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Axion-like scalar fields and the Lane–Emden (LE) truncation of their periodic potential are analyzed as a 
toy model of dark matter halos. Then, collisions of the well-known kinks in (1 + 1) spacetime dimensions 
can be mapped to those of localized lumps of the LE equation. Here, we generalize this mapping to 
(2 + 1)D or even (3 + 1)D and discuss a challenging intrinsic inelastic effect during relativistic soliton 
collisions.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Head-on collisions of massive galaxy clusters, like those occur-
ring in the so-called bullet cluster [8] are a challenge for the cold 
dark matter (CDM) paradigm, inasmuch as either the individual 
galaxies or the hot X-ray emitting interstellar gas are only partially 
anchored to the DM lumps.

Here, we are going to probe axion-like particles [35–37] as dark 
matter candidates. In particular, we continue our investigations [4,
5] whether or not two dark matter halos pulling towards one an-
other can be modeled via soliton-type collisions, but now in a 
more realistic setting of (2 + 1) or even 4 spacetime dimensions.

Since solitons or lumps appear to be rather stable entities, they 
behave effectively like colliding particles, i.e. after leaving the in-
teraction region where they may deform due to a temporally in-
elastic mechanism studied here in a relativistic setting, they ulti-
mately return to their original shapes and velocities.

Recently, the previous proposal of Kolb and Tkachev [16,17]
that DM may be composed of a gas of ‘axion mini clusters’ or 
mini axion stars has been adopted and developed further [21,22,
2]. Moreover, for such Bose–Einstein (BE) type condensates one 
needs some self-interaction and, in view of the self-similarity of 
solitons, one would end up with much larger configurations re-
sembling lump-type halos to be considered here.
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2. Nonlinear Klein–Gordon equation

As one of the most representative relativistic models, the Klein–
Gordon equation has found applications in many areas: Besides 
the nonlinear version that results in the known φ4 model and 
higher-order field theories, it is used to describe successive phase 
transitions on realistic systems. Such processes are known to oc-
cur in ferroelastic and ferroelectric crystals and in meson physics. 
Some of these models present different kind of solitons; topologi-
cal and nontopological, kinks, lump and breather type.

In the Klein–Gordon case, we depart from the wave operator

� := ∇ • ∇ − 1

c2

∂2

∂t2
(1)

of Jean-Baptiste le Rond d’Alembert, still being linear in its deriva-
tives. Thus it is invariant under the general Lorentz transformations 
(boosts)

ct → γ
(
ct − �v · �x/c

)
(2)

�x → �x + γ − 1

v2

(�v · �x)�v − γ �vt, (3)

where �x := (x, y, z) is the radius vector of an event and

γ = 1/

√
1 − �v · �v/c2 (4)

the Lorentz factor, cf. [29].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. (Color online.) Nonlinear potentials: sine-Gordon (blue), φ2 (red), φ4 (dotted) 
and φ6 (dashed).

The challenge comes in the election of the potential V = V (φ)

in the nonlinear Klein–Gordon (NLKG) equation

�φ = ∂V (φ)

∂φ
. (5)

For a start, let us consider another well known model, the sine-
Gordon equation: The exact and complete potential has received 
many applications, and different truncations of (7) may approxi-
mate rather well other models: The first term of the Taylor series 
corresponds to the mass in the original Klein–Gordon equation; 
the next one would give rise to the famous φ4-theory. Combining 
the first and third term can be reckoned as the modified φ6-theory 
of Lane–Emden, and so on [14]. By plotting some of the potentials 
we obtained an approximated view of the field-theoretical ‘vacu-
um’ at the center, see Fig. 1.

In particular, we are interested in the LE form of φ6-theory, 
a model which had been use before in astrophysics and has the 
mathematical virtue that some analytic expressions are available 
for 2 till 4 spacetime dimensions.

So far, the study of such solitons has had many advances in 
1 + 1 dimensional systems, but higher dimensions remain in many 
cases unsolvable. One of the hardest problems arise due to the lack 
of integrability, which, at times, is fully or partially lost.

Since the DM distributions in the bullet cluster appear not to be 
affected during merging, we postulate an axion-like scalar compo-
nent of galaxies and clusters and analyze its solitary wave behav-
ior, or as in our previous 2D toy model [4], its Lane–Emden (LE) 
truncation [23]

V LE(φ) = m2

2
φ2

(
1 − χφ4

)
. (6)

Although globally unbounded due to χ = −λ2/(360m4), the LE 
truncation (6) has the advantage that, in 4D, it admits exact spher-
ically symmetric static solutions [23] which model quite well [25]
DM halos of individual galaxies. Moreover, more than a century 
ago1 it was considered as approximate models for the density of 
the sun as well as for the distribution of stars in globular clusters.

