) stable modular form, so ΘΛ,g is a
modular form on Ag (see section 2.1).

Theorem 0.3 (= Theorem 3.13). Let Λ and Γ be two even unimodular positive de�nite lattices
of the same rank, there exists an integer g such that the modular form

ΘΛ,g −ΘΓ,g

cuts out a divisor of �nite slope onMg.

We have not the faintest idea about how to compute both g and the slope.
In Section 4, we carry out the same analysis for the hyperelliptic locus Hypg. In this case,

the situation is completely di�erent.

Theorem 0.4 (= Theorem 4.3). The intersection of ASg and HypSg+1 is transverse.

Combining this theorem with a well-known slope argument, we can write down many stable
equations for the hyperelliptic locus. Call µΓ the the minimal norm of non-trivial vectors of a
lattice Γ.

Theorem 0.5 (= Theorem 4.9). Let Λ and Γ be two even positive de�nite unimodular lattices
of rank N and µΛ = µΓ =: µ, if

N

µ
≤ 8 ,

then
F := ΘΛ −ΘΓ

is a stable equation for the hyperelliptic locus. In other words, Fg vanishes on Hypg for every g.
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The hypotheses on the lattices are quite restrictive, we will discuss them after the proof of
the theorem. The couple (N,µ) can only take values (16,2), (32,4), (48,6). A lower bound for
the number of lattices of rank 32 without roots (i.e. µ = 4) is computed in [Kin03], so we have
the following result.

Theorem 0.6 (= Theorem 4.10). There are more than 10000000 of linearly independent di�er-
ences of Theta series vanishing on the hyperelliptic locus for every g.

In section 5.2 we study the locus Pg of Prym varieties arising from étale double covers of
curves. By proving some variational formulæ, we obtain the following results.

Theorem 0.7 (= Theorem 5.1). The intersection of PSg+m and Ag contains the m-th in�nites-
imal neighbourhood of Pg in Ag.

Theorem 0.8 (= Theorem 5.5). PSg contains the �rst in�nitesimal neighbourhood ofMg in Ag.

Let us point out that both MS
g+1 and PSg contain the �rst in�nitesimal neighbourhood of

Mg in Ag, this could be related to the Schottky-Jung relations.
In section 5.3 we carry out the same analysis for Prym varieties of double covers branched at

two points.
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John Christian Ottem, Riccardo Salvati Manni and Roberto Volpato for useful conversations. I
thank the DPMMS, the EPSRC and Selwyn College for �nancial support.

1 Reading J. Fay's �Theta functions�

Our work has been heavily in�uenced by the reading of the third chapter of Fay's book [Fay73].
In this section, we rework some of his ideas. These constructions are also discussed in the informal
lecture notes [Ber], other references are the second section of [CSB11] and appendix A of [MV10].

1.1 Local expansion of a di�erential

Let ∆t be a small disc with parameter t around the origin in the complex plane. We consider a
family

f : C → ∆t

of stable genus g curves, with singular central �bre. By de�nition of family, the total space C is
smooth and the map f is proper. Call Ct the �bre over t.

First, let us study the topology of the family. We look for a symplectic basis Ai(t), Bi(t)
of the homology of each �bre Ct. This basis should be a di�erentiable function of the base
parameter t. It is possible to write down an explicit retraction of the family on its central �bre,
see [ACG11] page 157. This means that the homology classes Ai, Bi of the central �bre can be
extended to classes Ai(t), Bi(t) on Ct for all t. It could happen that the central �bre has less
than 2g cycles, this because the degeneration �squeeze� some non-trivial cycle. These �missing�
classes we need to add are called vanishing cycles. As function of the base parameter, they are
multivalued, and the monodromy is described by the Picard-Lefschetz formula, see [ACG11] page
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143 or [BHPVdV04] section III.15 . It is also possible to study the topology of this family using
Morse theory, see [Voi02] part V.

Now, we want to study the holomorphic di�erentials and their periods as holomorphic func-
tions of t. The following proposition holds.

Proposition 1.1 ([Fay73] page 39). Let Ai(t), Bi(t) be a symplectic basis for H1(Ct,Z). Up to
shrink ∆t, there exist holomorphic 2-forms Ωi(t) on C such that their residues ωi(t) on each �bre
Ct form a normalised basis for the abelian di�erentials, i.e. for every t we have

∫
Aj(t)

ωi(t) = δij.

The singularities of the central �bre are nodes and, locally around each node, C is isomorphic
to the family of a�ne curve S de�ned by the equation XY = t (cf [ACG11] page 84). Equiva-
lently, S can be de�ned by x2−y2 = t. This second co-ordinates are called pinching co-ordinates.
We focus our attention on a single node n. Let us take a relative di�erential ω(t) on C and restrict
it to S. A basis for the relative dualising sheaf of S at the origin, as O(S,0) module, is dx

y (see

[ACG11] page 97), so locally we have a Taylor expansion

ω(x, y, t) =
∑

k=(k1,k2)

ak(t)xk1yk2
dx

y
.

Replacing y with
√
x2 − t and relabelling the indexes we get

ω(x, t) =
∑
k≥0

ak(t)xkdx+
∑
k≥0

bk(t)
xk√
x2 − t

dx ,

where ak and bk are holomorphic functions of t.
Let

ν : C → C0
be the normalisation of the central �bre, call a and b the preimages of n, we have

ν∗ω(x, 0) =
∑
k≥0

ak(0)xkdx±
∑
k≥0

bk(0)xk−1dx ,

the sign depends if we are looking at the branch x = y or x = −y.
The form ν∗ω(x, 0) has poles of order one at a and b, with residues ±2πib0(0). If b0(0) = 0,

which means ν∗ω(x, 0) is regular at a and b, we can evaluate the form in term of dx. We get
ν∗ω(a, 0) = a0(0) + b1(0) and ν∗ω(b, 0) = a0(0)− b1(0), so

1

2
b1(0) =

ν∗ω(a, 0)

dx
− ν∗ω(b, 0)

dx
.

We apply the Gauss-Manin connection ∇ to ω(t) and we evaluate it at t = 0 (equivalently,
we are considering the Lie derivative with respect to a lift of the tangent vector d

dt |t=0 from ∆t),
the result is a well de�ned relative co-homology class [∇ω(0)] on C0. We want to understand if
the meromorphic form ν∗∇ω(0) de�nes a co-homology class on C and compute its periods.

As an aside, let us note that, on a smooth curve, a meromorphic form ω de�nes a co-homology
class if and only if it has zero residue at every pole. Indeed, on can give sense to the integral∫

γ

ω

choosing a representative of γ with a support disjoint from the poles. To check that the integral
does not depends on the representative of γ we need to prove that, for every 2 simplex M in C,
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the integral of ω on the boundary of M is zero. This is equivalent to say that ω has zero residue
at every pole, indeed the residue theorem says that∫

∂M

ω = 2πi
∑
p∈M

Resp(ω) .

Let us go back to our original problem. Around a and b we have an expansion

ν∗∇ω(x, 0) =
∑
k≥0

a′(0)xkdk ±
∑
k≥0

(
1

2
bk+1(0) + xb′k(0))xk−2dx ,

where the dash means the derivative of the function with respect to t and (by abuse of notation)
x is the pull-back of x via ν. The form ν∗∇ω(0) has poles of order two and opposite residues at
a and b. Let us focus on a. To compute the residue, let γ be a small loop on C around a. We
can think at it as a loop γ(0) in S0 ⊂ C0, so we can extend it to a family of loop γ(t) in St ⊂ Ct.
We have

1

2πi
Resaν

∗∇ω(0) =

∫
γ

ν∗∇ω(0) =
d

dt
|t=0

∫
γ(t)

ω(t) .

Let us summarise the results. We have a family C of stable curves over a disc ∆t with singular
central �bre, let

ν : C → C0
be the normalisation. We focus our attention on a node n of C0, call a and b its preimage. Choose
pinching co-ordinates x and y such that, locally around n, the total space C is isomorphic to
xy = t. Let γ(t) be a family of loops such that the preimage of γ(0) under ν is a loop around a.
Call ∇ the Gauss-Manin connection.

Lemma 1.2. Let ω(t) be a relative di�erential on C and keep notations as above. Suppose that
the integral

∫
γ(t)

ω(t) does not depend on t. Then, ν∗∇ω(0) has a pole of order two and zero

residue at a and b. Moreover, its leading coe�cient with respect to the pinching co-ordinates is

±(ω(a, 0)− ω(b, 0)) ,

the sign depends on to the branch we are looking at, and ω is evaluated in term of the pinching
co-ordinates.

There are at least two cases in which
∫
γ(t)

ω(t) does not depend on t. The �rst is when γ(t)

is topologically trivial on Ct, so the integral vanishes identically. The second is when γ(t) is one
of the Ai(t) cycles of a symplectic basis of the homology of Ct, and ω is one of the normalised
di�erentials ωi(t), i.e.

∫
Aj(t)

ωi(t) = δij (see proposition 1.1).

These di�erentials will turn out to be easy to handle. Let us recall a key and classical
de�nition, see e.g. [Spr57] page 256-260 for a complete discussion and proofs. Let C be a smooth
curve and Ai, Bi a symplectic basis for its homology.

De�nition 1.3 (Normalized di�erentials of the second kind ηp). A normalised di�erentials of
the second kind ηp is a meromorphic di�erential on C with a unique pole at p such that

• the pole has order two and no residue,

• the integral
∫
Ai
ηp is zero for every i.
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These di�erentials exist and they are unique up to a scalar. When a local co-ordinate around
p is �xed, we denote by ηp the unique normalized di�erential of the second kind with leading
coe�cient one with respect to this co-ordinate. Their periods can be computed with the following
classical formula.

Theorem 1.4 (Riemann's bilinear relations for di�erentials of the second kind). Keep notations
as above, we have ∫

Bi

ηp = 2πi
ωi
dzp

(p) ,

where zp is a local coordinate around p such that the leading coe�cient of ηp is 1, and
∫
Aj
ωi = δij.

The proof relies upon the residues theorem, see [Spr57] corollary 10.6 page 260.

Question 1.5. It would be interesting to have the same construction for family of higher di-
mensional varieties, e.g. K3 surfaces. Probably, one needs some analogues of Riemann's bilinear
relations.

1.2 Variational formulæ for families of curves

In this section we construct some families of curves, and, using the argument of the previous
section, we compute the �rst order part of their period matrix. We will mainly focus on two kind
of degeneration, the picture to have in mind is the following.

On the left hand side, we are pinching a trivial homological cycle, on the right hand side a
non-trivial one. In both cases, the local model is the bottom picture.

Pinching a non-trivial homological cycle Let us start with a genus g smooth curve C, two
distinct points a and b and local co-ordinates za and zb. Using these data, we can construct a
family C of stable genus g curves degenerating to C/a ∼ b. Roughly speaking, we perform a
local surgery on the co-ordinate patch around a and b: we remove two small discs and we glue
the remaining annuli according to the relation za(x)zb(y) = t.

We reproduce the description of this family given in [CSB11], analogue descriptions can be
found in [ACG11] page 184 or [Fay73] page 50. Let us stress that this is a construction �with
parameters�, this means that everything depends holomorphically on a, b, za and zb.

Start with a curve C of genus g. Let V be the in�nite-dimensional variety whose
points are quadruples (a, b, za, zb), where a, b are distinct points on C and za, zb are
local holomorphic co-ordinates on C at a, b respectively.
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The 2-torus G2
m acts on V by

(λ, µ)(a, b, za, zb) = (a, b, λ−1za, µ
−1zb).

Fix a non-empty �nite-dimensional (in order to avoid irrelevant di�culties) and
smooth subvariety V of V that is preserved under this torus action and that maps
onto the complement U of the diagonal in C × C.

