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Analytical Approach for the Solution of the Nonlinear GLR-MQ Equation 
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The present paper reports the effect of nonlinear corrections to the behaviour of gluon distribution in

the Gribov-Levin-Ryskin-Mueller-Qiu (GLR-MQ) approach. Here the nonlinear GLR-MQ evolution

equation is solved analytically in order to determine thex andQ2 dependence of gluon distribution

function. We observe that, the gluon distribution increases with increasingQ2 and decreasingx, which

is in agreement with the perturbative QCD fits at small-x, however this particular behaviour of the gluon

distribution function is tamed by the shadowing effects of gluon recombination. The obtained results of

the nonlinear gluon distribution at the hot spot are compared with different global parton analysis as well

as with those obtained from the solution of the modified-DGLAP (MD-DGLAP) equation and are found

to be quite compatible.
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Introduction

At small-x the linear QCD evolution equation, viz. the Dokshitzer-Gribov -Lipatov-Altarelli-Parisi (DGLAP)

equation (Dokshitzer, 1977; Altarelli and Parisi 1977; Gribov and Lipatov, 1972) predicts a rapid increase

in the density of gluons. This behaviour eventually violates unitarity. But, of course, it is expected that the

growth of gluon densities saturates at a given time due to Froissart bound (Froissart, 1961), which states

that the total hadronic cross sections cannot grow faster than the logarithm squared of the energy,ln s2, as

s →∞. At small-x the produced gluons start to overlap spatially in the transverse area and thus unitarity is

restored. Therefore at small-x apart from the gluon splitting functions, the gluon recombination processes,

gg → g, also become significantly important. This phenomenon of gluon recombination, also referred to as

nonlinear effects or shadowing corrections, leads to parton saturation at small enoughx. This subject has

been studied in great detail for the last few years (Levin and Rezaeian, 2010; Kutak, 2011; Giannini and Du-

raes, 2013). The shadowing corrections of gluon recombination to the integrated parton distributions were
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mainly studied by adding nonlinear terms in the DGLAP evolution equation in the collinear factorization

scheme. Pioneering work in this aspect was done by Gribov, Levin, and Ryskin (GLR) and by Mueller and

Qiu (MQ) at the twist-4 level and we call their result as GLR-MQ evolution equation (Gribovet al., 1983;

Muller and Qin, 1986).

The solution of the GLR-MQ equation attracts considerable attention for the investigation of nonlinear

effects as a consequence of gluon recombination in the region of high gluon density at small-x. Immense

studies based on GLR-MQ approach have been done in the last few years (Prytz, 2001; Boroun, 2009;

Boroun and Zarrin, 2013). The present authors have also pursued such an approach with reasonable phe-

nomenological success (Deveeet al., 2014). In the present paper we intend to study the effect of nonlinear

corrections to the behavior of gluon distributions in the GLR-MQ approach. Here we estimate thex andQ2

dependence of gluon distribution considering the influence of gluon recombination at small-x. Our predic-

tions are compared with different parametrizations viz. GJR2008LO (Glucket al., 2008). MSTW2008LO

(Martin et al., 2009), HERAPDF0.1 (Kretzschmaret al., 2009), CT10 (Laiet al., 2010) as well as with

EHKQS model (Eskolaet al., 2003). We further perform the check of our calculations by comparing the

predicted nonlinear gluon density with the solution of the more precise and more complicated modified

DGLAP (MD-DGLAP) equation (Zhu, 1999). The MD-DGLAP evolution equation was derived by W. Zhu

taking into account the effect of antishadowing corrections in addition to the shadowing corrections.

The plan of the paper is as follows. In Sec. 2 we briefly describe the formalism for the solution of

nonlinear GLR-MQ equation to study the effect of gluon recombination on the behavior of gluon density at

small-x. We present the results and discussions of our predictions in Sec. 3. We summarize in Sec. 4.

Formalism

The nonlinear corrections to the QCD evolution arise from the recombination of two gluon ladders into one

and they modify the evolution equation of gluon distribution as (Gribovet al., 1983),
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which is known as the GLR-MQ evolution equation. In leading twist approximation, the strong coupling

constantαs(Q2) = 4π
β0ln(Q2/Λ2)

, whereβ0 = 11− 2
3Nf , with Nf beingthenumber of active quark flavors.

The first term is the standard DGLAP result, linear in the gluon distribution function. The quark-gluon

emission diagrams are not considered here as they have very little significance in the gluon-dominated

small-x region. The minus sign in front of the non-linear term is accountable for gluon recombination

that describes shadowing corrections. If the gluons are spread throughout the entire proton thenR, the

correlation radius between two interacting gluons, will be of the order of proton radius(R ' 5 GeV−1). On
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the other handR is much smaller(R ' 2 GeV−1) if the gluons are concentrated in a hot spot within the

proton.