3. Soliton collisions in (1 + 1)D

The axions of Quantum Chromodynamics (QCD) with inertial 
mass m are self-interacting via the effective [15,30] periodic po-
tential

Va(φ) = m4

λ

[
1 − cos

(√
λ

m
φ

)]

1 Jonathan Homer Lane: “On the theoretical temperature of the Sun under the 
hypothesis of a gaseous mass maintaining its volume by its internal heat and de-
pending on the Laws of Gases known to Terrestrial experiment”. The American 
Journal of Science and Arts. 2 50 (1870) 57–74.
� V LE(φ) − λ

4!φ
4 − · · · (7)

which deviates from the LE potential at higher order of |φ|.
When several solitons collide, one expects that they recuper-

ate their initial shapes and velocities after some time has passed. 
Remnants from crossing the scattering region may be the concomi-
tant phase shifts or displacements of the centers of the individual 
solitary waves due the nonlinear, partially inelastic interaction.

For constructing multi-solitons, the well-established Bäcklund 
transformation (BT), cf. Refs. [38,32,13] is employed which may also 
bridge between different types of nonlinear equations.

Let us depart from the sine-Gordon (sG) equation [31] which 
in dimensionless light-cone coordinates ξ := 1

2 (x̃ + ct̃) and η :=
1
2 (x̃ − ct̃) acquires the form

θξη = sin θ (8)

and is C P T invariant. In a moving frame, it has the exact kink 
solution

θ = 4C arctan
[
expγ

(
x̃ − ut̃

)]
, (9)

for C = 1 and anti-kink for C = −1. Since its spatial derivative

θx̃ = 2γ Csech
[
γ

(
x̃ − ut̃

)]
(10)

becomes localized and square-integrable, its absolute value will fa-
cilitate a subsequent comparison with the scattering behavior of 
solitons or lumps regarded as Bose–Einstein condensates [24,28]
of DM.

Due to Bianchi’s permutability theorem of BTs, there results the 
‘nonlinear superposition’ principle

tan [(θ3 − θ0)/4] = B tan [(θ1 − θ2)/4] , (11)

where B is a common or ‘average’ relativistic velocity of the super-
posed solitons. This allows us to algebraically construct multi-kink 
solutions of the sG equation a la Perring and Skyrme [26,41].

The C P T invariance of our relativistic KG equation, will allow 
us to distinguish solitons from anti-solitons:

Here we focus on the collision of two kinks (instead of a colli-
sion of a kink and its CP odd anti-kink, as in Ref. [4]) and obtain 
from the trivial seed solution θ0 = 0 the exact solution

θkk = 4 arctan [K (ζ1, ζ2)] , (12)

where the kinetic factor

K (ζ1, ζ2) : = B
exp(ζ1) + C exp(ζ2)

exp(ζ1 + ζ2) − C
(13)

= exp(ζ1 + γ1δ1) + C exp(ζ2 + γ2δ2)

exp(ζ1 + ζ2) − C
� exp(ζ1 + γ1δ1) + C exp(ζ2 + γ2δ2)

depends on the initial velocities and the inverse Lorentz trans-
formations ζi := γi(x̃ + uit̃). The former is also known as Hirota’s 
formula [11,12].

At large separations from the interaction region, cf. Fig. 2, 
the solution (12) clearly decouples asymptotically into a (non-
interacting) kink–kink or kink–antikink pair [7] distinguished by 
the sign C = ±1 of the topological charge.

3.1. Collisions of Lane–Emden lumps

For the Lane–Emden equation of interest in astrophysics, an ex-
act auto-Bäcklund transformation has yet not been found. Instead 
a generalized transformation or mapping will serve us as a guide 
in constructing multi-lump solution. Consider the Lane–Emden po-
tential (6) as a truncation of (7), then the corresponding non-linear 
KG equation in light-cone coordinates simplifies to
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Fig. 2. (Color online.) Kink–kink collision monitored via the absolute value of its 
spatial derivative.