We want to construct a family of morphisms {fv : Cv → ∆}v∈V that is parametrized
by V , where ∆ is a complex disc centred at 0, each Cv is a smooth complex surface,
each fv is proper and each �bre over 0 is a nodal curve C/(a ∼ b), every other �bre
is a smooth curve of genus g + 1 and the parametrization is holomorphic in V .

It is clearer to run through the construction without referring to the parameter
space V . So �x the data C, a, b, za, zb and choose δ > 0 such that there are disjoint
neighbourhoods Ua of a and U b of b such that za : Ua → C and zb : U b → C are each
an isomorphism to some open set that contains a disc of radius δ centred at za(a) = 0
and zb(b) = 0, respectively.

Let ∆δ, Dδ2 denote complex discs of radius δ, δ2, respectively.
Take W = Wδ to be the open subset of C × Dδ2 obtained by deleting the two

closed subsets
{(p, t)

∣∣p ∈ Ua, 0 ≤ δ|za(p)| ≤ |t| ≤ δ2},

{(q, t)
∣∣q ∈ U b, 0 ≤ δ|zb(q)| ≤ |t| ≤ δ2}.

Lemma 1.6. If ε < δ then Wε ⊂Wδ.

In Wδ, de�ne open subsets

W a = W a
δ = {(p, t)

∣∣p ∈ Ua, 0 < |za(p)| < δ and |t| < δ|za(p)|},

W b = W b
δ = {(q, t)

∣∣q ∈ U b, 0 < |zb(q)| < δ and |t| < δ|zb(q)|}.

Consider the complex surface S = Sδ ⊂ (∆δ)
2×Dδ2 de�ned by the equation XY = t,

where X,Y are co-ordinates on the two copies of ∆δ and t is a co-ordinate on Dδ2 .
Then there are isomorphisms

W a
δ → S − (X = 0) : (p, t) 7→ (za(p), t/za(p), t),

W b
δ → S − (Y = 0) : (q, t) 7→ (t/zb(q), zb(q), t).

Together these de�ne an étale morphism j : W a
δ ∪W b

δ → S, where the union is the
disjoint union, taken inside C ×Dδ2 . Let i : W a

δ ∪W b
δ →Wδ be the inclusion.

If Z is a subspace of a space X, then Z denotes the closure of Z in X.

Lemma 1.7. (i, j) : W a
δ ∪W b

δ →W × S is a closed embedding.

Proof. It is enough to show that the image of W a
δ in W a

δ × S is closed. Now points
in W a

δ × S are of the form (p, t1, X, Y, t2) with

δ ≥ |za(p)| ≥ t1/δ, t2 = t1, X = za(p), Y = t2/za(p),

|X|, |Y | < δ, |t2| ≤ δ2, XY = t2.

But these conditions force δ > |za(p)| = |t2|/|Y | > |t2|/δ, and we are done.
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Now de�ne C = Cδ by glueingWδ to Sδ by the inclusion i and the étale map j. By
the lemma, C is Hausdor�, 1 and by construction there is a morphism f : C → Dδ2

whose �bre over 0 is the nodal curve C/(a ∼ b).

Lemma 1.8. f is proper.

Proof. It is enough to show that, for any r ∈ (0, δ), the inverse image Zr = f−1(Dr2)

is compact. By construction, Zr is the union of the two compact spaces W 1
δ and Sr,

where the subset Sr of Sδ is de�ned by |X|, |Y | ≤ r.

Lemma 1.9. The restriction of f : Cδ → Dδ2 to the germ of the pair (Dδ2 , 0) is
independent of δ.

Proof. This follows from the facts that, by Lemma 1.6 above, Cε is open in Cδ, and
that C/(a ∼ b) is proper.

Note that, by construction, W is open in C × Dδ2 , the image of the projection
pr1 : W → C is exactly C − {a, b} and there is an étale morphism π : W → C.

Given cycles Ai, Bj on C that represent a symplectic basis of H1(C,Z) and are
disjoint from {a, b}, we can then regard the Ai, Bj as cycles on Ct that represent part
of a symplectic basis of H1(Ct,Z) for t 6= 0 by taking pr−1

1 (Ai) ∩ pr−1
2 (t) = Ai × {t}

and the same thing for Bj . De�ne the cycle Ag+1 on Ct by Ag+1 = ∂U b × {t}; then
(A1, ..., Ag+1, B1, ..., Bg can be extended to a symplectic basis of H1(Ct,Z) where
Bg+1 projects to a cycle on the nodal curve C0 = C/(a ∼ b) that passes through the
node.

We want to extend this construction of a single degenerating pencil f : C → D of
curves to the construction of a family of such pencils, where the parameter space is V
and the pencil depends holomorphically on V . This is merely a matter of enhancing
the notation that we have just used, and the details are omitted. The end result of the
construction is a parameter spaceD that is an open neighbourhood of V ×{0} in V ×C
and a proper �at morphism C → D from an (n + 1)-dimensional complex manifold
to a complex n-manifold that is smooth outside V × {0} and whose restriction to
V × {0} is trivial, with �bre C/(a ∼ b).

Summarising, we have a family C → ∆t of curves, call

ν : C → C0 = C/a ∼ b

the normalisation map. We have constructed a symplectic basis Ai(t), Bi(t) for the homology of
Ct. The pull-back of Ai(0), Bi(0), for i < g + 1, is a symplectic basis for the homology of C, call
τ the period matrix of C with respect to this basis. Combining lemma 1.2 and theorem 1.4, we
can compute the �rst order part of the period matrix.

Theorem 1.10 ([Fay73] Corollary 3.8). The period matrix T (t) of Ct with respect to the previous
basis of the homology is

T (t) =

(
τ AJ(a− b)

tAJ(a− b) 1
2πi ln(t) + c0

)
+ t

(
σ(a, b, za, zb) · · ·

... c1

)
+O(t2)

where AJ is the Abel-Jacobi map, and σ is a holomorphic function on V given by

σij = 2πi((ωi(a)− ωi(b))(ωj(a)− ωj(b)) .
1Bourbaki, Top. Gén. TG I.55, Prop. 8. Thanks to MO.
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The di�erentials are evaluated in term of dza and dzb

Proof. Take the di�erentials ωi(t) as in proposition 1.1. First, we compute the zero order term
T (t). The biggest block, i.e. Tij(0) for i, j ≤ g, is the period matrix of C. This because, for
i, j ≤ g, the pull-back of Ai(0) and Bi(0) via ν form a basis for the homology of C, and ν∗ωi
are a normalised basis of the holomorphic di�erentials. The bull back of Bg+1(0) on C is a path
from a to b, so we have the Abel-Jacobi map. To compute Tg+1,g+1(0), we observe that, if we
turn around the origin in ∆t, the cycle Bg+1(t) is increased by Ag+1(t). In other terms the
monodromy of Bg+1(t) is Ag+1(t), as prescribed by the Picard-Lefschetz formula (cf [ACG11]
page 143). The integral of ωg+1(t) along Ag+1(t) is 1, so Tg+1,g+1(t) has the same monodromy of

1
2πi ln(t). In other words, we can write Tg+1,g+1(0) as 1

2πi ln(t) plus some unknown holomorphic
functions.

To compute σ we need to apply lemma 1.2 and theorem 1.4. We are considering i, j ≤ g.
Since

∫
Ag+1(t)

ωi(t) = 0, the residue of the form ν∗∇(ωi)(0) at a and b is zero, we can thus apply

lemma 1.2 (the role of γ(t) is played by Ag+1(t)).
Moreover, ∫

Aj(0)

ν∗∇(ωi)(0) =
d

dt
|t=0

∫
Aj(t)

ωi(t) =
d

dt
|t=0 δij = 0 ,

so the integral of ν∗∇ωi(0) along Aj is zero. Looking at the construction of C, one sees that
ν∗∇ωi(0) has not any pole other than a and b. Because of the uniqueness of the di�erentials
de�ned in 1.3, we obtain that

ν∗∇ωi(0) = (ωi(a)− ωi(b))(ηa − ηb)

The theorem follows from Riemann's bilinear relations 1.4.

Recall that, because of the heat equation, the tangent space of Ag−1 at Jac(C) is isomorphic
to Sym2H0(C,KC)∨. In a co-ordinates free fashion, we have

σ(ω) = 2πi(
ω(a)

dza
− ω(b)

dzb
)2 .

Let us consider the map

C → PH0(C,KC)∨
V er2−−−→ PSym2H0(C,KC)∨ ,

where V er2 is the second Veronese embedding. The projectivization of σ is the image of a point
on the line passing trough a and b.

Pinching a trivial homological cycle We can perform the same construction starting with
two curves C and D of genus g and h, taking two points c and d and two local co-ordinates zc
and zd. With the same procedure described above, we obtain a family C of genus g + h curves
degenerating to C tD/c ∼ d. In this case there is not a vanishing cycle. Fix a basis for Ai, Bi
the homology of C and D with the support disjoint from p and d. Call ωi and ψi a basis for the
normalised di�erentials of C and D, let τ and υ the period matrices with respect to these basis.
Since the support of the basis is disjoint from the regions where we are performing the surgery,
we can extend it to a basis Ai(t), Bi(t) for Ct for every t

Theorem 1.11 ([Fay73] Corollary 3.2). The period matrix T (t) of Ct with respect to the previous
basis of the homology is given by

T (t) =

(
τ 0
0 υ

)
+ 2πitR⊗R+O(t2)

11



where R is a holomorphic function of the parameters a, b, za and zb given by

R = (ω1(0, c), . . . , ωg(0, c),−ψ1(0, d), . . . ,−ψh(0, d)) .

The di�erentials are evaluated in term of dzc and dzd

Proof. Let
ν : C tD → C0 = C tD/c ∼ d

be the normalisation map.
T (0) comes from pulling everything back on C and D.
Call ωi(t) and ψi(t) a basis for the normalised di�erentials of Ct such that ν∗ωi(0) = ωi and

ν∗ψi(0) = ψi. A small loop γ around c is homologically trivial on Ct, so
∫
γ(t)

ωi(t) = 0, and thus∫
γ
ν∗∇(ωi)(0) = 0. We conclude that ν∗∇(ωi)(0) on C has zero residue at c. The same is true

for ν∗∇(ψi)(0) at d. Using lemma 1.2 and arguing as in the proof of 1.10, we obtain that

ν∗∇(ωi)(0) = ωi(c)(ηc − ηd)

ν∗∇(ψi)(0) = −ψi(d)(ηc − ηd)

The theorem follows from Riemann's bilinear relations 1.4.

An interesting case is when the genus of D is zero. In this case, the central �bre is not stable,
the stable reduction contract D, so we get a family of smooth curves with central �bre C. The
�rst order of the period matrix, as we are going to see, is the same of the Schi�er variation.

Schi�er's variations A Schi�er's variation at (p, zp) of C is a particular family of smooth curves
C over a disc ∆t with central �bre C. To construct Ct consider a co-ordinate patch de�ned by
zp, remove a small disc and glue the remaining annulus with another disc via the formula

z∗(t) = zp +
t

zp
,

where z∗ is the co-ordinate on the new disc. For more details see [ACG11] page 175. We can �x
a symplectic basis Ai, Bi for the homology of C with support disjoint from p, call τ the period
matrix of C with respect to this basis. We extend the basis to a basis of Ai(t), Bi(t) of the
homology of Ct for every t.

Proposition 1.12 ([Pat63]). The period matrix T (t) of Ct is

T (t) = τ + tσ(p, zp) +O(t2) ,

where σ is a holomorphic function of p and zp de�ned as

σ(p, zp)ij = 2πi
ωi(p)ωj(p)

dz2
p

.