Substituting the leading order gluon-gluon splitting functionPgg in Eq.(1) (Abottet al., 1980) and

performing the integrations inz for x ≤ z ≤ 1, Eq.(1) can be simplified as

∂G(x, t)
∂t

= A1(x)
G(x, t)

t
−A2(x)

G2(x, t)
t2et

, (2)

where,t = ln(Q2

Λ2 ), with Λ beingtheQCD cut off parameter. The explicit forms of the functionsA1(x) and

A2(x) are
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where,Af = 4/β0. Eq.(2) is obtained by employing a simple form of Regge ansatz for the determination

of the gluon distribution function at small-x given as

G(x,Q2) = M(Q2)x−λG , (5)

whereM(Q2) is a function ofQ2 andλG is the Regge intercept for gluon distribution function. We accom-

plish our calculations taking the value ofλG in the range0.35 ≤ λ ≤ 0.5.

From Eq.(2), which is a partial differential equation inx andQ2, one can obtain the solution of the gluon

distribution function as

G(x, t) =
tA1(x)

C −A2(x)Γ[−1 + A1(x), t]
, (6)

whereC is a constant to be determined from initial boundary conditions. Eq. (6) assist us to study how the

nonlinear or shadowing corrections due to gluon recombinations influence the behavior of gluons at small-x.

We now use the following two physically plausible boundary conditions

G(x, t) = G(x, t0) (7)

at some lowt = t0, and

G(x, t) = G(x0, t) (8)

at some initial higher valuex = x0.
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Using the physically plausible boundary condition defined in Eq.(7) along with the use of Eq.(6) we

obtain

G(x, t) =
tA1(x)G(x, t0)

t
A1(x)
0 + A2(x)

{
Γ[−1 + A1(x), t0]− Γ[−1 + A1(x), t]

}
G(x, t0)

. (9)

Using Eq.(9) we can easily estimate the gluon distribution as a function ofQ2 for a particular value ofx

by taking a suitable input distributionG(x, t0). Similarly applying the boundary condition given by Eq.(8),

Eq.(6) reads as

G(x, t) =
tA1(x)G(x0, t)

tA1(x0) +
{

A2(x0)Γ[−1 + A1(x0), t]−A2(x)Γ[−1 + A1(x), t]
}

G(x0, t)
. (10)

from which one can determine the small-x dependence of the gluon distribution function for fixedQ2 by

taking an appropiate input distribution at an initial value ofx = x0.

Result and Discussion

The nonlinear GLR-MQ evolution equation for gluon distribution is solved semi-numerically in order to

predict the influence of shadowing corrections as a consequence of gluon recombination processes at small-

x and moderateQ2. The input gluon parameterization has been taken from MRST2001LO (Martinet al.,

2002) to study the effect of nonlinear corrections on thex andQ2 dependence ofG(x,Q2). In Fig. 1 we

plot our best fit results ofQ2-dependence of gluon distribution function computed from Eq.(9) forx = 10−3

and10−4 respectively and compared with the GJR2008LO (Glucket al., 2008) and MSTW2008LO (Martin

et al., 2009) global fits as well as with the EHKQS model (Eskolaet al., 2003).

Fig. 1: (A) Plots of gluon distribution function G(x, Q2) versus Q2 according to Eq.(9) at the hot spot R =2GeV−1 f or 

two representative x, viz. x = 10−3 a nd x = 10−4. (B) The solid curves are our result, dash curves are the results of 

EHKQS model, dash-dot curves are from GJR208LO and dash-dot-dot curves are from MSTW2008LO global fit

A B
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On the other hand, in Fig. 2G(x,Q2) is plotted as a function ofx calculated from Eq.(10) for two differ-

ent values ofQ2, namelyQ2 = 5 and 15 GeV2 respectively. Our results are compared with HERAPDF0.1

(Kretzschmaret al., 2009) and CT10 (Lalet al., 2010) parametrizations. Our predictions obtained from

Eq.(10) are also compared with those obtained in similar analysis by using MD-DGLAP equation (Zhu,

1999) as shown in Fig. 2.

It is interesting to observe as well that the shape of the MD-DGLAP curve is almost similar to our

results in the regionx < 10−3. The gluon distribution function increases with increasingQ2 and decreasing

x as expected, which is also in agreement with perturbative QCD fits at small-x. But the effect of gluon

recombination at twist-4 level slows down the rapid increase of gluon densities. We perform our analysis in

the kinematic region2 < Q2 < 20 GeV2 and10−5 < x < 10−2 at the hot spot withR = 2 GeV−1 where

the nonlinear corrections due to gluon recombination become influential.

Fig. 2: (A) Computed values of gluon distribution function G(x, Q2) plotted against x obtained from Eq.(10) at the hot 

spot R = 2 GeV−1 for two fixed Q2 = 5 and 15 GeV2. (B) The solid curves represent our result, dash curves represent 

HERAPDF0.1, dash-dot curves represent CT10 and dash-dot-dot curves are the results of MD-DGLAP equation

Conclusion
The nonlinear GLR-MQ equation is solved to study the effect of shadowing corrections to the behaviour

of gluon distributions in the region of small-x and moderate-Q2. Here thex andQ2 dependence of gluon

distribution function are estimated at the hot spot where the gluon recombination effects are expected to

play a significant role. We observe that, although the obtained results of gluon distribution complement the

perturbative QCD fits, but in the region of small-x andQ2 this behaviour is tamed due to the nonlinear terms

in the GLR-MQ equation. That being so, the Froissart bound is restored in the small-x region where density

of gluons becomes very high.
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