φξη = ∂V

∂φ
= φ

(
1 − 3χφ4

)
. (14)

Integration leads us to the explicit exact solution

φ = 1
4
√

χ

√
sech(2ζ ), (15)

where an integration constant has been suppressed.
Due to the identity sin(2 arctan y) = sech(ln y) for (hyperbolic) 

trigonometric functions, the Lane–Emden solution (15) is related 
to the kink of the sG equation via the nonlinear mapping

φ = φ(θ) = 1
4
√

χ
[sin (θ/2)]1/2 = 1

4
√

χ

√
sech(2ζ ). (16)

This suggest to generate a two soliton solution

φ = (θkk) 4
√

χ = (sin {2 arctan [K (ζ1, ζ2)]})1/2

= (sech {ln [K (ζ1, ζ2)]})1/2 (17)

of the LE equation via the same mapping, using again identities 
for trigonometric (hyperbolic) functions. So far, a more precise ap-
proximation has not yet been found.

In the resulting spacetime diagram, the scattering of two soli-
tons behaves as expected: After crossing the collision region, the 
individual solitons regain their original velocities, their trajectories 
are asymptotically the same as the initial ones, merely the centers 
of the lumps suffer the phase shift or displacement

δi := ln |B|/γi . (18)

For solitons, some temporary ‘bouncing’ of the center of a lump 
in the collision region occurs, whereas an anti-soliton may ‘tunnel’ 
through a soliton during merging, cf. Ref. [4] for details.

Thus, interacting solitons behave more like ‘extended particles’ 
where, due to the temporarily inelastic effects discussed above, 
a continuous interchange of inertia (invariant mass) and interac-
tion energy occurs. In Ref. [7], this non-Newtonian behavior is 
referred to as a local version of Mach’s principle, inasmuch as the to-
tal inertia of a lump depends also on the relative motion of other 
solitons in its vicinity.

Although Eq. (17) is not an exact solution to the nonlinear KG 
equation (14), the same relativistic factor occurs in the LE trunca-
tion.

4. Solitons in 2 + 1 dimensions

Generalizing solutions of nonlinear equations from (1 + 1)D to 
more spatial dimensions is rather complicated due to many rea-
sons: One of them is that the use of nonlinear tools is not widely 
developed or is lacking. An extrapolation of our previous mapping 
to 3 or 4 spacetime dimensions, is not direct in the most cases. 
Commonly, integrability is fully or partially lost, cf. Ref. [33].
Fig. 3. (Color online.) Crest like 3D soliton in a rest frame.

Introducing the LE potential and a scalar field of the form 
φ (t, x, y) in (5) and scaling coordinates to 

(
t̃, x̃, ỹ

) = m (t, x, y), the 
NLKG as a dimensionless wave equation can be written explicitly 
as(

∂2

∂ x̃2
+ ∂2

∂ ỹ2
− 1

c2

∂2

∂ t̃2

)
φ = φ

(
1 − 3χφ4

)
(19)

However, the previous mapping is not restricted to the degree 
of the spatial dimensions. Adopting the Ansatz

tan(φ/4) = exp [y − f (x; t)] (20)

of Refs. [10,27], we can, as a result, depart from a solution of the 
form

φ
(
t̃, x̃, ỹ

) = ± 1

χ1/4

√
sech

[
2
(

ỹ − f
(
t̃, x̃

))]
, (21)

using dimensionless coordinates.
Then the terms entering in Eq. (19) can explicitly be written as

∂2

∂ x̃2
φ

(
t̃, x̃, ỹ

) = 1

χ1/4
sech5/2

(
B

2

)

×
[(

∂ f

∂ x̃

)2

A± sinh (B)

2

(
∂2 f

∂ x̃2

)]
, (22)

1

c2

∂2

∂ t̃2
φ

(
t̃, x̃, ỹ

) = 1

χ1/4
sech5/2

(
B

2

)

×
[(

1

c

∂ f

∂ t̃

)2

A± sinh (B)

2

(
1

c2

∂2 f

∂ t̃2

)]
,

∂2

∂ ỹ2
φ

(
t̃, x̃, ỹ

) = A

χ1/4
sech5/2

(
B

2

)
, (23)

φ
(

1 − 3χφ4
)

= A

χ1/4
sech5/2

(
B

2

)
, (24)

where B = 4 ỹ − 4 f
(
t̃, x̃

)
and A = ± [cos (B) − 5]/2.