Proof. By de�nition

dz∗(t) = dz − t

z2
dz

Let us a �x a basis ωi(t) of the relative abelian di�erential dual to Ai(t). Locally in the annulus
around p

ωi(t) = fi(z, t)(dz −
t

z2
dz) ,

12



where fi is a holomorphic function on a disc around the origin. We apply the Gauss-Manin
connection and specialise at t = 0 (i.e. we apply d

dt |t=0), we get

∇ωi(0) =
∂fi
∂t

(z, 0)dz − fi(z, 0)
1

z2
dz .

To compute the residue at p, take a small homologically trivial cycle γ around p, extend it to a
family of cycles γ(t) on Ct, we have

1

2πi
Resp∇ωi(0) =

∫
γ

∇ωi(0) =
d

dt
|t=0

∫
γ(t)

ωi(t) =
d

dt
|t=0 0 = 0

The integral of ∇(ωi) along Aj(0) is zero because of the same argument. Using lemma 1.2 and
de�nition 1.3, we conclude that

∇(ωi)(0) =
ωi(p)

dzp
ηp .

The proposition follows from Riemann's bilinear relations 1.4.

The matrix σ(p, zp) belongs to TCAg = Sym2H0(C,KC)∨, in a co-ordinates free fashion, it
is given by

σ(p, zp)(ω) = 2πi
ω

dzp
(p)2.

The projectivization of σ(p, zp) does not depend on zp, it is the image of p under the map

C → PH0(C,KC)∨
V er2−−−→ PSym2H0(C,KC)∨ .

Schi�er's variations span all the tangent space toMg, see [ACG11] page 175, so we obtain this
nice corollary.

Corollary 1.13. The a�ne cone over the image of C spans all TCMg.

As explained in [ACG11] page 216-224, the co-di�erential of the Torelli's map can be identi�ed
with the multiplication map

π : Sym2H0(C,KC)→ H0(C, 2KC) ,

so corollary 1.13 is equivalent to the classical Noether's theorem

Theorem 1.14 (Max Noether, [ACGH85] page 117). If C is not hyperelliptic, the map π is
surjective.

At the hyperelliptic locus the situation is more complicated.

Hyperelliptic families We can make the previous constructions work in the hyperelliptic case.
Let us consider the �rst construction. We start with a hyperelliptic curve C, pick two points and
local co-ordinates conjugated under the hyperelliptic involution (so, we are not taking Weierstrass
points). The involution of the central �bre extends to an involution of the whole family. The
quotient is a deformation of P1, which is trivial, so the family is a family of hyperelliptic curves.
In this case, the tangent vector we get is σ(p, ι(p), zp, ι

∗zp) = 2σ(p, zp), where σ(p, zp) is de�ned
in 1.12.

The second construction works if and only if the points c and d are Weierstrass points.
For what concern Schi�er variation, if we perform simultaneously two variations, one at (p, zp)

and the other at (ι(p), ι∗zp), we obtain a family of hyperelliptic curve. The tangent vector is
σ(p, zp) + σ(ι(p), ι∗zp) = 2σ(p, zp). We thus have the following result.

13



Lemma 1.15. The vector σ(p, zp) belongs to TCHypg, for every p in C.

Combining this with 1.13, we get a classical theorem.

Theorem 1.16 (Local Torelli's theorem for hyperelliptic curves - [ACG11] page 223-224). The
di�erential of the Torelli's map at the hyperelliptic locus is not injective, its image is the tangent
space to the hyperelliptic locus.

When p is a Weierstrass point and ι∗zp = −zp, the tangent vector σ(p, zp) can be interpreted
as follow.

Theorem 1.17 (Rauch's variational formula - [Fay73] page 47 or [May69]). Let C be the curve
de�ned by the equation

y2 = (x− p)
2g+1∏
i=1

(x− pi) ,

the vector in TCHypg de�ned by the family

y2(t) = (x− p− t)
2g+1∏
i=1

(x− pi)

is σ(p, zp), where zp is the local co-ordinate given by x.

Question 1.18. We would like to obtain similar constructions and formulæ for families of 3-
gonal (or n-gonal) curves. Unfortunately, the degenerations we described above do not give rise
to families of 3-gonal curves, unless we have points of total rami�cation.

2 Review of Satake compacti�cation and stable modular

forms

2.1 The construction

The moduli space Ag of principally polarised abelian g-folds is endowed with the ample line
bundle L of weight one modular forms. Sections of Ln are weight n modular forms. The Satake
compacti�cation ASg is discussed in full details in [Fre83], see also the introduction of [CSB11].
We can de�ne it as the Proj of the ring⊕

n≥0

H0(Ag, Ln)

This compacti�cation is normal and it is the one �seen� by modular forms. The boundary has
codimension g + 1, it is singular and it has a bad moduli interpretation.

The Siegel operator is a map of graded rings

Φ :
⊕
n≥0

H0(Ag, Ln)→
⊕
n≥0

H0(Ag−1, L
n)

de�ned as
Φ(F )(τ) := lim

t→+∞
F (τ ⊕ it) .

It is surjective for n even and larger than 2g, so it de�nes a strati�cation

ASg = Ag t ASg−1 = Ag t Ag−1 · · · A1 t A0 ,

14



in other words, the boundary ∂ASg is isomorphic to ASg−1. A modular form is called cuspidal if
it vanishes on the boundary of the Satake compacti�cation, i.e. it is in the kernel of Φ.

LetMg be the Deligne-Mumford compacti�cation ofMg. The Torelli map can be extended
to an application

T :Mg → ASg ,

mapping a curve C to the Jacobian of its normalisation (see [BHPVdV04] section III.16). The
image of Mg is the Satake compacti�cation MS

g . This compacti�cation can be equivalently

de�ned as the closure of Mg in ASg , or the image of Mg via the map de�ned by the Hodge

bundle (see [ACG11] page 435). The compacti�cation MS
g as set is the union of all products

Mg1×· · ·×Mgs with
∑
gi ≤ g. The componentMg is an open dense subset, the other products

are boundary components. In particular,Mg−1 is the image of the divisor ∆0 of curves with one
non-separating node. The componentMi×Mg−i is the image of the divisor ∆i of curves whose
normalisation is the disjoint union of a curve of genus i and a curve of genus g− i. Let us stress
that by �the boundary componentMi×Mg−i� we mean the intersection ofMS

g with Ai×Ag−i,
which, a priori, is equal toMi×Mg−i just as a set: it might be singular. In particular, theorem
0.1 shows that the boundary componentMS

g ∩ Ag−1 is non-reduced.

Similarly, the Satake compacti�cation HypSg of the hyperelliptic locus is the closure of Hypg
in ASg , and the Satake compacti�cation PSg of the Prym locus Pg is its closure in ASg .

Using the strati�cation of ASg , we can de�ne stable modular forms.

De�nition 2.1 (Stable modular form). A stable modular form F is the datum of a modular
form Fg for every g such that Φ(Fg+1) = Fg.

There exists a surprising way to de�ne stable modular forms from even positive de�nite
unimodular lattices. We will remind some de�nitions and results, standard references are [CS99]
and [Fre77], see also [CSB11].

A lattice is a couple (Γ, Q) (for short, we will write just Γ), where Γ is a free abelian group
and Q is a bilinear Z-valued form on Γ. The elements of Γ are called vectors. Γ is called of
Type II or even unimodular if Q(v, v) is even for all v in Γ and the determinant of Q is plus
or minus one (i.e. Q is an isomorphism between Γ and its dual). A lattice is positive de�nite if
Q is. One can prove that the rank of an even unimodular positive de�nite lattice is divisible by
8. Usually, lattices are presented as lattices inside an Euclidean space, and the quadratic form
is the restriction of the standard one. An example of positive de�nite type II lattice is E8.

Given a positive de�nite type II lattice (Γ, Q), we can de�ne the associated Theta series ΘΓ

as follow
ΘΓ,g(τ) :=

∑
x1,...,xg∈Γ

exp (πi
∑
i,j

Q(xi, xj)τij) ,

where τ belongs to the Siegel upper half space Hg. Theta series are stable modular form of
weight 1

2rk(Γ), they verify the factorization properties

ΘΓ⊕Λ = ΘΓΘΛ

and

ΘΓ(

(
A 0
0 B

)
) = ΘΓ(A)ΘΓ(B) .

These identities are no longer true for linear combinations of Theta series. It is a theorem ([Fre77]
Theorem 2.5) that the ring of stable modular forms is the polynomial ring in the irreducible
positive de�nite even unimodular lattices.
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Example 2.2 (The Schottky form). There are exactly two even positive de�nite unimodular
lattices of rank 16, D+

16 and E8⊕E8. The di�erence of the associated Theta series is the Schottky
form, this is the unique understood stable modular form. It behaves as follows:

• it is zero for g =0,1,2 and 3,

• it is not zero for g = 4, and it vanishes onM4 with multiplicity 1,

• it is not zero onM5: it cuts out a divisor of slope 8 (which, since the slope conjecture is
true for g = 5, must be the divisor of trigonal curves) ([GSM11]),

• it vanishes on the hyperelliptic locus for every g ([Poo96]).

Example 2.3 (Witt's lattices). Using the same de�nition of E8, for every integer k one can
de�ne the Witt's lattices W8k. The lattice W8k has rank 8k, it is equal to E8 for k = 1 and to
D+

16 for k = 2. We have the following expansion

ΘW8k,g(τ) =
∑
ε even

θ[ε]8k(τ) ,

where the sum runs over all the even Theta characteristics.

2.2 The singularities

In this section we study the singularities of ASg+1. Let X be a generic point of Ag ⊂ ASg+1. The

local ring (ASg+1, X) has been described in [Igu67a]. For the Fourier-Jacobi expansion see also
[BvdGHZ08] sections III.8 and III.11. Let us recall the results.

The local ring of (ASg+1, X) is normal and it is isomorphic to the ring of convergent power
series

∞∑
n=0

sn(τ, z)qn ,

where now X is identi�ed with Cg/Zg ⊕ τZg, z belongs to Cg, sn is a section of H0(X, 2nΘ)
and q belongs to a small disc around zero in the complex plane. The image of a modular form
Fg+1 of degree g + 1 in this local ring is the Fourier-Jacobi expansion of Fg+1. Let us be more
explicit. Call Hg be the Siegel upper half-space, for any element T ∈ Hg+1 write

T =

(
τ z
tz t

)
,

with t in H1 and τ in Hg. The Fourier-Jacobi expansion of Fg+1 is

Fg+1(T ) = f0(τ) +
∑
n≥1

fn(τ, z)qn ,

where q = exp (2πit) and f0 = Φ(Fg+1). The function fn is the n-th Fourier-Jacobi coe�cient
of Fg+1, it belongs to H

0(X, 2nΘ). Being (ASg+1, X) normal, the derivation mapping a modular
form to its �rst Fourier-Jacobi coe�cient is surjective. The Fourier-Jacobi expansion of a Theta
series can be written explicitly, the n-th coe�cient is related to the vectors of norm 2n. In
particular, let us de�ne

µΛ := min{Q(v, v) | v ∈ Λ , v 6= 0} .

A direct computation proves the following lemma.
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Lemma 2.4. Let Λ be a positive de�nite even unimodular lattice, suppose ΘΛ,g(τ) = 0, then
the �rst non-trivial Fourier-Jacobi coe�cient of ΘΛ,g+1 at τ is the 1

2µΛ-th coe�cient.

The number µΛ is related to the so called �packing radius� of the lattice, the following bound
holds

µΛ ≤ 2brk(Λ)

24
c+ 2 ,

where �b c� is the round down, see [CS99] section 7.7 corollary 21.
The tangent space at X decomposes as

0→ TXAg → TXASg+1 → H0(X, 2Θ)∨ → 0

This means that the �bre of the normal bundle to Ag at X is H0(X, 2Θ)∨. The tangent cone to
ASg+1 in the normal bundle is the a�ne cone over the image of

| 2Θ |: X → PH0(X, 2Θ)∨

In other words, the singularity of (ASg+1, X) is isomorphic to the a�ne cone over the Kummer
variety of X.

In the local ring (ASg+1, X), let IAg
be the ideal of functions vanishing on Ag. We have an

exact sequence

0→ Im+1
Ag

→ (ASg+1, X)→
m⊕
n=0

H0(X, 2nΘ)→ 0

so, to compute the order of a modular form at the boundary, one should understand what is the
�rst non-trivial Fourier-Jacobi coe�cient.

3 The non-existence of stable Schottky relations

The following section is the third of [CSB11]. It contains the proof of theorem 0.1.

3.1 The failure of transversality - Third section of [CSB11]

Theorem 3.1. If Fg+1 has multiplicity at least m along Mg+1 then Fg has multi-
plicity at least m+ 1 along Mg.

Proof. Suppose that Ng+1({xij}) is a homogeneous polynomial of degree d in the
entries xij of a symmetric (g + 1)× (g + 1) matrix X. Our hypothesis is that for all
d ≤ m− 1 and for all such Ng+1, the partial derivative

Ng+1(Fg+1) := Ng+1

({
∂

∂Tpq

})
(Fg+1)

vanishes along Mg+1 (rather, its inverse image in Hg+1) for T = (Tpq) ∈ Hg+1
2.

Given such Ng+1, we let Ng denote the polynomial obtained from it by setting
the bottom row and last column of X equal to zero. Our goal is to show that for

2Siegel upper half space, i.e. g + 1 - by - g + 1 symmetric complex matrices with positive de�nite imaginary

part
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every such Ng of degree m, the partial derivative Ng(Fg) vanishes at every point τ
in Hg that comes from a curve of genus g.

For any positive integer n, let Sn denote the set of n×n integer matrices that are
symmetric, positive semi-de�nite and whose diagonal entries are even. Then recall
that every Siegel modular form F = Fg+1(T ) of degree g + 1 over a ring R has a
Fourier expansion

F (T ) =
∑

X∈Sg+1

a(X)expπiTr (XT ) =
∑

X∈Sg+1

a(X)expπi

g+1∑
p,q=1

xpqTpq.

We write X = (xpq) for X ∈ Sg+1. The Fourier coe�cients a(X) = aF (X) lie in R.
For us, R = C.

Take T as above3 and take N to have degree m− 1; then

1

(πi)m−1
Ng+1(Fg+1)(T ) =

∑
X∈Sg+1

a(X)Ng+1({xpq})expπi
g+1∑
p,q=1

xpqTpq.

Our aim is to examine the coe�cient of t in the expansion of this expression in
powers of t, so calculate modulo t2. Since exp 2πiTg+1,g+1 = γ1γ

t
2t modulo t2, where

γj = exp cj , it follows that

1

(πi)m−1
Ng+1(Fg+1)(T ) =

∑
xg+1,g+1=0

+
∑

xg+1,g+1=2

,

since all terms with xg+1,g+1 ≥ 4 vanish modulo t2.

Lemma 3.2. If X ∈ Sg+1 and xg+1,g+1 = 0, then the right hand column and bottom
row of X are both zero.

Proof. Immediate consequence of semi-positivity.

Therefore ∑
xg+1,g+1=0

=
∑
X∈Sg

a(X)Ng({xpq})expπi
g∑

p,q=1

xpq(τpq + tσpq)

and ∑
xg+1,g+1=2

= tγ1γ
t
2

∑
X∈Sg+1,xg+1,g+1=2 a(X)Ng+1({xpq})

.
(
exp 2πi

∑g
p=1 xp,g+1

∫ b
a
ωp

)(
expπi

∑g
p,q=1 xpqτpq

)
since we are calculating modulo t2. So the coe�cient of t that we seek is A + γ1B,
where

A =
∑

xg+1,g+1=0

a(X)Ng({xpq})

(
πi

g∑
p,q=1

xpqσpq

)(
expπi

g∑
p,q=1

xpqτpq

)
3This is the period matrix T = T (t) studied in theorem 1.10. All the notations are the same.
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and

B =
∑

xg+1,g+1=2

a(X)Ng+1({xpq})

(
exp 2πi

g∑
p=1

xp,g+1

∫ b

a

ωp

)(
expπi

g∑
p,q=1

xpqτpq

)
.

The quantities A,B, γ1 are holomorphic functions on V and, by assumption, A+γ1B
vanishes identically.

Now rescale the local co-ordinates za, zb; that is, given any non-zero scalars λ, µ,
replace za by λ

−1za and zb by µ
−1zb. Such a rescaling will produce a di�erent family

C → ∆, but the quantity A+ γ1B will still vanish for the rescaled family. Moreover,
B is invariant under this rescaling, as is revealed by a cursory inspection. Also c1 is a
holomorphic function of λ, µ because the entries of a period matrix are holomorphic
functions of the parameters.

On the other hand inspection also reveals that, because of the description above
of σpq, A can be written as

A = Cλ2 +Dλµ+ Eµ2

with C,D,E independent of λ, µ. So we have an identity

Cλ2 +Dλµ+ Eµ2 = −Bexp (c1(λ, µ))

of holomorphic functions on the 2-dimensional torus G2
m = SpecC[λ±, µ±], where we

regard B,C,D,E as constants.

Lemma 3.3. Suppose that f is a rational function on a complex algebraic variety
X and that there is a holomorphic function h on some Zariski open subset U of X
such that f = exph on U . Then f is constant.

Proof. It is enough to show that f is constant on a general curve in X. So we can
assume that dimX = 1, and then that X is a compact Riemann surface. If f is not
constant, then it has a zero, say at P , and in some neighbourhood U of P with a
co-ordinate z we have f = znf1 with f1 holomorphic and invertible on U , and n > 0.
Then f1 = exph1 with h1 holomorphic on U , and h is holomorphic on U−{P}. Then
zn has a single-valued holomorphic logarithm on U − {P}, which is absurd.

Corollary 3.4. A and B vanish identically.

In fact, we do not exploit the vanishing of B, although it is a key step in the
argument of [GSM11] involving the linear system Γ00 of second order theta functions
that vanish to order 4 at the origin and the heat equation.

Now A can also be written as

A = ∂
∂t

∣∣∣∣
t=0

(∑
X∈Sg

a(X)Ng({xpq})expπi
∑g
pq,=1 xpq(τpq + tσpq)

)
= ∂

∂t

∣∣∣∣
t=0

Ng(Fg(τ + tσ)).

That is, σ lies in the Zariski tangent space H at the point τ to the divisor in Hg
de�ned by the function Ng(Fg) = Ng({ ∂

∂τij
})(Fg). It is important to note that, from

this description, H depends upon C but is independent of the points a, b, the local
co-ordinates za, zb and the scalars λ, µ.
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We let M0
g denote the open subvariety of Mg corresponding to curves with no

automorphisms and A0
g the open subvariety of Ag corresponding to principally po-

larized abelian varieties with no automorphisms except ±1. Then M0
g lies in A0

g and
both are smooth varieties, and if C lies in M0

g there are natural identi�cations of
tangent spaces given by

T[C]Mg = H0(Ω1
C
⊗2

)∨,

T[C]Ag = Symm2H0(Ω1
C)∨.

The inclusion T[C]Mg ↪→ T[C]Ag is dual to the natural multiplication (which is sur-

jective, by Max Noether's theorem) Symm2H0(Ω1
C)→ H0(Ω1

C
⊗2

).
We are aiming to prove that H, when regarded as a Zariski tangent space, is

the whole of the tangent space TτHg = Symm2H0(C,Ω1)∨. So assume otherwise;
then H is a hyperplane. Projectivize: then σ ∈ P(H) and P(H) is a hyperplane in
P(Symm2H0(C,Ω1)∨).

Now comes the point at which information about abelian integrals is transformed
into projective geometry and thence moduli.

The matrix σ is of rank 1 and is proportional to the tensor square of a vector:

σ = 2πi

(
ω

dza
(a)− ω

dzb
(b)

)⊗2

,

where ω is the vector (ω1, ..., ωg). Identify the curve C with its image in Pg−1 =
P(H0(C,Ω1)∨) under its canonical embedding P 7→ (ω1(P ), ..., ωg(P )), so that we
have inclusions

C ↪→ Sec(C) ↪→ P(H0(C,Ω1)∨),

where Sec(C) is the secant variety of C; recall that the secant variety Sec(X) of a
variety X in Pn is the closure of the union of all the secant lines 〈x, y〉 for pairs of
distinct points x, y ∈ X. Then we see that the point σ in P(Symm2H0(C,Ω1)∨) lies
in the image under the second Veronese embedding

V er2 : P(H0(C,Ω1)∨) ↪→ P(Symm2H0(C,Ω1)∨)

of the line 〈a, b〉 in Sec(C). Moreover, �x local co-ordinates z0
a and z

0
b and then rescale

them by λ, µ; that is, write za = λ−1z0
a and zb = µ−1z0

b . Then as λ, µ vary, the point
σ in P(Symm2H0(C,Ω1)∨) sweeps out an open piece of the line 〈a, b〉.

Since H is independent of the points a, b ∈ C and the scalars λ, µ, the putative
hyperplane P(H) contains V er2(Sec(C)). Then, by the nature of V er2, there is a
quadric Q in Pg−1 that contains Sec(C). However, by Lemma 3.5 below, Sec(C) has
embedding dimension g − 1 at every point of C, so that Q is singular along C. This
is impossible, since the singular locus of any quadric is linear, and Theorem 3.1 is
proved.

Lemma 3.5. Suppose that X is a non-degenerate subvariety of Pn. Then Sec(X)
has embedding dimension n at every point of X.

Proof. Suppose that P is a point of X and that L is a hyperplane in Pn disjoint from
P . The image of X under projection from P is then a non-degenerate subvariety XP

of L. The projective cone CP over XP with vertex P is then the union of the lines
in Pn through P that are secant to X; each such line lies in Sec(X) and so Sec(X)
contains CP . Since XP is non-degenerate, the embedding dimension of CP at P is n,
and then the same thing holds for Sec(X).
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Theorem 0.1 is an immediate corollary of this and the following lemma in com-
mutative algebra.

Lemma 3.6. Suppose that X is a closed subvariety of the variety Y de�ned by the
ideal I = IX/Y . Suppose that W is a smooth open subvariety of Y such that W ∩X
is smooth and non-empty and that J is an ideal of OY such that J |W = In|W . Then
J is contained in I [n], the nth symbolic power of I.

Proof. First, recall that if X and Y are smooth over a �eld of characteristic zero,
then In = I [n] and consists of the functions f on Y all of whose derivatives, with
respect to local co-ordinates on Y , of order up to and including the (n− 1)st, vanish
along X.

We can assume that Y is a�ne, say Y = SpecA, so that A is an integral domain
and I is prime. For any ideal a of A, write V (a) = Spec (A/a).

We can increase J , provided that J |W is unchanged, so that in particular we
can replace J by J + I [n]. Then, without loss of generality, we can suppose that J
contains I [n] and must prove that J = I [n]. We have V (J)red ⊂ V (I [n])red = X and
V (J)red ∩W = X ∩W , so that V (J)red = X, and therefore

√
J = I.

Recall that for any ideal a with
√
a = I, there is a unique smallest I-primary ideal

ã containing a, given by the formula ã = A ∩ a.AI , where AI is the localization of A
at the prime ideal I. As before, we can increase J , and so assume that J = J̃ , that
is, that J is I-primary. The symbolic power I [n] is I [n] = Ĩn.

By assumption, the generic point ξ of X lies in W and AI = OY,ξ, so that

J.AI = In.AI . Intersecting both sides of this equation with A gives J = J̃ = I [n].

Now regard the Satake compacti�cations ASg and MS
g+m as closed subvarieties of

ASg+m.