It turns out that φ fulfills the nonlinear Eq. (19) for functions 
f (t, x) which obey the two conditions

1

c2

∂2 f

∂ t̃2
= ∂2 f

∂ x̃2
, (25)(

1

c

∂ f

∂ t̃

)2

=
(

∂ f

∂ x̃

)2

. (26)

In Fig. 3 the simple choice f (t̃, ̃x) = − 
(
x̃ − ct̃

)
is considered 

which, however, does not provide a localization in the perpendic-
ular direction. It can be regarded as a wave crest after a rotation in 
the xy-plane. The scalar field is normalized to � = χ1/4φ.
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Fig. 4. (Color online.) Partially localized 3D lump-like soliton in a rest frame.

Fig. 5. (Color online.) Energy density of the partially localized 3D lump.

In Fig. 4 we considered the choice f
(
t̃, x̃

) = ksech
(
ct̃ − x̃

) =
ksech

(
ξ̃
)

which provides a lump localized only in y direction. 

Again, the scalar field is normalized to � = χ1/4φ.
The energy density of such lumps has the standard form:

ρ
(
t̃, x̃, ỹ

) = 1

2

[(
∂φ

∂ x̃

)2

+
(

∂φ

∂ ỹ

)2

+
(

1

c

∂φ

∂ t̃

)2
]

+ V (φ) , (27)

and yields

ρ
(
t̃, x̃, ỹ

) = m2

√
χ

(
sech3 [F ] − sech [F ]

)
×

{
k2γ 2

(
sech4ζ − sech2ζ

)
− 1

}
(28)

where F := (2 ỹ cosh ζ − k)/ cosh ζ . The density ρ in Fig. 5 is nor-
malized by √χ/m2.

Colliding LE lumps of initially equal velocities and masses can, 
eventually, be generated via the nonlinear mapping

tan

(
arcsin

(
χ1/2φ2

)
2

)
= c sinh [γ mvt]

v cosh [γ m (x + y)]
. (29)

Mathematically, however, wave equations in odd or even di-
mensions can behave differently with respect to the Huygens prin-
ciple, e.g. for (2 + 1) spacetime dimensions there may occur “lacu-
nas”, cf. Ref. [9] for details.

5. Radial 4D lump in the Lane–Emden truncation

Let us recall that the LE potential

Ṽ (φ) = φ2
(

1 − χφ4
)

, (30)
Fig. 6. (Color online.) Radial profile of exact lump type 4D solutions of the Lane–
Emden equation in a rest frame.

is highly nonlinear in |φ| and its behavior dependents on the cou-
pling constant χ . (So if χ ≤ 0 it has only one minimum and for 
χ > 0 it adds two maxima; rather similar to the sine case at the 
origin.)

Using the spherical symmetry Ansatz

φ = P (r) Y (θ,ϕ)exp(−iωt) (31)

in (5), and applying an ‘averaging’ procedure [20] over the angular 
dependence in the spherical harmonics Y (θ,ϕ), the classical LE 
equation in the radial coordinate r is recovered. The result

P ′′ + 2

r
P ′ + 3m2χ P 5 = 0 , (32)

is familiar from the in theory of polytropic gases. Since this ra-
dial Ansatz reduces the 4D equation to effective (1 + 1) spacetime 
dimensions, in the rest frame it can be solved exactly2 and analyt-
ically, after rescaling the radial coordinate via x = mr, by

P (r) = ±χ−1/4

√
A

1 + A2x2
. (33)

Here A = √
χ P 2

0 is associated to the central peak and P0 is the 
value at r = 0.

More specifically, the LE equation provides us in (3 + 1)D with 
the exact [19] static radial solution (33) which is completely non-
singular and localized in all spatial directions. This is referred to 
as a meta-stable lump, cf. Fig. 6 or 12 from Ref. [4], which cannot 
easily be confounded with domain walls.

Thus it appears prospective to generalize the scattering of two 
Lane–Emden solitons in 2D to more realistic 3D (head-on) col-
lisions of self-gravitating lumps [23,3]. In 4D one would like to 
depart from those depicted in Fig. 6, albeit formidable require-
ments on the computational resources.

6. Discussion

As is well-known [20], the LE truncation provides only meta-
stable lumps, whose decay time τ � λCompt/c is proportional to the 
Compton wave length. Since this is shorter than the collision time 
as well as the age of the Universe, such lumps need to be stabilized 
via their self-generated gravity [18,34], similarly as in the case of 
colliding boson stars [6] or axion miniclusters [22,39,40]. Neverthe-
less, we could report here some progress in the semi-analytical 
study of solitons collisions modeling, to a certain extent, DM ha-
los.
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2 Numerical approximations [1] for some LE equations can also be obtain in terms 
of Legendre polynomials.
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