Theorem 3.7. (= Theorem 0.1) The intersection ASg ∩MS
g+m contains the mth order

in�nitesimal neighbourhood of MS
g in ASg .

Proof. The ideal de�ning MS
g+m inside ASg+m is generated by those Siegel modular

forms Fg+m that vanish along MS
g+m. From Theorem 3.1 and induction on m it

follows that Fg and all its partial derivatives with respect to the co-ordinates τpq
on Hg of orders at most m vanish along Mg, which is just the statement of the
corollary.

Remark 3.8. For m = 1 this says that at a general point [C] of Mg, the Zariski
tangent space at [C] to the 3g-dimensional variety MS

g+1 contains the g(g + 1)/2-
dimensional tangent space Symm2H0(C,Ω1

C)∨ at [C] to Ag, where these tangent
spaces both lie in T[C]A

S
g+1.

3.2 Stable divisors

In this section we consider the weight n stable modular form

Fg := ΘΛ,g −ΘΓ,g ,
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where Λ and Γ are two even positive de�nite unimodular latices of rank N = 2n. Because of
corollary 0.2, it cuts out a divisor on Mg for g >> 0. The only case in which we have a good
understanding of this divisor is the Schottky form, see example 2.2.

This discussion makes sense also for more general linear combinations of Theta series, and
one can consider Pg instead than Mg. Being an ongoing project, for the sake of simplicity we
will work just on di�erences of Theta series onMg.

We start from g = 0. On A0, which is just a point, we have F0 = 0, because any Theta
series values 1 on A0. There exists an integer g1 such that Fg1−1 = 0 on Ag1−1 but Fg1 does not
vanish. Because of remark 2.4 of [Fre77], the Siegel operator is an isomorphism for 2g > n, so

g1 ≤
1

4
N .

Here, the questions are the following.

Questions 3.9. It is possible to compute g1? Can we found the order of Fg1 at the boundary
of Ag1? Does Fg1 vanish onMg1? If this is the case, with what multiplicity?

Lemma 2.4 implies this bound

mult(Fg1 , ∂A
S
g1) ≥ 1

2
min{µΛ, µΓ} .

Now, we restrict Fg toMg. Because of corollary 0.2, we know that there exists an integer g2

such that Fg2−1 = 0 onMg2−1 but Fg2 does not vanish onMg2 . A �rst important question is:

Question 3.10. Can we compute g2?

For g between g1 and g2, we could expect that, in general, every time we restrict Fg to Fg−1

the multiplicity of Fg on Mg increase by one. If this is the case, g2 should be equal to g1 plus
the multiplicity of Fg1 onMg1 .

Let us give the following de�nition.

De�nition 3.11 (Stable divisor). A stable divisor D is the datum of a divisor Dg on MS
g for

every g, such that Dg ∩MS
g−1 = Dg−1.

The stable modular form F de�nes a non-trivial stable divisor, call it D. The divisor Dg is
not trivial for g ≥ g2; since it is de�ned by a weight n modular forms, its cohomology class is n
times the class of the determinant of the Hodge bundle. We can prove that, for some lattices,
Dg contains the hyperelliptic locus for every g, see theorem 4.9.

We recall the de�nition of slope in the case of modular forms, standard references are [Far09]
and [CFM12]. Let φ be a weight k modular form on ASg and suppose it is not zero onMS

g . Call
ai the multiplicity of φ on the boundary componentMi×Mg−i and a0 its multiplicity onMg−1.
(Recall that the boundary components are image of divisors ∆i, they might have a non-reduced
structure, see section 2.1) The slope of the divisor E de�ned by φ is

s(E) := max
i

k

ai

If φ does not vanish on at least one boundary component, then the slope is ∞.
We want to understand the slope of the divisor Dg de�ned by Fg = ΘΛ,g − ΘΓ,g. On the

boundary componentMg−1, the value of Fg is Fg−1, so the slope of Dg is ∞ for g > g2.
For g = g2, we have the following result.
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Lemma 3.12. The slope of Dg2 is �nite.

Proof. We have to show that Fg2 vanishes on all the boundary components of MS
g2 . We know

that Fg2 is zero on the boundary componentMg2−1, let us check the others. Any Theta series
factor as

ΘΛ,g(

(
τi 0
0 τg−i

)
) = ΘΛ,i(τi)ΘΛ,g−i(τg−i) ,

with τi in Hi. This property is no longer true for a linear combination of Theta series. Never-
theless, when

τ :=

(
τi 0
0 τg2−i

)
∈Mi ×Mg2−i

we have Fi(τi) = 0 (we are using i < g2), so ΘΛ,i(τi) = ΘΓ,i(τi), we conclude that

Fg2(τ) = ΘΛ,i(τi)Fg2−i(τg2−i) = 0 .

The same argument proves that F2g2+1 does not vanish on any boundary component of
MS

2g2+1 (equivalently, on any boundary divisor ofM2g2+1).
Let us summarise the result in this way.

Theorem 3.13. Let Λ and Γ be two even unimodular positive de�nite lattices, there exist an
integer g such that

ΘΛ,g −ΘΓ,g

cuts out a divisor of �nite slope onMg.

Both g and the slope depend on Λ and Γ. The open questions are:

Questions 3.14. Can we compute the slope? Does this divisor have a geometrical interpreta-
tion?

In [GSM11], these questions are fully answered in the speci�c case of the Schottky form, see
example 2.2.

These problems are also tackled in [GV09]. The ideas behind this paper come from string
theory. Indeed, corollary 0.2 should mean that, looking at string of high enough genus, the
partition function can distinguish two conformal �eld theories. The authors think that the
values of g2 could be related to the conformal �eld theories associated to Γ and Λ, and this could
be useful as well to compute the slope.

3.3 Quadrics via degenerations

Let Fg+1 be a degree g+ 1 modular form, as explained in section 2.2 we can consider its Fourier-
Jacobi expansion

Fg+1(T ) = f0(τ) + f1(τ, z)q +O(q2)

The function f1 is the �rst Fourier-Jacobi coe�cient of Fg+1 and it is a section of 2Θ.

Lemma 3.15. Suppose that Fg+1 vanishes onMg+1, then for every curve C and points a and
b we have

f1(τ,AJ(a− b)) = 0 ,

where τ is the period matrix of C and AJ is the Abel-Jacobi map.
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Proof. Let T (t) be the period matrix of the degeneration studied in 1.10. We have Fg+1(T (t)) ≡
0, in particular d

dtFg+1(T (t)) ≡ 0. Following computations and notations of section 3.1, we write

d

dt
|t=0 Fg+1(T (t)) = A+ γ1B .

Take Ng+1 to have degree 0, we have

B = f1(τ,AJ(a− b)) .

The lemma is now equivalent to corollary 3.4.

If we let a tend to b, by continuity we get f1(τ, 0) = 0. We can now use the formula

f1(τ, a− b) = Q(a, b)E(a, b)

where Q is the second order part of f1 and E is the prime form. (Actually, we should write
Q(dAJ(a), dAJ(b)), where dAJ is the di�erential of the Abel-Jacobi map. This di�erential can
be identi�ed with the canonical map.) This formula is classical, for instance it can be found in
the proof or proposition 2.1 of [vGBvdGG86] or at the bottom of page 44 of [MV10].

We know that E(a, b) 6= 0 for every a di�erent from b; we conclude by continuity that
Q(x, x) = 0 for every x in C, i.e. Q is a quadric containing the canonical model of C. Let us
summarise the result.

Theorem 3.16. Let Fg+1 be a degree g + 1 modular form vanishing onMg+1; for every period
matrix τ of a genus g curve C, let Q(τ) be the second order part of the �rst Fourier-Jacobi
coe�cient of Fg+1 at τ , then Q(τ) is a quadric containing the canonical model of C.

4 The hyperelliptic locus

4.1 Projective invariants of hyperelliptic curves

In this section we introduce the projective invariants of a hyperelliptic curve and we prove the
following well-known criterion.

Criterion 4.1. Let Fg be a weight n and degree g modular form. Suppose it vanishes on Ag−1∩
HypSg with multiplicity at least k. If

n

k
< 8 +

4

g

then Fg vanishes on Hypg.

This criterion can be proved using the slope of the hyperelliptic locus, see [CH88] theorem
4.12 or [CFM12] section 3.6. We will rather use projective invariants, references are [Igu67b],
[Poo96], [AL02] and [Pas11] Chapter 2.

Let C be a smooth genus g hyperelliptic curve. A point p is called a Weierstrass point if
H0(C, 2p) is not trivial. Equivalently, consider a two to one map π from C to P1, a point p
is a Weierstrass point if and only if π rami�es at p. The map π is unique up to a projective
automorphism of P1, it rami�es at 2g + 2 points. We can thus give the following de�nition.

De�nition 4.2 (Projective invariants). The projective invariants of C are the image of the
Weierstrass points under π, considered up to permutations and projective automorphisms of P1
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Starting from 2g + 2 distinct points on P1, one can construct a smooth genus g hyperelliptic
curve with the prescribed projective invariants.

Call Bg the moduli space of 2g + 2 points on P1, up to permutation and projectivity. This
space is a GIT quotient, the semi-stable locus (i.e. the 2g + 2-tuples Bg parametrises) consist
of all the 2g + 2-tuples such that no more than g + 1 coincide. Bg can be de�ned as the Proj
of the ring S(2, 2g + 2). This ring is the ring of symmetric functions in 2g + 2 variables, which
are semi-invariant under the natural action of SL(2,C). See the references for more details. The
discriminant ∆ is an element of S(2, 2g+ 2) of degree 4g+ 2, it cuts the divisor D parametrising
the 2g + 2-tuples of points where at least two entries coincide.

Because of the previous discussion, we have an isomorphism

fg : Hypg → Bg \D

mapping a curve to its projective invariants. Following [AL02], this map extend to a map

fg : Hypg → Bg

where Hypg is the Deligne-Mumford compacti�cation of Hypg. This map is a birational iso-
morphism between the boundary divisor Ξ0 and D, it contracts all the other boundary divisors
of Hypg to subvariety of co-dimension greater than 1. The divisor Ξ0 parametrises curves of
compact type, i.e. curves obtained starting with a genus g − 1 curve C ′ and gluing two points
conjugated under the hyperelliptic involution. Its image is the set of 2g + 2 points of the form
{p1, . . . , p2g, p, p}, the projective invariants of C ′ are {p1, . . . , p2g}, the glued points are the
preimage of p.

We can consider the rational inverse of fg, call ρ̄ the composition

ρ̄ : Bg
f−1
g

99K Hypg → HypSg

this map is the geometric version of the Igusa's morphism of projective invariants ρ de�ned in
[Igu67b]. This morphism is a map of graded rings

ρ :

∞⊕
n=0

H0(Ag, Ln)→ S(2, 2g + 2)

whose kernel is exactly the ideal of modular forms vanishing on the hyperelliptic locus. The
degree of ρ is 1

2g.
The image of the divisor Ξ0 inHyp

S
g isHyp

S
g∩ASg−1, so the image ofD under ρ̄ isHypSg∩ASg−1.

We can now prove the criterion.

Proof. (of criterion 4.1) Suppose Fg vanishes with multiplicity at least k on HypSg ∩ASg−1. This

means that ρ̄∗Fg vanishes with multiplicity at least k on D. In other words, ∆k divides ρ(Fg).
The degree of the discriminant in S(2, 2g + 2) is 4g + 2, the degree of ρ(Fg) is 1

2gn. Since, by
hypothesis,

k(4g + 2) >
1

2
gn

we obtain that ρ(Fg) is equal to zero, so the claim.
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4.2 Transversality

The following result was suggested by variational formulæ 4.11 and 1.15. However, we will not
use them in the proof.

Theorem 4.3. The intersection of ASg and HypSg+1 is transverse. In other words, scheme
theoretically it is equal to HypSg .

Let IHypg+1
be the ideal of modular forms on Ag vanishing on Hypg. The inclusion

ASg ↪→ ASg+1

is induced by the Siegel operator Φ. We have to prove that the map

Φ : IHypg+1
→ IHypg

is surjective. For technical reasons, we will �rst prove the theorem on the �nite cover de�ned by
the level structure (4,8).

Let us recall few facts about level structures, cf. e.g. [Fre83] II.6. The group Γ(4, 8) is
a normal co-�nite subgroup of Γ := Sp(2g,Z). Call G the �nite quotient. The moduli space
Ag(4, 8) is the quotient of the Siegel upper half space by Γ(4, 8). A point of Ag(4, 8) represent a
principally polarised abelian variety with extra structures. Among these extra data, we have an
isomorphism φ between the subgroup of two torsion elements and (Z/2Z)2g. On Ag(4, 8) there is
the ample line bundle L of weight one modular forms, whose sections are holomorphic functions
on hg which transform appropriately under the action of Γ(4, 8). Using this line bundle, we can
construct the Satake compacti�cation ASg (4, 8) of Ag(4, 8). The boundary is composed by many
irreducible components Xi, permuted by G.

For each components Xi, we have a Siegel operator Φi.

Φi : H0(Ag(4, 8), Lk)→ H0(Ag−1(4, 8), Lk)

which realize an isomorphism between Xi and A
S
g−1(4, 8). There is a component, say X0, called

the �standard component�, where the Siegel operator is given by the usual formula

Φ0(F )(τ) := lim
t→∞

F (τ ⊕ it)

The others Siegel operators are obtained letting G act.
The hyperelliptic locus with level structure (4,8) is discussed for instance in [Igu67b] and

[SM03]. We recall few facts. The space Hypg(4, 8) inside Ag(4, 8) is the preimage of Hypg under
the quotient map. This space splits in many irreducible components Yj permuted by G. Call
Hypg(4, 8)S the closure of Hypg(4, 8) in ASg (4, 8). The intersection of Hypg(4, 8)S with any of

the Xi is, set-theoretically, equal to Hypg−1(4, 8)S . We shall show that the equality is true as
scheme.

A way to specify an irreducible component Yj is to �x a special fundamental system of
Theta characteristics m = {m0, . . . ,m2g+1}. This is a subset of (Z/2Z)2g with some additional
properties, see [SM03] for the de�nition. The relation between special fundamental system and
irreducible components is the following. Call W the set of Weierstrass points of a hyperelliptic
curve C. For any w in W , call AJw the Abel-Jacobi map with base point w. The set AJw(W )
is a subset of the 2-torsion subgroup of Jac(C). The choice of a special fundamental system of
Theta characteristic m, determines the component Yi = Ym of abelian varieties (Jac(C),Θ, φ)
such that there exists a w in W for which φ(AJw(W )) = m. Call Y Sm its closure in ASg (4, 8).
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Di�erent choice of m may determine the same component Yi, this because of the freedom in the
choice of the base point of the Abel-Jacobi map.

Fix a system of Theta characteristic m, so we have an irreducible component Ym ofHypg(4, 8).
Let b be the sum of oddmi in m. For every Theta characteristicm, the classical Thetanullerwerte
θm is a well de�ned modular form on Ag(4, 8) (but not on Ag, this is the reason why we are
using the level structure), see e.g. [Igu67b] or [SM03]. Our proof relies upon the following result.

Theorem 4.4 ([SM03] Theorem 1). The scheme Y Sm is ideal theoretically de�ned by the vanishing
of Thetanullerwerte θm+b with m = mi1 + · · ·+mik , where k ≤ g.

We still need some more notations. As usual, we write a Theta characteristic as two vectors
of size g. Call 0 the g dimensional zero vector. De�ne two g+1 dimensional Theta characteristics

p :=

[
0 0
0 1

]
, q :=

[
0 1
0 1

]
For every g dimensional Theta characteristic m = [ε, ε′], let us de�ne the g+1 dimensional Theta
characteristic

m :=

[
ε 0
ε′ 0

]
,

Moreover, for every special fundamental system of g dimensional Theta characteristic m, we pose

m := p ∪ q ∪
⋃
m∈m

m.

This is a special fundamental system of g + 1 dimensional Theta characteristics.
We can think Ag(4, 8) as the standard cusp X0 of Ag+1(4, 8)S .

Lemma 4.5. Scheme theoretically, the intersection of Ym and X0 is isomorphic to Ym.

Proof. By direct computation one sees that

Φ0(θ

[
ε 0
ε′ δ

]
) = θ

[
ε
ε′

]
for δ equal either to 0 or 1. Suppose that a g dimensional Theta characteristic m is of the form
prescribed by theorem 4.4, for some special fundamental system m. The modular form θm+b

vanishes on the irreducible component Ym of Hypg(4, 8), and the modular form θm+b+p vanishes
on the irreducible component Ym of Hypg+1(4, 8). We have

Φ0(θm+b+p) = θm+b ,

so, because of theorem 4.4,
Ym ∩X0 ⊂ Ym

Since the right hand side is irreducible and both terms have the same dimension, we get the
equality.

Proposition 4.6. The intersection of Hypg+1(4, 8)S and Xi is transverse for every i.

Proof. For i = 0, the proposition follows from the lemma and the inclusion

Hypg(4, 8) ⊂ HypSg+1(4, 8) ∩X0 .

For a general i, it is enough to notice that G acts transitively on the boundary components and
preserves the hyperelliptic locus.
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Let IHypg(4,8) be the ideal of Hypg(4, 8) in Ag(4, 8), by I(Hypg(4,8),Xi) we denote the ideal of

Hypg(4, 8) in the boundary component Xi of Ag+1(4, 8)S . We have a G equivariant map⊕
i

Φi : IHypg+1(4,8) →
⊕
i

I(Hypg(4,8),Xi)

This map is surjective, because of the previous proposition. If we take G invariants, we get a
map ⊕

i

Φ : IHypg+1
→
⊕
i

IHypg

which is surjective as well because G is �nite and the base �eld has characteristic zero. We obtain
the theorem projecting onto one of the factor.

4.3 Stable equations for the hyperelliptic locus

In this section, we combine the following two results to �nd stable equations for the hyperelliptic
locus.

Theorem 4.7 (= Theorem 4.3). The intersection of ASg and HypSg+1 is transverse.

Criterion 4.8 (= Criterion 4.1). Let Fg+1 be a weight n and degree g+1 modular form. Suppose
it vanishes on Ag ∩HypSg+1 with multiplicity at least k. If

n

k
≤ 8 +

4

g + 1

then Fg+1 vanishes on Hypg+1.

We write stable equations as di�erences of Theta series introduced in section 2. Let Λ and Γ
be two even positive de�nite unimodular lattice, call

µΛ := min{Q(v, v) | v ∈ Λ; v 6= 0} .

First, we look for a necessary condition. Suppose that the stable modular form

ΘΛ,g −ΘΓ,g

vanishes on Hypg for every g. This, in particular, means that it vanishes on Hyp1 = A1, so

ΘΛ,1 = ΘΓ,1, .

Looking at the Fourier-Jacobi expansion for g = 1, the previous equality means that the two
lattices have the same number of vectors of any given norm. In particular we have

µΛ = µΓ .

Our result is the following.

Theorem 4.9. Let Λ and Γ be two even positive de�nite unimodular lattices of rank N and
µΛ = µΓ =: µ, if

N

µ
≤ 8 ,

then
F := ΘΛ −ΘΓ

is a stable equation for the hyperelliptic locus. In other words, Fg vanishes on Hypg for every g.
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Proof. The proof is by induction on g. The di�erence of two Theta series vanishes on A0.
Suppose the statement true for g, we want to apply criterion 4.8 to Fg+1. Call k := 1

2µ, we need
to prove that Fg+1 vanishes at the boundary component Ag ∩HypSg+1 with multiplicity at least
k.

To stress why theorem 4.7 is important, let us �rst give the proof when k = 2. The argument
is local, take a generic point τ of Ag ∩ HypSg+1. By induction we know that Fg+1(τ) = 0, we

want to prove that for every derivative D in TτHyp
S
g+1 we have DFg+1(τ) = 0. Since k = 2, the

Fourier-Jacobi expansion of Fg+1 looks like

Fg+1 = Fg(τ) +O(q2)

so DFg+1(τ) = DFg(τ). We can thus assume that D is tangent to Ag. Now, we need to use
theorem 4.7 to assume that D is tangent to Hypg. By inductive hypothesis Fg is zero on Hypg,
so DFg(τ) = 0. (Remark that we can not run the same argument forMg: because of theorem
0.1, there are plenty of tangent vector toMS

g+1 ∩ Ag which are not tangent toMg)

For a general k the argument is pretty much the same. Suppose Fg+1 vanishes onHyp
S
g+1∩Ag

with order at least s smaller than k, we want to prove it vanishes with order at least s + 1. In
the local ring (HypSg+1, τ), consider the ideal I of elements vanishing on HypSg+1 ∩Ag. We know
Fg+1 belongs to Is, we want to show that its class in Is/Is+1 is trivial. The elements of Is/Is+1

are symmetric s-linear forms on TτHypg+1, restricting them to Tτ (Ag ∩HypSg+1) = TτHypg we
get an exact sequence

H0(τ, 2sΘ)→ Is/Is+1 Φ−→ Syms(TτHyp
∨
g ) .

The class of Fg+1 is in the kernel of Φ, because by inductive hypothesis Φ(Fg+1) vanishes on
Hypg. Moreover, it is zero in H0(τ, sΘ), because s < k, so the conclusion. (We have used
theorem 4.7 to replace Tτ (Ag ∩HypSg+1) with TτHypg.)

The hypothesis
rk(Λ)

µΛ
≤ 8 (1)

is quite restrictive. Indeed, given any even unimodular lattice Λ, there is a bound

µΛ ≤ 2brk(Λ)

24
c+ 2

where �b c� is the round down (see [CS99] section 7.7 corollary 21); moreover µ is even and the
rank, if Λ is positive de�nite, is divisible by 8. We conclude that if an even unimodular positive
de�nite lattice Λ satis�es hypothesis 1, then the only possibilities for the couple (rk(Λ), µΛ) are
(8,2),(32,4) and (48,6). All these lattices are extremal, which means

µΛ = 2brk(Λ)

24
c+ 2 .

On the other hand, given two extremal lattices Λ and Γ, it is not true that ΘΛ,g −ΘΓ,g vanishes
on the hyperelliptic locus for every g. See [Oze88] for an example of 3 extremal lattices of rank
40 whose Theta series are di�erent for g = 2. In the proof of theorem 4.9 we have not used the
hypotesis µΛ = µΓ. However, as we have seen, hypoteses 1 and rk(Λ) = rk(Γ) imply this fact.

There exist only two lattices of rank 8 and µ = 2 (see example 2.2). A vector of norm 2 is
sometime called a root, so a lattice of rank 32 and µ = 4 is called a lattice without roots. In
[Kin03] corollary 5, using a generalization of the mass formula, is shown that there are at least
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ten millions of lattices of type (32,4) (in this paper every lattice is tacitly assumed to be positive
de�nite). The situation for lattices of type (48,6) is not clear, believably there exist many of
them, see [Kin03] page 15. In any case, we can claim the following theorem.

Theorem 4.10. There are more than 10000000 of linearly independent di�erences of Theta
series vanishing on the hyperelliptic locus for every g.

To �nd stable equations of higher weight, one probably needs a better understanding of the
formal neighbourhood of Hypg in HypSg+1. Another possibility is to look for Theta series with
the same �rst Fourier-Jacobi coe�cients.

We would like to draw a comparison betweenMg and Hypg. We know that stable equations
for Mg do not exist, so the strategy we have used to �nd stable equations for Hypg can not
work forMg. The main reason should be that theorem 4.7 does not hold forMg, see theorem
0.1. On the other hand, it is not known if an analogue of criterion 4.8 holds forMg. As we have
seen, its proof relies upon a deep understanding of the projective invariants of the hyperelliptic
locus, and we do not have any analogue neither of Igusa's morphism nor of Thomæ's formula
forMg. This criterion is also equivalent to the fact that we have a positive lower bound on the
slope of Hypg which does not depend on g, and this slope can be computed looking exclusively
at the divisor Ξ0.

4.4 Variational formula for a family of hyperelliptic curves

In this section, we compute explicitly a part of the period matrix T (t) of the following family of
genus g + 1 hyperelliptic curves

Ct := {y2 = (x2 − t)
2g+2∏
i=0

(x− pi)} ,

where pi's are distinct complex numbers di�erent from zero, and t belongs to a small disc ∆t

around the origin. The hyperelliptic involution ι maps (x, y) to (x,−y). Call C the normalisation
of C0, its equation is

C := {y2 =

2g+2∏
i=0

(x− pi)} .

Let p and −p be two preimage of the singular point of C0, in co-ordinates p = (0, ỹ) and −p =
(0,−ỹ), for a suitable ỹ.

First, we must �x a symplectic basis for the homology of H1(Ct,Z). A choice of an ordering of
the Weierstrass points gives a standard choice Ai(t), Bi(t) for the basis, as the following picture
shows
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In the picture, αi denotes the image of the Weierstrass point on P1, bold lines are the classi-
cal �cuts� one performs to re-construct the curve (see [Ber] page 79). We choose as �rst two
Weierstrass points the moving ones.

The hyperelliptic involution acts as -1 on the homology. The cycles A2(t), . . . , Ag+1(t) and
B2(t), . . . Bg+1(t) give a symplectic basis for the homology of C. Call vi the normalised basis for
the holomorphic di�erentials on C and τ he period matrix.

The function x gives a local co-ordinate around p, call it zp

Theorem 4.11. Whit respect to the previous symplectic basis for the homology, we have

T (t) =

(
1

2πi ln(t) + c0 AJ(p− ι(p))
AJ(p− ι(p)) τ

)
+ t

(
c1 · · ·
... σ(p, zp)

)
+O(t2) ,

where AJ is the Abel-Jacobi map and σ(p, zp) a holomorphic function of p and zp given by

σ(p, zp)ij = 2πi
vi(p)vj(p)

dz2
p

.

Remark 4.12. This is the same period matrix of theorem 1.10, when a = p, b = ι(p) and za
and zb are given by x.

A basis of the relative holomorphic di�erential on Ct (not dual to {Ai(t), Bi(t)}) is

ωi(x, t) :=
xi−1

y(t)
dx i = 1, . . . , g + 1 .

When t = 0, we consider the pull-back of ωi on C: for i = 1 we get a meromorphic di�erential
with simple poles on p and −p, for i > 1 we get a basis for the holomorphic di�erentials over C.

Let ∇ be the Gauss-Manin connection (which is nothing but d
dt ). The key computation we

will need is the following one.

Lemma 4.13. Keep notation as above,

∇ωj(x, 0) =
1

2x2
ωj(x, 0)

Proof. Di�erentiating the equation that de�nes the family Ct we get

2y(0)
dy

dt
(0) = −

2g+2∏
i=0

(x− pi) ,

moreover

∇ωj(x, 0) = − 1

y(0)2

dy

dt
(0)xi−1dx .

The lemma follows using the equation y(0)2 = x2
∏

(x− pi) .

Because of proposition 1.1, there exist holomorphic forms ui(x, t) belonging to Ω1
C/∆t

such
that, for t 6= 0, they form a normalised basis for the holomorphic di�erential of Ct with respect to
{Ai, Bi}. For t = 0, the pull-back of u2, . . . , ug+1 is the normalised basis {vi}, and the pull back
of u1 is a meromorphic di�erential with only simple poles at p and −p, with residues respectively
1 and -1. For suitable holomorphic functions cij de�ned over ∆t, we have

ui(x, t) =
∑
j

cij(t)ωj(x, t) .
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As usual, we will deal with poles of order two and zero residues. Let ηp be a normalised
di�erential of the second kind with a pole of order 2 and zero residue at p, see 1.3. Its behaviour
with respect to ι is the following.

ηι(p) = ι∗ηp∫
Bi

ι∗ηp =

∫
ι(Bi)

ηp = −
∫
Bi

ηp .

Call ν : C → C0 the normalisation map.

Lemma 4.14. For i > 1, we have

ν∗∇ui(x, 0) =
1

2

ui(p, 0)

dx
(ηp(x)− ηι(p)(x)) ,

where ηp has leading coe�cient 1 with respect to the local co-ordinate x.

Proof. The expansion of ui around t = 0 is

ui(x, t) = ui(x, 0) + t[
∑
j

dcij
dt

(0)ωj(0) +
1

2x2
ui(x, 0)] +O(t2) .

Arguing as in the proof of 1.10, we prove that the residue of ν∗∇ui(x, 0) at p and −p is zero, so
we have the expansion

ν∗∇ui(x, 0) = ui(p, 0)
1

2x2
dx+O(1) around p,

and

ν∗∇ui(x, 0) = ui(−p, 0)
1

2x2
dx+O(1) around − p,

where the di�erential ui is evaluated using x as local co-ordinate. The involution acts as -1 on
the abelian di�erentials, so

ν∗ui(−p, 0) = ν∗ui(ι(p), 0) = −ν∗ui(p, 0) .

Being ui(x, t) normalised, we have∫
Aj(t)

ui(x, t) = δij ,

the right hand side does not depend on t, so∫
Aj

ν∗∇ui(x, 0) = 0 .

Because of the uniqueness of ηp we obtain the statement.

We obtain σ using Riemann's bilinear relations 1.4.
We compute the monodromy of T11(t). If we rotate around the origin in ∆t, the two Weier-

strass points associated to
√
t and −

√
t are swapped: so the class of A1 does not changed but

the class of B1 is increased by ±A1. We conclude that T11(t) = 1
2πi ln(t) +holomorphic function,

see also [ACG11] page 143.
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We consider the �rst row minus the element T11. The pull-back of B1(0) over C is a path
from p to ι(p), so we obtain the image of p − ι(p) under the Abel-Jacobi map. This is also a
consequence of the corollary 10.4 page 258 of [Spr57]. This concludes the proof of theorem 4.11.

Variational formulæ 4.11 and 1.15 suggest a description of the normal bundle of Hypg in
HypSg+1. Call X the Jacobian of C, we de�ne a map Ψ as the composition:

Ψ : C
f−→ C × C δ−→ X

|2Θ|−−−→ PH0(X, 2Θ)∨

p 7→ (p, ι(p))
(a, b) 7→ AJ(a− b)

This de�nition does not depend on the choice of the base point for the Abel-Jacobi map, the
image of C is a rational curve, it contains 0X with multiplicity 2g + 2.

We think that, at a general point, the tangent cone at of HypSg+1 at C is the a�ne cone over
Ψ(C). We can prove that this cone spans a 2g dimensional vector space.

5 Prym varieties

In this section, we study degenerations of Prym varieties analogue to the degenerations studied
in section 1.2.

5.1 De�nitions and notations

We refer mainly to chapter 12 of [BL92], [ACGH85] appendix C or [Far12]. Prym varieties arise
from double covers π : C̃ → C, unrami�ed or branched at two points. Let g be the genus of C,
the genus of C̃ is 2g+ 1 if the cover is étale, 2g otherwise. The Prym variety associated to π can
be de�ned as follows:

Pr(C̃/C) := H1(C̃,KC̃)∨−/H1(C̃,Z)−

where �minus� indicates the minus one eigenspace of the involution ι of the cover. The di�erentials
H1(C̃,KC̃)− are called Prym di�erentials.

We describe a well-known way to compute periods of Prym (see e.g. Example 2.1 of [Far12]).
Fix a symplectic basis Ã0, B̃0, A

+
1 , A

−
1 , . . . , A

+
g , A

−
g , B

+
1 , B

−
1 . . . , B+

g , B
−
g for the homology of C̃

with the following properties. The involution swaps A+
i with A−i and B+

i with B−i . The cycles
Ã0 and B̃0 are present just in the unrami�ed case and are �xed by the involution. Call Ai
and Bi the cycles ι∗(A

+
i ) and ι∗(B

+
i ), and A0 and B0 half of ι∗(A0) and ι∗(B0). These cycles

form a symplectic basis for the homology of C. Let ω±i (respectively ωi) be the corresponding
normalised basis for the holomorphic di�erentials on C̃ (C).

A symplectic basis for H1(C̃,Z)− is given by A+
i − A

−
i , B

+
i − B

−
i , for i from 1 to g. The

corresponding basis for H1(C̃,KC̃)− is given by

wi :=
1

2
(ω+
i − ω

−
i ) ,

so the periods of Prym di�erentials are

1

2

∫
B+

i −B
−
i

ω+
j − ω

−
j i, j = 1, . . . , g .

We use the same notations for families. Given a one parameter family of double covers
π : C̃t → Ct, we call P (t) the corresponding family of Prym, and the periods are

P (t) =
1

2

∫
B+

i (t)−B−
i (t)

ωj(t)
+ − ω−j (t) i, j = 1, . . . g .
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By abuse of notations, we denote by P (t) at the same time the Prym varieties and the matrices
of periods of the Prym di�erentials. The local expansion of the period around t = 0 is

P (t) =
1

2

∫
B+

i (0)−B−
i (0)

(ωj(0)+ − ω−j (0)) +
1

2
t

∫
B+

i (0)−B−
i (0)

∇(ωj(t)
+ − ω−j (t)) |t=0 +O(t2) ,

where ∇ is the Gauss-Manin connection.

5.2 The étale case

We denote by Pg the coarse moduli space of Prym arising from étale double covers. The closure
of Pg in Ag is its Satake compacti�cation PSg .

Pinching a non-trivial homological cycle We are going to prove the analogue result of 0.1.
The intersection of PSg+m and Ag contains Pg, we can give the following description.

Theorem 5.1. The intersection of PSg+m and Ag contains the m-th in�nitesimal neighbourhood
of Pg in Ag.

The strategy of the proof is the same. We start with a 2 to 1 unrami�ed cover C̃ → C, where
C is automorphisms-free, call g the genus of C. We pick points a and b and local co-ordinates
on C and we pull them back on C̃: call the preimages a+, a−, b+ and b−. We perform the
construction of section 1.2 simultaneously on C and C̃, so we get a family of covers C̃t → Ct over
a disc ∆t degenerating to C̃/(a

+ ∼ b+, a− ∼ b−)→ C/a ∼ b. Call P (t) the corresponding family
of Prym varieties.

Fix basis for the homology as in section 5.1. There are two vanishing cycles on C̃t: A
+
g+1(t)

and A−g+1(t). They are swapped by the involution.

The pull back of w1(0), . . . , wg−1(0) is a basis for the Prym di�erentials of C̃.

Proposition 5.2 ([FS86] Section 2). Keep notation as above,

P (0) =

(
Pr(C̃/C) AP (a− b)
tAP (a− b) 1

2πi ln(t) + c0

)
where AP (a− b) is the Abel-Prym map.

Proof. The logarithm is due to the monodromy of the integral of wg(t) over B+
g (t) − B−g (t):

turning around the origin of the disc ∆t, B
±
g is increased by A±g : the integral of wg(0) on

A+
g −A−g is 1, so we can write the entry P (t)g,g as

1
2πi ln(t) plus some holomorphic function.

Let us compute the rest of the �rst row. We have to integrate wi on B+
1 − B−1 , for i =

1, . . . , g− 1. To do this, we pull back wi on C̃, and take the di�erence of the integral from a+ to
b+ and from a− to b−. This is nothing but the Abel-Prym map.

The biggest block of the matrix comes from pulling everything back to C̃.

Proposition 5.3. The period matrix of P (t) is

P (t) =

(
Pr(C̃/C) AP (a− b)
tAP (a− b) 1

2πi ln(t) + c0

)
+ t

(
σ · · ·
... c1

)
+O(t2)

where σ is a holomorphic function of the parameters given by

σij = 2πi(wi(a
+)− wi(b+))(wj(a

+)− wj(b+)) .

The di�erentials are evaluated in term of the pull backs of dza and dzb
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Proof. The zero order term comes from the previous proposition. Call

ν : C̃ → C̃0

the normalisation map. To compute σ we apply lemma 1.2 to ν∗∇wi(0), for i = 1, . . . , g−1. We
obtain

ν∗∇wi(0) = ((wi(a
+)− wi(b+))(ηa+ − ηb+) + (wi(a

−)− wi(b−))(ηa− − ηb−) .

Recall that
wi(a

−) = −wi(a+) wi(b
−) = −wi(b+) .

The proposition follows from Riemann's bilinear relations 1.4.

The tangent space to P (0) at the origin is H0(C,KC+η)∨, where η is the theta characteristic
of the cover π : C̃ → C. Because of the heat equation, the tangent space TPr(C̃/C)Ag−2 is

isomorphic to Sym2H0(C,KC + η)∨, In a co-ordinates free way, σ is given by

σ(w) = 2πi(
w

π∗dza
(a+)− w

π∗dzb
(b+))2 .

Recall that Prym di�erentials can be interpreted at the same time as di�erentials on C̃ or as
sections of a line bundle over C. We can interpret the projectivization of σ as follows. Consider
the map

C
KC+η−−−−→ PH0(KC + η)∨

V er2−−−→ PSym2H0(KC + η)∨

Then σ is the image of a point on the secant variety of C under V er2. The image of C via KC+η
is, by de�nition, the Prym canonical model of the curve. If Cliff(C) ≥ 3 this line bundle is very
ample ([SV02] page 10), so generically it is.

Proposition 5.4. Varying the choice of a, b, za, and zb, σ spans all TPr(C̃/C)Ag−2.

Proof. In order to apply the argument of the last part of section 3.1, we just need to know that the
image of C is a one dimensional variety not contained in any hyperplane of PH0(KC + η)∨.

Now, we can use exactly the same argument of section 3.1. We suppose that a modular form
Fg−1 vanishes along Pg−1 with multiplicity at least k, we take its Fourier expansion, we restrict
its derivatives to Pt, and we can apply the previous proposition in order to prove theorem 5.1.

Pinching a homologically trivial cycle As we will see, the moduli spaceMg is contained in
PSg (cf. [BL92] page 376), we want to prove the following theorem.

Theorem 5.5. The Stake compacti�cation PSg contains the �rst in�nitesimal neighbourhood of
Mg in Ag. In other words, let C be a point ofMg, we have TCPSg = TCAg.

This result could be related to the Schottky-Jung relations. Indeed, these relations, morally,
relate the vanishing on Mg+1 to the vanishing on Pg, and we know that both MS

g+1 and PSg
contain the �rst in�nitesimal neighbourhood ofMg.

To prove the theorem, we compute a variational formula for the family described in [BL92]
page 376. First, we describe the central �bre of the family.

We start with a smooth curve C of genus g and automorphisms-free. We pick two points a
and b, call C0 the curve C/a ∼ b. We construct an unrami�ed 2 to 1 cover C̃0 → C0 taking two
copies of C, call them C+ and C−, and gluing a+ with b−, obtaining a node n1, and a

− with
b+, obtaining a node n2. Let P (0) be the associated Prym.
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Lemma 5.6. The Prym variety P (0) is isomorphic to the Jacobian of C.

Proof. Keep notations as in section 5.1. On C̃0 we have
∫
B+

j
ω−i =

∫
B−

j
ω+
i = 0, so

1

2

∫
B+

j −B
−
j

ω+
i − ω

−
i =

∫
Bj

ωi

We construct a family of Pryms degenerating to P (0). Pick local co-ordinates za and zb
on C. Using the procedure described in section 1.2, we can obtain a family C̃t → Ct of covers
degenerating to C̃0 → C0. Let P (t) be the corresponding family of Prym. This degeneration
together with lemma 5.6 show thatMg is contained in PSg .

Fix a basis for the homologies of C̃t and Ct as in section 5.1. Remark that both A0(t) and
Ã0(t) are vanishing cycles. Since P (0) is isomorphic to the Jacobian of C, we denote by τ the
period matrix of C and the period matrix of P (0).

Proposition 5.7. The period matrix of P (t) is

P (t) = τ + tσ +O(t2) ,

where σ is a holomorphic function of a, b, za and zb given by

σij = 2πi((ωi(a)− ωi(b)(ωj(a)− ωj(b)) .

The di�erentials ωi are a normalised basis for the abelian di�erentials of C, they are evaluated
in term of dza and dzb.

Remark 5.8. This is the same σ we get in 1.10.

Proof. The zero order term has already been computed.
Call

ν : C+ t C− → C̃0
the normalisation map. Keep notations as in section 5.1. We have to identify the di�erentials
ν∗∇ω±i . We use lemma 1.2. The di�erentials ω+

i live on C+, and we have

ν∗ω+
i (a+) = ωi(a) , ν∗ω+

i (a−) = 0 ,

ν∗ω+
i (b+) = ωi(b) , ν

∗ω+
i (b−) = 0 .

Loops around a± and b± correspond to homologically trivial cycles on C̃0, so the residues of
ν∗∇(ω±i )(0) at a± and b± are zero. Moreover, we do not have any other pole. The integrals
along the cycles A±i are zero, because of the usual argument, see the proof of 1.10. We conclude
that on C+

ν∗∇ω+
i =

1

4
(ωi(a)ηa + ωi(b)ηb) ,

and on C−

ν∗∇ω+
i = −1

4
(ωi(b)ηa + ωi(a)ηb) .

Arguing as above, we obtain on C+

ν∗∇ω−i = −1

4
(ωi(b)ηa + ωi(a)ηb) ,

and on C−

ν∗∇ω−i =
1

4
(ωi(a)ηa + ωi(b)ηb) .

The result follows from Riemann's bilinear relations 1.4.
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Theorem 5.5 follows from the following result and lemma 3.6.

Proposition 5.9. Varying the choice of a, b, za, and zb, σ spans all TCAg−1.

The proof of this proposition is in section 3.1.

Schi�er's variations We conclude with a variational formula for Schi�er's variations. Consider
a 2 to 1 unrami�ed cover π : C̃ → C, call P (0) the period matrix of the associated Prym. Pick a
point p on C and let {p+, p−} be π−1(p). Perform simultaneously a Schi�er variation at (p, zp),

(p+, π∗zp) and (p−, π∗zp). We get a family of covers π : C̃t → Ct over a disc ∆t.

Theorem 5.10. The Prym P (t) of the family constructed above is

P (t) = P (0) + tσ(p, zp) +O(t2) ,

where

σij = 2πi
wi(p)wj(p)

dz2
p

Proof. The proof is as in theorem 1.12. The only di�erence is that ∇ωi(0) will be a meromorphic
di�erential with two poles of order two without residues at p+ and p−, with appropriate leading
coe�cients.

The tangent space TP (0)Ag is Sym2H0(KC + η)∨, so σ is given by

σ(p, zp)(ω) = 2πi(
ω

dzp
(p))2 .

The projectivization of σ(p, zp) does not depend on zp, it is the image of p under the composition

C
KC+η−−−−→ PH0(KC + η)∨

V er2−−−→ PSym2H0(KC + η)∨ .

The moduli space of étale double covers is a �nite cover of Mg, so its tangent space is
generated by Schi�er's variations. We have the following corollary

Corollary 5.11. The tangent space of Pg at the Prym variety of the cover C̃ → C is generated
by the a�ne cone over the image of the map

C → PH0(KC + η)∨
V er2−−−→ PSym2H0(KC + η)∨ .

The line bundle KC + η is very ample if the Cli�ord index of C is greater than or equal to 3.
An analysis of the Prym canonical model is carried out in [Deb89].

Question 5.12. We do not know a re�ned version of local Torelli problem for Prym. In the
case of hyperelliptic curve, we are thinking about the paper [OS80].

A survey about Torelli's problems for Prym is [SV02].

5.3 The rami�ed case

Let rPg be the coarse moduli space of Prym arising from double covers branched at two points.
As usual, rPSg will denote its closure in ASg .

Pinching a non-trivial homological cycle We start with a two to one cover C̃ → C rami�ed
at two points. We picks two points (distinct from the branch locus) and two local-co-ordinates
on C, we pull them back on C̃, and we perform the usual surgery. The construction and the
computation go exactly as in 5.3, and we get the following theorem.
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Theorem 5.13. The intersection of rPSg+m and Ag contains the m-th in�nitesimal neighbour-
hood of rPg in Ag.

Pinching a trivial homological cycle As for the étale case, the moduli spaceMg is a boundary
component of rPSg . We want to study the singularity. Fix a genus g automorphisms-free curve

C and a point p. Take two copies of (C, p), call them (C+, p+) and (C−, p−). Let C̃0 the curve
obtained gluing p+ and p−, call n the node. The curve C̃0 is a double cover of C. Fix a local
co-ordinate zp at p. Using this co-ordinate we construct a family C̃t degenerating at C̃0. The

involution on C̃0 extends to an involution of the entire family, so C̃ is a double cover of a family
Ct with central �bre isomorphic to C. (We have not an explicit description of Ct.) Call P (t) the
corresponding family of Prym.

Lemma 5.14. The Prym variety P (0) is isomorphic to the Jacobian of C.

Proof. Fix basis for the homology as in section 5.1, on the central �bre we have
∫
B−

i
ω+
j =∫

B+
i
ω−j = 0, so

1

2

∫
B+

i −B
−
i

ω+
j − ω

−
j =

∫
Bi

ωj

Fix a basis for the homologies of C̃t and Ct as in section 5.1. We do not have any vanishing
cycle. Since P (0) is isomorphic to the Jacobian of C, we denote by τ the period matrix of C and
the period matrix of P (0).

Proposition 5.15. The periods of the Prym di�erentials of the family C̃t → C are

P (t) = τ + tσ(p, zp) +O(t2) ,

where σ is given by

σ(p, zp)ij = 2πi
ωi(p)ωj(p)

dz2
p

.

The ωi are normalized abelian di�erential on C.

Proof. Call
ν : C+ t C− → C̃0

the normalisation map. As usual, we want to apply lemma 1.2 to the di�erentials ν∗∇wi. All
the di�erentials are evaluated with respect to dzp. We have

ν∗ω+
i (p+) = ωi(p) , ν

∗ω+
i (p−) = 0 ,

so on C+

ν∗∇ω+
i =

1

2
ωi(p)ηp

and on C−

ν∗∇ω+
i = −1

2
ωi(p)ηp .

Moreover
ν∗∇ω−i = −ν∗∇ω+

i .

The statement follows from Riemann's bilinear relations 1.4.
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The matrix σ(p, zp) is the tangent vector to a Schi�er variation of C at (p, zp), see proposition
1.12. To obtain a more general degeneration to P (0), the only thing we can do is to perform
some Schi�er's variations on C away from p, and pull them back to C̃. The tangent vector we
get in this way is a linear combination of Schi�er's variations, so we have the following result.

Theorem 5.16. Let C be a generic point ofMg, then

(T rCPSg )arc = TCMg ,

where (T rCPSg )arc is the subspace of T rCPSg spanned by vectors coming from arcs.

This situation reminds the local Torelli's theorem for hyperelliptic curves, Torelli problem in
the rami�ed case is discussed in [MP12].
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